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Abstract—This paper presents a formal foundation,
based on decomposition, hybrid zero dynamics (HZD), and
a scalable optimization, to develop distributed control al-
gorithms for hybrid models of collaborative human-robot
locomotion. The proposed approach considers a central-
ized controller and then decomposes the dynamics and
feedback laws with a parameterization to synthesize local
controllers. The Jacobian matrix of the Poincaré map with
local controllers is studied and compared to that with cen-
tralized ones. An optimization problem is then set up to
tune the parameters of the local controllers for asymptotic
stability. The proposed approach can significantly reduce
the number of controller parameters to be optimized for
the synthesis of distributed controllers. The analytical re-
sults are numerically evaluated with simulations of a multi-
domain hybrid model with 19 degrees of freedom for stable
amputee locomotion with a powered knee-ankle prosthetic
leg.

Index Terms— Distributed Control,
Systems, Robotics.

Stability of Hybrid

[. INTRODUCTION

OOPERATIVE human-robot locomotion is a complex

problem as by nature, the human and prosthesis act as
individual subsystems— this motivates the development of
decentralized/distributed controllers to effectively coordinate
the action of subsystems. State-of-the-art feedback controllers
for autonomous legged locomotion are mainly tailored to
centralized techniques that have no provision to consider
decentralized walking models. Although decentralized con-
trollers have recently been developed for powered prostheses,
existing techniques mainly focus on the development of linear
and time-varying local controllers, see e.g., [1], [2]. These
techniques require different parameters at different time pe-
riods to be tuned to account for the nonlinear dynamics in
locomotion. This results in clinicians spending significant time
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Fig. 1. (a) Front and (b) isometric views illustrating all joints in the
human subsystem. (c) Isometric view showing joints in the robotic
subsystem. (d) CAD illustration of the robot. (e) Assembled powered
prosthesis.

in tuning control parameters [3] for each individual. These
roadblocks motivate the development of a class of nonlinear
distributed controllers that consider the independent nature
of the human and prosthesis systems and thus facilitate a
reduction in the number of parameters.

Hybrid systems theory has become a powerful approach for
modeling legged locomotion [4]-[10]. Existing nonlinear con-
trol approaches that address the hybrid nature of locomotion
are tailored to centralized techniques, such as hybrid reduction
[11], [12], controlled symmetries [6], transverse linearization
[7], [13], and Hybrid Zero Dynamics (HZD) [14]. The use
of distributed/decentralized control is extensively observed in
large-scale systems, e.g., power systems [15] and network
systems [16]. Moreover, the wealth of research on decentral-
ization is tailored to the stabilization of equilibrium points in
ordinary differential equations (ODESs) but not periodic orbits
(i.e., gaits) of hybrid models of locomotion [17].

Recently, in [18], distributed controllers were extended to
exoskeletons but does not consider the interaction forces.
References [19]-[21] presented nonlinear local controllers for
powered prostheses based on the availability of force measure-
ments to capture the strong interaction between the subsys-
tems. In [22], [23], we introduced nonlinear decentralized con-
trol schemes that do not require any force measurements but
still consider the interaction amongst the subsystems. Here, the
decentralized controllers are synthesized by setting up a large-
scale optimization problem based on an iterative sequence of
bilinear matrix inequalities (BMlIs) for a bipedal model with
point feet. The BMI algorithm develops local controllers from
scratch by optimizing for a significant amount of controller
parameters. This may result in a computational bottleneck
for multi-domain locomotion models with nontrivial feet and
high degrees of freedom (DOFs). In our most recent work
[24], we explored an alternative approach, based on decom-
position, towards decentralization for quadrupedal locomotion.



This approach presumes the existence of an orbit stabilized
by centralized controllers from which local controllers are
synthesized with fewer design parameters. In particular, we
showed through numerical simulations that decomposition is
a feasible approach but did not provide any formal foundations
and considered the problem only for symmetric quadrupedal
systems.

