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Abstract— In this work, we introduce a novel approach to
assistive exoskeleton (or powered orthosis) control which avoids
needing task and gait phase information. Our approach is
based on directly designing the Hamiltonian dynamics of the
target closed-loop behavior, shaping the energy of the human
and the robot. Relative to previous energy shaping controllers
for assistive exoskeletons, we introduce ground reaction force
and torque information into the target behavior definition,
reformulate the kinematics so as to avoid explicit matching
conditions due to under-actuation, and avoid the need to
switch between swing and stance energy shapes. Our controller
introduces new states into the target Hamiltonian energy that
represent a virtual second leg that is connected to the physical
leg using virtual springs. The impulse the human imparts to
the physical leg is amplified and applied to the virtual leg, but
the ground reaction force acts only on the physical leg. A state
transformation allows the proposed control to be available using
only encoders, an IMU, and ground reaction force sensors. We
prove that this controller is stable and passive when acted on
by the ground reaction force and demonstrate the controller’s
strength amplifying behavior in a simulation. A linear analysis
based on small signal assumptions allows us to explain the
relationship between our tuning parameters and the frequency
domain amplification bandwidth.

I. INTRODUCTION

Recent advances in exoskeleton technology have resulted
in a class of light-weight assistive lower-body exoskeletons
that can reduce the muscle effort [1] or metabolic cost of
locomotion [2]–[5]. These systems are a departure from the
better known humanoid-like lower-body exoskeletons (e.g.
HAL [6], ATLANTE [7], ReWalk [8], or Mina v2 [9]) in
that they are designed not to impose kinematics but rather
to be back-driven by the users, providing assistive torque
to augment a human that remains in direct control of the
limb kinematics. But a lack of control strategies that allow
these devices to transition between the various tasks (such as
walking at different speeds, over ramps, up stairs, etc.) is one
of the key factors keeping them from practical application
[10]. These transitions are critical for assisting people in
activities of daily living (ADLs) which feature short bouts
of walking on the order of 30 seconds [11].

Control strategies that are designed to reduce metabolic
cost of transport typically exploit the periodic nature of
treadmill walking experiments to simplify the problem, but
these approaches do not scale easily to handle more realistic
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ADLs that are not truly periodic. For example, timing-based
control approaches play forward a desired trajectory based
on detection of periodic events such as heel-strikes [3],
sometimes superimposed with virtual mechanical impedance
[2]. Adaptive oscillator strategies use nonlinear control to
fit oscillator outputs to the periodic motion of joint angles,
and from oscillator states produce control signals [12]. Phase
estimation strategies use a data-driven model and an internal
dynamic state to more accurately track human motions and
apply phase-based torque profiles [13], [14]. All these types
of controllers require alterations to enable transitions be-
tween gait modes like level ground walking and stair ascent
(or even more subtle changes like walking fast or walking
slow). Machine learning systems for gait classification take
information from previous steps to estimate the mode for the
upcoming step. However this requires a significant quantity
of training data for each gait mode, and experiments to obtain
this data are expensive. Thus, the long-term scalability of
the periodic motions with task classification strategies are
dubious unless supplemented by a backup plan that works
acceptably in the many tasks that were not part of the
training set. Controllers have also avoided task dependence or
the periodicity assumption using convenient relationships—
delayed output feedback of thigh angle as a hip torque
approximation, for example [15]—but such relationships
may not necessarily scale to other exoskeletons and task sets.

An emerging approach called “Energy shaping” [16], [17]
offers to remove the restriction to periodic behavior and al-
low freer transitions between tasks, but still cannot reproduce
scaled human torques for any activity. Similar to the way
integral admittance shaping assigns a desired linear behavior
in closed-loop [18], energy shaping assigns a nonlinear
closed-loop behavior. The paradigm of energy shaping is
designed after passive dynamic walking systems from the
study of humanoid robots. In these systems, energy shaping
of the natural walking dynamics is capable of making a
robot on level ground behave like a passive dynamic walker
going down a slope [19]. And by analogy, the purpose of
energy shaping in exoskeletons has been to alter the natural
dynamics such that locomotion is easier in general (and
independent of, for example, the speed, ramp angle, step
length, etc.).

Energy shaping works by assigning a new target energy to
a mechanical model of the human-and-exoskeleton system,
typically in the sagittal plane, and backing out the control
torques necessary to make the closed loop system obey the
dynamics that would arise from the target energy according
to classical (Lagrangian/Hamiltonian/Routhian) mechanics.



