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Abstract— Individuality in clinical gait analysis is often
quantified by an individual’s kinematic deviation from the
norm, but it is unclear how these deviations generalize across
different walking speeds and ground slopes. Understanding
individuality across tasks has important implications in the
tuning of prosthetic legs, where clinicians have limited time
and resources to personalize the kinematic motion of the leg to
therapeutically enhance the wearer’s gait. This study seeks to
determine an efficient way to predictively model an individual’s
kinematics over a continuous range of slopes and speeds given
only one personalized task at level ground. We were able to
predict the kinematics of able-bodied individuals at a wide
variety of conditions that were not specifically tuned. Applied
to 10 human subjects, the individualization method reduced
the RMSE between the model and subject’s kinematics over all
tasks by an average of 2% (max 52%) at the ankle, 27% (max
59%) at the knee, and 45% (max 83%) at the hip. Our results
indicate that knowing how an individual subject differs from
the average subject at level ground alone is enough information
to improve kinematic predictions across all tasks. This research
offers a new method for personalizing robotic prosthetic legs
over a variety of tasks without the need of an engineer, which
could make these complex devices more clinically viable.

I. INTRODUCTION

Tuning a prosthetic device to an individual can thera-
peutically enhance their gait [1], [2]. Currently, powered
robotic prostheses that adapt to multiple conditions take
prohibitively long to individualize [3] and usually require
the assistance of an engineer [1], [3], resulting in a barrier to
clinical viability. These complex devices have the potential to
increase the speed and efficacy of gait rehabilitation [4], but
tuning the software of robotic prostheses often falls beyond
the scope of a clinician’s knowledge. Prostheses must be
individualized, or tuned, appropriately for an individual’s gait
to increase symmetry, improve leg function, and minimize
gait compensations that lead to overuse injuries [5]. Due to
differences in how individuals walk, tuning is crucial for the
successful use of prostheses [6] like microprocessor knees
and actuated robotic knee-ankle prosthetic legs [7], [8]. The
overarching goal of tuning a prosthesis is to restore normative
gait to an amputee in a manner that suits the individual.
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The presented individualization process shows that tuning
multiple tasks can be intuitive and clinically viable.

Simplifying the tuning process of robotic prostheses will
make them more accessible to clinicians who understand the
intricate process of gait rehabilitation, but lack the specific
knowledge of an engineer or manufacturer representative
[1], [2]. Quintero et al. bridged the knowledge gap between
engineers and clinicians by using an intuitive interface to
manipulate the flexion and extension of a knee and ankle
prosthesis throughout the gait cycle, i.e., the joint angle
trajectories. In their case study, the clinician was able to
efficiently tune a complex prosthesis for a single level-ground
walking task using this method [1].

Individual gait patterns are unique [9], [10] and used in
many applications from individualized medical diagnostics
[10] to prosthetic motion [11]. Recently, researchers have
determined how factors such as gender, age, walking speed,
and BMI contribute to an individual’s gait [12], [13]. Terrain
grade, or slope, is often overlooked in gait individuality
studies, but is a significant parameter affecting joint kine-
matics [14], [15]. Embry et al. created a predictive model
that represents gait kinematics as a continuous function
of gait phase, speed, and slope. This model was trained
from population mean joint trajectories at samples of slope
and speed–the ‘task’–and can accurately predict mean joint
trajectories over a continuous range of these tasks [15]. This
can be used to drive a prosthetic controller that can easily be
tuned (as suggested in [16]), but as it fits the average user, the
model does not account for individuality. It may be possible
to leverage the continuous-task kinematic model from [15]
and the kinematic tuning method from [1] to establish a new
method for individualizing joint kinematics of a prosthesis
over a continuous range of tasks. Specifically, we hypothesize
that because the kinematic model from [15] continuously
links all tasks, it can be used to distribute individual features
from a single tuned task across the entire model.

