
Effects of Personalization on Gait-State Tracking Performance Using
Extended Kalman Filters
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Abstract— Emerging partial-assistance exoskeletons can en-
hance able-bodied performance and aid people with patho-
logical gait or age-related immobility. However, every person
walks differently, which makes it difficult to directly compute
assistance torques from joint kinematics. Gait-state estimation-
based controllers use phase (normalized stride time) and
task variables (e.g., stride length and ground inclination) to
parameterize the joint torques. Using kinematic models that
depend on the gait-state, prior work has used an Extended
Kalman filter (EKF) to estimate the gait-state online. However,
this EKF suffered from kinematic errors since it used a subject-
independent measurement model, and it is still unknown
how personalization of this measurement model would reduce
gait-state tracking error. This paper quantifies how much
gait-state tracking improvement a personalized measurement
model can have over a subject-independent measurement model
when using an EKF-based gait-state estimator. Since the EKF
performance depends on the measurement model covariance
matrix, we tested on multiple different tuning parameters.
Across reasonable values of tuning parameters that resulted in
good performance, personalization improved estimation error
on average by 8.5 ± 13.8% for phase (mean ± standard
deviation), 27.2 ± 8.1% for stride length, and 10.5 ± 13.5%
for ground inclination. These findings support the hypothesis
that personalization of the measurement model significantly
improves gait-state estimation performance in EKF based gait-
state tracking (P � 0.05), which could ultimately enable
reliable responses to faster human gait changes.

I. INTRODUCTION

Partial-assistance exoskeletons have the potential to aid
varied populations of people to regain their mobility, aug-
ment their physical capabilities, and prevent workplace in-
juries. To accomplish this, exoskeletons need to synchronize
their assistance to the user in whatever task they are doing.
Many exoskeleton controllers use lower-limb kinematics to
determine how much torque to apply to the joints. However,
every person walks differently and the tasks (e.g., inclines or
stairs) all have different patterns of motion. This difficulty
has motivated a variety of exoskeleton control approaches.

Human-in-the-loop optimization can adapt assistance to
each user over time, improving walking speed [1], [2],
reducing muscle activation [3], and lowering the metabolic
cost of walking [4]–[6]. Ref. [1] has shown human-in-the-
loop optimization that fine-tunes torques online at varied
walking speeds and fixed ground inclinations. However,
torque profiles are only timing and velocity based, requiring
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online re-optimization for changing ground inclinations. This
is problematic since optimization can take over 30 minutes to
converge and tasks can change quickly. Timing-based torque
profiles are less robust to speed and gait initiation/termination
changes as they update walking speed estimates only at heel
strike. Proper torque timing is crucial for metabolic cost re-
duction [5]–[7]. Therefore, quick task transitions without re-
optimization necessitate a more elaborate gait-state estimator
containing task information.

An emerging category of exoskeleton controllers are de-
signed to be both task- and person-independent, such as en-
ergy shaping [8] methods. These controllers directly use joint
kinematics to calculate assistive torques. They have been
shown to reduce muscle activation across varied activities
such as sit-to-stand, level ground walking, and stair climbing
[9], but “one-controller-fits-all” strategies are limited in how
accurately they can predict the appropriate torque across
tasks and users. This can potentially force the user to adapt
to the assistance, and not the other way around.

An alternative control philosophy parameterizes the as-
sistive joint torques based on explicit estimates of gait
phase and task variables. Deep and Convolutional Neu-
ral Networks (CNN) can estimate user phase (normalized
stride time) [10]–[12] and ground inclination [13] directly
from sensor measurements. Additionally, CNNs track phase
robustly across various incline and speed conditions [12].
However, black box estimators lack interpretability and ver-
ifiability, which makes their behavior hard to predict—both
for engineers and users—in new situations such as unseen
users. This has led to some interest in personalizing neural-
network-based estimators using subject-specific data, either
learning an estimator that is completely subject-specific or
an adjustment of an existing model trained on more subjects
via fine-tuning or transfer learning [13], [14]. Personalized
adjustments result in better phase tracking performance [14],
at least within level ground walking. Personalized multi-task
estimation is known to improve ground inclination tracking
on ramps [13], but only when it is estimated in the stance
phase (as detected by a foot contact sensor). In addition,
both of these personalization results are complicated by
the black-box nature of the estimator and the use of data
collected from sensors on a particular exoskeleton, which
makes it hard to tell which features are being learned, and
how well those features would generalize to different sensors
and exoskeletons.