The framework requires the target energy to satisfy “match-
ing conditions” for under-actuated systems (i.e. the existence
of a control law). Previous work has solved the matching
conditions for fully actuated chains beginning at the foot
(including when the foot contact state is unknown [20]),
introduced ground reaction force scaling to avoid abrupt
torque changes between stance and swing controllers [21],
and established energy shaping as a viable paradigm for
assistance that is helpful across multiple tasks through opti-
mization over the parameters of the target energy [22], [23].
However, as they exist now, energy shaping controllers for
exoskeletons do not support amplification of human torques
relative to other system inputs like the ground reaction force.

Controllers that aim to amplify human strength exist
outside the context of lightweight lower-body exoskeletons.
For example, the human extender structure [24] amplifies
strength in a fixed-based manipulator context by measuring
both the force the human applies to the robot and the
force the robot applies to the environment, using error
feedback to ensure the environmental force is some multiple
of the human force. Results on simple 1-DOF systems have
shown that it is also possible to achieve amplification using
force/torque sensors between the exoskeleton and the wearer
[25], [26], but this sensor configuration is impractical for
lightweight assistive devices.

In this paper we 1) propose a novel energy-shaping con-
troller that uses ground reaction force information to amplify
human strength without task knowledge or special parameter
tuning, 2) show that the resulting closed loop system is
stable and passive at the environment input, and 3) validate
this controller’s stable amplification of human strength using
a simulation. More specifically, we hypothesize that H1)
the novel energy-shaping controller will converge toward a
constant rate of amplification of human strength in steady
state, H2) the controller will not need human torque mea-
surements, joint acceleration feedback, or inertia reduction in
the target energy, H3) the controller is independently passive
at the environment port, and H4) the controller bandwidth
can be tuned using a frequency domain interpretation of
the controller. We demonstrate our controller’s amplification
behavior in a 2D rigid body simulation.

II. MODELING AND CONTROL

We consider an idealized assistive exoskeleton system in
2D on a single leg of a person. This exoskeleton actuates the
hip, knee, and ankle joints through a torque command and
measures the 2D ground reaction force/torque vector, joint
angles, and global angle and acceleration of the hip. The
torque commands are assistive, acting in concert with human
joint torques. The global information available for the hip
link is a noiseless representation of what could be inferred
from a thigh-mounted IMU. And the other measurements
are representations of what could be calculated from joint
encoders and a force/torque sensor between the person’s foot
and the ground. We define the kinematics of the human/robot
model using global angle coordinates as shown in Fig. 1
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Fig. 1. Illustration of the virtual spring and inertia system—the
proposed controller shapes the energy of the target system, the augmented
human leg, to include an extra kinetic energy term similar to that of
a second virtual copy of the leg floating to the side of the true leg.
The controller additionally adds potential energy that can be visualized
as angular springs connecting the virtual leg segments to the true leg
segments. The fundamental mechanism by which the controller amplifies
human strength is denying the virtual leg a copy of the ground reaction
forces and the gravity vector, while allowing it a copy of every other force
acting on the true leg system. This configuration allows human joint torques
to actuate both the real and virtual legs, magnifying their power, while
ground reaction forces act only on the true leg. Once the virtual springs reach
equilibrium, the human will be providing only half the torque necessary to
resist the ground reaction force, with the exoskeleton providing the rest.
Other amplification ratios can be attained by changing the mass of the
virtual leg to be larger or smaller than the true leg.

(alongside coordinate definitions for the virtual leg our
controller will be simulating).

The goal of our modeling is to first describe the 6-DOF
dynamics of the floating leg system, and then extract the
smaller 3-DOF leg system that we will alter using energy
shaping. The goal of our control is to design a target
Hamiltonian system for this 3-DOF system that has the
strength amplification property we seek, and which is also
passive at the 3 ports of the 3-DOF system: the human joint
angle/joint torque port, the human hip position/hip forces
port, and the foot position/ground reaction force port.

The actuated leg is only a small part of the entire human-
robot system, but we will model it as an independent port-
Hamiltonian system connected to the rest of the person by
an interaction port. To form this model, we will first consider
the actuated leg as a floating-base system, and then apply a
position constraint at the hip. However, the acceleration of
this hip and the states of the floating base joints will remain
as inputs to the system. From this floating leg model, we
will extract the dynamics of the three actuated joints. We will
then be able to re-express these 3-DOF dynamics as resulting
from the fixed-base 3-joint leg system’s Hamiltonian with
an inertial input representing the influence of the hip’s
acceleration. We will then perform our energy shaping on the



fully controllable 3-joint system, rather than on the floating
leg model, which trivializes the matching conditions and also
provides the prototype for the dynamics of the virtual leg
system that our target Hamiltonian will add.