In this study, we develop the theoretical framework for
tuning a prosthesis for tasks that are often difficult to
replicate in a clinic, such as multiple slopes. This specific
application aims to model individual kinematics across tasks
based only on personalized data for level-ground walking
at a normal speed. When used to change the motion of
a powered prosthetic leg, this individualized model would
reduce the time it takes to tune multiple tasks and shift the
onus of tuning from engineers to clinicians. The presented
data-driven study lays the groundwork for clinical individual-
ization of a powered prosthetic leg over continuously varying
tasks. In Section II, we will discuss the methods used for



obtaining the able-bodied data set, modeling kinematics of a
continuous range of tasks, quantifying individuality by defin-
ing the individual’s specific contribution, and individualizing
the model. In Section III, we will discuss the accuracy of
trajectory design and how well the individualized trajectories
and models express an individual’s unique gait across all
tasks. Finally, in Section IV, we discuss the implications of
this modeling scheme for a representative subject.

II. METHODS

A. Data Set

The data used for this study was collected for a re-
lated study [15] and is accessible for download from IEEE
Dataport [17]. The experimental protocol and subsequent
analysis was approved by the Institutional Review Board
at the University of Texas at Dallas and the University of
Michigan. All 10 subjects (5 female) were able-bodied and
provided written informed consent. The subjects had a mean
age of 23 years (SD = 2.8 years), mean height of 170 cm
(SD = 8.2 cm), and mean weight of 64 kg (SD = 7.7
kg). A 10-camera Vicon T40 motion capture system (Vicon,
Oxford, UK) recorded the subjects’ kinematics at 100 Hz.
All tests consisted of subjects walking at a steady speed and
grade on a Bertec instrumented split-belt treadmill (Bertec
Corp., Columbus, OH) for one minute. For each test, data
was collected while the subject walked at a constant speed of
0.8, 1.0, or 1.2 m/s and a constant ground slope ranging from
-10° to +10° at 2.5° increments. All subjects walked at every
combination of speed and slope, resulting in 27 different
tasks with unique identifiers, χj with j = 1, 2, ..., 27. The
order of trials was randomized and subjects took breaks to
prevent fatigue [15]. In the dataset, strides were normalized
over time and interpolated over 150 points in phase.

B. Format of Basis Model

Embry et al. [15] created a predictive model that represents
inter-subject mean gait kinematics as a continuous function
of gait phase and task. Gait phase is represented by a phase
variable, ϕ ∈ {R|0 ≤ ϕ < 1, ϕ̇ > 0}, which is a cyclic and
monotonic scalar that increases from 0 to 1 once per stride
(e.g., [16]). Task is represented by χ = (ν, α), where ν is
the subject’s speed linearly mapped from a range of 0.6 m/s
to 1.4 m/s to a range of 0 to 1, and α is the ground slope,
linearly mapped from -10° to 10° to a range of 0 to 1.

Gait kinematics are modeled as the weighted summation
of N basis functions of phase, bk(ϕ). The weight of each
basis function changes for each unique task, as determined by
the task functions ck(χ). This yields the following separable
expression for the joint angle q of the hip, knee, or ankle:

q(ϕ, χ) =

N∑
k=1

bk(ϕ)ck(χ), (1)

where the number of basis functions is N , indexed by k.
The basis functions bk(ϕ) model how joint kinematics

change in response to the progression of the gait cycle.
Basis functions are parameterized as finite Fourier series

of degree F = 10 with unknown coefficients, which are
solved for later. The scalar task functions ck(χ) model how
joint kinematics change in response to speed and slope. Task
functions are modeled as 2nd or 3rd degree Bernstein basis
polynomials for the terms that operate on speed or slope (see
[15, (3)] for details). Together, these basis and task functions
create a kinematic model q(ϕ, χ) that parameterizes how
phase, speed, and slope affect the joint kinematics.

The format of the basis model is linear with respect to the
parameters of the basis functions, meaning that for a given
ϕi and χj :

Λijx =

N∑
k=1

bk(ϕi)ck(χj), (2)

where x ∈ RN(1+2F ) is a concatenation of the Fourier
coefficients from bk for k = 1, . . . , N . All other terms, which
are constants for a given value of ϕi and χj , are collected
in vector Λij ∈ R1×N(1+2F ). See [15, (5)] for details.

