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Abstract—This brief presents a novel control strategy for
a powered knee-ankle prosthesis that unifies the entire gait
cycle, eliminating the need to switch between controllers during
different periods of gait. A reduced-order Discrete Fourier
Transformation (DFT) is used to define virtual constraints that
continuously parameterize periodic joint patterns as functions of
a mechanical phasing variable. In order to leverage the provable
stability properties of Hybrid Zero Dynamics (HZD), hybrid-
invariant Bézier polynomials are converted into unified DFT
virtual constraints for various walking speeds. Simulations of an
amputee biped model show that the unified prosthesis controller
approximates the behavior of the original HZD design under
ideal scenarios and has advantages over the HZD design when
hybrid invariance is violated by mismatches with the human
controller. Two implementations of the unified virtual constraints,
a feedback linearizing controller and a more practical joint
impedance controller, produce similar results in simulation.

I. INTRODUCTION

To improve amputee gait, powered prosthetic legs are
in development [1]–[3]. Several control methods have been
proposed for these devices, but almost all of them divide
the gait cycle into multiple, sequential periods with different
controllers [4]. In the most common approach, a finite state
machine switches between joint impedance controllers based
on the period of gait [2]–[9]. Multiple ambulation modes can
be handled by a combination of finite state machines with task-
specific impedance controllers [10]. This approach requires
substantial tuning of control parameters and switching rules
for each period and task, potentially taking several hours
to configure a powered knee-ankle prosthesis for a single
amputee patient [11]. When perturbed, this control approach
could switch to the wrong state and use the wrong controller,
which may increase an amputee’s risk of falling.

These different periods of gait could potentially be unified
by virtual kinematic constraints that are enforced using a
torque control scheme [12]–[19]. Virtual constraints typically
define desired joint trajectories as polynomial functions of a
mechanical phasing variable. A phase variable is a kinematic
quantity corresponding to an unactuated degree of freedom
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that evolves monotonically during steady walking, thus repre-
senting the progression through the gait cycle. This phase-
based control method was originally developed to control
underactuated bipedal robots, such as MABEL [13], ERNIE
[14], and ATRIAS [15]. If the biped is pushed forward (or
backward), the phase variable increases (or decreases), which
in turn speeds up (or slows down) the step. The controller is
therefore able to automatically react to disturbances, which in-
creases the robustness of the gait. This would be advantageous
for a prosthesis controller by allowing the prosthesis to react
to disturbances in a predictable manner that may resemble the
response of a human leg [20], [21].

Virtual constraints for biped robots are currently defined in
a piecewise manner, separated by stance-to-swing transitions.
These transitions are typically modeled as discontinuous im-
pact events when designing the piecewise virtual constraints.
The method of Hybrid Zero Dynamics (HZD) encodes joint
trajectories into polynomial functions that are invariant to these
impact events (i.e., hybrid invariant), allowing a restriction of
the hybrid dynamical system to the lower-dimensional HZD
manifold for stability analysis [12]. This partial unification
of the gait cycle and its provable stability properties have
motivated recent work in virtual constraint control of pow-
ered prosthetic legs [22]–[24], which similarly define separate
controllers for the stance and swing periods.

In contrast, humans move in a smooth, continuous manner
over a periodic gait cycle. This smooth periodicity is lost
across the discrete transitions of a finite state machine, even
one that separates only stance and swing. To enable better
control of powered prostheses, we propose a new class of vir-
tual constraints that continuously parameterize periodic joint
patterns based on the Discrete Fourier Transformation (DFT)
[25]. These virtual constraints are defined from reduced-order
frequency representations of the desired joint trajectories.
Piecewise HZD polynomials for the knee and ankle are
converted into unified DFT functions to leverage the provable
stability properties of HZD while respecting the continuous,
periodic nature of human walking. The DFT virtual constraints
unify prosthetic control within the gait cycle and across gait
cycles by repeating periodically over the phase variable.