A. The 6-DOF Floating Leg Model

We first consider the equations of motion for the 2D
floating leg system. We represent them using the standard
robot equation with four interaction ports: 1) between the
floating hip and the rest of the person, 2) between the foot
and the ground, 3) between the human neuromusular system
and the inertia of the leg, and 4) between the robot actuators
and the inertia of the leg. The robot equation is then

Mq̈ +Bq̇ + g + JTe fe + JTb fb = S(τH + τR), (1)

where M is the mass matrix, q ∈ R6, q̇, and q̈ are the
generalized joint angles, velocities, and accelerations, B is
the Coriolis matrix, and g is the gravitational torque resulting
from the gravitational potential function G(q) such that
g = ∇qG(q). The first two port interactions are represented
by Jb and fb—the Jacobian and force for the port connecting
the leg to the hip (labeled b for being the base of the serial
kinematic chain of the leg), and Je and fe—the Jacobian and
force for the port where the foot interacts with the ground,
labeled with e for environment. The vector τH represents
the actuation torques from the human neuromusuclar system,
and τR represents the actuation torques from the robot’s
actuators. The matrix S ∈ R6×3 represents the under-
actuation structure in the global angle coordinate system.

S =

(
S1

S2

)
,where S1 =

0 0 0
0 0 0
1 1 1

 , S2 =

1 1 1
0 1 1
0 0 1

 .

(2)
In preparation for separating out the floating base dynam-

ics, we subdivide q =
(
qT1 qT2

)T
as shown in Fig. 1, with

the floating base joints represented by q1 ∈ R3 and the global
thigh, shank, and foot angles by q2 ∈ R3. Our robot equation
becomes a block matrix equality:(

M11(q1) M12

MT
12 M22(q2)

)(
q̈1

q̈2

)
+

(
B11 B12

B21 B22

)(
q̇1

q̇2

)
+(

g1

g2

)
+

(
JTe1
JTe2

)
fe +

(
I
0

)
fb = S(τH + τR). (3)

B. The 3-DOF Leg Model

The constrained dynamics of the lower three joints are
evident in (3). We represent them as resulting from a fully
controllable lower-dimensional Hamiltonian system with in-
puts from 1) the position, velocity, and acceleration of
the hip, 2) the ground reaction force at the foot, 3) the
joint torques of the human, and 4) the joint torques of
the exoskeleton. That is, we flip the causality of the hip
port relative to the previous model, taking position (and its
derivatives) instead of torque as the input. From the second
row of the separated robot equation,

M22q̈2+B22q̇2+g2+J
T
e2fe+M

T
12q̈1+B21q̇1 = S2(τH+τR).

(4)

Note that S2 is nonsingular.
This behavior can be represented as resulting from the

following Hamiltonian system defined by position q2 and
momentum p2 = M22q̇2, with a mass matrix that depends
on both q2 and q1, and with an input τ ′,

H =
1

2
pT2 M

−1
22 p2 +G2(q2), (5)

q̇2 = ∇p2H =M−1
22 M22q̇2, (6)

ṗ2 = −∇q2H+ τ ′ = −∇q2
[
1

2
pT2 M

−1
22 p2

]
− g2 + τ ′, (7)

where G2(q2) represents the gravitational potential energy
due to the actuated leg joints, G2(q2) = G(q)−G((qT1 0)T ),
such that ∇q2G2(q2) = g2. Note that, in the global angle
formulation of the kinematics, ∇q1 [G(q)−G((qT1 0)T )] = 0.
In the form of a robot equation, this becomes

M22q̈2 + Ṁ22q̇2 +∇q2
[
1

2
pT2 M

−1
22 p2

]
+ g2 = τ ′. (8)

To use this Hamiltonian system to describe the dynamics of
the hip, knee, and ankle joints, we calculate the τ ′ necessary
to make the two equations of motion agree:

τ ′ =
(((((((((((((((((((
Ṁ22q̇2 +∇q2

[
1

2
pT2 M

−1
22 p2

]
−B22q̇2

)
−MT

12q̈1 −B21q̇1 + S2(τH + τR)− JTe2fe. (9)

In this expression, the first term compares two Coriolis terms,
and is guaranteed to result in a skew symmetric matrix times
q̇2. However, in a global angle coordinate system, this term
cancels. What remains are the dynamic influences from the
motion of the base joints, and the inputs from the human
musculature, the robot actuators, and the ground contact.
Since S2 is invertible, this 3-DOF system is fully actuated.