The overarching goal of this paper is to present a systematic
and scalable approach, based on decomposition, HZD, and
optimization, to develop nonlinear distributed controllers that
exponentially stabilize collaborative human-robot locomotion
with asymmetric models. The contributions and key objectives
of this paper are as follows: (1) We propose a decomposition
approach for the synthesis of distributed controllers. The
integration of decomposition and optimization allows for a
significant reduction of the parametric space as we only need
to modify and optimize the already-existing centralized HZD
controller rather than searching for local controllers from
scratch. This leads to a small-scale optimization problem. (2)
We study the properties of the Jacobian of the Poincaré map
of the centralized and distributed controllers and show that
there exists an upper bound on the norm of the difference of
Jacobian matrices that significantly simplifies the search for
optimal local control parameters. (3) We numerically validate
the analytical foundation by designing distributed controllers
for multi-domain and collaborative human-robot locomotion
with a powered knee-ankle prosthetic leg and nontrivial feet,
having a total of 19 DOFs (see Fig. 1). We show that the
proposed approach can effectively synthesize local controllers
for this comprehensive model of locomotion. In particular, we
reduce the number of local controller parameters to be tuned
and optimized to almost 5.2% of that in [22].

II. HYBRID MODEL OF LOCOMOTION

In this section, we consider single-domain hybrid models
of locomotion to simplify the development of distributed
control algorithms. The result can, however, be extended to
multi-domain hybrid models of locomotion. We assume that
the generalized coordinates of the mechanical system can be
given by ¢ € Q C R™. The state vector is also chosen as
x = col(q,q) € X C R™, in which “col” denotes the column
operator, n = 2ng, and X := TQ := Q x R"« represents the
state manifold. The control inputs (i.e., torques) to the system
are represented by v € &/ C R™. The guard of the hybrid
system is represented by the (n — 1)-dimensional manifold
S on which the state trajectory undergoes an abrupt change
according to impact dynamics [25]. The open-loop hybrid
model of locomotion can be then expressed as follows:

ol | z = f(z) + g(z)u, reX 0
a2t =A), xT €XNS,

where x~ and x+ denote the state of the system right before
and right after the discrete-time transition, respectively, A :
X — X is a smooth (i.e., C*°) reset map, and f and g are
smooth functions. The equations of motion can be described
by

D(q) G+ H (g,q) = B(q) u, 2

in which D(q) € R™*"a is the mass-inertia matrix, H(q, §) €
R™e represents the Coriolis, centrifugal, and gravitational
terms, and B(q) € R™*™ is the input matrix.

Assumption 1: (Periodic Orbit and Phasing Variable):
There exists a periodic solution (i.e., gait) to the hybrid model
(1) for some nominal control inputs and some fundamental
period T > 0. The corresponding periodic orbit is repre-
sented by O C X. To define the desired evolution of the
state and control inputs on O, we make use of a time-based
phasing variable as T := t}tf, where t1 represents the time
sample right after the discrete-time event. The evolution of
the state and control inputs on O are further denoted by
x*(7) :=col(¢*(7),¢* (7)) and w*(7) for 0 < 7 < 1.

We next present an HZD-based centralized controller to
exponentially stabilize the desired orbit O for the hybrid model
of locomotion. For this purpose, we make use of the following
time-varying holonomic outputs (i.e., virtual constraints) to be
imposed

y(r,q) == Clg—q"(7)), 3)

for some full-rank output matrix C' with the property dim(y) <
dim(u). We are interested in the desired output dynamics §j +
kqy—+kpy = 0 for some positive gains k, and kq. Employing
the standard input-output (I-O) linearization [26] yields the
following centralized controller

Py

u="D(r,z) =— (LgLfy)Jr (L?y—i_aﬂ

(F)*+kag+hy y) :
“)
that results in lim;_,, y(t) = 0, where (LyL;y)" denotes the

Moore—Penrose inverse of the decoupling matrix LyLsy.

