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Abstract— Robotic ankle exoskeletons have been shown to
reduce human effort during walking. However, existing ankle
exoskeleton control approaches are limited in their ability to
apply biomimetic torque across diverse tasks outside of the
controlled lab environment. Energy shaping control can provide
task-invariant assistance without estimating the user’s state,
classifying task, or reproducing pre-defined torque trajectories.
In previous work, we showed that an optimally task-invariant
energy shaping controller implemented on a knee-ankle ex-
oskeleton reduced the effort of certain muscles for a range of
tasks. In this paper, we extend this approach to the sensor
suite available at the ankle and present its implementation
on a commercially-available, bilateral ankle exoskeleton. An
experiment with three healthy subjects walking on a circuit
and on a treadmill showed that the controller can approximate
biomimetic profiles for varying terrains and task transitions
without classifying tasks or switching control modes.

I. INTRODUCTION

Robotic ankle exoskeletons have the potential to assist
people in their daily lives. The ankle plantar-flexor muscles
contribute 77% of positive work during the push-off phase
of gait [1] and 27% of total muscle energy expenditure over
the gait cycle [2]. As the ankle makes significant contri-
butions to ambulation, actively augmenting human plantar-
flexor muscles can reduce human effort [3]. However, human
ambulation is highly complex and providing biomimetic
ankle assistance across the various activities of daily living
(ADLs) remains a challenge.

Directly measuring human plantar-flexor muscle activation
to control exoskeleton assistance offers an intuitive manner
to control different activities. There has been some success
in mapping muscle activation, measured with electromyo-
graphy (EMG) sensors, to exoskeleton assistance through
proportional gains [4], [5] or using muscle activation as
human-in-the-loop control inputs to guide the development
of assistive torque profiles [6] for level treadmill walking.
However, EMG sensors are inherently noisy, sensitive to
placement, motion and alterations to the user’s muscle re-
cruitment strategy [7], and the heavy filtering required [4]–
[6] is not practical for providing assistance across highly
variable ADLs.
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Many ankle exoskeleton controllers in the literature have
successfully reduced metabolic cost or muscular effort during
gait by applying pre-defined torque trajectories as a function
of time between heel-strikes [8]–[14]. These timing-based
estimation (TBE) approaches have shown promising results
in the lab by optimizing different parameters of biomimetic
ankle torque profiles, including timing of actuation onset
[8], [9], the collection of rise time, torque peak timing,
torque peak magnitude, and fall time parameters [11], [12],
total positive exoskeleton power [9], [10], total negative
exoskeleton power [10], net work [13], or average torque
[13]. However, TBE is sensitive to changes in speed and
pre-defined torque trajectories are rarely appropriate for the
highly variable terrains and tasks outside of the controlled
lab environment. One recent approach has attempted to
augment TBE with speed adaptation at each heel-strike
to improve efficacy in uncontrolled environments [14], but
sudden accelerations remain a fundamental problem to TBE.

To provide more accurate torque assistance under speed
variations and overcome the drawbacks of TBE, phase-
estimation approaches continuously track gait progression
from heel-strike to heel-strike and map phase to the instan-
taneous desired torque. Machine learning phase estimators
have outperformed TBE in predicting gait events (i.e., heel-
strike and toe-off) and applying biomimetic ankle torque
profiles for sinusoidally varying level walking speeds [15],
while being robust to transitions between walking and stand-
ing [16]. Phase has also been used to differentiate between
walking, running, and jumping tasks and map to the ap-
propriate torque profiles [17]. Further, an Extended Kalman
Filter estimating phase states alongside task states success-
fully adapted biomimetic torque profiles over continuously
varying speeds and highly uneven terrains without explicitly
classifying the task [18]. However, controllers that require
state estimation or classification have the potential to apply
unexpected torques if the state or task are misidentified,
which can impact the user’s perception of device reliability.

