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A motivation: comparing two samples

Given: Samples from unknown distributions P and Q .
Goal: do P and Q differ?
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A real-life example: two-sample tests

Have: Two collections of samples X;Y from unknown distributions
P and Q .
Goal: do P and Q differ?

MNIST samples Samples from a GAN

Significant difference in GAN and MNIST?
T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, Xi Chen, NeurIPS 2016
Sutherland, Tung, Strathmann, De, Ramdas, Smola, G., ICLR 2017.
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Training implicit generative models

Have: One collection of samples X from unknown distribution P .
Goal: generate samples Q that look like P

LSUN bedroom samples P Generated Q , MMD GAN

Using a critic D(P ; Q) to train a GAN
(Binkowski, Sutherland, Arbel, G., ICLR 2018)̄,
(Arbel, Sutherland, Binkowski, G., NeurIPS 2018)̄
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Training generative models
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Testing goodness of fit

Given: A model P and samples and Q .
Goal: is P a good fit for Q?

Chicago crime data

Model is Gaussian mix-
ture with two compo-
nents. Is this a good
model?
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Testing statistical dependence

Given: Samples from a distribution PXY

Goal: Are X and Y independent?

Their	noses	guide	them	
through	life,	and	they're	
never	happier	than	when	
following	an	interesting	scent.	

A	large	animal	who	slings	slobber,	
exudes	a	distinctive	houndy odor,	
and	wants	nothing	more	than	to	
follow	his	nose.	

Text	from	dogtime.com and	petfinder.com

A responsive,		interactive	
pet,	one	that	will	blow	in	
your	ear	and	follow	you	
everywhere.

YX
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Outline

Measures of distance between distributions...
• Difference in feature means
• Integral probability metrics (not just a technicality!)

Statistical testing to compare samples from P and Q

GAN critic design (if time)
• Gradient regularisation and data adaptivity
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Differences in distributions
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Feature mean difference

Simple example: 2 Gaussians with different means

Answer: t-test
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Feature mean difference

Two Gaussians with same means, different variance

Idea: look at difference in means of features of the RVs

In Gaussian case: second order features of form '(x ) = x 2
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Feature mean difference

Gaussian and Laplace distributions
Same mean and same variance
Difference in means using higher order features...RKHS
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Infinitely many features using kernels

Kernels: dot products
of features

Feature map '(x ) 2 F ,

'(x ) = [: : : 'i (x ) : : :] 2 `2

For positive definite k ,

k(x ; x 0) = h'(x ); '(x 0)iF

Infinitely many features
'(x ), dot product in
closed form!
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Infinitely many features using kernels

Kernels: dot products
of features

Feature map '(x ) 2 F ,

'(x ) = [: : : 'i (x ) : : :] 2 `2

For positive definite k ,

k(x ; x 0) = h'(x ); '(x 0)iF

Infinitely many features
'(x ), dot product in
closed form!

Exponentiated quadratic kernel

k(x ; x 0) = exp
�
� kx � x 0k2

�

Features: Gaussian Processes for Machine learning, Ras-
mussen and Williams, Ch. 4. 13/75



Infinitely many features of distributions

Given P a Borel probability measure on X , define feature map of
probability P ,

�P = [: : :EP ['i (X )] : : :]

For positive definite k(x ; x 0),

h�P ; �QiF = EP ;Qk(x ; y)

for x � P and y � Q .

Fine print: feature map '(x) must be Bochner integrable for all probability measures considered.
Always true if kernel bounded.
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The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature
means:

MMD2(P ;Q) = k�P � �Qk2F
= h�P ; �P iF + h�Q ; �QiF � 2 h�P ; �QiF
= EPk(X ;X 0)| {z }

(a)

+ EQk(Y ;Y 0)| {z }
(a)

� 2EP ;Qk(X ;Y )| {z }
(b)
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The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature
means:

MMD2(P ;Q) = k�P � �Qk2F
= h�P ; �P iF + h�Q ; �QiF � 2 h�P ; �QiF
= EPk(X ;X 0)| {z }

