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Abstract— A starting point to achieve stable locomotion is
synchronizing the leg joint kinematics during the gait cycle.
Some biped robots parameterize a nonlinear controller (e.g.,
input-output feedback linearization) whose main objective is to
track specific kinematic trajectories as a function of a single
mechanical variable (i.e., a phase variable) in order to allow
the robot to walk. A phase variable capable of parameterizing
the entire gait cycle, the hip phase angle, has been used to
control wearable robots and was recently shown to provide a
robust representation of the phase of human gait. However, this
unified phase variable relies on hip velocity, which is difficult
to measure in real-time and prevents the use of derivative
corrections in phase-based controllers for wearable robots. One
derivative of this phase variable yields accelerations (i.e., the
equations of motion), so the system is said to be relative degree-
one. This means that there are states of the system that cannot
be controlled. The goal of this paper is to offer relative degree-
two alternatives to the hip phase angle and examine their
robustness for parameterizing human gait.

I. INTRODUCTION

Synchronizing the joint kinematics across the gait cycle is
a key challenge towards achieving stable locomotion in biped
robots, powered prosthetic legs, and exoskeletons. Recently,
improvements in hardware (e.g., smaller motors, etc.) have
led to wearable robotic applications aimed at helping people
recover locomotion after a stroke or an amputation. However,
it is still unknown how to best synchronize the lower-
limb kinematics of a wearable robot with the human body
throughout the gait cycle.

There have been two general approaches towards con-
trolling the lower-limb kinematics of biped robots, powered
prosthetic legs, and exoskeletons. A widely used technique
is a state machine [1]–[6]. In this technique the kinematic
configuration of the leg is changed from one predefined state
to another according to multiple switching conditions [3].
One downside of this approach is the number of parameters
that have to be tuned [5] as well as its unexpected behavior
during non-steady gait (i.e., whenever the switching condi-
tions are faulted). On the other hand, current biped robots
are able to achieve stable locomotion by controlling their
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joint patterns as a function of a single mechanical variable
(i.e., phase variable) through the gait cycle [7]–[12]. This
concept has been translated to the rehabilitation field and is
now being used to control robotic prosthetic legs [13]–[15].
This methodology not only avoids switching conditions but
it also makes the controller time-independent. In addition,
if the phase variable is chosen correctly, then the desired
joint kinematics would match the subject’s intention during
walking, even during non-steady gait [16].

There is not a clear consensus on which phase variable is
capable of robustly representing the lower-limb kinematics
throughout the gait cycle. In general, a phase variable needs
to have a monotonic trajectory during steady gait and needs
to be computed from an unactuated mechanical state of
the system [16], [17]. For example, the global stance leg
angle (i.e., angle between the hip-to-ankle vector and the
vertical axis) has been used as a phase variable in order to
synchronize the kinematic patterns on multiple biped robots
[7]–[12], [18], [19]. On prosthetic leg applications, however,
the choice of phase variable is less obvious since there is a
limited amount of feedback available to the leg. In [15] the
center of pressure (COP) was used to parameterize the joint
trajectories of a transfemoral prosthetic leg. A downside of
this choice is that the COP signal is limited to the stance
portion of the gait cycle, and thus the swing portion of the
gait cycle was not parameterized. The complete gait cycle
(i.e., stance and swing portions) needs to be parameterized
in order to achieve continuous synchronization between the
human and the device.

It has been shown that the hip joint is a major contributor
to the synchronization of the gait cycle in mammals [20],
[21]. A phase variable computed from the hip joint’s phase
portrait (angle vs. velocity) was recently shown to robustly
represent the phase of human gait during non-steady walking
conditions [16]. This phase variable has been used to control
the timing of a hip exoskeleton in [22], [23]. However,
computing a phase variable as a function of a position and a
velocity becomes a limitation for nonlinear controllers [24]
whose main objective is to follow a reference trajectory (e.g.,
enforce specific kinematic patterns). In particular, a phase
variable that is function of velocity terms affects the relative
degree of a control system [12], [24]. The relative degree is
equal to the number of derivatives of the output that must
be taken to expose the control input through the dynamics.
Lowering the relative degree of a system means that there
will be states of the system that cannot be controlled (i.e.,
hidden dynamics) [24]. The fact that the hip phase angle
in [16], [22], [23] is a function of the hip angular velocity
greatly limits the options for feedback controllers. Therefore,



in this paper we propose alternative phase variables that
do not depend on velocities and are similarly capable of
correctly parameterizing the joint kinematics of the stance
and swing portions.