Extended Kalman Filters offers a white-box alternative
for quickly tracking gait behavior by leveraging apriori
information about gait into a measurement model. While



the approach was originally introduced to estimate phase
and phase rate [15], it has since been extended to include
continuous task variables like ramp angle and stride length
in its state definition (which we will refer to as the gait-state)
[16], [17]. The addition of task variables improved phase
prediction performance and enabled the adaptation of control
torques as the task quickly varied [16]. These measurement
models continue a research effort to measure [18] and model
[19] the kinematics of human gait using continuous rather
than discrete models. However, personalization is known to
be an important source of error in continuous gait models
[20], and prior work has yet to attempt personalization of
the EKF’s measurement model, relying instead on a subject-
independent model to estimate the relationship between the
joint angles and the gait-state. This was likely responsible for
some of the persistent task estimation errors produced by the
algorithms in leave-one-subject-out cross-validation [16].

This paper investigates how personalized, subject-specific
measurement models influence the performance of EKF-
based gait-state estimation. In particular, the contributions of
this paper are 1) a statistical comparison of a personalized
measurement model (PM) and an un-personalized leave-
one-out cross-validation measurement model (UM), and 2)
a sensitivity analysis of this comparison to the tuning pa-
rameters of the EKF estimator, namely the process model
covariance matrix. The testing is based on an existing dataset
of multi-speed, multi-ramp walking kinematics for n=10
able-bodied subjects [21]. Our results indicate that phase,
ramp, and stride-length estimation are significantly improved
by personalization (P � 0.05). This result held for a
wide range of “reasonable” EKF tunings, indicating a lack
of sensitivity to the tuning parameters. As a worst-case
comparison, we looked at the best EKF tuning for a UM and
compared the performance of the same tuning for the PM.
The PM improved performance by 20.4% for stride length
and 12.7% for ground inclination, with a small, 2.0% tradeoff
in performance for phase tracking.

II. METHOD OF STATE ESTIMATION

A. Review of Extended Kalman Filter

The Extended Kalman Filter (EKF) is a type of Bayes
Filter that is used to estimate a hidden state that is not directly
observable from sensors. We define a hidden state (gait-state)
corresponding to the measurement model which describes
gait continuously across tasks as in [16], [17]. Specifically,
the gait-state x(t) is defined as

x(t) =
[
p(t) ṗ(t) l(t) r(t)

]T
, (1)

comprising phase p, phase rate ṗ, stride length l, and ground
(or ramp) inclination r.

The EKF produces estimates according to a difference
equation starting from an initial state, x0. At each time-step
thereafter, it uses the current state to predict the gait-state
at the next time-step using a dynamic model (Sec. II-B).
Feeding this gait-state into a measurement model (Sec. II-C,
a continuous model of the kinematics of human locomotion)

the filter attempts to predict the system’s measurements (in
our case, the global thigh, shank, and foot angles). The
EKF algorithm then calculates a Kalman gain that it uses
to adjust the predicted gait-state based on the error between
the predicted angles and the measured angles.

B. Gait Dynamic Model

We define the state dynamics in discrete time, similar to
the dynamics used in the gait-state estimation literature [15]–
[17], as

xk+1 = Fxk + ωQ, ωQ ∼ N (0,ΣQ), (2)

where xk+1 is the predicted state at the next time-step, ωQ

is a multivariate normal random vector with mean 0 and ΣQ

covariance, ∆t is the time-step, and the matrices F and ΣQ

are defined

F =

1 ∆t
1

1
1

 , ΣQ =

σ
2
Q,p

σ2
Q,ṗ

σ2
Q,l

σ2
Q,r

.
(3)

We term ΣQ the process model noise covariance matrix and
define σ2

Q,p, σ2
Q,ṗ, σ2

Q,l, σ
2
Q,r to correspond to independent

process noise in phase, phase rate, stride length, and ramp,
respectively.

The dynamic update matrix, F , updates the phase estimate
according to a simple Euler integration of the phase rate.
The evolution of the other states cannot be predicted since
stride length depends on user choice, and ground inclination
depends on the environment. Therefore, phase rate, stride
length, and ground inclination only increase their uncertainty
in the prediction step by the corresponding elements in the
covariance matrix ΣQ. This matrix is consequently used as
a tuning matrix which determines how fast the states can
change between consequent time steps. Similar to [15], we
use a noiseless Euler-integration of phase (i.e. σ2

Q,p = 0).
Since we do not expect the states to be correlated with one
another, the matrix is defined with a diagonal structure.