(a)

+ EQk(Y ;Y 0)| {z }
(a)

� 2EP ;Qk(X ;Y )| {z }
(b)

(a)= within distrib. similarity, (b)= cross-distrib. similarity.
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Illustration of MMD

Dogs (= P) and fish (= Q) example revisited
Each entry is one of k(dogi ;dogj ), k(dogi ;fishj ), or k(fishi ;fishj )
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Illustration of MMD
The maximum mean discrepancy:

\MMD
2
=

1
n(n � 1)

X
i 6=j

k(dogi ;dogj ) +
1

n(n � 1)

X
i 6=j

k(fishi ;fishj )

�

2
n2

X
i ;j

k(dogi ;fishj )
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Integral probability metrics

Are P and Q different?
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Integral probability metrics
Integral probability metric:
Find a "well behaved function" f (x ) to maximize

EP f (X )�EQ f (Y )
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MMD as an integral probability metric
Integral probability metric:
Find a "well behaved function" f (x ) to maximize

EP f (X )�EQ f (Y )
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MMD as an integral probability metric
What if the function is not well behaved?

EP f (X )�EQ f (Y )
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MMD as an integral probability metric
Maximum mean discrepancy: smooth function for P vs Q

MMD(P ;Q ;F ) := sup
kf k�1

[EP f (X )�EQ f (Y )]

(F = unit ball in RKHS F)
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Functions are linear combinations of features:

kf k2F :=
P1

i=1 fi 2 � 1
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MMD as an integral probability metric
Maximum mean discrepancy: smooth function for P vs Q

MMD(P ;Q ;F ) := sup
kf k�1

[EP f (X )�EQ f (Y )]

(F = unit ball in RKHS F)

Expectations of functions are linear combinations
of expected features

EP (f (X )) = hf ;EP'(X )iF = hf ; �P iF

(always true if kernel is bounded)

24/75



Integral prob. metric vs feature difference

The MMD:

MMD(P ;Q ;F )

= sup
f 2F

[EP f (X )�EQ f (Y )]
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Integral prob. metric vs feature difference

The MMD:

MMD(P ;Q ;F )

= sup
f 2F

[EP f (X )�EQ f (Y )]

= sup
f 2F

hf ; �P � �QiF

use

EP f (X ) = h�P ; f iF
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Integral prob. metric vs feature difference

The MMD:

MMD(P ;Q ;F )

= sup
f 2F

[EP f (X )�EQ f (Y )]

= sup
f 2F

hf ; �P � �QiF
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Integral prob. metric vs feature difference

The MMD:

MMD(P ;Q ;F )

= sup
f 2F

[EP f (X )�EQ f (Y )]

= sup
f 2F

hf ; �P � �QiF
= k�P � �Qk

Function view and feature view equivalent
(kernel case only)
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Construction of MMD witness
Construction of empirical witness function (proof: next slide!)

Observe X = fx1; : : : ; xng � P

Observe Y = fy1; : : : ; yng � Q

26/75



Construction of MMD witness
Construction of empirical witness function (proof: next slide!)

26/75



Construction of MMD witness
Construction of empirical witness function (proof: next slide!)

v

26/75



Construction of MMD witness
Construction of empirical witness function (proof: next slide!)

v
witness(v)| {z }
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Derivation of empirical witness function
Recall the witness function expression

f � / �P � �Q
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Derivation of empirical witness function
Recall the witness function expression

f � / �P � �Q

The empirical feature mean for P

b�P :=
1
n

nX
i=1

'(xi )

The empirical witness function at v

f �(v) = hf �; '(v)iF
/ hb�P � b�Q ; '(v)iF
=

1
n

nX
i=1

k(xi ; v)� 1
n

nX
i=1

k(yi ; v)

Don’t need explicit feature coefficients f � :=
h

f �1 f �2 : : :
i
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Interlude: divergence measures
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Divergences
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Divergences
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Divergences
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Divergences
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Divergences

Sriperumbudur, Fukumizu, G, Schoelkopf, Lanckriet (2012)
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Two-Sample Testing with MMD
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A statistical test using MMD
The empirical MMD:

\MMD
2
=

1
n(n � 1)

X
i 6=j

k(xi ; xj ) +
1

n(n � 1)

X
i 6=j

k(yi ; yj )

�

2
n2

X
i ;j

k(xi ; yj )

How does this help decide whether P = Q?