C. A Target Energy for the 3-DOF Leg System

With these preliminaries, we can now introduce our target
energy shape and dynamical system behavior. Our target
system introduces two new state vectors: qv ∈ R3 represents
the angles of the virtual robot, and pv ∈ R3 represents
the momenta corresponding to the virtual inertia. The target
Hamiltonian is as follows,

H′ =1

2
pT2 M

−1
22 p2 +

1

2
(q2 − qv)TKv(q2 − qv)

+
1

2
pTvM

−1
v pv +G2(q2), (10)

where the newly introduced Kv = KT
v � 0 ∈ R3×3

represents the virtual spring stiffness, and the altered mass
matrix Mv = (α− 1)M22 will eventually be responsible for
defining the steady state amplification ratio α > 1 between
human and environmental forces. Note that both M and Mv

depend on both q2 and potentially on q1 as well, but that
Mv does not depend on qv . The momentum of the virtual
system still follows the standard definition pv =Mv q̇v .

This definition of a virtual system that is mass-matrix
coupled to the robot system results in complex Coriolis-
like terms. However this complexity is worthwhile, since



the alternative of having the virtual system control its own
mass matrix could lead to singularities like knee reversal that
would be hidden from the user.

When specifying a target dynamic, we emphasize the im-
portance of also specifying the relationship this new system
energy will have to the inputs to the system. This information
is not contained in the definition of a target Hamiltonian
alone, but in the definition of an external torque vector
similar to τ ′ in our reduced-order system. Since we have
augmented the state, our new system will have an external
torque τv ∈ R6. By design, this system is fully actuated, so
we do not need to solve matching conditions. We define the
state vector as

x =
(
qT2 qTv pT2 pTv

)T
, (11)

and by the classical Hamiltonian equations of motion,

ẋ =


0 0 I 0
0 0 0 I
−I 0 0 0
0 −I 0 0

∇xH+


0 0
0 0
I 0
0 I

 τv. (12)

We define the virtual external torque

τv =

(
−MT

12q̈1 −B21q̇1 + S2τH − JTe2fe −Dv(q̇2 − q̇v)
(α− 1)

[
−MT

12q̈1 −B21q̇1 + S2τH
]
+Dv(q̇2 − q̇v)

)
,

(13)

where the new matrix Dv applies linear damping to the
virtual spring behavior. Let us introduce a variable γH to
abbreviate the influence of the human, including both the
direct torques of the leg and the inertial effects of human-
directed hip acceleration and velocity,

γH = −MT
12q̈1 −B21q̇1 + S2τH . (14)

Theorem 1 (Environment-Side Passivity): For the envi-
ronmental port described by the generalized velocity ẋe =
−Je2q̇2 and the generalized force fe, H′(q2, p2, qv, pv) is an
energy storage function which satisfies Ḣ′ ≤ fTe ẋe in the
condition where this port (with the ground reaction force as
the input and the foot velocity as the output) is the only input
to the system.

Proof: Considering the net energy into the system,

Ḣ′ =
(
q̇T2 q̇Tv

)
τv, (15)

= q̇T2 [γH − JTe2fe] + (α− 1)q̇Tv γH −D‖q̇2 − q̇v‖2,
(16)

and taking γH as zero as per the condition,

Ḣ′ = −q̇2[J
T
e2fe]−D‖q̇2 − q̇v‖2

= fTe ẋe −D‖q̇2 − q̇v‖2 ≤ fTe ẋe (17)

Note that, if the virtual spring reaches equilibrium, then
this system will satisfy the relationship q̇2 = q̇v , in which
case the energy change simplifies to

Ḣ′|q̇2=q̇v = αq̇T2 γH − q̇T2 [JTe2fe], (18)

which highlights the way this target system prioritizes all
inputs other than the environmental input, causing them to
add α times as much energy to the system.

D. The Energy-Shaping Control Law
From this definition of the target behavior, we can back

out the joint torque necessary to make it happen, and re-write
it in terms of only available signals. Given our sensor setup,
we assume that fe is measured, and that an IMU provides a
reliable estimate of q̈1. This means that −MT

12q̈1−B21q̇1 is
available. We can calculate the robot torque in terms of the
state vector.

The q2 dynamics of the original system are

M22q̈2 + b2 + g2 = γH + S2τR − JTe2fe, (19)

where
b2 = Ṁ22q̇2 +∇q2

[
1

2
pT2 M

−1
22 p2

]
. (20)

And for the target system, we have

M22q̈2 + b2 + g2 +∇q2
[
1

2
pTvM

−1
v pv

]
+

Dv(q̇2 − q̇v) +Kv(q2 − qv) = γH − JTe2fe. (21)

Subtracting the two equations allows us to solve for S2τR,
as

S2τR =−∇q2
[
1

2
pTvM

−1
v pv

]
−Dv(q̇2 − q̇v)−Kv(q2 − qv). (22)

To finish specifying the control law, we restate the dynamics
of the virtual momentum,

ṗv +Dv(q̇v − q̇2) +Kv(qv − q2) = (α− 1)γH , (23)

or, expanding the momentum derivative,

(α− 1)Ṁ22q̇v + (α− 1)M22q̈v +Dv(q̇v − q̇2)

+Kv(qv − q2) = (α− 1)γH . (24)

E. Amplification Relationship in Equilibrium (H1)
To validate H1, that the novel energy-shaping controller

will converge toward a constant rate of amplification of
human strength in steady state, we can solve these dynamics
for zero velocity and acceleration conditions.