Task-invariant controllers provide assistance without es-
timating the user’s state, classifying task, or relying on
pre-defined torque trajectories. For example, a recent task-
invariant ankle exoskeleton controller provides assistance
proportional to the force at the ball of the foot [19]. However,
this method of direct force amplification has an intrinsic
trade-off between sensitivity required to quickly respond to
the user’s voluntary movement and robustness to variation
in model parameters and control inputs [20]. Energy shap-
ing provides an alternative task-invariant control framework
that alters the energetic properties of the target system
using kinematic control inputs. Previously implemented on



an ankle-foot orthosis, potential energy shaping provided
task-invariant virtual body-weight support for rehabilitation
[21]. To increase the amount of assistance, another energy-
shaping control law was parameterized with basis functions
depending on actuated joint angles and optimized based on
able-bodied kinematic/kinetic data over a range of walking
inclines [22]. However, by only depending on the actuated
joint coordinates, the controller was limited to virtual spring-
like behaviors that cannot provide appropriate assistance for
more diverse activities like stair climbing.

To increase flexibility to reproduce biomimetic torques
across ADLs, the optimal energy shaping framework was
extended to incorporate vertical ground reaction force and
global orientation [23]. This optimization-based control law
implemented on a knee-ankle exoskeleton reduced the effort
of certain muscles for a range of tasks including walking,
ramps, and stairs. This previous work used the global thigh
angle as an input to the control law to help differentiate
torque predictions between activities, but this sensor input
is not available to a self-contained ankle exoskeleton. More-
over, this study neglected to assess controller performance
over transitions between activities, which were not explicitly
designed into the controller but occur frequently in daily life.

The contributions of this paper include extending the
optimal task-invariant energy shaping framework to a single-
joint ankle exoskeleton without relying on sensor information
proximal to the shank or information from the contralateral
leg. The controller is implemented and validated on a com-
mercially available ankle exoskeleton, bringing this technol-
ogy one step closer to market. An experiment with three able-
bodied subjects walking on a circuit and a treadmill shows
that the controller approximates biomimetic torque profiles
for varying terrains without classifying tasks or switching
control modes. This paper further validates the ability of this
control approach to approximate biomimetic torques during
task transitions that are outside of the training set.

II. REVIEW OF ENERGY-SHAPING FRAMEWORK

This section models the human-exoskeleton system with
signals local to the ankle and reviews the energy-shaping
framework presented in detail in [23].

A. System Modelling
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Fig. 1. System model (modified from [23]) and commercial ankle
exoskeleton hardware setup.

The human-exoskeleton system comprises inertia of the
human rigidly coupled to the torque production capabilities
of the exoskeleton. The system is modeled with two links
representing the shank and foot and one revolute joint
(Fig. 1). The global heel angle φ is defined relative to
gravity and the foot, and θ is the relative ankle angle
(independent of φ ). The Cartesian coordinates of the heel
are given by (px, py). We focus the model on the stance
leg, for which the ankle primarily applies plantarflexion
torque. The four degrees-of-freedom (DOF) model has the
generalized coordinates q = [px, py,φ ,θ ]

T ∈ R4. The body
interaction forces influence the dynamics of the system
through F = [ fx, fy,τz]

T . The conjugate momenta is given by
p = M(q)q̇ ∈R4, where M(q) ∈R4×4 is the positive definite
inertia matrix and q̇ ∈ R4 is the velocity vector.

We define the dynamics as a Hamiltonian system, as in
[23], where evolution of q and p is linear in the gradient of
total energy, H, and two external inputs, τ and λ , as[

q̇
ṗ

]
=

[
04×4 I4×4
−I4×4 04×4

]
∇H +

[
0

τ +AT λ

]
, (1)

where total energy is given by the Hamiltonian function
H(p,q) = 1

2 pT M−1(q)p +V (q), where the quadratic term
is the kinetic energy and V (q) is potential energy. The
joint torques τ = τexo + τhum ∈ R4 aggregate the exoskele-
ton and human inputs, respectively, where τexo = Bu and
τhum = Bv+ J(q)T F . The exoskeleton control torque u ∈ R
and human ankle torque v ∈ R are mapped into the 4-
dimensional coordinate space by matrix B= [01×3,1]T , and F
is mapped through the shank-tip Jacobian J(q) ∈ R3×4. The
ground reaction forces (GRFs), represented by the Lagrange
multiplier λ ∈Rc, are mapped into the equation through the
constraint matrix A ∈Rc×4, where c is the number of contact
constraints. As the generalized coordinates outnumber the
actuated coordinates, the system is underactuated.