Perspective from statistical hypothesis testing:

Null hypothesis H0 when P = Q
• should see\MMD

2
“close to zero”.

Alternative hypothesis H1 when P 6= Q
• should see\MMD

2
“far from zero”

Want Threshold c� for\MMD
2
to get false positive rate �
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Behaviour of\MMD
2
when P 6= Q

Draw n = 200 i.i.d samples from P and Q

Laplace with different y-variance.
p

n �\MMD
2
= 1:2
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Behaviour of\MMD
2
when P 6= Q

Draw n = 200 new samples from P and Q

Laplace with different y-variance.
p

n �\MMD
2
= 1:5
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Behaviour of\MMD
2
when P 6= Q

Repeat this 150 times : : :
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Behaviour of\MMD
2
when P 6= Q

Repeat this 3000 times : : :
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Asymptotics of\MMD
2
when P 6= Q

When P 6= Q , statistic is asymptotically normal,

\MMD
2 �MMD(P ;Q)p
Vn(P ;Q)

D�! N (0; 1);

where variance Vn(P ;Q) = O
�
n�1

�
.
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Behaviour of\MMD
2
when P = Q

What happens when P and Q are the same?
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Behaviour of\MMD
2
when P = Q

Case of P = Q = N (0; 1)
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Asymptotics of\MMD
2
when P = Q

Where P = Q , statistic has asymptotic distribution

n\MMD
2 �

1X
l=1

�l

h
z 2
l � 2

i

-2 0 2 4 6

0
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0.4
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where

�i i (x 0) =
Z
X

~k(x ; x 0)| {z }
centred

 i (x )dP(x )

zl � N (0; 2) i:i:d:
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A statistical test

A summary of the asymptotics:
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A statistical test
Test construction: (G., Borgwardt, Rasch, Schoelkopf, and Smola, JMLR 2012)
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How do we get test threshold c�?
Original empirical MMD for dogs and fish:

\MMD
2
=

1
n(n � 1)

X
i 6=j

k(xi ; xj )

+
1

n(n � 1)

X
i 6=j

k(yi ; yj )

�

2
n2

X
i ;j

k(xi ; yj )

k(xi, yj)k(xi, xj)

k(yi, yj)
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How do we get test threshold c�?
Permuted dog and fish samples (merdogs):
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How do we get test threshold c�?
Permuted dog and fish samples (merdogs):

\MMD
2
=

1
n(n � 1)

X
i 6=j

k(~xi ; ~xj )

+
1

n(n � 1)

X
i 6=j

k(~yi ;~yj )

�

2
n2

X
i ;j

k(~xi ;~yj )

Permutation simulates
P = Q

k(x̃i, ỹj)k(x̃i, x̃j)

k(ỹi, ỹj)
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Application: GAN quality evaluation
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Maximising test power: graphical illustration

Maximising test power same as minimizing false negatives
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The ARD kernel

49/75



Troubleshooting for generative adversarial networks

MNIST samples Samples from a GAN

ARD map

Power for optimzed ARD
kernel: 1.00 at � = 0:01

Power for optimized RBF
kernel: 0.57 at � = 0:01
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Troubleshooting generative adversarial networks
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Training Generative Adversarial
Networks
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Reminder: GAN setting
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What I won’t cover: the generator
Under review as a conference paper at ICLR 2016

Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribu-
tion Z is projected to a small spatial extent convolutional representation with many feature maps.
A series of four fractionally-strided convolutions (in some recent papers, these are wrongly called
deconvolutions) then convert this high level representation into a 64 ⇥ 64 pixel image. Notably, no
fully connected or pooling layers are used.

suggested value of 0.9 resulted in training oscillation and instability while reducing it to 0.5 helped
stabilize training.