Previous attempts at unified control of powered prosthetic
and orthotic devices have used data-driven joint patterns and/or
a single actuator. The powered prosthetic ankle in [1] tracks
able-bodied human data as a function of a tibia-based phase
angle throughout the gait cycle. Our approach differs by
defining a torque control law to enforce HZD-inspired virtual
constraints, which are easily generated for multiple joints and
tasks with provable stability properties [12], [23], [24]. The
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Fig. 1. Schematic of the unilateral, transfemoral amputee model (reproduced
from [23], [24]). The prosthesis is shown in black and the human is shown
in gray. The generalized coordinates used in the model are indicated with q
terms. Angle q1 is unactuated and angles q2−6 have ideal actuators.

hip exoskeleton in [26] uses a phase variable to determine
when to inject or dissipate energy in the gait cycle, which may
not be sufficient to replicate joint kinematics in a prosthesis
application. In contrast, virtual constraints produce the desired
kinematics in the absence of biological limb motion.

This brief presents the design and simulation of a unified
prosthesis controller that continuously parameterizes periodic
knee and ankle patterns across gait cycles. We begin with
definitions of the amputee biped model and torque control
methods for virtual constraints in Section II. After formulating
unified virtual constraints by DFT in Section III, we describe
the conversion of piecewise HZD designs into the unified
framework. The simulations of Section IV demonstrate the
ability of the unified controller to generate walking gaits
that closely match the reference HZD gaits at various design
speeds. The benefits of the unified design become clear when
hybrid invariance of the piecewise HZD design is violated
due to a mismatch with the human controller, specifically
in the design speed. These results extend the preliminary
work in [27] in three ways: comparing the robustness of
piecewise HZD and unified DFT methods to mismatches with
the human controller, demonstrating orbital stability of the
unified gaits using the method of Poincaré, and demonstrating
feasibility with a model-independent impedance controller. We
summarize these contributions and future work in Section V.

II. MODELING AND CONTROL METHODS
This section reviews the methods used to model and control

an amputee biped. After describing the hybrid dynamics of the
biped model, we introduce the concept of virtual constraints
with two torque control methods for enforcing them. These
methods will later serve as the basis for the design and
simulation of unified virtual constraints for a prosthetic leg.

A. Model

In this brief we consider the case of a unilateral, trans-
femoral amputee walking with a powered knee-ankle pros-
thesis. The planar biped model (Fig. 1) consists of seven

leg segments plus a point mass at the hip to represent the
upper body as in [23], [24]. The thigh and shank segments
are modeled using rigid links with mass and inertia. Model
parameters are based on [28] with a leg length of 0.91 m
and total mass of 68.5 kg. The full model is divided into
a prosthesis subsystem consisting of the prosthetic thigh,
shank, and foot, and a human subsystem consisting of the
contralateral thigh, shank, and foot, the residual thigh on the
amputated side, and the point mass at the hip. It is assumed
that the prosthetic thigh and residual human thigh are rigidly
attached, so the interaction forces between them are equal
and opposite. Rather than model all of the contact phases and
degrees of freedom of the foot, the function of the foot and
ankle is modeled continuously using a circular foot [29], [30]
plus an ankle joint to capture the stance ankle’s positive work
[28]. This foot model assumes rolling point contact, about
which there is zero moment, so the ground reaction forces only
contain tangential and normal components. Moreover, because
the foot rolls without slip, the absolute angle q1 is unactuated.

To describe the position and velocity of the biped, each
subsystem has its own set of generalized coordinates. The
configuration of each subsystem is described by the unactuated
angle q1, the Cartesian coordinates (qx, qy) of the hip, and
the relative angles of the actuated joints. The actuated joint
angles for the entire biped are q2 to q6. Thus, the generalized
coordinates are qP = [q1, q2, q3, qx, qy]T for the prosthesis
and qH = [q1, q4, q5, q6, qx, qy]T for the human. Moreover,
ideal actuators produce joint torques uP = [u2, u3]T for the
prosthesis and uH = [u4, u5, u6]T for the human.

For simulation, a stride starts just after the transition from
contralateral stance to prosthesis stance and proceeds through
the prosthesis stance period, an impact event, the contralateral
stance period, and a second impact. The two stance periods
can be modeled with continuous, second-order differential
equations, and the two impact periods can be modeled using
an algebraic mapping that relates the state of the biped at the
instant before impact to the state of the biped after impact.