Theorem 2 (Amplification): Any equilibrium satisfying
q̇ = q̈ = 06, q̇v = q̈v = 03 also satisfies the amplification
law τR = (α− 1)τH .

Proof: The equilibrium simplifies (22),

S2τR = −Kv(q2 − qv) = Kv(qv − q2), (25)

and the qv dynamics in (24),

Kv(qv − q2) = (α− 1)S2τH . (26)

And thus

S2τR = (α− 1)S2τH . (27)

Since the matrix S2 is invertible,

τR = (α− 1)τH . (28)

Note that in this equilibrium condition, (4) becomes

g2 + JTe2fe = S2(τH + τR) =
α

α− 1
S2τR, (29)

so our control law is indirectly compensating gravity.
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Fig. 2. Simulation Visualization. The initial configuration (a) is perturbed
by a ground reaction force. A dynamic simulation featuring a spring-like
human behavior—assisted by our exoskeleton control torques—determines
the amount of deflection in the kinematics of the leg (b).

F. State Transformation and Availability of the Control (H2)

It is practically important that the controller will not
require unavailable human torque measurements, or joint
acceleration feedback, for which we do not have sensors.
As written so far, the robot torque command in (22) is
available, but the dynamic update that determines q̈v is not.
Normalizing (24) by α− 1, we see

M22q̈v + Ṁ22q̇v +
Dv(q̇v − q̇2) +Kv(qv − q2)

α− 1
= γH ,

(30)

which still depends on the unavailable τH .
We can get around this by introducing a new state variable,

q∆ = qv − q2, (31)

which follows a dynamic equation obtained by subtracting
(21) from (30):

M22(q̈v − q̈2) +

(
Ṁ22q̇v − b2 −∇q2

[
1

2
pTvM

−1
v pv

])
+

α

α− 1
(Dv(q̇v − q̇2) +Kv(qv − q2)) = JTe2fe + g2, (32)

which cancels γH , yielding available q̈∆ dynamics,

M22q̈∆ +
αDv

α− 1
q̇∆ +

αKv

α− 1
q∆ = JTe2fe + g2 − b∆, (33)

where b∆ = Ṁ22q̇v − b2 −∇q2
[
1

2
pTvM

−1
v pv

]
. (34)

Here, the new term b∆ represents an amalgamation of
Coriolis terms unique to our situation of two systems sharing
the mass matrix M22 that is influenced only by one of their
configuration vectors. Note that the dynamics of q̈∆ in (33)
are driven by only the foot’s force/torque sensors signal,
gravity, and the Coriolis term, b∆.

G. Low Pass Filter Interpretation

The structure of (33) is highly suggestive of a low pass
filter system. With matrix fractions indicating right multipli-
cation by the inverse of the denominator, we could approx-
imate the robot torques as resulting from this multi-input
multi-output low pass filter system under the assumption of
a constant mass matrix:

exo torque is︷ ︸︸ ︷
S2τR(s) ≈

scaled and low-pass filtered︷ ︸︸ ︷
α−1
α (Dvs+Kv)

α−1
α M22s2 +Dvs+Kv

[ GRF and︷ ︸︸ ︷
JTe2fe +

gravity︷︸︸︷
g2

plus some unusual Coriolis terms︷ ︸︸ ︷
−b∆

]
(s)−∇q2

[
1

2
pTvM

−1
v pv

]
(s). (35)

This expression is useful in that it offers an intuitive expla-
nation for what this control does: The ground reaction force
is mapped to joint torques using the manipulator Jacobian
Je2, low pass filtered, scaled by 1 − 1/α, and applied
to the joints. By doing this, the exoskeleton attempts to
support a significant portion of the load from the reaction
force. When the human pushes against the ground in steady
state, an equilibrium is reached whereby the human applies
1/α·(JTe2fe+g2) and the exoskeleton (1−1/α)·(JTe2fe+g2).
Meanwhile, the steady state inclusion of (1 − 1/α)b∆ in
the robot torque serves to average out the Coriolis effects
between the virtual and the physical leg.

The linear interpretation also reveals the relationship be-
tween the controller’s frequency domain amplification band-
width and the tuning parameters Kv and Dv . This bandwidth
relationship is empirically useful in avoiding instabilities
related to discrete time implementation.