C. Basis Model Optimization

The data includes hip, knee, and ankle angular positions
at a variety of phases and tasks as described in Section
II-A. We can solve for x such that (1) optimally fits this
data. Optimality is defined by this objective function and
constraints:

minimize
x

ρ+ δ||vec(
∂3

∂ϕ3
Λijx)||2,

such that − ρSE(dϕiχj ) ≤ d̄ϕiχj − Λijx ≤ ρSE(dϕiχj ),

Rmin <
min
m Λimx,

Rmax >
max
m Λimx,

∀ i = 1, 2, ..., 150,∀ m = 1, 2, . . . , 100,

and ∀j = 1, 2, . . . , 27, (3)

where d̄ϕiχj
represents the inter-subject mean joint angular

position of the hip, knee, or ankle recorded at a discrete
phase ϕi and task χj , and SE(dϕiχj

) represents the stan-
dard error of all of the subjects at the given task. This
optimization problem seeks to minimize two objectives, ρ
and ||vec( ∂3

∂ϕ3 Λijx)||2. Scalar value ρ acts as a bound on
the absolute difference between the inter-subject mean d̄ϕiχj

and the value of the basis model evaluated at the same point
in phase and task, Λijx. The difference in these two tasks is
multiplied by the reciprocal of the inter-subject standard error
SE(dϕiχj ). The logic behind this term is that, if all of our
subjects had very similar kinematics at a given point (small
standard error), it is more important for our mean kinematic
surface to match closely at these points. The second objective
term, ||vec( ∂3

∂ϕ3 Λijx)||2, is a measurement of the jerk in the
phase dimension of the basis model. The human body tends
to move with jerk-minimized trajectories, and this objective
strives to improve biomimicry [18], [19]. Our two objectives,
fitting to the available data and reducing jerk, are scalarized
with a coefficient δ. Lastly, we also constrain that the model
always stays within range of motion bounds Rmin and Rmax.
We check this bound at 100 evenly spaced values of speed



Ankle Knee Hip
O

pt
im

iz
ed

M
od

el

-10

0

10

10

20
A

nk
le

 P
os

iti
on

 (
de

g)

Incline (deg)

0 1  0.8

Phase (0-1)

0.60.4-10 0.20  

0

20

40

60

K
ne

e 
P

os
iti

on
 (

de
g)

10 0
Incline (deg)

1  0.80.6
Phase (0-1)

0.40.2-10 0  

-10

0

10

20

30

40

50

60

H
ip

 P
os

iti
on

 (
de

g)

10
0

Incline (deg)
1  0.80.6

Phase (0-1)
0.40.2-10 0  

In
di

vi
du

al
C

on
tr

ib
ut

io
n

0 0.2 0.4 0.6 0.8 1
Phase (0-1)

-6

-4

-2

0

2

4

6

8

Jo
in

t P
os

iti
on

 (
de

g)

0 0.2 0.4 0.6 0.8 1
Phase (0-1)

-5

0

5

10

Jo
in

t P
os

iti
on

 (
de

g)

0 0.2 0.4 0.6 0.8 1
Phase (0-1)

-6

-4

-2

0

2

4

6

8

Jo
in

t P
os

iti
on

 (
de

g)

-10
-7.5
-5
-2.5
0
+2.5
+5
+7.5
+10

Fig. 1: The top row shows the Basis model surfaces for the ankle, knee, and hip at normal speed, superimposed with one
subject’s experimental data in red. The bottom row shows the difference between the same subject’s experimental data
and the inter-subject mean for normal speed at all sampled inclines (in degrees). The difference for the level ground task
corresponds to the individual’s contribution, shown in bold black.

and grade, indexed by m. This optimization problem can
easily be solved with a convex optimization solver like [20],
and has a guaranteed globally optimal solution.

D. Modifications to Basis Model

The basis model is trained on mean kinematics across
task and phase (d̄ϕiχj ), while this paper concerns tailoring
the model for an individual subject, indexed by ηp with
p = 1, 2, . . . , 10. As seen in Fig. 1, the basis model
accounts for trends over task, but was not designed to fit an
individual’s unique kinematics. For this purpose, adjustments
must be made to the training trajectories, so that they emulate
the individual’s unique kinematics, and to the optimization
protocol, so that it adapts well to individualized trajectories.