The equations of motion during the single-support period
for each subsystem can written as [23], [24]

Miq̈i + Ciq̇i +Ni − ETi Gi = Biui + JTi F, (1)

where subscript i indicates the subsystem (P for the prosthesis
and H for the human), qi are the subsystem coordinates, Mi is
the inertia matrix, Ci is the matrix containing the centripetal
and Coriolis terms, Ni contains the gravity terms, Ei is a
contact constraint matrix, Gi is the two-dimensional vector of
the ground reaction forces, Bi relates the input torques to the
generalized coordinates, Ji is the Jacobian matrix relating the
socket interaction forces to the generalized coordinates, and
F is the three-dimensional vector of interaction forces.

Solving for q̈i from the equations of motion (Eq. 1) gives

q̈i = M−1
i (−Ciq̇i −Ni) +M−1

i Biui +M−1
i JTi F

+M−1
i ETi Gi. (2)

Eq. 2 can also be written as a first-order state-space realization
of the nonlinear system:

ẋi = fi(xi) + gi(xi)ui + pi(xi)F + ri(xi)Gi, (3)



where

xi =

[
qi
q̇i

]
, fi(xi) =

[
q̇i

−M−1
i (Ciq̇i +Ni)

]
,

gi(xi) =

[
0

M−1
i Bi

]
, pi(xi) =

[
0

M−1
i JTi

]
,

ri(xi) =

[
0

M−1
i ETi

]
.

The generalized coordinates xi are the states for the first-order
nonlinear system (Eq. 3) with fi(xi), gi(xi), pi(xi) and ri(xi)
as the vector field functions defining the full dynamic system.

The impacts can be modeled using equations of the form

q+
i = q−i , q̇+

i = Aiq̇
−
i + ΛiF, (4)

where F is the socket interaction impulse that depends on
the pre-impact state of both subsystems, and Ai and Λi are
known matrices [23]. The superscripts ‘−’ and ‘+’ refers to
the instants before and after impact, respectively.

B. Virtual Constraint Control

Virtual constraints encode the desired motions of actuated
variables in output functions to be zeroed through control [12]:

yij = hij(qi) = H0iqi − hdij(θi(qi)), (5)

where hij is a vector-valued function to be zeroed, H0i is a
matrix that maps the generalized coordinates to the actuated
angles, hdij is a vector-valued function of the desired joint
angles (specifically the prosthetic knee q2 and ankle q3), and
θi is the phase variable. The subscript j indicates which leg is
in stance, with P indicating that the prosthesis is in stance and
C indicating that the contralateral/human leg is in stance (and
that the prosthesis is in swing). For the human, a separate
output function is defined for the prosthesis single-support
period and for the contralateral single-support period, and hdHj
is encoded using polynomials as in [23]. For the prosthesis,
a single, unified output function hP is defined for the entire
stride, i.e., both the stance and swing periods of the prosthesis.

Various torque control methods can be utilized to regulate
virtual constraint outputs. Bipedal robots typically enforce
virtual constraints using partial (i.e., input-output) feedback
linearization [12], which has appealing theoretical properties
including exponential convergence [31], reduced-order stabil-
ity analysis [12], and robustness to model errors [13]. For most
of this simulation study, both the prosthesis and the human
are controlled using feedback linearization [22], [23]. Note,
however, that the prosthesis controller does not depend on the
form of the human controller.

The first step in deriving the feedback linearizing controller
is differentiating Eq. 5 twice and substituting in the equations
of motion (Eq. 1) for q̈i to obtain the output dynamics [23]

ÿij = L2
fihij+LgiLfihij ·ui+LpiLfihij ·F +LriLfihij ·Gi,

(6)

where Lie derivative notation [31] has been used1. These terms
are given by

L2
fihij =

∂

∂qi

(
∂hij
∂qi

q̇i

)
q̇i −

∂hij
∂qi

M−1
i (Ciq̇i +Ni),

LgiLfihij =
∂hij
∂qi

M−1
i Bi, LpiLfihij =

∂hij
∂qi

M−1
i JTi

LriLfihij =
∂hij
∂qi

M−1
i ETi .

The nonlinearities in the output dynamics are canceled by
setting the desired output dynamics to ÿij = vij , for some
PD controller vij , and solving for the required input torques:

uij = αij + βij · F + γij ·Gi, (7)

where F and Gi are known through measurement, and

αij = [LgiLfihij ]
−1(vij − L2

fihij),

βij = −[LgiLfihij ]
−1 · LpiLfihij ,

γij = −[LgiLfihij ]
−1 · LriLfihij .