4.1 LSUN

As visual quality of samples from generative image models has improved, concerns of over-fitting
and memorization of training samples have risen. To demonstrate how our model scales with more
data and higher resolution generation, we train a model on the LSUN bedrooms dataset containing
a little over 3 million training examples. Recent analysis has shown that there is a direct link be-
tween how fast models learn and their generalization performance (Hardt et al., 2015). We show
samples from one epoch of training (Fig.2), mimicking online learning, in addition to samples after
convergence (Fig.3), as an opportunity to demonstrate that our model is not producing high quality
samples via simply overfitting/memorizing training examples. No data augmentation was applied to
the images.

4.1.1 DEDUPLICATION

To further decrease the likelihood of the generator memorizing input examples (Fig.2) we perform a
simple image de-duplication process. We fit a 3072-128-3072 de-noising dropout regularized RELU
autoencoder on 32x32 downsampled center-crops of training examples. The resulting code layer
activations are then binarized via thresholding the ReLU activation which has been shown to be an
effective information preserving technique (Srivastava et al., 2014) and provides a convenient form
of semantic-hashing, allowing for linear time de-duplication . Visual inspection of hash collisions
showed high precision with an estimated false positive rate of less than 1 in 100. Additionally, the
technique detected and removed approximately 275,000 near duplicates, suggesting a high recall.

4.2 FACES

We scraped images containing human faces from random web image queries of peoples names. The
people names were acquired from dbpedia, with a criterion that they were born in the modern era.
This dataset has 3M images from 10K people. We run an OpenCV face detector on these images,
keeping the detections that are sufficiently high resolution, which gives us approximately 350,000
face boxes. We use these face boxes for training. No data augmentation was applied to the images.

4

Radford, Metz, Chintala, ICLR 2016
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Choices of critic

Sriperumbudur, Fukumizu, G, Schoelkopf, Lanckriet (2012)
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MMD as critic
A helpful critic witness:
MMD(P ;Q) = supkf kF�1 EP f (X )� EQ f (Y ).

MMD=1.8
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MMD as critic
A helpful critic witness:
MMD(P ;Q) = supkf kF�1 EP f (X )� EQ f (Y )

MMD=1.1
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MMD as critic

An unhelpful critic witness:
MMD(P ;Q) with a narrow kernel.

MMD=0.64
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MMD for GAN critic
Can you use MMD as a critic to train GANs?
From ICML 2015:

From UAI 2015:
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MMD for GAN critic

Can you use MMD as a critic to train GANs?

Need better image features.
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CNN features for an MMD witness

Add convolutional features!
The critic (teacher) also needs to be trained.

K(x ; y) = h >(x )h (y)

where h (x ) is a CNN map:
Wasserstein GAN Arjovsky et al.
[ICML 2017]

WGAN-GP Gulrajani et al.
[NeurIPS 2017]

K(x ; y) = k(h (x ); h (y))

where h (x ) is a CNN map,
k is e.g. an exponentiated quadratic
kernel
MMD Li et al., [NeurIPS 2017]
Cramer Bellemare et al. [2017]
Coulomb Unterthiner et al., [ICLR 2018]
Demystifying MMD GANs Binkowski,
Sutherland, Arbel, G., [ICLR 2018]
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Witness function, kernels on deep features
Reminder: witness function,
k(x ; y) is exponentiated quadratic
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Witness function, kernels on deep features
Reminder: witness function,
k(h (x ); h (y)) with neural network h and exp. quadratic k

59/75



Challenges for learned critic features

Learned critic features:
MMD with kernel k(h (x ); h (y)) must give useful gradient to
generator.