1) Individualization of Training Trajectories: While the
basis model can be trained on the complete experimental data
of one subject, the objective of this study is to individualize
the model under the assumption that only one task is known;
specifically the clinically relevant task, self-selected speed
over level ground. For the purpose of this study, we assume
this task to be normal speed, level ground, χB . As the
individual’s only known task, all individuality in the model
stems from the difference between the individual’s trajectory
dϕiχBηp and the inter-subject mean d̄ϕiχB

. We have found
that the difference between individual and mean trajectories
often follows the same trend across all tasks, seen in Fig.
1 (bottom), and the presented individualization technique is
based on this assumption. Therefore, taking the difference at
χB is a good estimation of the individual’s ‘contribution’ to
gait, defined as Cϕiηp = dϕiχBηp−d̄ϕiχB

. This contribution
is added to the inter-subject mean trajectory of each task,

d̄ϕiχj
+Cϕiηp , to create a set of individualized trajectories.

2) Modifications to Error Handling: The optimal solution
for this modeling problem is found by minimizing the
difference, or residual, between the training data and the
modeled kinematic surface. This works by employing p-
norms (Lp), which are functions that apply penalties to each
residual. The type of norm used will encourage different
distributions of optimal residuals by applying penalties in
a different manner [21]. The basis model used the L∞ norm
in (3), which penalizes the absolute value of the largest
residual. As a note, while the L∞ norm is not written in
the problem statement, minimizing ρ, which is constrained
to be a bound on the residual between the data and model,
acts as an implicit L∞ norm. This method worked well for
inter-subject mean kinematics, but the solutions it found were
not well suited for individualized models. To allow for indi-
viduality, we categorize the training trajectories into higher
and lower priorities so the optimization protocol is more
lenient in fitting low-priority tasks. This is accomplished
by minimizing the high-priority trajectories using the L∞

norm, encouraging the model to fit these trajectories closely.
The low-priority trajectories are penalized by the L2 norm,
which applies quadratic penalties to residuals, encouraging
a normal, unbounded, distribution of optimal residuals [21].
We elected to use dϕiχBηp and the individualized normal-
speed ±10° tasks for high-priority fitting so that the model
would exactly fit the true individual trajectory at χB and
carry the individual contribution out to the most extreme
modeled tasks. It should be noted that the high-priority ±10°
tasks are designed using the same individualization method
as the low-priority tasks. The low-priority trajectories were



TABLE I: Training trajectory RMSE and max error across all tasks for all subjects and joints. The top half of the table
pertains to the inter-subject mean trajectories and the bottom half refers to the individualized trajectories. The last column
shows the mean RMSE or max error at each joint across all subjects. Significantly decreased values are marked with a ‘*’
and all values are reported in degrees.

AB01 AB02 AB03 AB04 AB05 AB06 AB07 AB08 AB09 AB10 Mean SD

Subject Average
RMSE

Ankle 2.74 2.21 3.89 3.43 2.87 2.51 7.89 3.21 2.44 3.46 3.46 1.56
Knee 4.27 5.13 5.93 3.26 3.57 3.68 10.60 6.37 4.16 5.84 5.28 2.05
Hip 11.06 5.78 4.05 12.24 3.19 6.15 3.43 3.69 2.22 3.71 5.55 3.25

Subject Average
Max Error

Ankle 9.49 8.07 12.37 10.78 7.74 11.25 16.04 9.49 7.31 7.91 10.04 2.55
Knee 14.19 12.19 19.04 9.77 9.32 11.30 23.40 14.67 12.74 13.66 14.03 4.08
Hip 18.58 14.65 13.46 19.96 6.90 13.82 8.15 8.03 6.49 8.69 11.87 4.66

Individualized
RMSE

Ankle 1.84 2.13 3.04 1.52 1.73 1.56 4.07 2.75 2.29 2.16 2.31* 0.75
Knee 3.36 2.83 4.90 3.37 2.28 2.34 3.87 3.77 4.74 3.12 3.46* 0.85
Hip 2.65 1.94 3.00 3.05 1.76 2.08 2.82 3.50 2.49 2.75 2.60* 0.52