C. Measurement Model

The measurement model maps gait-state to expected mea-
surements. For this paper, the measurement model will
predict link angles and link angular velocities. In particular,
we will use global shank, global thigh, and global foot angles
and velocities. We use global link angles instead of joint
angles since it is easier to obtain reliable information from
IMUs than from joint encoders. The measurement model that
predicts link angles and velocities based on the current state
is therefore

h(x) =

[
θ(x)

θ̇(x)

]
+ ωR, ωR ∼ N (0,ΣR), (4)

which is a vector in R6, and ωR is a multivariate normal
random vector with 0 mean and ΣR covariance. The link



angle model is

θ(x) =

θthigh(x)
θshank(x)
θfoot(x)

 =

λ(x)
λ(x)

λ(x)

ξthigh
ξshank
ξfoot

 ,
(5)

where θ(x) is a vector in R3 of link angles, each θi represents
a specific link, λ(x) is a nonlinear model vector of the state
(which is the same across all links), and ξi represents the
model fit for a particular link. To calculate the corresponding
link angle velocities, we have that

θ̇(x) =

 θ̇thigh(x)

θ̇shank(x)

θ̇foot(x)

 =

λ̇(x)

λ̇(x)

λ̇(x)

ξthigh
ξshank
ξfoot

 ,
(6)

where the model is just the time derivative of θ. Fi-
nally, the measurement model covariance matrix ΣR is
defined as a 6 × 6 matrix with only diagonal entries.
The σ2

R,thigh, σ2
R,shank, and σ2

R,foot are the first three di-
agonal components correspond to the link angles, and
σ2
R, ˙thigh

, σ2
R, ˙shank

, and σ2
R, ˙foot

are the last three components
correspond to the link velocities.

D. Link Kinematic Model

To model the link kinematics as functions of the gait-state,
we decided to use a linear model which consist of Fourier
basis functions that are scaled by the tasks variables:

λ =
[
f(p) ṗf(p) rf(p) lf(p)

ṗrf(p) ṗlf(p) rlf(p)
]
. (7)

Here, f(p) corresponds to the 20th order Fourier series basis

f(p) =
[
1 sin(πp) cos(πp) . . . sin(20πx) cos(20πx)

]
.

(8)
We used a linear model of task and phase since these
have been shown to be effective in [16], [21]. We decided
against incorporating higher-order polynomial terms for task
variables, anticipating that it might lead to overfitting and
potentially create erratic model predictions in areas lacking
prior training data.

E. Estimating the Measurement Model

1) Fitting Particular Individuals: The measurement
model fits, ξi, are used to differentiate the link models from
each other and between subjects. Least squares is used to
calculate the personalized model (PM) for subject i:

~θk,i = Λ(xi)ξk,i, (9)

Here, ~θk,i is a di × 1 vector of the kth link angles, di
represents the number of data points for the ith subject, xi
represents their gait-state corresponding to the link angle
in the same row, Λ(xi) is a di × m matrix, and finally
ξjoint,i is a m × 1 vector representing the unknown model
fit. Since the model fit vector ξlink,i is the only unknown
in this equation, LS can be used to solve for it. However,
some task conditions in the dataset have less information

than others (due to subjects taking fewer steps), so we want
to make sure that these are weighted properly to not bias the
model in the tasks that have more data points. Therefore, we
weight each data point with the inverse of the number of data
points for the given speed and ground inclination condition.
All the weights are collected into a square matrix W . With
this weighting in mind, the solution to the weighted least
squares problem is

ξlink,i = Λ+
W (xi)θlink,i, (10)

where Λ(xi)
+ is the weighted Moore–Penrose inverse.

2) Estimating the Average Person’s Gait: To create a link
angle model that can be used in the absence of subject-
specific data, Medrano et al. use the inter-subject average
model. This model is calculated by taking the mean of the
model fits in a dataset,

ξ̄ =
1

n

n∑
i=1

ξi. (11)

However, since we want to understand how well ξ̄ estimates a
subject that it has not seen before, simulations will leave out
the validation subject’s data from the inter-subject average
calculation. This leave-one-out inter-subject average model
will be referred to as the un-personalized model (UM).