The output function hij is the only term in this control law
that can change based on which leg is in stance (indicated
by j). The human controller uHj will utilize different output
functions between stance and swing according to [23], [24].
However, the prosthesis will utilize a single output function
hP that does not change between stance and swing. Thus, we
can define a unified control law for the prosthesis:

uP = αP + βP · F + γP ·GP . (8)

It can be difficult to accurately measure the interaction
forces F and the ground reaction forces GP as well as
accurately model the αP /βP /γP terms for the prosthesis,
which may make implementing feedback linearization chal-
lenging. An alternative control approach is a linear output
PD controller that does not require these modeling terms or
force measurements, possibly at the cost of tracking accuracy
[22]. In particular, we can approximate the desired feedback
linearization by directly generating control torques with the
linear input vP used in Eq. 8. This input is usually defined as
an output PD control law, which when used on its own can
be interpreted as joint impedance control:

uimp = −Kp(H0P qP − hdP (sP ))−Kd(H0P q̇P − ḣdP (sP )),
(9)

where Kp and Kd are gains to control stiffness and damping,
respectively. We will demonstrate in Section IV that this
control law (Eq. 9) can reasonably enforce the unified virtual
constraints with a proper choice of PD gains.

III. UNIFIED VIRTUAL CONSTRAINTS

This section formulates unified virtual constraints using the
method of DFT. We then convert piecewise HZD virtual con-
straints for the model prosthesis of Section II into the unified
form and discuss some of the benefits of this parameterization.

1A Lie derivative Lfh := ∇xh·f represents the change of a function h(x)
along a vector field f(x). A second-order Lie derivative L2

fh = ∇x(Lfh)·f .



A. Parameterizing Unified Virtual Constraints by DFT

Typically virtual constraints are time-invariant and depend
on a phase variable that is unactuated and monotonic [12]. We
require the phase variable to be monotonic over the complete
stride in order to parameterize a complete joint pattern. For
this work, the phase variable was chosen to be the horizontal
hip position qx measured relative to a coordinate frame created
at the transition from contralateral stance to prosthesis stance.
Other options for the phase variable could also be considered
in this framework [21], [32]. For convenience the phase
variable θP (qP ) = qx was normalized between 0 and 1 using

sP (θP (qP )) =
θP − θ+

P

θ−P − θ
+
P

, (10)

where the ‘+’ signifies the start of the stance period for the
prosthetic leg and the ‘−’ indicates the end of its swing period.

Taking advantage of the periodic kinematics observed in
human gait [33], the method of DFT can be used to define a
unified virtual constraint for each joint. Let x[n] be a discrete
signal representing N equally spaced samples of a desired
joint trajectory over the phase variable. The DFT is a linear
transformation of x[n] into its discrete frequency components

X[k] =
∑N−1
n=0 x[n]W kn

N , k = 0, 1, ..., N − 1, (11)

where WN = e−j(2π/N) [25]. Because the signal x[n] is
periodic, there are a finite number of discrete frequencies. This
signal can then be reconstructed using Fourier Interpolation:

x[n] = 1
N

∑N−1
k=0 X[k]W−kn

N , n = 0, 1, ..., N − 1, (12)

where X[k] = Re{X[k]} + j Im{X[k]} and W−kn
N =

Re{W−kn
N } + j Im{W−kn

N } in standard complex form. Be-
cause the joint kinematic signals are real numbers, only the
real part of x[n] remains after substitution of X[k] and W−kn

N

in Eq. 12 (see [25]). Moreover, the signal reconstruction only
requires frequency terms from k = 0 to N/2 (the Nyquist
sampling frequency), beyond which the magnitudes of X[k]
and X[N − k] are equal [25]. This results in the following
exact representation of the original sampled joint trajectory:

x[n] =
1

2
α0 +

N
2 −1∑
k=1

[
αk Re{W−kn

N } − βk Im{W−kn
N }

]
+

1

2
αN

2
Re{W−N

2 n

N }, n = 0, 1, ..., N − 1, (13)

where αk = 2 Re{X[k]} ∈ R and βk = 2 Im{X[k]} ∈ R are
the scalar coefficients based on the original signal.