To evaluate the robustness of these phase variables, we
examine data from able-bodied human subject experiments
(N = 10) where a phase-shifting perturbation is applied to
the person walking [25]. A phase-shifting perturbation slows
or advances the overall progression of the gait cycle (i.e., de-
celerating or accelerating through the leg joint patterns). We
analyze alternative phase variables and compare their ability
to parameterize non-steady lower-limb joint trajectories with
that of the previous phase variable analyzed in [16].

Some key concepts used throughout the paper are in-
troduce in Section II-A. The alternative phase variable
candidates are proposed in Section II-B. The experimental
methods and statistical analyses used to study these phase
variables are presented in Section II-C and Section II-D.
We finish by discussing the caveats of our results and how
these phase variables might perform when implemented in a
powered prosthetic leg.

II. METHODS

A. Definitions and Preliminaries

In order to simplify the notation throughout the paper we
denote the configuration vector of a dynamical system as
q(t) ∈ Rd (where d is the number of degrees of freedom) and
its time integral as q̃ ,

∫ t

0
q(τ)dτ . In addition, we define the

partial derivative of a function h(·) with respect to a vector
z(t) to be Hz , ∂h

∂z = ∇zh.
Without loss of generality and following the Euler-

Lagrange equation, the equations of motion of any mechan-
ical system can be represented by

M(q)q̈ + C(q, q̇)q̇ +N(q) = Bu.

The matrices M , C, and N represent the mass/inertia forces,
Coriolis forces, and gravitational forces of the system, re-
spectively. The vector u represents the inputs to the system.
These inputs are torques or forces acting on the configuration
vector through the mapping B. If we were to compute
the value of the acceleration terms from this equation in
order to represent these dynamics as a system of differential
equations, then it would yield the following equation

q̈ = M(q)−1Bu−M(q)−1[C(q, q̇)q̇ +N(q)],

where M(q)−1 exists for any well-defined mechanical sys-
tem [26]. For simplicity we express this highly nonlinear
equation as q̈ = F (q, q̇) +G(q)u.

Let x1 = q and x2 = q̇ define the state of the correspond-
ing nonlinear dynamical system such that

ẋ1 = x2

ẋ2 = F (x1, x2) +G(x1)u (1)
y = x1 = h(q)

where y is defined as an output function to be regulated by
the input u. Notice that function y is dependent only on the
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Fig. 1. The body diagrams of the sagittal (left) and frontal (right) planes
of a person walking in 3D space. The configuration vector for this model
is q = (qPx, qTx, qHx, qKx, qAx, qPy , qTy , qHy)T . The first letter in
the subscript notation stands for the joint this variable represents (e.g., P

- Pelvis, T - Thigh, H - Hip, K - Knee, and A - Ankle). The second
letter in the subscript notation stands for the plane where the variable is
measured. The variables in red represent variables measured from a global
frame whereas the variables in blue represent variables measured from a
relative frame.

configuration vector (i.e., q) of the system and not on velocity
terms. The goal of this controller is to follow a trajectory. In
particular, we want to follow a trajectory where the output
function is equal to zero (i.e., y = h(q) = 0).

By taking twice the time derivative of the output function
we get the following equations:

ẏ = ẋ1 = x2

ÿ = ẋ2 = F (x1, x2) +G(x1)u. (2)

This system is said to have relative degree 2 (i.e., r = 2)
because we had to differentiate the output function (y) twice
before the input of our system (u) appeared. Since the
original system is second order (n = 2), there are zero hidden
dynamics in the system (i.e., n − r = 0). Notice that if the
input of the system appeared in the first time derivative of our
output function, then the relative degree of the system would
have decreased (i.e., r = 1). This would imply that there
are some dynamics in the system that cannot be controlled
and the best option for controlling the system would be a
proportional controller.