3) Setting the Measurement Model Covariance Matrix:
The measurement model covariance matrix represents how
error sensor measurements can have. A proper calibration
would capture how much variance there are in kinematics
across all humans for a given gait-state. We estimate this
quantity as the average error for each link across subjects.
That is, for link angle k,

σ2
R,k =

1

10

10∑
i=1

||θk,i − Λ+(xi)ξk,i||22, (12)

where σ2
R,k represents the covariance for the kth link angle,

and ||.||2 represents the L2 norm. The residual is averaged
across all subjects. The link velocities share their correspond-
ing link angle covariance σ2

˙R,k
= σ2

R,k. To keep the meaning
of the EKF tuning parameters consistent between subjects
and models, we defined this matrix once and used it in all
tests, rather than re-generating it according to leave-one-out
cross-validation.

4) Constraining the Gait-State: Since the measurement
model fitting does not contain data for very slow walking,
very fast walking, or inclines at very steep angles, we decided
to limit the state of the EKF. This is because when the
link angle model has to extrapolate too far, it could provide
nonsensical link angles and velocities, resulting in improper
state predictions. Therefore, we constrained the phase rate
to be above 0.6, stride length above 0.5 m, and ground
inclination between ±15 deg. The dataset had ground truth
information for ground inclines between ±10 deg, so this
bound does permit some extrapolation in inclination.



F. Difference from Previous Work

Our labs previous work [16] has some key differences
from our EKF implementation by having a different selection
of basis functions for the measurement model, a different
constrained least-squares model fitting, a saturating and non-
linear transformation in the stride length state definition,
and a heteroscedastic measurement model covariance matrix.
We opted for a simpler EKF implementation because it has
sufficient structure so that we can test our hypothesis about
personalization, while not being overly complex.

III. SIMULATION METHODS

A. Walking Dataset

An existing able-bodied walking dataset [21] was used to
fit the models and validate their state-tracking performance.
This dataset consists of kinematic and kinetic data for 10
able-bodied human subjects walking at combinations of 9
ramp inclines and 3 walking speeds (therefore 27 ramp/speed
pairs). It also contains the ground truth phase, phase rate,
ground inclination, and joint kinematics needed for the model
fitting procedure and the EKF simulation. Stride length was
calculated as the distance between foot placements at toe-
off and heel strike; gait events were determined from the
Bertec treadmill’s force plate data. The dataset was divided
into a training set and a validation set (80/20% split) so we
could test the EKF’s performance on untrained data. Because
strides in the dataset were time-normalized, phase rate was
always constant.

To better extrapolate to low-speed walking tasks that were
not included in the dataset, we artificially created 9 steps
worth of data to represent standing still (one ‘step’ per
unique ground inclination in the dataset). The standing thigh
and shank angles were taken from the average walking data
across all users and conditions while at mid-stance. The foot
angle corresponded to the ground inclination. The phase rate
and stride length were both set to zero.

B. EKF Simulation

We hypothesized that the EKF would have better gait-state
tracking performance with a PM than with a UM. To test this,
we performed an EKF simulation with both the PM and UM.
The EKF was simulated by playing back the joint angles
and joint velocities in the validation dataset as measurement
inputs to the EKF equations (see Appendix) to generate a
new prediction of the gait state. The initial state was slightly
different from the true initial state (to validate that the EKF
can correct for that difference). The initial covariance was set
to a constant value of 1e-5 for all the states. We empirically
found that this allowed the state to account for initial errors
without being large enough to reduce tracking performance.

We then compared the estimates of the gait-states to the
ground truth gait-state for each time step. This allowed us
to estimate the performance of the PM and UM based on
unseen data for each subject. The metric used to quantify
improvement was the root-mean-squared error (RMSE) be-
tween the ground truth gait-state and the estimated gait-
state (the lower the error, the better). Although phase rate is

important for the gait-state dynamics, it is not necessary for
this analysis because it is not directly used for exoskeleton
control. Therefore, we focused on the RMSE of phase, stride
length, and ground inclination.