B. Control Law

We consider the desired closed-loop Hamiltonian
H̃(p,q) = 1

2 pT M̃−1(q)p+Ṽ (q), where the desired potential
energy Ṽ = V + V̂ depends on the shaping term V̂ . The
corresponding gravitational vector is Ñ =∇qṼ =N+N̂ ∈R4.
We set M̃ = M to avoid requiring acceleration feedback or
unrealistic knowledge of τhum to change the mass matrix in
the control law. The desired dynamics are[

q̇
ṗ

]
=

[
04×4 I4×4
−I4×4 04×4

]
∇H̃ +

[
0

Bv+ J(q)T F +AT λ̃ +Bxux

]
,

(2)
where λ̃ represents the closed-loop GRFs, and the external
input ux ∈ R allows unactuated global angle information to
shape the dynamics of the actuated joint as explained in
Sec. II-C. The matrix Bx = [0,0,1,0]T restricts ux to only
act on the global angle φ . With only one actuated degree
of freedom, the skew-symmetric interconnection matrix has
no free parameters. Thus, ∇H̃ = ∇H + [∇qV̂ ,0]T , and only
potential energy terms in φ and θ are added.



The Hamiltonian systems (1) and (2) match if

Bu =− (∇qH̃)T +(∇qH)T +AT (λ̃ −λ )+Bxux

=− Ñ +N +AT (λ̃ −λ )+Bxux.
(3)

Following the steps in [23], the matching conditions are
satisfied when the unactuated parts of −Ñ+N+Bxux are set
equal to zero. A feasible control law satisfying the matching
conditions given in (3) is

u = B+{−(∇qH̃)T +(∇qH)T +Bxux}
= B+{−Ñ +N +Bxux}= B+{−N̂ +Bxux},

(4)

where B+ = (BT B)−1BT is the left pseudo-inverse of B.

C. Passivity and Stability

Without including the external input Bxux in the matching
conditions, the modified gravitational vector N̂ can depend
only on the actuated coordinate θ . This restricts the controller
to non-linear virtual spring behaviors about the ankle. Thus,
to increase control flexibility, we use the relaxation term Bxux
to allow the control law to make use of the unactuated global
angle signal, φ . This results in a “power leak” in our target
system that is small compared to the human contribution,
and stability of the human-exoskeleton system is maintained
through human impedance control [23].

III. CONTROL OPTIMIZATION

To design a task-invariant controller that satisfies matching
conditions, we apply an optimization over a basis-function
representation of the space of possible controllers, where
each basis satisfies the relaxed matching conditions. Sim-
ulation results then verify that the resulting controllers ap-
proximate biological torque across all the considered ADLs.

A. Basis Functions

To reformulate the control law (4) as an optimization
problem, we define N̂ = [0,0,0,−α1ζ1 − . . .−αwζw]

T ∈ R4

as a linear combination of basis functions ζi ∈ R with
constant coefficients αi for i = 1, . . . ,w, where w is the total
number of bases. The basis functions, defined by the set

ζ ={1,ψ,sin(ψ),cos(ψ),sin(2ψ),cos(2ψ),

φ ,sin(φ),cos(φ),sin(2φ),cos(2φ)},
are intuitively chosen as trigonometric functions of φ and
the global shank orientation ψ = φ − θ . The basis func-
tions are integrable to ensure the closed-loop system has
a well-defined potential energy. The controller output is
also bounded through the nature of the basis functions,
with the global orientations φ and ψ bounded [−π,π] and
the trigonometric functions bounded [−1,1]. To taper the
torque during the double-support phase, the vertical ground
reaction force vGRF ∈ R, normalized to 100% bodyweight,
is incorporated into the control law as

u = β (vGRF) · vGRF ·B+N̂ =U(q,vGRF)α, (5)

where B+ = [01×3,1]T , α ∈ Rw×1, and β ∈ R is a sigmoid
function of vGRF that zeros the control torque below 10%
bodyweight during stance and swing transitions.