Individualized
Max Error

Ankle 4.95 4.09 11.58 2.67 5.08 3.68 7.05 4.20 7.40 4.75 5.55* 2.43
Knee 6.49 4.46 19.54 6.27 6.59 2.92 8.77 6.53 13.75 7.50 8.28* 4.63
Hip 8.26 3.77 17.89 6.09 4.95 1.84 6.95 10.17 4.47 4.24 6.86* 4.31

included in the training data to provide shape associated with
kinematics changing with slope and speed. These changes are
represented by the updated optimization problem statement:

minimize
x

ρ+ δ||vec(
∂3

∂ϕ3
+ Λijx)||2 + γ||R||2,

such that − ρ ≤ d̄ϕiχh
− Λihx ≤ ρ,

R = vec(d̄ϕiχl
− Λilx),

Rmin <
min
m Λimx,

Rmax >
max
m Λimx,

∀ i = 1, 2, ..., 150,∀ m = 1, 2, . . . , 100,

and ∀h ∈ H,∀l ∈ L, ∀j ∈ H ∩ L, (4)

where H and L are the sets of high and low priority trajec-
tories, respectively. The high priority trajectories are treated
identically to all of the trajectories in (3). The difference
between the low priority trajectories and the model, called R,
is minimized using the L2 norm. All other terms are identical
to (3).

The optimization protocol shown in (4) seeks to minimize
the residuals associated with the new high/low priority train-
ing distinction. Pareto optimization was performed to adjust
the weight that each set of residuals had on the optimization,
so that the distinction is enforced. The jerk coefficient was set
to γ = 1e-5 for both modeling problems and the coefficient
δ = 0.05 was used for the updated protocol (4).

E. Statistics

Throughout this paper we will discuss error using the
root mean squared error (RMSE). This metric calculates the
deviation of the designed trajectory or surface from the sub-
ject’s experimental kinematics. The formula is RMSEηp =√∑I

i=1

∑J
j=1(dϕiχjηp − d̄ϕiχj

)2/N for I = 150 points in
phase and J = 27 tasks (N = I · J = 4050).

When comparing the basis model trained from mean
trajectories and the modified model trained on individualized
trajectories, the RMSE and max error from each subject are
computed for each joint. The population of those values for
all subjects at one joint are then statistically compared with a

one-tailed t-test, using an alpha of 0.05, to see if the evaluated
parameter has been significantly reduced.

III. RESULTS

In this section, we first examine how our method for
individualizing the training data reduces the error from
each subject’s kinematics across tasks. These individualized
trajectories are used to generate the individualized model
according to the modified optimization protocol (4), which
is then compared to the basis model trained on inter-subject
mean kinematics using the optimization scheme in (3). The
RMSE should be interpreted as goodness of fit to the
experimental data across all tasks, and max error shows the
magnitude of the largest deviation of the tested trajectory set
or model from the experimental data. One-tailed t-tests were
conducted on the populations of RMSE and max error values
from all subjects at each joint to see if individualization
statistically improved the fit compared to baseline.

A. Individualized Training Trajectories

Table I shows the RMSE and max error across all tasks
for the inter-subject mean and individualized trajectories
compared to the experimental kinematic trajectories for each
subject. (The models trained on these trajectories will be
evaluated in the next section.) Averaged across all subjects,
individualization at the ankle decreased the RMSE by 1.15°
and the max error by 4.50°. The improvements in fit gen-
erally occurred immediately before and after push-off and
heel strike, and individualization often adjusted these regions
to match the individual. The individualized trajectories have
significantly smaller RMSE across all subjects (p = 0.03) as
well as significantly smaller max error (p�0.01).

Individualization at the knee decreased RMSE by 1.82°
and max error by 5.75°. The RMSE and max error are
both significantly decreased with p-values of 0.01 and 0.006,
respectively. At the hip, individualization reduced the RMSE
by 2.95° and the max error by 5.01°. The decrease in max
error stems from fitting peak flexion and extension by scaling
the amplitude of the trajectory. There is a significant decrease
upon individualization for RMSE (p = 0.008) and max error
(p = 0.01).



TABLE II: RMSE and max error of the basis and individualized models across all tasks for each subject and joint compared
to experimental data. The top two sections pertain to the basis model and the bottom two refer to the individualized model.
Significantly decreased values are marked with a ‘*’ and all values are reported in degrees.