To simulate ground inclination and walking speed changes
in real-time, we created the simulation dataset by splicing
together all the speeds and ground inclinations from the
validation dataset. Since we spliced data from different ramp
and speed conditions together, the link angles and ground
truth measurements are not necessarily continuous as they
would be in real life. This discontinuity could cause the EKF
to behave in a way that is not representative of real-world
implementations. To counteract this, the measurement model
covariance was boosted by a factor of 20 for link angles, and
100 for link velocities when the estimated phase is greater
than 0.95 but lower than 0.05. This allowed the EKF to rely
less on the measurements near the end and the start of steps
to ignore the hard discontinuities. The metrics still relate to
the EKF’s ability to track quick changes between tasks, and
in a dataset with continuous transitions between tasks, this
feature would not be necessary.

To avoid potentially biasing the results by hand-picking
the order of the ground incline and speed conditions, we
randomly generated a set of ramp and speed conditions
for the validation dataset. This is to avoid, for example,
using all the ramp conditions in ascending order, which
would unfairly remove the significance of quickly adapting
to changing ramp conditions. The same ordering was used
for all subjects in the training dataset. For each subject, 10
steps were included for each condition. If a subject did not
have enough steps for a given condition, data was repeated.

C. Phase Error Calculation

Since phase is defined on the unit circle, we apply an
alternative difference measure for phase to handle the dis-
continuity at 0 = 1. For example, if the predicted phase
is 0.99 and the actual phase is 0.01, the appropriate error
is 0.02, not 0.98. We defined this difference measure as
∆p = pactual − ppredicted,

pdifference =

{
∆p, if ∆p < 0.5

1−∆p, else
. (13)

This calculated pdifference is what is used to calculate the
RMSE difference.

D. Process Model Covariance Matrix Tuning

Empirically, the selection of the process model covariance
matrix (i.e., the EKF tuning) notably influences the test
results. To test our hypothesis to the greatest possible gener-
ality, we investigated it both for a wide range of viable tuning
parameters, and in particular for one set of tuning parameters
that was approximately optimal according to a coarse grid
search. While properly optimizing the tuning would have
been ideal, the EKF simulation takes long enough that this
would be an impractical optimization. We started with an
exploratory analysis to determine a proper process model
covariance tuning range without worrying too much about



global optimality. Thus the grid search was broken into two
stages: first determining a “reasonable” range of process
model covariance tunings for the EKF (using a very course
grid), and secondly, within the range of “reasonable” values,
finding the “optimal” tuning parameters using a denser grid.

We defined a cost for each EKF tuning based on the
performance of that tuning when using the UM. This cost
was a weighted sum of RMSE values for the three primary
gait-states:

cost = (
pRMSE

pRMSE,max
)2 + (

lRMSE

lRMSE,max
)2 + (

rRMSE

rRMSE,max
)2. (14)

The cost function was designed to weight each metric by the
maximum error for the UM across all the tuning parameters
in the “reasonable values” to be able to compare the best
overall performance improvement.

A 3D grid of process model covariance matrices was
created for gait parameters (phase rate, stride length, ground
inclination), sampled sparsely across multiple orders of
magnitude. Considering no correlation between states, only
diagonal matrices were evaluated. After 505 simulations, the
optimal region was identified through visual inspection of
error metrics. The lowest Phase RMSE was observed at phase
rates of 1e-6 or 1e-7, irrespective of stride length or ramp
tuning parameters. Stride length RMSE was robust to param-
eter changes, but increased if stride length noise exceeded 1e-
6. Ground incline RMSE was sensitive to parameters, best
at phase rate 1e-4, stride length 1e-7, and ramp 1e-5. The
”reasonable” region, centered around these optimal values
with one order of magnitude allowance in each direction,
was further explored with denser linear interpolation of 216
samples to approximate the optimal solution. Based on these
observations, the optimal region is selected as phase rate
being 1e-6, stride length being in 1e-7, and ramp being
1e-4. The “reasonable” region was then determined to be
centered at phase rate: [1e-7, 1e-5], stride length: [1e-8, 1e-
5], ramp: [1e-5, 1e-3], with one order of magnitude added
and subtracted for each. Inside the “reasonable” region, we
performed a denser linear interpolation of 216 samples to
find an approximately optimal solution (Fig. 2).

The “optimal” tuning was found by a grid search of the
“reasonable” range. We minimized the cost function based
only on the UM performance so that we could compare
the best UM to its corresponding PM. But, this tuning
corresponded to the best PM as well. The resulting “optimal”
model tuning was phase rate covariance = 1e-7, stride length
covariance = 1e-8, and ramp covariance = 2.1e-4.