[1l. DISTRIBUTED FEEDBACK CONTROLLERS

This section develops distributed feedback controllers, based
on the decomposition approach, to exponentially stabilize the
periodic orbit O (see Fig. 2(c)). We consider the synthesis
problem of local controllers for two subsystems of the hybrid
model of locomotion (1). Without loss of generality, we as-
sume that the generalized coordinate vector and control inputs
can be decomposed as ¢ = col(qy, ¢2) and u = col(uy,us),
where ¢; € Q; and u; € U; denote the local configuration
variables and local control inputs for the subsystem X; for
i € {1,2}. The local state variables are further denoted by
T; = COl(qZ,qZ) e X;.

1) Decomposition Approach: To develop local controllers,
we make the following assumption.

Assumption 2: (State Approximation for Subsystems): We
suppose that the subsystem X; for every i € {1,2} can
approximate the state variables for the other subsystem, i.e.
Y;, j # i € {1,2}, by their desired values on the periodic
orbit O, that is, z; ~ 1‘;(7’)

We then decompose the equations of motion in (2) as

D;; §; + Dyj; g; + Hy = By u; + Byju; )
for all ¢ # j € {1,2}. From (5), one can solve for §;, i.e.,
(Dii — Dij D3} Djs) Gs + H; — Dij D' Hy =
(Bii — Dij D;;' Bji) wi + (Bij — Dy Dyt Bjj) uj. (6)
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lllustration depicting (a) the decomposition of the human-robot system (X) into two distinct subsystems: human (31), and robot (322).

(b) Four-domain directed graph representing the gait. (c) Graphical elaboration of the distributed control synthesis based on the decomposition

approach.

Using Assumption 2, the nonlinear dynamics for subsystem 3
can be approximated as follows:

Dyi (¢i, t) Gi + Hi (35 Gi, t) = Bii (¢, t) s, @)

in which Dii = Dii — Dij l)]_j1 Dji, Hi Hi —
Dij DJ_]1 Hj — (sz — Dij D]__]l Bj')Uj, and B” = B“ —
D;; D;leji that are evaluated at ¢; = ¢ (7), ¢; = %(7) 7,
and u; = uj(r) Furthermore, the subsystem 7 can approxi-
mate the nonlinear dynamics of the other subsystem, i.e., the

subsystem 7, as
Djj (4i,t) 4j + Hj (gis 4is t) = Bji (¢ir t) wi, (8)

where Djj = Djj *Dji Dz_zl Dij, Hj = Hj *Dji D’L_Zl Hl —
(Bjj — -Dji D;l Bij)u]', and -BZji = Bji — Dji D;l B”
evaluated at g; = ¢;(7), ¢; = %(7) 7, and u; = uj(7).

2) Output Modification and Local Controllers: The virtual
constraints (3) can be decomposed as y = col(y;, y2) for some
local outputs y; and yo with the property dim(y;) < dim(u;),
i € {1,2}. In particular, we assume that

yi = Cii (¢ — q; (1)) + Cij (¢ — qj*(T)) ©)

for all ¢ # j € {1,2}. Using Assumption 2, the local output
y; can be reduced to y; = Cy (¢; — ¢f(7)). Our previous
work [22] showed that such local virtual constraints may not
stabilize the orbit O for the hybrid model of locomotion. To
tackle this challenge, we make the following assumption.

Assumption 3: (Measurable Global Variables): We sup-
pose that there are some smooth functions ¢;(z) = 1; (21, z2),
referred to as measurable global variables, that 1) depend on
the global states z; and x2, and 2) are measurable for the
subsystem Y; along the trajectories of the hybrid model via
some Sensors.

We next consider some measurable holonomic global vari-
ables for the subsystem i represented by 1;(q). We further
suppose that both 1; and 1/)1 are measurable for the subsystem
3;. Our motivation for this assumption comes from the fact
that robotic prosthetic legs can be equipped with some inertial
measurements units (IMUs) attached to the human thigh to
measure the absolute position and velocity variables that
depend on the global states (g, ¢). We then modify the local
output for the subsystem X; as follows:

yi = Cii (¢ — q; (7)) + Ei (vi(q) — ¥7 (7)),

where 7 (7) denotes the desired evolution of the measurable
global variables 1; on O in terms of the phasing variable .
The local output (10) is further parameterized by an output

(10)

matrix F; to be determined in Section IV. Differentiating the
output (10) results in
ijis = Cii <q - (7‘)2)
0*v;

9%q;
or?