The Fourier Interpolation in Eq. 13 is used to parameterize
the trajectory function hdP in Eq. 5 for the entire stride. After
computing the coefficients αk and βk from a desired joint
trajectory (to be specified later), Eq. 13 is expressed as a
summation of sinusoids using Euler’s relationship (e±jΩ =
cos Ω± j sin Ω) in WN to obtain

hdP (sP ) =
1

2
α0 +

1

2
αN

2
cos(πNsP ) (14)

+

K∑
k=1

[
αk cos(ΩksP )− βk sin(ΩksP )

]
,

where Ωk = 2πk and K is the total number of frequencies
(up to N/2) used to parameterize the virtual constraint. Eq.
14 is inserted into Eq. 5 to define the virtual constraint output.
Because Eq. 14 is composed of sine and cosine functions, the
resulting virtual constraints are inherently periodic across the
normalized phase variable with a period of one.

B. From HZD to Unified Virtual Constraints

The previous section shows how to encode a given trajectory
into a unified virtual constraint but not how to design such
a trajectory. In the prosthetic application it is desirable to
leverage the provable stability properties of piecewise HZD
designs [9], [12]–[19], [23], [24] while respecting the continu-
ous, periodic nature of human walking. Therefore, this section
will convert the prosthetic HZD design from [23], [24] into
continuous, unified DFT virtual constraints and discuss the
fundamental differences between the two approaches.

HZD-based controllers are defined in a piecewise manner,
where the virtual constraint depends on which leg is in stance.
This allows the controller to respect the discontinuous impact
dynamics (Eq. 4), so that if the error just before a properly
timed impact is zero, the error just after impact will also be
zero. This behavior is called hybrid invariance. Because the
DFT parameterization is infinitely smooth and unified across
impact events, it cannot be hybrid invariant. By definition these
smooth trajectories cannot encode the velocity discontinuities
across the impact model. However, the simulations in Section
IV will show that the unified DFT controller approximates the
stability properties of the piecewise HZD design. Moreover,
we will demonstrate the benefits of the unified approach
when the impact occurs earlier or later than expected (as
is common with human variability [34]), which violates the
hybrid invariance assumption of the original HZD design.

The piecewise HZD virtual constraints in [23], [24] are
parameterized by the common Bézier polynomial form

hdP,j(sP ) =

Q∑
i=0

aiQ!

i!(Q− i)!
siP (1− sP )Q−i, (15)

where j indicates which leg is in stance, Q = 5 is the degree of
the polynomial, ai are the polynomial coefficients, and sP is
the normalized phase variable within stance or swing. Hybrid-
invariant Bézier polynomials were designed for the knee and
ankle to mimic certain features of human walking at various
speeds [23], [24], and here we consider the 1.2 m/s design.

In order to create unified virtual constraints, the stance and
swing Bézier polynomials were concatenated and sampled to
provide one periodic sequence with N = 1000 equally spaced
data points. The frequency terms X[k] of this sequence were
computed by the MATLAB fft function and then used to create
the unified DFT function from Eq. 14. The DFT spectrum of
these trajectories indicate that the magnitude is approximately
zero between the 10th frequency and the Nyquist sampling
frequency (N/2). As a result, the DFT series can be truncated
to reduce the number of coefficients in hdP and in turn reduce
the computational complexity of the control law (Eq. 8 or 9).

To verify that the first 10 indices accurately represent the
desired trajectories, virtual constraints were generated with



TABLE I
FITTING STATISTICS OF DFT DESIGN

Knee Ankle
K value r2 RMSE (rad) r2 RMSE (rad)

5 0.999 2.23e-04 0.995 1.33e-04
10 1.000 6.14e-05 1.000 3.14e-05
N/2 1.000 4.50e-05 1.000 1.17e-05

K = 5, 10, and N/2, where K is the highest index k in
Eq. 14. As expected the virtual constraints for K = 10 and
N/2 are similar and more accurate than that of K = 5 (Table
I). The virtual constraints with K = 5 have coefficients of
determination r2 > 0.995, whereas the K = 10 case has
r2 = 1.000. In all cases, the root mean square error (RMSE) is
less than 2.3e-04 rad. From this analysis we can conclude that
a 5th- or 10th-order DFT function is sufficient to parameterize
the 5th-order Bézier polynomials, so the two approaches will
have similar real-time computational costs.