IV. RESULTS

To test our hypothesis relating to the effect of person-
alization on the EKF, we measured the difference in the
performance of the PM when compared to the UM for each
EKF tuning in the “reasonable” range grid. The distribution
of results can be seen in the blue box plot in Fig. 3.
Each sample in the box plot represents the RMSE of the
difference in performance from UM to PM when averaged
across subjects. There is one sample per set of tuning
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Fig. 1. Heat map of RMSE vs process model covariance tuning parameters.
Each row is a different gait-state and every column is a different process
noise model covariance matrix tuning parameter.
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Fig. 2. Heat map of RMSE vs process model covariance tuning parameters
for “reasonable” region. Each row is a different gait-state and every column
is a different process noise model covariance matrix tuning parameter.

parameters. Since the values represent the UM RMSE minus
the PM RMSE, higher values mean that personalization
has improved the gait-state tracking performance. This plot
has an alternative y-axis label in percentage improvement
(right-hand axis), which normalizes this difference by the
corresponding median RMSE of the UM method. All the
states in the “reasonable difference” had statistically sig-
nificant improvements according to our naive t-test (Figure
3, P � 0.05), though since samples with similar tuning
parameters are likely correlated it might artificially inflate
the confidence of this statistical test. Some process model
tuning parameters did results in worse PM phase RMSE and
ground incline RMSE, but every stride length RMSE was
improved over the baseline.

The average improvement across all the “reasonable tun-
ings” is 8.5 ± 13.8% for phase (mean ± standard deviation),
27.2 ± 8.1% for stride length, and 10.5 ± 13.5% for ground
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Fig. 3. Pairwise difference of the tests ran in the “reasonable process
model covariance matrices” range (n=216, P � 0.005). Larger numbers
represent higher performance improvements due to model personalization.
Two special cases are also encoded as horizontal lines: the optimal process
model covariance matrix (red), and the most-improved process model
covariance matrix (orange).

TABLE I
EKF SIMULATION RESULTS

Measurement Phase Stride Length Ground Inclination
Model RMSE (%) RMSE (m) RMSE (◦)
UM 2.19 ± 0.68 0.108 ± 0.0337 2.61 ± 0.652
PM 2.28 ± 0.960 0.081 ± 0.0223 2.21 ± 0.701

Gait-state RMSE averaged across all subjects when using the Optimal
process model covariance matrix. The data is displayed as mean ± one

standard deviation with n=10 datapoints.

inclination. For the optimal process covariance tuning, the
RMSE for phase, stride length, and ground inclination is
reported in Table I. Figure 3 encodes the relative improve-
ment of the optimal process covariance matrix as a horizontal
red line. The stride length estimation and ramp estimations
significantly improved (20% and 12% respectively) while
phase error was slightly worse (2%). We note that the
process model tuning parameter that resulted in the highest
improvement in gait-state tracking has 28.9% better phase
RMSE, 40.6% better stride length RMSE, and 26.9% better
ground inclination RMSE. This is also shown in Figure 3 as
a horizontal orange line.

V. DISCUSSION

Our experimental results supported our hypothesis that the
EKF would have better gait-state tracking performance with
a PM than with a UM. For the “optimal tuning” parameters,
where the UM model had the least overall error, the PM
improved stride length RMSE by 20.4%, ground inclination
RMSE by 12.7%, and slightly decreased phase RMSE by
2%. Even though the phase estimation is slightly worsened,
the stride length and ground incline estimation were clearly
improved. The improvement in tracking performance is most
likely due to the reduced fitting error between the PM and a
user’s link angles while walking.

More broadly, the distribution in Figure 3 shows that in
most cases phase and ground inclination were improved,
and in all cases, stride length was improved. Median im-
provements of 11.5% for phase, 30.0% for stride length,
and 14.3% for ground inclination were observed. Therefore,
we can see that for sub-optimal tunings, the performance
increases are even better. This is perhaps even stronger
evidence supporting our hypothesis about the importance

of personalization, since finding process model covariance
matrix parameters that are optimal by sampling hundreds of
tuning parameters is not feasible for online systems.