B. Phase Variable Candidates

A total of two alternative phase variable candidates for
control applications are derived in this paper. These phase
variables are derived such that they are not functions of
velocities. Using the same procedure as in [16], these phase
variables were evaluated on their ability to parameterize
perturbed joint kinematics through the gait cycle. The per-
formance of these phase variable candidates is compared to
the phase variable previously analyzed in [16].

1) Phase Hip Velocity (PHV [γ]): This phase vari-
able was previously derived in [16]. In the most general
case, this phase variable is computed as follows: γ =
arctan2( 1

ω q̇Tx, qTx) where qTx and q̇Tx correspond to the
global thigh angle and global thigh angular velocity (Fig. 1),



and ω represents the gait cycle cadence. This phase variable
exploits the fact that the phase portrait of the global thigh
angle (i.e., qTx vs. q̇Tx ) is a periodic orbit resembling an
ellipse, Fig. 2. This particular shape is achieved thanks to the
cosine-like trajectory of the global thigh angle during the gait
cycle, and thus its time derivative traces a sine-like trajectory
(i.e., these two signals are 90◦ out of phase from each other).
As shown in [16] this phase variable theoretically yields a
monotonic, bounded, and linear phase variable. However, due
to the fact that an angular velocity is used in the calculation
of this phase variable it changes the relative degree of the
system to one (i.e., r = 1). The time derivatives of an
output function of the form y = g(γ(q, q̇)) = h(q, q̇), where
h = g ◦γ, can be computed to show that the input u appears
in the first time-derivative rather than in the second one:

ẏ = Hq q̇ +Hq̇ q̈

= Hq q̇ +Hq̇(F (q, q̇) +G(q)u).

Therefore, it is not possible to use a proportional-derivative
(PD) controller. Only a proportional controller could be used
for trajectory tracking. This implies that there will be states
of the system that cannot be controlled.

2) Phase Hip Integral (PHI [Φ]): This phase variable
was computed also exploiting the fact that the motion of
the global thigh angle (qTx) is correlated to a cosine-like
trajectory during human locomotion. Using this fact and the
knowledge that the derivative of a cosine function has a linear
relationship to its integral (i.e., x(t) = A cos(ωt)⇒ ẋ(t) =
−ω2

∫ t

0
x(τ)dτ , where ω is the frequency of the signal) then

we can compute a phase variable that is a function of the
integral of the global thigh angle rather than of its angular
velocity. Using the same procedure as in [16], we compute
the phase variable PHI as Φ = arctan2(ωq̃Tx, qTx), where
we have defined q̃ ,

∫ t

0
q(τ)dτ ). The variable Φ also yields

a monotonic, bounded, and linear phase variable, Fig. 2. The
implication of using the integral of a state of our dynamical
system in this phase variable calculation is that we extend the
order of our system plus one (i.e., n̄ = n+1). We notice that
the input of the dynamical system (u) appears at the second
time derivative of the output function y = g(Φ(q, q̃)) =
h(q, q̃), where h = g ◦ Φ. In other words,

ẏ = Hq q̇ +Hq̃q

ÿ = Ḣq q̇ +Hq̃ q̇ + Ḣq̃q +Hq q̈

= Ḣq q̇ +Hq̃ q̇ + Ḣq̃q +Hq(F (q, q̇) +G(q)u).

Using this phase variable for control still yields non-
controllable dynamics (i.e., n̄−r = 3−2 = 1) but the relative
degree of the system is two. However, replacing the time
derivative in the phase variable function with the integral
allows us to control the system in a more robust way since
a PD controller can now be used for trajectory tracking.

3) Sagittal and Frontal Hip Angle (SFH [Θ]): This phase
variable function was derived to take only angles that could
be measured from a human subject walking as inputs. As
previously mentioned, one could say that during locomotion
a human traces a cosine-like trajectory using his/her thigh on
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Fig. 2. Three phase variables (PV) are shown as well as the phase planes
from which they were computed. On top, the Phase Hip Velocity (PHV) [γ]
is shown. On the middle, the Phase Hip Integral (PHI) [Φ] is shown. On
the bottom, the Sagittal/Frontal Hip Angle (SFH) [Θ] is shown. Each phase
variable and phase plane is shown under two perturbation conditions (a
backward and a forward perturbation occurring 250 ms after initial contact
with the force plate).