The unified DFT parameterization of the piecewise HZD
polynomials provides unique properties that are advantageous
for the prosthetic application. The periodic DFT design pa-
rameterizes the knee and ankle trajectories across gait cycles,
whereas the Bézier polynomials immediately diverge to un-
bounded values outside the design range of sP (Fig. 2). There-
fore, the piecewise design requires very accurate detection of
stance vs. swing, which can be difficult to measure from the
limited sensors on a prosthetic leg. Moreover, the strict design
range of the Bézier polynomials makes them more sensitive
to drift in the phase variable, which must be reset back to
zero after every impact event to avoid exceeding the design
limits. Practical HZD implementations typically saturate the
phase variable at the design limits to prevent undesirable angle
commands [14]. In contrast, the DFT design is periodic over
the phase variable, so this formulation transitions seamlessly
to the next gait cycle. Thus, the phase variable does not
necessarily have to be reset or saturated as the amputee
transitions from one step to the next, which may simplify the
control implementation and lead to more predictable behavior.

In conclusion, piecewise HZD polynomials can be converted
to unified DFT virtual constraints with limited coefficients in
the output function hdP . This method unifies not only a single
stride but also periodic steady-state locomotion. In the DFT
formulation, the phase variable may only need to be reset
across short or long strides to ensure the following stride
begins at the proper phase location (modulo the design range
of the phase variable). Occasional resets in the phase variable
may also be desirable in practice to prevent measurement drift.

IV. SIMULATION RESULTS

This section will demonstrate the ability of the unified
prosthesis controller to generate walking gaits that closely
match the reference HZD gaits at various design speeds.
The benefits of the unified design become clear when hybrid
invariance of the piecewise HZD design is violated due to a
mismatch with the human controller, specifically in the design
speed. We also show numerically that the unified gaits are
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Fig. 2. Virtual constraints by DFT and Bézier polynomial (Bez) for the knee
(left) and ankle (right) during normal human walking (N). Because Bézier
virtual constraints are defined in a piecewise manner, their normalized phase
variable goes from 0 to 1 twice per stride. For comparison, the Bézier phase
variable has been scaled and shifted to match the DFT phase variable. The
DFT function repeats the gait cycle for phase variable values sP < 0 and
sP > 1, i.e., the ranges of −0.5 ≤ sP < 0 and 0.5 ≤ sP < 1 are identical.
In contrast, the piecewise Bézier polynomials for stance (St) and swing (Sw)
diverge to undesirable trajectories on both sides of the design region.

orbitally stable using either the feedback linearizing controller
(Eq. 8) or the impedance controller (Eq. 9).

A. Comparison of Piecewise HZD and Unified DFT
We began with the human and prosthesis HZD designs in

[23], [24] for three speeds: normal walking at 1.2 m/s, slow
walking at 0.8 m/s and fast walking at 1.6 m/s. Unified DFT
virtual constraints were generated for the prosthesis at each
speed based on the piecewise Bézier polynomials as described
in Section III. For comparison the prosthesis was simulated
with either the piecewise HZD virtual constraints or the unified
DFT virtual constraints. In all simulations the human part used
the piecewise HZD controller for each walking speed and did
not change based on the form of the prosthesis controller. The
piecewise HZD controllers reset the phase variable at every
impact, whereas unified DFT controllers only reset the phase
variable at the start of each prosthesis stance period. Both
subsystems used the feedback linearizing torque control law
(Eq. 7), for which the PD gains were manually tuned and held
fixed for all simulations and prosthesis controllers.

Simulations were first performed for the idealized case when
both the prosthesis and human had the same desired walking
speed. The unified prosthetic controller for each speed tracked
the reference HZD virtual constraints very accurately, even
across impacts (Fig. 3). Small differences can be observed in
the joint velocities (Fig. 4), particularly for the fast walking
speed due to larger impact discontinuities. Despite the fact
that the unified DFT controller was not hybrid invariant, it
performed similarly to the piecewise HZD controller in the
ideal case of exactly matched human and prosthesis intent.