AB01 AB02 AB03 AB04 AB05 AB06 AB07 AB08 AB09 AB10 Mean SD

Basis
RMSE

Ankle 3.21 2.41 4.25 3.56 3.36 3.05 8.42 3.46 3.44 3.44 3.86 1.58
Knee 3.93 6.34 7.12 4.12 4.92 5.23 11.34 7.46 4.59 6.30 6.14 2.09
Hip 11.70 6.09 4.25 11.88 3.33 6.09 4.13 4.90 2.82 4.24 5.94 3.08

Basis
Max Error

Ankle 12.49 8.05 11.76 7.88 10.49 6.93 19.76 14.13 9.04 8.35 10.89 3.88
Knee 13.08 11.76 14.94 11.95 10.99 14.50 23.81 18.33 10.16 14.34 14.34 4.10
Hip 18.84 12.80 12.58 20.94 5.77 12.81 10.72 10.21 5.96 8.11 11.87 4.98

Individualized
RMSE

Ankle 3.22 2.96 3.66 3.29 2.44 2.99 4.00 4.60 3.56 4.08 3.48 0.60
Knee 4.17 4.03 5.70 3.96 2.68 3.22 4.65 3.47 5.63 3.87 4.14* 0.92
Hip 2.12 2.03 3.29 1.97 2.07 1.71 4.57 2.56 2.82 2.13 2.53* .81

Individualized
Max Error

Ankle 5.50 7.39 10.93 5.31 5.70 8.42 11.03 17.52 7.13 8.51 8.81 3.49
Knee 13.69 9.43 10.41 14.44 9.52 12.12 12.06 16.37 15.36 19.45 12.28 2.45
Hip 6.70 8.54 11.68 8.35 7.19 8.60 9.91 10.61 12.04 10.60 9.42 1.73

B. Individualized Model Error

Similar to the way that we analyzed the training tra-
jectories, we compare the basis model (trained on mean
trajectories) to the individualized model (trained on individ-
ualized trajectories) in terms of how well they fit a subject’s
experimental data. The models are analyzed by sampling the
vector of the model surface that lies on the task in question
and calculating the RMSE and max error when compared to
the subject’s experimental data at that task. The results of
these calculations are reported in Table II.

Averaging across subjects, individualization of the ankle
model decreased the RMSE by 2.68°, which roughly halves
the error across all tasks. The max error decreased 2.08°.
The ankle tends to have lower RMSE and max error than the
other joints because of its smaller range of motion, but its
relative RMSE improvement by 31% is the best of all joints.
No statistically significant decrease was found between the
basis and individualized model for RMSE or max error.

Individualization of the knee model decreased the RMSE
by 1.55° on average. This result is better than the improve-
ment seen in the training data, exemplifying the strengths
of this predictive modeling technique. The max error also
decreased on average 2.06°, with a decrease of 11.75° for
Subject 7. Unlike the ankle, RMSE was significantly smaller
(p = 0.01) but there was no significant decrease in max error.

The individualized hip model reduced the RMSE 1.18°
and the max error 2.45°, which is the best of all joints.
Notably, individualization caused a 12.59° decrease in max
error for Subject 4 and a 12.14° decrease for Subject 1,
showing that this individualization technique has the promise
to greatly improve fit across multiple tasks. Similar to the
other joints, the RMSE of the individualized hip model is
significantly smaller than the basis model (p = 0.002), but
no significant difference was observed in max error.

IV. DISCUSSION

This individualization technique is a simple yet effective
way to predict an individual’s joint kinematics across all
tasks based on a single personalized task. The method can
easily be adapted to tune a prosthetic leg, changing the
motion of the leg to match and enhance a patient’s gait. In

this study, the method of propagating individuality reduces
the max error up to 86% at the trajectory level and up to 64%
at the model level, while decreasing RMSE across all joints.
Fig. 2 shows the joint kinematics and demonstrates how the
modeling process reduced error for Subject 6. This subject
was chosen for discussion because of their representative
improvements at the ankle, knee, and hip.