This small set of basis functions minimizes control law
complexity while capturing fundamental relationships be-
tween kinematics and ankle torque (Fig. 2). With the ex-
ception of φ , sin(φ) and sin(2φ), which peak at toe-off, all
basis functions have a peak at roughly 80% of the stance
phase. This peak roughly coincides with the push-off torque
impulse. The raw global angle φ provides an indicator of
ground incline during mid-stance when the foot is flat. The
bases φ and sin(2φ) are zero in mid-stance for level walking
and stair tasks. As a result, functions φ and sin(2φ) can
appropriately increase or decrease torque for ramps without
impacting other tasks. The global shank angle provides
critical information about phase for all tasks, as noted in
[17], [25]. For example, the shape of sin(2ψ) indicates the
presence of a torque peak during loading response at roughly
20% of stance for ramp decline and stair descent/ascent in
contrast to level walking and ramp incline.

B. Optimization Formulation

We optimized the control parameters to minimize the error
between control torques and normative human torques. The
optimization problem is defined as

minimize
α,s ∑

j

[
C j + s+Λ∥Wsα∥1

]
,

subject to C j = (U jα −Yj)
TWj(U jα −Yj),

s ≥−Y T
j U jα, s ≥ 0,

where j represents the task being optimized, Yj ∈ Rm×1 is
the normative human torque with m data samples for each
task, and the matrix U j = U(q j,vGRFj) ∈ Rm×w represents
the basis evaluated at each time element along j with state
vector q j = [φ ,ψ] ∈ Rm×2.

The first term of the optimization cost penalizes the
squared error between the controller torque U j and the nor-
mative human torque Yj. The tasks j are weighted according
to matrix Wj, where the level treadmill walking tasks are
weighted higher than all other tasks to prioritize walking
performance as the most frequent ADL. The second cost
term minimizes controller torque of the opposite sign of
normative torque Yj to ensure that the control torque does
not resist the user. If the normative torque is of an opposite
sign of the predicted torque, then s takes on a positive value,
which the optimization seeks to minimize. If there are no
wrong torque signs, then s is constrained to be zero and it
has no effect on the optimization. The final cost term L1-
regularizes α with weight matrix Ws to minimize over-fitting.
The optimization problem was solved using the cvx convex
optimization package in MATLAB [26].

The optimization used the intra-subject average steady-
state stride for each of 12 able-bodied subjects for level
treadmill walking at 0.5m/s and 1.5m/s, ramp incline and
decline at 5.2◦ and 11◦, and stair ascent and descent for 4
and 7 inch step heights [24]. Average stand-to-sit data was
obtained from a separate source [27] and repeated for each
subject in the primary dataset so the optimization problem
had the same number of each task. The second complete
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Fig. 2. Basis functions ζ , scaled by vGRF, plotted from average able-bodied input data for 1 m/s walking (L), 11◦ ramp decline (D) and incline (I),
and 7 inch stairs descent (SD) and stairs ascent (SA), compared to the average joint torque from dataset [24]. Function φ closely tracks sin(φ).

stride (occurring heel-strike to heel-strike) on the ramp and
stair was treated as the steady-state stride, as it was not one of
the first two transitioning strides and had kinetics available.

C. Simulation Validation
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Fig. 3. Simulated controller torque vs. normative human torque in
stance, across 5.2◦ (solid) and 11◦ (dashed) ramp decline (D), 5.2◦ (solid)
and 11◦ (dashed) ramp incline (I), 4 inch (solid) and 7 inch (dashed) stairs
descent (SD), 4 inch (solid) and 7 inch (dashed) stairs ascent (SA), 0.5 m/s
(solid) and 1.5 m/s (dashed) level walking (L) and stand-to-sit (STS). Note
that human ankle torque is small during STS, reducing the importance of
that task’s lower prediction quality.

The controller was simulated with the average kinematics
of the 12 subjects used to optimize the torque parameters
(Fig. 3). To evaluate the predicted torques in comparison to
normative, we used the performance metrics Cosine Similar-
ity (SIM) and Variance Accounted For (VAF) as in [23]:

SIM(A,B) =
100 ·A ·B
∥A∥2∥B∥2

,

VAF(A,B) = 100 ·
[

1− var(A−B)
var(A)

]
,

where A is normative torque and B is predicted torque. We
calculated SIM and VAF across all subjects for each task
using the optimized parameters (Fig. 4, “Nominal”).