the sagittal plane. Similarly, the relative angle of the hip with
respect to the pelvis on a frontal plane (qHy in Fig. 1) traces a
cosine-like trajectory with a constant phase shift with respect
to qTx. When these two variables are plotted one against the
other, the result is a tilted oval shape because these signals
have a relative phase offset less than 90 deg. Ideally, we
would like these two signals to form a circle in order to
achieve a linear phase trajectory as in PV γ and Φ. Thus,
we use a principal component analysis (PCA) approach in
order to find the independent basis vectors that allow us to
compute two new variables (q̂1 and q̂2) that are uncorrelated
from each other. In other words, a linear transformation T ∈
SO(2) can be found in order to compute q̂ = T[qHy, qTx]T ,
where q̂ = [q̂1, q̂2]T is a pair of uncorrelated measurements.
On a polar coordinate system, this transformation results in
two signals that are 90◦ out of phase from each other. After
computing these new variables (i.e., q̂1 and q̂2) the phase
variable SFH can be computed similarly to the PHV phase
variable, i.e., Θ = arctan2(kq̂2, q̂1), where k is a scaling
factor that gives the same amplitude to both signals in order
to achieve a linear phase variable [16]). The consequence
of using this phase variable, which is only a function of
the configuration variables of our system, is that the relative
degree is equal to the order of the system (i.e., n = r). The
input of the system will appear in the second time-derivative



of the output function y = g(Θ(q)) = h(q), where h = g◦Θ:

ẏ = Hq q̇

ÿ = Ḣq q̇ +Hq q̈

= Ḣq q̇ +Hq(F (q, q̇) +G(q)u).

However, in order to calculate this phase variable a higher-
dimensional (3D) model needs to be considered and thus the
number of states that need to be measured increases.

C. Experimental Protocol

The experimental protocol was approved by the Insti-
tutional Review Board at the University of Texas at Dal-
las. A total of ten able-bodied subjects (4 women, height:
175.44 cm ± 6.10 cm, weight: 67.25 kg ± 7.40 kg) gave
written informed consent of the experimental protocol prior
to experimentation. A 10 camera motion capture system
(Vicon T20s, Oxford, UK) was used to record kinematic data.
Anthropomorphic measurements (e.g., leg length, hip width,
knee width, etc.) were taken from each subject before the
experiment and later entered into the motion capture software
Nexus to create a 3D kinematic model with the help of the
Plug-in-Gait module.

The experimental procedure was the same as in [25]. In
summary, the experiment contained four sets of 72 trials,
where each trial consisted of the subject walking from a fixed
starting point, stepping with their right foot on the force plate
in the middle of the walkway, and continuing to walk until
the end of the walkway. The perturbations were randomized
(50% probability of occurrence) as well as the onset times of
the perturbation (i.e., 100 ms or 250 ms after initial contact
with the force plate). Whenever a perturbation happened, the
force plate traveled a distance of 5 cm over 100 ms in either
direction (i.e., in the walking direction or against the walking
direction of the human subject).

D. Statistical Analysis

The correlation coefficients between average perturbed and
average non-perturbed joint angle trajectories were computed
using MATLAB (MathWorks, Massachusetts, USA) for each
perturbation condition per subject. The correlation coefficient
averaged across all types of perturbations was calculated
in order to have a unique metric per subject capable of
quantifying the performance of each parameterization (i.e.,
phase variable candidate). We consider that despite the type
of perturbation the correlation coefficient can measure how
well each of the leg joint angles matched the nominal
kinematics, Fig. 3. An upper-tail t-test was used to sta-
tistically compare the correlation coefficients of the time-
based and each of the phase variable parameterizations of the
joint angle trajectories between perturbed and non-perturbed
conditions. A p-value less than 0.05 in this test would
correspond to a statistically greater correlation coefficient for
one parameterization than another parameterization.

A lower-tail t-test was used to compare the transient error
observed between parameterizations. The observed transient
error was quantified by the RMS error between the average
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Fig. 3. The non-perturbed and perturbed (backward and forward pertur-
bation occurring 250 ms after initial contact with the force plate) averaged
knee angle (left) and averaged ankle angle (right) across subjects are shown
under different parameterizations.

perturbed and non-perturbed joint trajectories for each pa-
rameterization per subject. An overall error was calculated by
averaging the RMS errors across all types of perturbations.
This averaged RMS error provides a single metric capable
of describing the observed transients of one subject across
all the perturbations, Fig. 3. A p-value less than 0.05 in this
analysis would correspond to a statistically smaller transient
response for a parameterization.