A. Ankle Fit: Trajectory and Model

Models of ankle position must fit peak flexion before
push-off and peak extension immediately following it. For
Subject 6, individualizing the training trajectories from mean
kinematics decreased the RMSE by 0.95° across all tasks.
This subject presents with a larger range of motion than the
inter-subject average and that directly affects the fit. When
the model is trained for this individual, we see a modest
improvement in fit of 0.06° RMSE. The individualized ankle
residuals, seen in Fig. 2 (Ankle), show that the model tightly
fits the level-ground task because the individual component
is derived from this high-priority task as discussed in Section
II-D. The greatest improvement in the individualized model
is seen throughout the stance phase, where the model fits
the subject’s high-priority trajectory (black) with residuals
close to zero. The large residual trend found in the basis
model during push-off (ϕ ≈ 0.6) is dramatically minimized
after individualization, further reinforcing that the individual
contribution found in the level-ground task is a good esti-
mation of individuality at other tasks. Peak push-off flexion
and extension, features that generally show the greatest
individuality, are better fit by the individualized model with
a max deviation of 4.97° for the -10° slope trajectory. The fit
of the model tends to deteriorate as the slope of the terrain
increases–these tasks tend to have the largest residuals across
all subjects. As seen in Fig. 2 (Ankle), the individualization
process removes much of the variability associated with this
subject’s individual contribution by centering the residuals
around zero, effectively showing why the RMSE decreases.

B. Knee Fit: Trajectory and Model

Similar to the ankle, individualization at the knee shows
good improvements at the trajectory level. At the knee,
the most individuality is shown during terminal stance and



Ankle Knee Hip
Su

bj
ec

t
K

in
em

at
ic

s

0  0.2 0.4 0.6 0.8 1  
Phase (0-1)

-15

-10

-5

0

5

10

15

20

25

Jo
in

t P
os

iti
on

 (
de

g)

0  0.2 0.4 0.6 0.8 1  
Phase (0-1)

0

20

40

60

80

Jo
in

t P
os

iti
on

 (
de

g)

0  0.2 0.4 0.6 0.8 1  
Phase (0-1)

-10

0

10

20

30

40

50

60

70

Jo
in

t P
os

iti
on

 (
de

g)

-10
-7.5
-5
-2.5
0
+2.5
+5
+7.5
+10

B
as

is

0  0.2 0.4 0.6 0.8 1  
Phase (0-1)

-15

-10

-5

0

5

10

15

Jo
in

t D
ev

ia
tio

n 
(d

eg
)

0  0.2 0.4 0.6 0.8 1  
Phase (0-1)

-15

-10

-5

0

5

10

15

Jo
in

t D
ev

ia
tio

n 
(d

eg
)

0  0.2 0.4 0.6 0.8 1  
Phase (0-1)

-15

-10

-5

0

5

10

15

Jo
in

t D
ev

ia
tio

n 
(d

eg
)

-10
-7.5
-5
-2.5
0
+2.5
+5
+7.5
+10

In
di

vi
du

al
iz

ed

0  0.2 0.4 0.6 0.8 1  
Phase (0-1)

-15

-10

-5

0

5

10

15

Jo
in

t D
ev

ia
tio

n 
(d

eg
)

0  0.2 0.4 0.6 0.8 1  
Phase (0-1)

-15

-10

-5

0

5

10

15

Jo
in

t D
ev

ia
tio

n 
(d

eg
)

0  0.2 0.4 0.6 0.8 1  
Phase (0-1)

-15

-10

-5

0

5

10

15

Jo
in

t D
ev

ia
tio

n 
(d

eg
)

Fig. 2: Differences between the optimized models and Subject 6’s experimental trajectories for normal speed at all inclines.
Left to right show the ankle, knee, and hip joints. The top row shows the Subject 6’s joint kinematics, the middle row
shows the differences from the basis model and the bottom row shows the differences from the individualized model. The
high-priority level-ground task is in bold black in the bottom two rows to emphasize how this trajectory is closely fit by the
individualized model. The legend reports the inclines in degrees.