B | — — — , 11

+ <8qq+aq<aqq)q 502 () (11

in which the acceleration terms, i.e., ¢; and ¢ = col(g1, ga),

can be approximated using the nonlinear dynamics (7) and

(8). Furthermore, the nonlinear terms d{% and %(%—1@" q) g can

be computed utilizing Assumption 2. This would result in an
input-affine output dynamics as follows:

A (1, 24) i + b (T,23) = —ka i — kp Yi- (12)

i = =

From the output dynamics (12), one can solve for the minimum
2-norm local control solution, that is,

w; = i(r, 24,00, 01) o= — AL (b + ka9 + kpys) . (13)

IV. EXPONENTIAL STABILITY ANALYSIS

This section investigates the exponential stabilization prob-
lem of the periodic orbit O under the proposed HZD-based
distributed feedback controllers (13). We study the Jacobian
matrix of the Poincaré map with distributed controllers and
then set up an optimization-based approach to tune the pa-
rameters of the local controllers.

A. Poincaré Sections Analysis for Closed-Loop Systems

The evolution of the closed-loop mechanical system with
centralized and distributed feedback controllers can be ex-
pressed by the following hybrid models

] cl
I S S
=167 eeans
and
O S S
A[E] =267 weans

where F(Ta {E) - COI(Fl(Ta Ty, 1/)13 7/)1); FQ(Ta T2, 1/127 1/)2))
represents the distributed controllers, and f(7,z) := f(x) +
g(z)T(r,x) and f(r, ) f(x) + g(z)I(r,z) denote
the closed-loop vector fields with centralized and distributed

feedback laws, respectively. For future purposes, we define



the augmented states as z, := col(z,7) € X, := X X Ry,
augmented vector fields as f<'(z,) = col(f(r,z), A)
and f9(z4) = col(f9(r,z), ), augmented reset law as
A%(x,) = col(A(z),0), and S, := S x R,.. We then denote
the Poincaré maps for the closed-loop hybrid models (14) and
(15) by P, : S, — S, and Pa : Sq — S, respectively.
Lemma 1: (Fixed Points): Under Assumptions 1-3, z% §i=
col(:r}, 1) is a fixed point for the Poincaré maps, i.e.,
Pu(zyy) = Pa(ng) =z, where 2} := 2*(1) = ONS.
The proof is immediate according to the construction proce-
dure. From Lemma 1, O, := {(z,7) |z = 2*(7), 0 < 7 < 1}
is a periodic orbit for the closed-loop hybrid systems (14)
and (15). Let us denote the time evolution of the augmented
state trajectory along O, (i.e., the closure of O,) by x%(t)
for 0 <t < T*. We then define the Jacobian matrices of the
augmented vector fields along z7%(t) by A(t) and A(t), that is,
A(t) == 9L (a5 (1)) and A(t) = 2= (2 (t)) for ¢ € [0,T7].
We now make the following assumptlon
Assumption 4: There are L > 0 and p > 0 such that for
all £ € [0, 7], [[A(t)ll; < L and [[A(t) = A@®)]]2 < p.
Lemma 2: (Variational Equations): Under Assumptions 1-
4, consider ®(t) = A(t)®(t) and &(t) = A(t)d(t) for
€ [0,7*] with ®(0) = ®(0) = I. Let us define o(t) :=
vec(®(t)) and ¢(t) := vec(d(t)), where the “vec” denotes
the vectorization operator. Then, there is § > 0 such that for
all £ € [0,77], o(t) — p(0)lly < &2 (exp(L 1) — 1).