III. RESULTS

The correlation coefficients between perturbed and non-
perturbed gait cycles were computed for each phase variable
as stated in Section II-D. Fig. 3 shows the averaged knee and
ankle joint trajectories across subjects parameterized with all
phase variable candidates for a forward or backward pertur-
bation that occurred 250 ms after initial contact with the
force plate. Table I shows the mean correlation coefficients
for each phase variable and time across all subjects. For the
phase variable that is a function of velocities (PHV [γ]), the
correlation coefficients for each joint are greater than that of
the time parameterization. As a consequence, parameterizing
the joint kinematics using this phase variable is statistically
more robust than parameterizing it by time, Table II.

The alternative phase variable candidates presented in this
paper (SFH [Θ] and PHI [Φ], Fig. 2) are statistically better
than time at parameterizing the kinematics of most joints.
Table II shows that the correlation coefficient calculated be-
tween the perturbed and non-perturbed knee joint trajectories
using PV: PHI [Φ] was not statistically greater than the
time parameterization. In a similar manner, the correlation



TABLE I
AVERAGE CORRELATION COEFFICENTS AND RMS ERRORS

Correlation Coefficients

Hip Knee Ankle
t 0.983 0.969 0.884
γ(·) 0.996 0.995+ 0.958
Φ(·) 0.997+ 0.984 0.958
Θ(·) 0.989 0.994 0.969+

RMS Error

Hip Knee Ankle
t 2.920 4.967 3.786
γ(·) 1.767 2.731− 2.698
Φ(·) 1.439− 4.019 2.377−
Θ(·) 2.181 3.128 2.536
The mean correlation coefficients and RMS errors
across subjects for each parameterizations are
presented. The symbol “+”/“−” next to a number,
(on the correlation coefficients) represents the
greatest/smallest value per column.

coefficient of hip joint parameterized by PV: SFH [Θ] was
not statistically greater than the time parameterization.

The RMS error values were similar for each of the phase
variables, Table I. The phase variable PHV [γ] was able to
statistically reduce the error observed between perturbed and
non-perturbed kinematics, Table II. The phase variable PHI
[Φ] was only able to statistically reduce the error observed
between the perturbed and non-perturbed joint trajectories of
the hip and ankle. The phase variable SFH [Θ] was able to
statistically reduce the error observed between the perturbed
and non-perturbed kinematics of the knee and ankle joints.

IV. DISCUSSION

The alternative phase variables presented in this paper are
not functions of velocity states and are able to parameterize
the stance and swing portions of the gait cycle. These
alternative phase variables improve the objective of trajectory
tracking (e.g., enforcing a kinematic pattern) when an input-
output feedback linearization control is used on a robotic
prosthetic leg or exoskeleton. Using these phase variables
open the possibility of parameterizing PD controllers to
control robotic platforms used for rehabilitation.

The phase variable PHV (γ) is the only phase variable
capable of parameterizing all the leg joint trajectories (i.e.,
hip, knee, and ankle) statistically better than time across
perturbations. This might be due to the fact that this phase
variable (i.e., PHV) is calculated from a phase portrait.
A phase portrait is a commonly used method to represent
the state of a second-order dynamical system. Thus, this
phase variable has a physical meaning and may contain
the most relevant information of the system dynamics. The
phase variable PHI acts more as a filter for high frequency
dynamics since the integral of a state is not susceptible to
small disturbances.