Leave-one-subject-out and leave-one-task-out validation
was performed to test the sensitivity of controller perfor-
mance to the subject and task data included in the opti-
mization. In leave-one-subject-out validation, we calculated
the SIM and VAF for a single subject’s normative torque in
comparison to predicted torque for all tasks using parameters
optimized without that subject’s data (see Fig. 4, “Subject”).
In leave-one-task-out validation, we calculated the SIM and
VAF for each subject’s normative torque in comparison to
predicted controller torque for a single task using parameters
optimized without that task (see Fig. 4, “Task”). The stand-
to-sit task was left out because only one average sample was
available to use in the optimization.

The simulated controller has the best performance for
walking tasks, with phase-aligned normative and predicted
torque peaks (Fig. 3.C) resulting in high SIM and predicted
torque peaks of roughly correct magnitude resulting in high
VAF (Fig. 4.C1,C2). The predicted torque for ramp tasks
also aligns very well with normative, though there is some
discrepancy in magnitude, with slightly higher predicted
peak magnitude in ramp decline and lower predicted peak
magnitude for ramp incline (Fig. 3.A,D). The predicted
torque for the steeper incline ramp tasks has a higher peak
during the transition from loading response to mid-stance
(i.e., roughly 25% stance) compared to normative, resulting
in slightly lower SIM compared to the shallower incline
(Fig. 4.A2,D2). Steeper inclines also have lower median
VAF and larger variance across subjects compared to level
walking, resulting from varying magnitudes of predicted
loading response and push-off torque peaks across subjects.

In stair tasks, the simulated controller applied torque peaks
at the end of loading-response and at push-off (Fig. 3.B,E).
For some subjects, stair task loading response torque peak
magnitudes are over-predicted while the push-off torque peak
magnitudes are under-predicted, resulting in higher variance
for the difference between normative and predicted compared
to normative variance. The resulting negative VAF value for
some stair tasks results in low median VAF (Fig. 4.B1,B2).
Despite the low VAF, the high SIM indicates that the
controller correctly predicts the phase alignment of assistive
torque peaks across subjects. Predicted torque for stand-
to-sit has opposite sign compared to normative. However,
human ankle torque is small during stand-to-sit, so this
torque mismatch (Fig. 3.F) is less consequential.
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Fig. 4. SIM and VAF results for the simulated controller with all subjects across tasks (Nominal), leave-one-subject-out across tasks (Subject), and
leave-one-task-out across subjects (Task) for ramp incline (I), ramp decline (D), stairs descent (SD), stairs ascent (SA) and level walking (L).

Leave-one-subject-out and leave-one-task-out resulted in
high SIM across tasks (Fig. 4). With the exception of the
slight decrease in SIM when leaving out the 5.2◦ ramp
decline and 11◦ ramp incline and decline, the SIM values
are roughly constant when leaving subjects and tasks out
of the optimization compared to Nominal. The consistent
SIM results show that the phase alignment of the assistance
torque peaks is not sensitive to the data included in the
optimization. The VAF results for leaving subjects out of
the optimization are also very similar to Nominal, indicating
that controller variance is not sensitive to subject-specific
data. However, leaving ramp and walking tasks out of the
optimization leads to lower VAF results while leaving stair
tasks out results in better performance with higher median
VAF or smaller VAF distributions. This decrease in VAF is
likely because kinematics/kinetics vary across inclines, and
the diverse inclines included in the optimization captured the
variability between tasks necessary to accurately approximate
torque for those tasks. The number of walking and ramp tasks
included could also have weighted the optimization in favor
of correctly approximating torque for those tasks, and when
they are left out, the optimization is improperly weighted
toward stair tasks. The kinematics/kinetics for stair tasks
are highly variable across subjects, so the increase in VAF
when leaving out stair tasks is likely because the optimization
no longer attempts to optimize a limited number of torque
parameters to predict torque for diverse subjects.

Though the global angles and vGRF included in the frame-
work improve the flexibility to provide biomimetic torques
across tasks, the lack of information proximal to the shank
decreases the accuracy of the controller in approximating
torque magnitudes for ascent versus descent tasks. However,
the high SIM across subjects for all tasks indicates that users
can expect assistance at the correct phase for all tasks.

IV. HUMAN SUBJECT PROOF-OF-CONCEPT VALIDATION

This section presents the task-invariant controller imple-
mentation on a commercially available ankle exoskeleton and

experimental validation with N=3 human subjects.