Proof: From properties of the vectorization operator,
$ = vec(A(t) D) = (I ® A(t)) vec(®) = (I ® A(t)) ¢, and
similarly, » = (I® A(t)) , where “®” denotes the Kronecker
product. Furthermore, we can show that ||[I @ A(t)ll2 =
JA®)]l2 < L and [[[@A(t)~IDA(1) 2 = A —-A®)]2 <
for all ¢ € [0,7*]. These properties together with ©(0) =
»(0) = vec(I), boundedness of the solutions, i.e., 3 J > 0
such that ||o(t)|l2 < d and ||@(t)]|2 < & for ¢ € [0,T*], and
applying [27, Theorem 3.4, pp. 96] to the ODEs complete the
proof. ]
We are now in a position to present the following theorem.

Theorem 1: (Upper Bound on the Norm of the Difference
of the Jacobian Matrices): Under Assumptions 1-4, there is
a constant 3 > 0 such that

0P, or, , ,

Dz, (w5r) = Dz, (@) < %
Proof: From [28, Theore%n 1] and [29, Appendix D],
the Jacobian linearization of the Poincaré return maps can be

¢ gf“( ;)= H‘I)(T*) 52 (25,) and BP o(zhy) =

IMO(T™) aﬁa (x f) where II is the saltation matrlx defined
by ITe= I — 1/(2= (ah) S (ay)) S aly) 22 (a). Here,
we assume that the augmented switching mamfold S. can
be expressed as the zero-level set of the switching func-
tion s4(z,). From Lemma 1, fg'(z};) f;‘(x;f), and
hence, II is indeed the saltation matrix for both Jacobian
matrices. From the properties of the vectorization operator,
there is a scalar v > 0 such that ||®(T*) — &(T*)| <
Ye(T*) — $(T*)|| which in combination with Lemma 2
and norm properties results i (a:: £ = 0P, (@)l <

Oz,
T[22 (% )| 49 (exp(L T*) —1> Finally, defining /3 :=

(exp(LT*)—1).

Oz,

oy [T 1 5

52> (75 ;)|| completes the proof. -

B. Distributed Controller Synthesis

In order to synthesize distributed controllers, we look for
some output matrices F;, i € {1,2} in (10) to exponentially
stabilize O via proposed local controllers. For this purpose,
let us denote the columns of F; by &;, that is, &; := vec(E;).
The local controllers I'; in (13) can be then represented by
parameterized feedback laws T;(T,x;, v, 1;,&;). We further
define the control parameters as £ := col({1,&2). This allows
us to parameterize the Jacobian matrix of the Poincaré map
gf < (7, §). The exponential
stabilization problem then consists of finding the controller
parameters ¢ such that the eigenvalues of gf - (xx s &) strictly
lie inside the unit circle. We then set up a nonlinear program
(NLP) to look for stabilizing parameters £ as follows:

1
SlelB

) A
eig <8xa (zaf,§)>

Here, we search for the minimum 2-norm controller parame-
ters to make modified outputs (10) close to the decomposed
ones (9) while imposing the exponential stability constraint.
Our previous work in [22] synthesized distributed controllers
by looking for both output matrices C;; and E; in (10) which
may have a significant number of decision variables and hence,
it may result in a large-scale and computationally intensive
NLP. The proposed approach, however, significantly reduces
the number of parameters to be optimized for the synthesis of
distributed controllers. More specifically, we do not search for
Cy; and only focus on F;.

min
13

s.t. < 1. (16)