III. METHODS OF VALIDATION IN SIMULATION

We build our dynamic simulation environment using the
DART multibody dynamics engine in Python. In the simu-
lation, the human joint torques act as joint spring-damper
systems, and this includes the 3 degrees of freedom that
represent the floating base (q1). The simulation excites the
system with an external force that approximates a ground re-
action force (Fig. 2). A simple geometric law determines the
center of pressure and direction of force, and the magnitude
follows a 1 Hz periodic pulse trajectory in time. Due to this
external force, the simulated leg flexes periodically. For ease
of interpreting the results, we use an amplification controller
with amplification rate α = 2, such that the human torque
and the exoskeleton torque are equal in equilibrium.

To explore the behavior of the closed loop system, we
simulated two conditions in particular. In the first ‘damped
human’ condition, the joint damping parameters are set to
large values such that the leg flexes without significant
overshoot. In the second ‘undamped knee’ condition, the
knee damping is set to zero. This results in clear under-
damped oscillations1 in response to the perturbation from
the simulated ground reaction force pulses.

1But not persistent oscillations, as the rest of the human joints will still
remove energy.



b.)a.)

human hip
exoskeleton hip

human knee
exoskeleton knee

human ankle
exoskeleton ankle

time(s)
0.0 0.5 1.0 1.5 2.0 2.5 3.0

80

60

40

20

0

-20

-40

to
rq

ue
(N

m
)

time(s)
0.0 0.5 1.0 1.5 2.0 2.5 3.0

80

60

40

20

0

-20

-40

to
rq

ue
(N

m
)

Fig. 3. Results of the two simulation experiments with exoskeleton assistance factor 2—Damped human condition (a) and under-damped knee
condition (b). Since the amplification factor is 2, the human and exoskeleton joint torque contributions should be equal. As expected, this ideal behavior
is maintained in the damped human condition. In this case, human joint torques work to compensate for the ground reaction force and gravity, and the
exoskeleton correctly matches these contributions. In the under-damped knee condition, there is a human-driven oscillation, which results in human-versus-
inertia forces. Since the exoskeleton does not modify the inertia of the human’s leg, these oscillations appear only in the human torques. (That is, the
exoskeleton no longer closely tracks the human joint torques for this reason.)
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Fig. 4. “Human Oscillation” of the global shank angle. Subsequent
pulses of ground reaction force serve to excite an under-damped oscillation
between the inertia of the shank and foot and the simulated knee spring that
is unique to the undamped knee experimental condition. This critical feature
of Simulation 2 serves to highlight the lack of human strength amplification
during such behaviors, which has both advantages and disadvantages for the
task-invariant assistive exoskeleton use case.

The purpose of these two tests is to highlight two
fundamental modes of interaction: human musculoskeletal
torques vs. ground reaction forces and human musculoskele-
tal torques vs. human leg inertia. The first interaction is
representative of the stance phase of walking, where human
joint torques resist the ground reaction force to prevent the
leg from collapsing. The second is akin to the behavior
in swing phase, where the muscle torques work primarily
against the inertia of the leg in order to achieve the next
ground contact location.

IV. SIMULATION RESULTS

The exoskeleton torques and human torques follow largely
identical patterns for the first experiment (Fig. 3.a). Between

0 and 0.5 seconds (as well as from 1-1.5 and 2-2.5 seconds),
the leg is being forced by a ground reaction force and
the exoskeleton is providing torque that directly assists the
human in resisting this external force. Between .5 and 1
second (also 1.5-2 and 2.5-3 seconds) the ground reaction
force is zero, and the exoskeleton is primarily performing a
partial gravity compensation to lift the dangling lower leg
relative to the hip.

During the second simulation, the human hip and knee
torques have an oscillatory component at approximately 1.5
Hz due to the oscillating knee position; however, the ex-
oskeleton torque is essentially unchanged from the previous
test (Fig. 3.b). The presence of the periodic signal is easily
explained by the under-damped motions of the shank and
foot segments in the second test (Fig. 4).

In both tests, the exoskeleton torques display a small,
quick, under-damped transient at the end of each pulse.

V. DISCUSSION

The result of the first simulation indicates that our con-
troller amplifies human strength without task knowledge,
and the result of the second test adds the important caveat
that this amplification ignores human-driven oscillation. This
controller is ideally suited to assistance during stance, or
in locomotion with minimal swing (such as slow jogging
at a fast cadence). It is intuitive that resisting the ground
reaction force is a broadly applicable strategy in stance phase
while intentionally avoiding acceleration feedback limits
performance in fast swing phases.