A. Hardware Implementation

The controller was implemented on left and right units of
the Dephy EB51 ExoBoot (Dephy MA, USA), Fig. 1. The
ExoBoot exerts plantarflexion torque via a brushless motor
that spools an inelastic belt rigidly attached to a lever arm
connected to the ankle joint. The maximum ankle torque is
30Nm. The amount of belt spooled around the motor and
the angle of the ankle joint and lever arm relative to the
motor result in a variable transmission ratio. The gear ratio
through the normal ankle range of motion is roughly 15:1.
Two inertial measurement units (IMUs) attached to the shank
cuff and heel of the boot provided the global shank angle
and global foot angle (3DM-GX5-25, Lord MicroStrain). A
commercial insole pressure sensor (FSR) measured vGRF
(Actisense, IEE, Luxembourg). Each ExoBoot was controlled
with a Raspberry Pi 4B with 8GB RAM. Each unilateral
system was powered with one 24V, 2.0 Ah lithium-ion
battery (Kobalt). Each unilateral system weighed 2 kg.

As the ExoBoot uses a plantarflexion-only belt drive, a
state machine used the vGRF (normalized by user mass
between 0 for swing and 1 for single-support stance) to
switch control modes when transitioning between stance and
swing. During swing, the motor was position-controlled to
maintain belt slack, to allow the user to dorsiflex freely
without feeling the motor’s inertia. The same behavior
was controlled in stance when the controller commanded
a dorsiflexion torque. When the controller commanded a
plantarflexion torque during stance, the motor was given
a current command calculated as a function of the desired
torque, the gear ratio as a function of the instantaneous ankle
angle, and the motor current constant. The control torque
calculated from (5) was multiplied by the user’s mass and
preferred percent level of torque assistance (%LOA). For
user comfort and to account for FSR error, plantarflexion
torque was softened by a sigmoid function of vGRF during
transitions between stance and swing.



B. Experiment Method

To validate the performance of the controller in providing
biomimetic torques across a range of ADLs, N=3 able-bodied
participants (AB1: male, 75 kg, 1.88 m; AB2: female, 61 kg,
1.69 m; AB3 = male, 85 kg, 1.78 m) completed ambulation
ADLs on a circuit and on a treadmill while wearing bilateral
ankle exoskeletons. The study was approved by the Univer-
sity of Michigan IRB under protocol HUM00201957. The
circuit consisted of a ramp inclined at 14.1◦, a level platform,
stairs with 7 inch step height, and space to walk on level
ground to return to the starting position. Clockwise (CW)
circuits consisted of standing, ramp incline, stairs decline,
level walking, and returning to sitting. Counter-clockwise
(CCW) circuits consisted of standing, level walking, stairs
incline, ramp decline, and returning to sitting.

Participants were given time to acclimate to the exoskele-
ton assistance and find their preferred %LOA while prac-
ticing over the circuit. During acclimation, each participant
traversed the circuit roughly five times in each direction and
walked on a treadmill for roughly a minute at speeds of
1m/s, 1.25m/s, and 0.75m/s until appropriate comfort with
the exoskeleton assistance was achieved. During the training
sessions, participants were allowed to use handrails, but
during the experiment the handrails were disallowed. During
data collection, participants began each circuit seated and
alternated traversing the circuit in CW or CCW directions at
a self-selected speed for a total of ten times in each direction.
Participants were then asked to walk on an instrumented
treadmill (Bertec, Columbus, OH) for two minutes at each
of three speeds: 1 m/s, 1.25 m/s, and 0.75 m/s.

Control performance was validated using the control
torque (Nm) desired at the ankle and not the output ankle
torque (Nm) calculated with motor current, as the intent was
to validate the controller and not the hardware. The low
mean (µ) and maximum (max) root-mean squared error for
control torque compared to output torque for steady-state
strides indicates that error in output torque did not have a
significant impact the user’s gait (AB1: µ = 0.76, max = 3.66
Nm; AB2: µ = 1.11, max = 3.28 Nm; AB3: µ = 0.97, max =
2.40 Nm). The control torque was saved with each iteration
of the control loop updating at 250Hz. Each participants’
stance strides were parsed heel-strike to toe-off using the
FSR and the left and right strides for each participant for each
task were averaged together. The task performed during each
stride was identified using a video recording of each trial.