Relation with test power?
If the MMD with kernel k(h (x ); h (y)) gives a powerful test, will it
be a good critic?
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A simple 2-D example

Samples from target P and model Q

target
model
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A simple 2-D example

Witness gradient, MMD with exp. quad. kernel k(x ; y)

MMD Gaussian

target
model
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A simple 2-D example

What the kernels k(x ; y) look like

MMD Gaussian
target
model
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A simple 2-D example

Witness gradient, maximise MMD to learn h (x ) for k(h (x ); h (y))

MMDGAN (no GP)

target
model

(4 layer, fully connected, RELU, skipthrough 1-4, early stage)
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A simple 2-D example
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A data-adaptive gradient penalty
New gradient regulariser Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
Also related to Sobolev GAN Mroueh et al. [ICLR 2018]

On gradient regularizers for MMD GANs

Michael Arbel
Gatsby Computational Neuroscience Unit

University College London
michael.n.arbel@gmail.com

Dougal J. Sutherland
Gatsby Computational Neuroscience Unit

University College London
dougal@gmail.com

Mikołaj Bińkowski
Department of Mathematics

Imperial College London
mikbinkowski@gmail.com

Arthur Gretton
Gatsby Computational Neuroscience Unit

University College London
arthur.gretton@gmail.com

Abstract

We propose a principled method for gradient-based regularization of the critic of
GAN-like models trained by adversarially optimizing the kernel of a Maximum
Mean Discrepancy (MMD). We show that controlling the gradient of the critic
is vital to having a sensible loss function, and devise a method to enforce exact,
analytical gradient constraints at no additional cost compared to existing approxi-
mate techniques based on additive regularizers. The new loss function is provably
continuous, and experiments show that it stabilizes and accelerates training, giving
image generation models that outperform state-of-the art methods on 160 ⇥ 160
CelebA and 64 ⇥ 64 unconditional ImageNet.

1 Introduction

There has been an explosion of interest in implicit generative models (IGMs) over the last few years,
especially after the introduction of generative adversarial networks (GANs) [16]. These models
allow approximate samples from a complex high-dimensional target distribution P, using a model
distribution Q✓, where estimation of likelihoods, exact inference, and so on are not tractable. GAN-
type IGMs have yielded very impressive empirical results, particularly for image generation, far
beyond the quality of samples seen from most earlier generative models [e.g. 18, 21, 22, 23, 37].

These excellent results, however, have depended on adding a variety of methods of regularization and
other tricks to stabilize the notoriously difficult optimization problem of GANs [37, 41]. Some of
this difficulty is perhaps because when a GAN is viewed as minimizing a discrepancy DGAN(P, Q✓),
its gradient r✓ DGAN(P, Q✓) does not provide useful signal to the generator if the target and model
distributions are not absolutely continuous, as is nearly always the case [2].

An alternative set of losses are the integral probability metrics (IPMs) [35], which can give credit to
models Q✓ “near” to the target distribution P [3, 8, Section 4 of 15]. IPMs are defined in terms of a
critic function: a “well behaved” function with large amplitude where P and Q✓ differ most. The IPM
is the difference in the expected critic under P and Q✓, and is zero when the distributions agree. The
Wasserstein IPMs, whose critics are made smooth via a Lipschitz constraint, have been particularly
successful in IGMs [3, 14, 18]. But the Lipschitz constraint must hold uniformly, which can be hard
to enforce. A popular approximation has been to apply a gradient constraint only in expectation [18]:
the critic’s gradient norm is constrained to be small on points chosen uniformly between P and Q.

Another class of IPMs used as IGM losses are the Maximum Mean Discrepancies (MMDs) [17],
as in [13, 27]. Here the critic function is a member of a reproducing kernel Hilbert space (except
in [49], who learn a deep approximation to an RKHS critic). Better performance can be obtained,

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.
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A data-adaptive gradient penalty

New gradient regulariser Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]

Also related to Sobolev GAN Mroueh et al. [ICLR 2018]

Maximise scaled MMD over critic features:

SMMD(P ; �) = �P ;� MMD

where

�2P ;� = �+

Z
k(h (x ); h (x ))dP(x )+

dX
i=1

Z
@i@i+dk(h (x ); h (x )) dP(x )
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Simple 2-D example revisited