into the beginning of swing (Fig. 1). Our individualization
method reduces the RMSE of the training trajectories by
1.34° compared to the mean trajectories. Individualization
decreases the max error 63%, from 11.30° to 2.92°. This
difference stems from the subject progressing through knee
extension and flexion at a different point in the gait cycle,
causing large residuals from the mean trajectories (which can
also be seen at the model level in Fig. 2 (Knee)). As seen
at the ankle, the individualized knee model tightly fits the
level-ground task (black), with the RMSE decreasing 2.01°
compared to the basis model. Tightly fitting this task reduces
much of the error found during the stance phase by following
the trend of most tasks. Occasionally, individualization de-
ceases the efficacy of fit if one task shows an opposite trend
as seen in the +10° task in Fig. 2 (Knee). For this task,
the error increases around ϕ = 0.1 from -8.97° to -10.04°.
Despite the effect seen around that task, individualization
reduces the error across the majority of tasks by effectively
centering the error around zero, further demonstrating the
idea that trends in individuality hold across tasks. Further
into terminal stance and through swing, the majority of error
is reduced (the maximum deviation at this phase decreases
from -14.22° to -8.90°), but notable errors still exist when

experimental trajectories exhibit peak flexion and extension
out of phase with the level-ground task. Individualization
at the knee does not fully encompass the deviations seen
at other tasks, but it does a good job of distributing the
contribution to every task and decreasing error.

C. Hip Fit: Trajectory and Model

The hip joint is unique because of its kinematic symmetry
along the phase axis (i.e., sinusoidal trajectory) and the fact
that individualization generally scales the amplitude of the
model to fit the subject’s range of motion. With respect to the
training trajectories, Subject 6 showed a great improvement
upon individualization, reducing RMSE by 4.08° (a 45%
decrease) and max error by 11.98°. Fig. 2 (Hip) demonstrates
that the basis model consistently overestimates extension and
flexion causing negative residuals across all tasks. The indi-
vidualization process rectifies this consistent offset through
the addition of the individual’s contribution, seen in Fig. 2
(Hip). After individualization, the model showed a decrease
in RMSE of 4.38° and decrease in max error of 4.21°.
Upon investigation, the bulk of the error is observed in
peak extension when the leg is extended behind the body
before push-off. Individualization at this point increases the



error for some tasks, but decreases the max deviation seen
at the +10° task in Fig. 2 (Hip) from -12.14° to -5.74°.
The deviations seen for all subjects have similar trends after
individualization, namely centering the error around zero and
effectively reducing maximum error.

D. Modeling Considerations

Across all subjects and joints, we saw a good improvement
in RMSE upon individualization with only 3 of 30 cases
(10 subjects, 3 joints) showing a poorer fit at the training
trajectory level and 8 of 30 at the model level (5 at the ankle
joint). Despite this, the cases that showed a poorer fit after
model individualization never showed an increased RMSE
larger than 1.15°, which is small in practice. Moreover,
the individualized models that showed improvements have
RMSE reductions of up to 9.58° compared to the basis
models. Throughout all cases the individualization process
works best during stance phase (straightening the level-
ground deviation around zero in Fig. 2), but there is room for
improvement in fitting the quicker motions of swing phase.

Additionally, it is important to note that a small trade-
off was made in the model fitting accuracy to minimize
jerk, guarantee an anatomical range of motion, and avoid
overfitting the data. In particular, the basis model presented in
[15] can more accurately predict untrained tasks than linear
interpolation, and we expect that benefit to extend to our
individualized model. Another benefit of the basis modeling
approach is the existence of an analytical derivative to control
the desired joint velocity in robotic prosthetic legs [15].

It should be stressed that these models are fit to able-
bodied kinematics, whereas prosthetists in a clinical setting
typically tune a prosthesis to match and therapeutically
enhance the amputee’s gait. This study corroborates the as-
sumption of individuality across tasks for able-bodied people,
allowing for clinical individualization to be implemented to
correct compensations of the amputee subject and make their
gait more normative and symmetrical across all tasks.

V. CONCLUSION

Though this study was conducted with able-bodied data,
the ease and efficacy of the presented individualization
method can drastically reduce the time of tuning multiple
tasks for powered prostheses, while remaining accessible
to clinicians. This motivates the future development of a
user interface, based on [1], to test this technique with
clinicians and amputee subjects. With an interface utilizing
this modeling technique, the desired kinematic output of the
leg can be quickly and intuitively tuned to suit an amputee
subject across a variety of tasks. We posit that this method of
individualization will help the wearer reduce compensations
across all tasks. Our work is a strong indicator that the
limited data collected at level ground is still a powerful tool
for improving walking performance at all slopes and speeds.
Future work will extend this modeling and individualization
technique to other ambulation tasks, such as climbing stairs
of different inclinations and sit-to-stand.
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