Because the intent of the prosthesis and the amputee will
rarely be perfectly coordinated, it is critical that the prosthesis



0 0.5 1
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Phase Variable

K
ne

e 
A

ng
ul

ar
 P

os
iti

on
 (

ra
d)

0 0.5 1
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Phase Variable

A
nk

le
 A

ng
ul

ar
 P

os
iti

on
 (

ra
d)

S DFT
N DFT
F DFT
S Bez
N Bez
F Bez

Fig. 3. The simulated trajectories of the prosthetic knee (left) and ankle
(right) with both the DFT and Bézier controllers for three different walking
speeds (matched with the human speed) plotted against the DFT normalized
phase variable. The DFT and Bézier response is almost identical in all cases.
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Fig. 4. The simulated phase portrait for the prosthetic knee (left) and ankle
(right) for three different walking speeds (matched with human) with the DFT
and Bézier controllers. The DFT gaits closely match the reference Bézier gaits.
As expected, the greatest deviations occur near impacts. The rolling motion
of the curved foot results in a slightly larger ankle orbit for slow walking than
normal walking with both controllers.

reacts in a stable and predictable manner to mismatches in the
desired walking speed. This is likely to be one of the greatest
sources of variability from the human. To test robustness to
speed perturbations, the prosthesis controller maintained the
normal walking speed while the human controller was set
to either slow or fast. Despite these disturbances, the biped
converged to steady-state walking for both prosthesis control
formulations without any additional tuning. The interaction
between the mismatched human and prosthesis resulted in
somewhat unexpected changes in speed, although the fast
human controller led to faster than normal walking (and

reduced step durations) and the slow human controller led to
slower than normal walking (and much longer step durations).

As expected, the mixed speed cases had more tracking
error than the matched speed cases (Fig. 5). However, both
prosthesis controllers zeroed the tracking error before every
impact without requiring unrealistic joint angles or velocities.
The two control formulations produced similar torque curves
(Fig. 6), which will be discussed later.

In the mixed cases, the Bézier virtual constraints were no
longer hybrid invariant, so one of the greatest advantages of
the piecewise HZD controller was lost. The transition between
strides tended to occur sooner than expected, resulting in
discontinuities in the commanded joint angles and thus the
tracking errors (and corrective torques). Both controllers had
similar errors at the start of prosthesis stance (phase variable
from 0 to 0.5), but the unified DFT controller had much
smaller errors than the piecewise HZD controller at the start
of prosthesis swing (phase variable from 0.5 to 1.0). The small
DFT errors may be because the stance-to-swing transition was
relatively smooth in velocity, resulting in better tracking from
the smooth DFT controller. Further, the DFT phase variable
was not reset at the stance-to-swing transition, so a shorter or
longer step had less influence on the error. Because the Bézier
virtual constraints were defined in a piecewise manner, they
were not continuous if the stance-to-swing transition occurred
sooner than expected. As a result, the unified controller tracked
the desired virtual constraint better than the piecewise HZD
controller when the human and prosthesis intent was not
exactly matched, as is likely to occur in reality.

B. Stability of Walking Gaits

The local orbital stability for both the matched and mixed
speed controllers were analyzed using the method of Poincaré
sections [12]. To do so, define the extended state vector from
all of the prosthesis and human generalized coordinates as
xe = (qTe , q̇

T
e )T , where qe = [q1, q2, q3, q4, q5, q6, qx, qy]T .

Walking gaits are cyclic and correspond to solution curves
xe(t) of the hybrid system such that xe(t) = xe(t + T ), for
all t ≥ 0 and some minimal T > 0. These solutions, known as
hybrid periodic orbits, correspond to equilibria of the Poincaré
map P : GP → GP, where the Poincaré section GP is the set
of states corresponding to prosthesis heel strike. The function
P (xe) models two full steps of the biped, mapping the state
from a prosthesis impact event to the subsequent prosthesis
impact event. A periodic solution xe(t) then has a fixed point
x∗e = P (x∗e), about which the Poincaré map can be linearized
to analyze local stability. If the eigenvalues are within the
unit circle, then the discrete system is locally stable, and we
conclude that the hybrid periodic orbit is also locally stable.

In ideal conditions, the hybrid-invariant Bézier polynomials
enable an analytical proof of orbital stability with the lower-
dimensional HZD [23], [24]. However, hybrid invariance is
violated by any mismatch with the human controller, including
the mixed speed cases. Moreover, by definition the unified
virtual constraints do not satisfy hybrid invariance. Because
the analytical HZD result cannot be utilized in these cases,
we instead use the perturbation analysis procedure described
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Fig. 5. The simulated tracking errors of the prosthetic knee (left) and
ankle (right) for both the unified DFT and piecewise Bézier controllers during
steady-state walking with mixed speeds. The normal matched speed error is
also shown for comparison. Both controllers have similar error at the start
of the stance period (phase variable near 0), but the DFT controller has
significantly less error at the start of the swing period (phase variable near
0.5). Note: N-S = normal walking (prosthesis) and slow walking (human),
N-N = normal walking (prosthesis) and normal walking (human), and N-F =
normal walking (prosthesis) and fast walking (human).

in [35], [36] to numerically calculate these eigenvalues based
on simulations. In all cases, the eigenvalues of the linearized
map fall within the unit circle (Table II). Thus, the gaits are
orbitally stable in the matched and mixed speed cases.