V. SIMULATION RESULTS

The objective of this section is to numerically verify the
theoretical results for human-robot locomotion. We consider a
lower-extremity amputee as the human subsystem and assume
that a 3D tree-like structure with square-profile foot represents
the human body (see Fig. 2(a), 2(c)). The robot subsystem
on the other hand comprises a knee-ankle powered prosthesis
where the foot is modeled with a square profile (see Fig.
1). While we model the powered prosthesis after [30], we
extend it with an additional “passive” DOF, attributed to the
compliance in the ankle roll for simulation purposes. Under
this consideration, we assume the entire structure to consist
of 19 DOFs. The first 6 DOFs are attributed to the absolute
position and orientation of the human body. The remaining
13 DOFs are the internal shaping variables that are distributed
between both the legs as follows: 3 DOFs are associated with
the hip to model the roll, pitch, yaw angles, one DOF captures
the pitch joint at the knee, further 2 DOFs are allocated to the
ankle pitch and roll, and one “passive” DOF is employed to
model the point of attachment of the prosthesis to the residual
human leg. This completes the state vector = := col(q, ¢) €
X C R?® and the control vector u € U C R''. We adopt the
kinematic and dynamic parameters of [31] and [30] for the
human and robot components of the system, respectively.
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Fig. 3. Phase portraits captured over 100 steps: body’s (a) pitch and (b)
yaw, as a result of decomposition from a stable centralized orbit. Body’s
(c) pitch and (d) yaw, as a result of decomposition from an unstable
centralized orbit. Here, circles depict the initial conditions.
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In this paper, we consider a 4-domain walking cycle to
include flat-footed phases (domains v; and ws) and push-
off phases (domains v, and v4) that mimic natural human
walking (see Fig. 2(b)). With this directed graph, we formulate
an optimization problem via FROST [32] to solve for two
different desired periodic gaits, O with a speed of 0.2 (m/s)
and 0.3 (m/s). To demonstrate the power of the proposed
approach in synthesizing local controllers, we first design
centralized controllers as in (4) such that the 0.2 (m/s) and
0.3 (m/s) gaits becomes stable and unstable, respectively.

We then systematically proceed with the proposed decom-
position approach by separating the human-robot system into
two discrete subsystems at the point of severance, located just
above the left knee. The human subsystem >3 retains the base
DOFs in addition to its 9 DOFs which results in dim(z;) = 30
and dim(u;) = 9. Similarly, the robotic subsystem X5 has 4
DOFs with two passive joints, including the ankle roll and
point of attachment of two subsystems, i.e., dim(zs) = 8
and dim(uz) = 2. In addition, we utilize a set of global
position and velocity variables, ¥2(q) and 12(q, ¢), that are
obtained from a “single” IMU located on the residual human
thigh. The human subsystem has no avail of the global IMU
variables, indicating that ¢); = () as it already has access to its
own absolute position and orientation. We remark that in this
formulation, the local controller for the robotic subsystem in
(10) has access to at most 14 state variables. This is a direct
result of its 8 internal states and the availability of at most 6
global variables from the IMU in the form of ¢ : {r, p,y} and
E {r,p,y}, in which r,p,y denote the roll, pitch, and yaw
angles, respectively. Likewise, local controller for the human
subsystem in (10) has access to at most 30 state variables.

The entire mechanical system has 8 DOFs during the push-
off phases and 13 DOFs during the flat-footed phases. In order
to have a nontrivial zero dynamics, we consider 7-dimensional
and 11-dimensional outputs (3) in push-off and flat-footed
phases, respectively. We then decompose y into (y1,y2) such
that y; includes the DOFs assigned to the human subsystem
and y5 includes the ones for the robotic subsystem. We remark
that for the push-off domains (v; and v3), dim(y;) = 6 and
dim(y2) = 1, and the corresponding decoupling matrices in
(13) become A; € R%*9 and A, € R'*2, In addition for the
flat-footed domains (ve and v4), dim(y2) = 9, dim(y2) = 2,
A; € R and A, € R?*2, Next, we parameterize the
local outputs for the robotic subsystem but not the human
subsystem as (10) by output matrices F5 over three domains.
Here, we assume a local output regulating controller for the
human subsystem as [22], [33]. In our parameterization, the
Poincaré map is only parameterized by four parameters related
to the robotic subsystem, i.e., & € R*, whereas the synthesis

o qo(orzad)omS q (rad) o q (iad) o q (Orad)
Fig. 4. Robustness phase portraits captured over 100 steps: (a) due
to a 125 (N) persistent force along the x-axis, (b) due to a 200 (N)
persistent force along the y-axis, (c) due to a —8.82 (kg) uncertainty in
the torso mass, and (d) due to 4+4.18 (kg) uncertainty in the torso mass.