The actual “task-invariant performance” of the
controller—or any quantification of human torque mimicry
across a representative sample of activities of daily living—
is still unknown. Our controller currently demonstrates



only task-agnostic assistance in a simplified example task,
which reflects neither biofidelic mechanical impedance
of the human in response to disturbances nor realistic
nominal torque and angle trajectories. We hope to answer
the question of task-invariance in our future work, once
we resolve some lingering issues of dynamical consistency
between the estimated accelerations, joint torques, and force
plate data in our multi-task dataset.

The use of simultaneous amplification and kinetic reshap-
ing (which would allow amplification of even human-driven
oscillation) would require a more careful study of coupled
stability than we have performed here. Kinetic reshaping
introduces acceleration feedback. And our linear models
suggest that kinetic reshaping is inherently non-passive.

The small under-damped transients in the exoskeleton
torque are the result of our controller’s finite bandwidth,
and can be tuned with the Kv and Dv parameters. This is
a critical degree of freedom for any practical implementa-
tion. Real systems have compliant human interfaces, time-
discretization, time delay, and bandwidth limitations. And, by
adjusting the finite amplification bandwidth, we can reduce
the magnitude of the control signal at the frequencies where
these effects are dominant.

To capture the potential of robotic exoskeletons to improve
quality of life for people with weakened lower limb muscles,
exoskeleton controllers need to allow for non-periodic and
unpredictable activities of daily life. In this paper we have
introduced a novel energy-shaping controller that is task-
agnostic and capable of assisting the human joint torques in
resisting ground reaction forces, but which leaves the swing
dynamics of the leg unaltered aside from compensating grav-
ity. And we have demonstrated that the controller is stable, is
energetically passive with respect to the ground contact, and
amplifies human impulse by a known amplification factor.

REFERENCES

[1] H. Zhu, C. Nesler, N. Divekar, V. Peddinti, and R. Gregg, “Design
principles for compact, backdrivable actuation in partial-assist powered
knee orthoses,” IEEE/ASME Transactions on Mechatronics, 2021.

[2] L. M. Mooney, E. J. Rouse, and H. M. Herr, “Autonomous exoskeleton
reduces metabolic cost of human walking during load carriage,” J.
neuroengineering and rehabilitation, vol. 11, no. 1, p. 80, 2014.

[3] J. Zhang, P. Fiers, K. A. Witte, R. W. Jackson, K. L. Poggensee,
C. G. Atkeson, and S. H. Collins, “Human-in-the-loop optimization
of exoskeleton assistance during walking,” Science, vol. 356, no. 6344,
pp. 1280–1284, 2017.

[4] J. Kim, G. Lee, R. Heimgartner, D. Arumukhom Revi, N. Karavas,
D. Nathanson, I. Galiana, A. Eckert-Erdheim, P. Murphy, D. Perry,
N. Menard, D. K. Choe, P. Malcolm, and C. J. Walsh, “Reducing
the metabolic rate of walking and running with a versatile, portable
exosuit,” Science, vol. 365, no. 6454, pp. 668–672, 2019. [Online].
Available: https://science.sciencemag.org/content/365/6454/668

[5] G. S. Sawicki, O. N. Beck, I. Kang, and A. J. Young, “The exoskeleton
expansion: improving walking and running economy,” J. neuroengi-
neering and rehabilitation, vol. 17, no. 1, pp. 1–9, 2020.

[6] K. Suzuki, G. Mito, H. Kawamoto, Y. Hasegawa, and Y. Sankai,
“Intention-based walking support for paraplegia patients with robot
suit hal,” Advanced Robotics, vol. 21, no. 12, pp. 1441–1469, 2007.

[7] O. Harib, A. Hereid, A. Agrawal, T. Gurriet, S. Finet, G. Boeris,
A. Duburcq, M. E. Mungai, M. Masselin, A. D. Ames, K. Sreenath,
and J. W. Grizzle, “Feedback control of an exoskeleton for paraplegics:
Toward robustly stable, hands-free dynamic walking,” IEEE Control
Systems Magazine, vol. 38, no. 6, pp. 61–87, 2018.

[8] G. Zeilig, H. Weingarden, M. Zwecker, I. Dudkiewicz, A. Bloch, and
A. Esquenazi, “Safety and tolerance of the rewalk™ exoskeleton suit
for ambulation by people with complete spinal cord injury: A pilot
study,” The journal of spinal cord medicine, vol. 35, no. 2, pp. 96–
101, 2012.

[9] R. Griffin, T. Cobb, T. Craig, M. Daniel, N. van Dijk, J. Gines,
K. Kramer, S. Shah, O. Siebinga, J. Smith, and P. Neuhaus, “Stepping
forward with exoskeletons: Team IHMC’s design and approach in the
2016 cybathlon,” IEEE Robotics Automation Magazine, vol. 24, no. 4,
pp. 66–74, 2017.