Other process model covariances yielded improvements as
large as 28.9% for phase, 40.6% for stride length, and 26.9%
for ground inclination (Fig. 3). These large improvements,
which look like outliers, could be a result of the UM model
EKF state estimate “getting lost,” which is a potential failure
mode for EKF systems in which the states become stuck in
a local minimum behavior (due to the linearization of the
EKF) that does not reflect accurate gait kinematic tracking.
Having less fitting error with the PM could mean that it is
more robust to “getting lost”, which is a phenomenon when
the EKF begins to track a different set of gait-states that can
describe the observations from the sensors.

The gait-tracking performed comparably to other state of
the art approaches using similar sensors and outcomes. Note
that direct comparisons cannot be made since benchmark
datasets for gait tracking are not yet standardized in the field,
so each measure of RMSE refers to a different combination
of subjects and tasks. Our PM phase tracking RMSE of
2.28% ± 0.960% compares favorably to the CNN solution
in [14], which achieved 5.22% ± 0.81% phase RMSE when
changing walking speeds. Our group’s previous unperson-
alized EKF implementations [16] achieved 1.6% ± 0.31%
phase RMSE under different conditions. However, our stride
length RMSE of 0.081m ± 0.0223m slightly improved over
that implementation’s 0.1m ± 0.02m [16]. Our performance
on ground incline (2.21◦ ± 0.701◦ RMSE) was worse than
the previous UM EKF (1.5◦ ± 0.23◦). The difference in
performance is likely due to the difference in our methods,
which are discussed in Section II-F. Additionally, as is
explained in Section III-B, we randomized the order of the
treadmill speed and incline transitions. This would make
replicating the simulation in [16] one-to-one very unlikely,
which can also affect the simulation results. We believe
that the personalization performance improvements would
generalize to their methods as well.

Relative to a CNN-based ground incline estimator [13],
our performance was worse than their personalized version,
with the CNN having 0.61◦ ± 0.05◦ RMSE vs our PM EKF’s
2.21◦ ± 0.701◦ RMSE. The same authors also reported
results for the un-personalized CNN as 2.15◦ ± 0.29◦ RMSE,
which is more in line with our PM EKF. While the different
methodologies greatly weaken the comparative value of these
examples, our gait-state estimator seems close enough to the
state-of-the-art that our analysis of the personalization effects
remains relevant.

One of the benefits of this algorithm is that it is very
easy to add sensors to the measurement function. It is even
possible to have a personalized model for some sensors and
add an un-personalized model for other sensors, for example,
if new sensing modalities (such as ground reaction forces)
become more practical. Additionally, it might be possible
to update the measurement model online just by swapping
out the measurement model between subsequent predictions,
presenting an opportunity to perform online personalization



as a subject walks. The EKF is particularly suited for online
learning since it not only gives us state estimates but also
state covariance. Having access to covariance information
allows us to discard measurements that are not trustworthy,
or give more weight to more certain measurements.

VI. CONCLUSION

Inferring what someone is doing from only IMU mea-
surements is naturally sensitive to the model of how these
measurements relate to the gait-state. This paper demon-
strated that the personalization of these continuous, multi-
task gait models significantly improves the performance of
EKF-based gait-state estimation systems. However, despite
our efforts to be thorough, these results are not guaranteed to
generalize to all sensor configurations, sets of tasks, subject
populations, and gait-model structures. Our subjects were all
able-bodied, our tasks were limited to a finite set of speeds
and treadmill inclinations, and the tasks were spliced together
rather than continuously transitioned. Our results suggest the
personalization of continuous gait-models could improve the
performance of more general gait-state estimators. This paper
motivates future research directions for EKF-based gait-state
estimation systems such as learning the personalized model
online, applying the EKF in faster-paced activities such as
running, and quantifying how much the user benefits from
the improved gait-state tracking.

APPENDIX

In the notation of Sec. II, the EKF updates its internal
states to account for the passage of time using the “predic-
tion” equations found in [22],

xk|k−1 = Fxk−1|k−1, (15)

Pk|k−1 = FPk−1|k−1F
T + ΣQ. (16)

To account for measurements, its state changes according to
the “update” equations

ỹk = zk−h(x̂k|k−1), Hk = ∂h
∂x |xk|k−1

Sk = HkPk|k−1H
T
k + ΣR, Kk = Pk|k−1H

T
k S
−1
k

xk|k = xk|k−1 +Kkỹk, Pk|k = (I −KkHk)Pk|k−1,
(17)

where P is the estimate ofthe variance, ỹk is the prediction
error, Sk is the covariance of the prediction, zk is the sensor
measurements, and Kk is the Kalman gain.
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