The experimental average steady-state strides are com-
pared to steady-state strides from the normative dataset [24].
The strides after the participant reached steady-state were
used for each treadmill speed. Due to hardware error, the
treadmill strides for s1 at speeds of 1.25 and 0.75 m/s were
collected only for the left exoskeleton for a duration of four
minutes at each speed to obtain a comparable number of
strides. We used the only stair stride occurring heel-strike to
heel-strike on the steps as the representative steady-state stair
ascent and descent stride. The number of steady-state strides
on the ramp depended on each participant’s stride length. We

defined the steady-state ramp strides as those excluding the
first two heel-strikes on the ramp as being transition strides.
This definition ensured that each participant achieved at least
one steady-state stride on the ramp. The normative data used
for comparison were collected at corresponding treadmill
speeds and stair step height with the exception of ramp tasks.
The normative ramp incline for comparison is 12.4◦, which
is the closest available comparison in the normative dataset.
Stand-to-sit strides were parsed beginning when participants
returned to standing in front of the stool and ending when
the controller state machine detected a toe-off event (i.e.,
participant bodyweight offloaded onto the stool).

Although not explicitly trained into the controller, the
transition strides between walking and ramp or stairs are also
compared to the normative dataset. The s1 stride is defined
by the stance leg while the contralateral leg is transitioning
between walking and ramp or stairs. The R2W and S2W
strides are defined by the stance leg while the contralateral
leg is transitioning ramp to walking or stairs to walking,
respectively.

TABLE I
PUSH-OFF PEAK COMPARISON

Task Experimental Normative
(Fig. 5) Phase Magnitude Phase Magnitude

% Stance Nm/kg % Stance Nm/kg

0.75 m/s 78.7% 1.4 75.7% 1.2
1 m/s 78.1% 1.7 76.6% 1.4

1.25m/s 79.4% 1.7 77.8% 1.5
14.1◦ D 75.0% 1.7 76.7% 1.09
14.1◦ I 76.5% 1.8 78.1% 1.7
7 in SD 74.6% 1.8 76.2% 1.0
7 in SA 78.1% 1.3 79.7% 1.3

s1 D 76.7% 1.9 83.3% 1.4
s1 I 87.5% 1.7 78.1% 1.8

s1 SD 77.8% 1.9 77.8% 1.8
s1 SA 79.7% 1.5 78.1% 1.8

R2W D 83.3% 1.9 78.3% 1.3
R2W I 76.6% 2.0 75.0% 1.6

S2W SD 74.6% 1.9 74.6% 1.6
S2W SA 78.1% 1.3 75.0% 1.7

V. EXPERIMENTAL RESULTS

Experimental and normative push-off peak phase are very
similar across all tasks, while magnitude notably overshoots
for some tasks (Tab. I). Torque profiles for steady-state
walking at each speed align closely with normative, though
the peak is consistently higher (Fig. 5.A,B,C). The push-
off torque peaks for ramp and stair descent are higher than
normative with high variance between subjects during late
stance (Fig. 5.E,G). The push-off torque peaks for ramp and
stair ascent align closely with normative, though the loading
response torque peaks are higher than normative. Steady-
state ramp and stair tasks have high variance across subjects.
During stand-to-sit the controller applies larger plantarflexion
torques (peak ∼ 0.70 Nm/kg) compared to normative (peak
∼ 0.27 Nm/kg), and there is high variance across subjects.

Considering activity transitions, the s1 strides for ramp
incline and stair decline have comparable torque peak mag-
nitude and torque peak timing. The s1 stride for ramp decline
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Fig. 5. Participant average stride (solid line) and inter-participant experimental standard deviation (shaded region) vs. normative average subject
(solid line) and inter-subject normative standard deviation (shaded region) for the N=12 subjects used in the optimization [24]. Steady-state average strides
presented for level walking (L), ramp decline (D), ramp incline (I), stair descent (SD), stair ascent (SA). Stride s1 is defined by the stance leg while the
contralateral leg transitions from walking to ramp or walking to stairs. Strides R2W and S2W are defined by the stance leg while the contralateral leg
transitions from ramp to walking or stairs to walking, respectively. Stand-to-sit (STS) normative comparison is a single average stride from [27].

has a higher magnitude and is phase-shifted ahead of the
normative peak while the s1 stride for stair ascent has
a smaller magnitude than normative. The R2W and S2W
strides have consistently higher magnitude loading response
torque peaks compared to normative across tasks. The R2W
and S2W torque peak magnitudes are comparable for ramp
incline, stair descent, and stair ascent while the torque peak
magnitude for ramp descent is higher than normative.