Even though the phase variable PHV was better at parame-
terizing non-steady gait, it may not be the best phase variable
for control applications. One of the biggest inconveniences of
using the phase variable PHV in real time applications is the

TABLE II
P-VALUES

Correlation Coefficient Hypothesis

Hip Knee Ankle
γ(·) > t 0.006* 0.002* 0.006*
Φ(·) > t 0.001* 0.098 0.001*
Θ(·) > t 0.054 0.011* 0.002*

RMS Error Hypothesis

Hip Knee Ankle
γ(·) < t 0.017* 0.012* 0.002*
Φ(·) < t 0.011* 0.076 0.002*
Θ(·) < t 0.128 0.019* 0.002*
The p-values computed from an upper tail t-test
(correlation coefficeints) and a lower tail
t-test (RMS error) are shown. The alternative
hypotheses from these statistical tests are shown on
the first column. The symbol “∗” denotes the numbers
that are smaller than 0.05.

fact that it is a function of the global thigh angular velocity.
This fact not only limits its use to proportional controllers for
trajectory tracking (see Section II-A) but it also increases the
noise in the system. A controller parameterized by this phase
variable, in application, is subject to high frequency noise
due to numerical differentiation. This noise could indeed
be filtered, but doing this adds a delay on the system,
thus affecting the wearable robot’s synchronization to the
user. This phase variable also yields a non-monotonic and
non-linear phase variable, which further undermines the
performance of the controller.

In application, the phase variable PHI is a better alternative
to estimate the phase of the gait cycle. As previously stated,
this phase variable acts as a filter, avoiding numerical and
sensor measurement noise that could affect the computation
of the phase variable. In Fig. 2 it can be noticed that
this phase variable yields the most linear phase variable
amongst all others. Even if this phase variable is slightly less
representative of human locomotion (Section III), its linearity
helps in control applications by improving the controller’s
performance when tracking a reference trajectory. In real-
time control applications, a non-linear phase variable (such
as PHV and SFH) is more sensitive to measurement noise
during steep regions of the phase trajectory. Therefore,
the phase variable PHI has an advantage over the other
phase variables (i.e., PHV and SFH) in real-time control
applications. This phase variable also allows the use of a
PD controller for the objective of trajectory tracking (i.e.,
commanding a desired kinematic pattern on the prosthetic
leg or exoskeleton).

An inconvenience of using the phase variable SFH is that
this phase variable is not consistent across all subjects. In
fact, one subject had to be removed from our analysis since
it was not possible to compute a linear and monotonic phase
variable from her thigh motion. An interesting observation
was that this variable worked better with men than female
subjects. This could be due to a physiological difference
in the frontal plane kinematics between male and female
subjects. A female subject may abduct and adduct her thigh



in a different manner than men, which increases her pelvic
motion on the frontal plane. These variances on the walking
patterns between subjects yield an unreliable phase variable.
Nevertheless, Hamed et al. have found that coupling the
sagittal and frontal planes in a phase variable optimizes stable
3D walking for biped robots [7], [8]. Thus, even if the phase
variable SFH is not consistent across all subjects, it could
provide stability benefits that are not captured in our study.

The phase variables PHV [γ] and PHI [Φ] discussed in
this paper are viable options for controlling prosthetic leg
and exoskeletons. Some tradeoffs have to be made whenever
choosing one phase variable over the other. For example, the
phase variable PHV theoretically offers a robust representa-
tion of the gait cycle’s phase but sacrifices controllability of
velocity terms in a controller (i.e., can only use a proportional
controller) and is more susceptible to noise. By adding one
additional state with trivial dynamics, the phase variable PHI
is less sensitive to noise and allows the use of derivative
corrections in the feedback control scheme.

V. CONCLUSION

This paper presented two alternative phase variable can-
didates, that are functions of position alone and are capable
of parameterizing the entire gait cycle. These phase vari-
ables are especially useful when an input-output feedback
linearization control is applied to a robotic prosthetic leg
or an exoskeleton where the objective is to enforce specific
kinematic trajectories. The phase variable PHV parame-
terized the lower-limb joint kinematics during non-steady
gait statistically better than time. However, for real time
applications it limits the controller to a proportional gain
and is more susceptible to sensor noise. The phase variable
PHI is a good estimator of the phase of the gait cycle
and yields a monotonic and linear phase variable for real
time applications. Phase variable SFH is only a function of
configuration variables of our system but does not generalize
to all subjects. Deviations in gait kinematics can vastly alter
this phase variable, thus it is likely to have non-monotonic
behavior and nonlinearities. Variable PHI is the best option
for control applications due to its linearity and reliability,
whereas variable PHV is better for offline gait analysis due to
its superior ability to correlate perturbed and non-perturbed
kinematics.
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