TABLE II
MAXIMUM EIGENVALUES WITH UNIFIED PROSTHETIC CONTROLLER

Human Model
Walking Speeds Slow Normal Fast

Prosthetic Slow 0.774
Leg Normal 0.717 0.760 0.639

Fast 0.758

C. Simulated Walking with Impedance Controller

To apply the feedback linearizing control law (Eq. 8), the
dynamics of the prosthesis must be known. Obtaining an
accurate dynamic model of the physical system is a challenge
in itself. With an uncertain dynamic model and limited sen-
sory feedback for the prosthesis, feedback linearization may
be difficult to implement experimentally. A more practical,
model-independent implementation is through joint impedance
control (Eq. 9), which approximates the torque control inputs
for the feedback linearizing controller [22].

This control law was implemented for the prosthesis of the
amputee biped model. Noting that real actuators are torque-
limited based on the motor and transmission, a saturation limit
of ±120 Nm was implemented for each actuated joint, which
is representative of existing powered prosthetic legs [2], [3],
[37]. Feedback linearization was still used for the human part
of the model, which has been validated as a predictor of
certain features of human walking [28], [34]. Using the method
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Fig. 6. The simulated torques of the prosthetic knee (left) and ankle
(right) for the mixed case of the human at slow speed and the prosthesis
at normal speed with the Bézier feedback linearizing controller (N-S Bez-Fk
Lin), the DFT feedback linearizing controller (N-S DFT-Fk Lin), and the DFT
impedance controller (N-S DFT-Imp). The torques of the impedance controller
approximate the feedback linearizing controllers throughout the gait cycle. The
torque impulses after impacts are caused by discontinuities in velocity from
the impulsive impact model, which do not occur during human walking.

from Section IV-B, the impedance controller was shown to
be locally exponential stable with similar eigenvalues to the
feedback linearizing controller.

Fig. 6 compares the torques of the impedance controller
against the feedback linearizing controllers for both DFT and
Bézier in the mixed speed case of normal prosthesis and
slow human. The controllers produce similar torques with
large spikes just after the discontinuous impact events, which
can only be achieved with ideal actuators in simulation. This
could potentially be addressed through the use of correction
polynomials as in [38]. However, step transitions in human
walking are continuous over a double-support period, so these
discontinuities will not occur in practice (see [22], [37]). These
results demonstrate the feasibility of a model-independent con-
troller for practical implementation in a powered prosthesis.

V. CONCLUSIONS

We developed a single, unified prosthesis controller that
captures the entire gait cycle through DFT virtual constraints.
The unified controller eliminates the need to divide the gait
into different periods with independent controllers. Since the
DFT virtual constraint is periodic, the controller does not need
to be reset at the start of each stride.

The feasibility of the controller was demonstrated using
simulations of an amputee walking model. Three distinct
walking speeds were designed and simulated. In all cases,
stable periodic gaits emerged. Robustness to speed uncertainty
was demonstrated by using a fixed prosthesis controller while
the human controller was varied. These mixed speed cases
produced stable waking, demonstrating that a single, unified
controller can accommodate a range of human walking speeds.



A model-independent impedance controller was also evalu-
ated, demonstrating the viability of implementing the unified
control method in hardware.

This control strategy was recently implemented on a pow-
ered knee-ankle prosthesis in [37]. Experiments validated the
ability of the unified control approach to handle various walk-
ing speeds (0-3 miles/hr) in a continuous sequence. Unified
virtual constraints could be defined for various activities with
well-characterized joint kinematics (e.g., from able-bodied
data [33], [39] or model-based optimization [9], [19]). Future
experiments will attempt to demonstrate clinical viability
by allowing clinicians to visually modify trajectories while
configuring the control system for different amputee subjects.
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