Samples from target P and model Q

target
model
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Simple 2-D example revisited

Witness gradient, maximise SMMD(P ; �)
to learn h (x ) for k(h (x ); h (y))

SMMDGAN (target)

target
model

(early stage of critic optimisation)
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Witness gradient, maximise SMMD(P ; �)
to learn h (x ) for k(h (x ); h (y))

SMMDGAN (target)

target
model

(late stage of critic optimisation)
63/75



Simple 2-D example revisited

What the kenels k(h (x ); h (y)) look like

SMMDGAN (target)

target
model

(late stage of critic optimisation)
63/75



Our empirical observations

Data-adaptive critic loss:

Witness function class for SMMD(P ; �) depends on P .
• Without data-dependent regularisation, maximising MMD over

features h of kernel k(h (x ); h (y)) is unhelpful.

Alternate critic and generator training:

Weaker critics can give better signals to poor (early stage) generators.
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Evaluation and experiments
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Benchmarks for comparison (all from ICLR 2018)
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Results: celebrity faces 160�160

KID scores:

Sobolev GAN:
14

SN-GAN:
18

Old MMD
GAN:
13

SMMD GAN:
6

202 599 face images, re-
sized and cropped to 160
� 160
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Results: unconditional imagenet 64�64

KID scores:

BGAN:
47

SN-GAN:
44

SMMD GAN:
35

ILSVRC2012 (ImageNet)
dataset, 1 281 167 images,
resized to 64 × 64. 1000
classes.
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Summary
MMD critic gives state-of-the-art performance for GAN training
(FID and KID)

• use convolutional input features
• train with new gradient regulariser

Faster training, simpler critic network
Reasons for good performance:

• Unlike WGAN-GP, MMD loss still a valid critic when features not
optimal

• Kernel features do some of the “work”, so simpler h features possible.
• Better gradient/feature regulariser gives better critic

“Demystifying MMD GANs,” including KID score, ICLR 2018:
https://github.com/mbinkowski/MMD-GAN

Gradient regularised MMD, NeurIPS 2018:
https://github.com/MichaelArbel/Scaled-MMD-GAN
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Questions?
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D(P ;Q ; t ) = EQ f t (Y )�EP f t (X )

=  t�t

Mescheder et al. [ICML 2018]
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Optimization: simple example
Gradient descent on generator:

@

@�
D(P ;Q ; t ) =

@

@�
 t�t =  t

�t+1 = �t �  @
@�

D(P ;Q ; t ) = �t �  t

for stepsize 
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Optimization: simple example
Gradient ascent on critic:

@

@ 
D(P ;Q ; t ) = �t+1

 t+1 =  t + �
@

@ 
D(P ;Q ; t ) =  t + ��t+1

for stepsize �
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Optimization: simple example
Idealised continuous system (infinitely small learning rate)"

_�
_ 

#
=

"
�r D(P ;Q ; )

r�D(P ;Q ; )

#
Every integral curve ( (t); �(t)) of the gradient vector field satisfies
 2(t) + �2(t) = c for all t 2 [0;1).

✓
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Optimization: simple example
Idealised continuous system (infinitely small learning rate)"

_�
_ 

#
=

"
�r D(P ;Q ; )

r�D(P ;Q ; )

#
Every integral curve ( (t); �(t)) of the gradient vector field satisfies
 2(t) + �2(t) = c for all t 2 [0;1).

A solution: control witness gradient

Mescheder et al. [ICML 2018, Lemma 2.3] 74/75



D(P ;Q ; t ) = EQ f t (Y )�EP f t (X )

=  t�t

Mescheder et al. [ICML 2018]
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Convergence issues for WGAN-GP penalty
WGAN-GP style gradient penalty may not converge near solution
Nagarajan and Kolter [NeurIPS 2017], Mescheder et al. [ICML 2018], Balduzzi et al.
[ICML 2018]

Figure from Mescheder et al. [ICML 2018]
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