[10] T. Yan, M. Cempini, C. M. Oddo, and N. Vitiello, “Review of assistive
strategies in powered lower-limb orthoses and exoskeletons,” Robotics
and Autonomous Systems, vol. 64, pp. 120–136, 2015.

[11] M. S. Orendurff, J. A. Schoen, G. C. Bernatz, A. D. Segal, and G. K.
Klute, “How humans walk: bout duration, steps per bout, and rest
duration.” J. Rehab. Research & Development, vol. 45, no. 7, 2008.

[12] R. Ronsse, T. Lenzi, N. Vitiello, B. Koopman, E. Van Asseldonk,
S. M. M. De Rossi, J. Van Den Kieboom, H. Van Der Kooij, M. C.
Carrozza, and A. J. Ijspeert, “Oscillator-based assistance of cyclical
movements: model-based and model-free approaches,” Med. & bio.
engineering & computing, vol. 49, no. 10, pp. 1173–1185, 2011.

[13] K. Seo, Y. J. Park, J. Lee, S. Hyung, M. Lee, J. Kim, H. Choi, and
Y. Shim, “Rnn-based on-line continuous gait phase estimation from
shank-mounted imus to control ankle exoskeletons,” in 2019 IEEE
16th Int. Conf. on Rehab. Robotics (ICORR), pp. 809–815.

[14] I. Kang, P. Kunapuli, and A. J. Young, “Real-time neural network-
based gait phase estimation using a robotic hip exoskeleton,” IEEE
Trans. Med. Robotics and Bionics, vol. 2, no. 1, pp. 28–37, 2019.

[15] B. Lim, J. Lee, J. Jang, K. Kim, Y. J. Park, K. Seo, and Y. Shim,
“Delayed output feedback control for gait assistance with a robotic
hip exoskeleton,” IEEE Trans. Robotics, vol. 35, no. 4, pp. 1055–1062,
2019.

[16] G. Lv and R. D. Gregg, “Underactuated potential energy shaping with
contact constraints: Application to a powered knee-ankle orthosis,”
IEEE Trans. Control Systems Tech., vol. 26, no. 1, pp. 181–193, 2018.

[17] G. Lv, H. Zhu, and R. D. Gregg, “On the design and control of
highly backdrivable lower-limb exoskeletons: A discussion of past and
ongoing work,” IEEE Control Systems Magazine, vol. 38, no. 6, pp.
88–113, 2018.

[18] U. Nagarajan, G. Aguirre-Ollinger, and A. Goswami, “Integral admit-
tance shaping: A unified framework for active exoskeleton control,”
Robotics and Autonomous Systems, vol. 75, pp. 310–324, 2016.

[19] M. W. Spong, J. K. Holm, and D. Lee, “Passivity-based control of
bipedal locomotion,” IEEE Robotics & Automation Magazine, vol. 14,
no. 2, pp. 30–40, 2007.

[20] J. Lin, G. Lv, and R. D. Gregg, “Contact-invariant total energy
shaping control for powered exoskeletons,” in 2019 American Control
Conference (ACC), 2019, pp. 664–670.

[21] N. V. Divekar, J. Lin, C. Nesler, S. Borboa, and R. D. Gregg,
“A potential energy shaping controller with ground reaction force
feedback for a multi-activity knee-ankle exoskeleton,” in 2020 8th
IEEE RAS/EMBS International Conference for Biomedical Robotics
and Biomechatronics (BioRob), 2020, pp. 997–1003.

[22] G. Lv, H. Xing, J. Lin, R. D. Gregg, and C. G. Atkeson, “A task-
invariant learning framework of lower-limb exoskeletons for assisting
human locomotion,” in 2020 American Control Conference (ACC),
2020, pp. 569–576.

[23] J. Lin, N. V. Divekar, G. Lv, and R. D. Gregg, “Optimal task-invariant
energetic control for a knee-ankle exoskeleton,” IEEE Control Systems
Letters, vol. 5, no. 5, pp. 1711–1716, 2021.

[24] H. Kazerooni and J. Guo, “Human extenders,” J. Dynamic Systems,
Measurement, and Control, vol. 115, no. 2B, pp. 281–290, 1993.

[25] B. He, G. C. Thomas, N. Paine, and L. Sentis, “Modeling and loop
shaping of single-joint amplification exoskeleton with contact sensing
and series elastic actuation,” in 2019 American Control Conference
(ACC), 2019, pp. 4580–4587.

[26] G. C. Thomas, J. M. Coholich, and L. Sentis, “Compliance shaping
for control of strength amplification exoskeletons with elastic cuffs,” in
2019 IEEE/ASME Int. Conf. Advanced Intelligent Mechatronics (AIM),
July, pp. 1199–1206.