0.1 0.1

problem in [22, Sec. VILB] included 78 parameters for a
model with less DOFs (i.e., 94.8% reduction in controller
parameters). The local parameters for the robotic leg are then
effectively optimized by the NLP (16) for exponential stability.
Here the Poincaré section is taken at the beginning of domain
v; and the Poincaré map is 15 = 2 x 8 — 1 dimensional as
the mechanical system has 8 DOFs in domain v;. In addition,
we make use of a total of four parameters to parameterize the
local outputs over three domains. The four optimal values of
E5 are {0.0571,0.1017, —0.4186, 2.0232} that correspond to
the IMU pitch, roll, pitch, and yaw, respectively (see [34]).
Figure 3(a)-(b) illustrates the phase portraits for the human
pitch and yaw angles, respectively, over 100 consecutive steps
for the 0.2 (m/s) gait. Convergence to the periodic orbit is
clear. To show that the distributed architecture does not rely
on the existence of a stabilizing centralized controller, we
repeat the same procedure for the 0.3 (m/s) gait with an
unstable centralized controller. Figures 3(c)-(d) demonstrate
the distributed controller’s ability to stabilize the gait despite
having an originally unstable centralized controller.

Robustness Analysis: To illustrate robustness against ex-
ternal disturbances, we induce persistent forces during the
prosthetic leg’s swing phase (v3) for every step taken. First, a
persistent force of 125 (N) is exerted along the x-axis. In an
other simulation, a persistent force of 200 (N) is applied in
the direction of negative y-axis. Figures 4(a)-(b) demonstrate
convergence to a stable orbit indicating the controller’s positive
response to the provided disturbances. Furthermore, to show
the controller’s robustness to uncertainties in dynamic param-
eters, we vary the mass of the torso while still employing the
distributed controller synthesized with the original torso mass
of 40.82 (kg). Two simulations, one with torso mass of 32
(kg) and the other with torso mass of 45 (kg), demonstrate
stability by converging to periodic orbits as illustrated in Figs.
4(c)-(d).

To draw meaningful differences between the existing cen-
tralized and the proposed distributed controllers, we induce
white Gaussian noise with a signal-to-noise-ratio (SNR) of 42
(db) into the velocity components of the actuated prosthesis
DOFs. Figures 5(a)-(b) show torques captured over one step
in the human subsystem for the centralized and distributed
control frameworks, respectively. It can be seen from Fig.
5(a) that the induced sensor noise in the prosthesis joints
propagates and manifests itself in the joint torques of the
human subsystem under the centralized architecture. However,
joint torques in the human subsystem are unaffected under
the distributed framework (see Fig. 5(b)). Additionally, we
note that the amplitude of noise is significantly higher in
the centralized control framework. The animations of all
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Fig. 5. Torques corresponding to the components in the human

subsystem under the (a) centralized control scheme and (b) distributed
control scheme.

simulations together with the optimal modified outputs can
be found online [34].

VI. CONCLUSIONS

This paper established a formal foundation, based on de-
composition, HZD, and optimization, to synthesize distributed
controllers for exponential stabilization of cooperative human-
robot locomotion. The proposed approach assumes a set of
HZD-based centralized controllers and then decomposes the
dynamics and virtual constraints while parameterizing them
with some adjustable local parameters. This decomposition
method significantly reduces the parametric space resulting
in a small-scale optimization problem compared to previous
approaches for synthesizing local controllers. Furthermore, the
Poincaré map for the closed-loop hybrid models of locomotion
with distributed controllers is investigated and compared to
that with centralized ones. We numerically validated the pro-
posed distributed scheme for stable, robust, and multi-domain
human-robot locomotion with a powered prosthetic leg and 19
DOFs. For future research, we will investigate the design of
robust distributed controllers for locomotion on rough terrains.
We will also experimentally evaluate the approach on powered
prosthetic legs attached to lower limb amputees.
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