VI. DISCUSSION

As the most frequent ADL, walking was prioritized with a
higher weight in the optimization, and the walking tasks had
the best performance across participants. Human-in-the-loop
optimization minimizing metabolic cost of gait has resulted
in steadily increasing peak torque magnitudes [11], indicat-
ing that higher magnitudes compared to normative would
benefit the user for walking tasks. The controller torque
peak phase lag from normative would also likely benefit the
user, as previous studies have shown that metabolic cost is
minimized with peaks between 79% and 85% of stance [11],
[12]. Though this is a large range of optimized values, all
occur after the normative torque peak.

Though the stand-to-sit torque is mismatched from norma-
tive, study participants commented either not recognizing the
torque mismatch or not noticing additional assistance com-
pared to the average ∼ 0.33 Nm/kg supportive plantarflexion
torque applied during standing. The high variance between
subjects during stand-to-sit could be the result of participants
not loading each leg evenly with each repetition.

In ramp and stair tasks, the controller correctly applied
torque peaks at the end of loading response and push-off.
Several factors could have influenced the high variance for
steady-state ramp and stair tasks. Though participants were
asked to be consistent across repetitions, stride length and
speed were not enforced across subjects. Further, humans
have highly variable techniques for climbing stairs (e.g., only
making stair contact with the toes or planting the full foot on
the step), and the normative data used for comparison may
not capture the participants’ individual kinematics.

The controller also performed reasonably well for tran-
sition strides between walking and ramp or stairs. The
controller accurately approximates the torque profiles for s1
strides closely to those for walking and R2W strides closely
to those for ramp. However, the controller approximates
S2W strides closely to those for stair tasks while normative
more closely resembles walking kinetics. It is unclear why
normative more closely resembles walking, as S2W is the last
stance stride to occur on the stairs. Despite the discrepancy
in the magnitude of the loading response torque peak, the
higher magnitude push-off torque peak is approximately
aligned with normative for S2W strides. These preliminary
results suggest that the task-invariant controller optimized
on steady-state strides can approximate biomimetic torque
for transitions between tasks without task classification.

This proof-of-concept study shows promising results for
approximating biomimetic torque with limited sensor in-
puts, though there is high variation between the small
number of study participants. Humans have variable gait



kinematics, with large standard deviations for normative
average strides (Fig. 5). It is not reasonable to expect a
non-personalized task-invariant controller to perfectly match
each user’s kinematics. Further, it is not guaranteed that the
average normative kinematics presented for comparison in
Fig. 5 are representative of the three participants included
in this study. However, the experimental results indicate the
task-invariant controller can approximate biomimetic torque
across tasks. A larger sample size would be required to
make firm conclusions about the ability of the controller to
generalize to the population.

As the controller depends only on orientation and vGRF ,
the control behavior is consistent for each user’s kinematics
and there is no risk of unexpected torque due to misclassi-
fication of state or task. Adaptation to static torque profiles
yields similar benefits to personalized assistance profiles after
several hours of training [11]. Thus, despite some variance
in magnitudes of torque assistance across tasks compared to
normative, it is likely that human adaptation would allow the
user to maximize assistance from this controller.

VII. CONCLUSION

In this paper, we extended the optimal task-invariant
energy shaping control approach to a single-joint ankle
exoskeleton. This controller used optimized control param-
eters for intuitively chosen basis functions to approximate
biomimetic torque profiles for walking, ramp, and stairs
in simulation. Though the control framework is capable
of producing both dorsiflexion and plantarflexion torques,
the commercially available ankle exoskeleton only applies
plantarflexion torques, so we restricted the controller ac-
cordingly. A proof of concept experiment with N=3 able-
bodied subjects indicated that the controller continues to
approximate biomimetic torque profiles across tasks in real
hardware, and additionally handles task transitions which
were outside the training set.
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