
VENUS: Vertex-Centric Streamlined Graph
Computation on a Single PC

Jiefeng Cheng1, Qin Liu2, Zhenguo Li1, Wei Fan1, John C.S. Lui2, Cheng He1

1Huawei Noah’s Ark Lab, Hong Kong
{cheng.jiefeng,li.zhenguo,david.fanwei,hecheng}@huawei.com

2The Chinese University of Hong Kong
{qliu,cslui}@cse.cuhk.edu.hk

Abstract—Recent studies show that disk-based graph compu-
tation on just a single PC can be as highly competitive as cluster-
based computing systems on large-scale problems. Inspired by
this remarkable progress, we develop VENUS, a disk-based graph
computation system which is able to handle billion-scale problems
efficiently on a commodity PC. VENUS adopts a novel computing
architecture that features vertex-centric “streamlined” processing
– the graph is sequentially loaded and the update functions
are executed in parallel on the fly. VENUS deliberately avoids
loading batch edge data by separating read-only structure data
from mutable vertex data on disk. Furthermore, it minimizes
random IOs by caching vertex data in main memory. The
streamlined processing is realized with efficient sequential scan
over massive structure data and fast feeding a large number
of update functions. Extensive evaluation on large real-world
and synthetic graphs has demonstrated the efficiency of VENUS.
For example, VENUS takes just 8 minutes with hard disk for
PageRank on the Twitter graph with 1.5 billion edges. In contrast,
Spark takes 8.1 minutes with 50 machines and 100 CPUs, and
GraphChi takes 13 minutes using fast SSD drive.

I. INTRODUCTION

We are living in a “big data” era due to the dramatic
advance made in the ability to collect and generate data from
various sensors, devices, and the Internet. Consider the Internet
data. The web pages indexed by Google were around one
million in 1998, but quickly reached one billion in 2000
and have already exceeded one trillion in 2008. Facebook
also achieved one billion users on October 4, 2012. It is
of great interest to process, analyze, store, and understand
these big datasets, in order to extract business value and
derive new business model. However, researchers are facing
significant challenges in processing these big datasets, due
to the difficulties in managing these data with our current
methodologies or data mining software tools.

Graph computing over distributed or single multi-core plat-
form has emerged as a new framework for big data analytics,
and it draws intensive interests recently [1], [2], [3], [4], [5],
[6], [7], [8], [9], [10], [11]. Notable systems include Pregel [1],
GraphLab [2], and GraphChi [3]. They use a vertex-centric
computation model, in which the user just needs to provide a
simple update function to the system that is executed for each
vertex in parallel [1], [2], [3]. These developments substantially
advance our ability to analyze large-scale graph data, which
cannot be efficiently handled by previous parallel abstractions
such as MapReduce [12] due to sparse computation dependen-
cies and iterative operations common in graph computation [3].

Distributed computing systems such as Spark [13],
Pregel [1], PEGASUS [5], and GraphLab [2] can handle
billion-scale graphs, but the cost of having and managing
a large cluster is prohibitory for most users. On the other
hand, disk-based single machine graph computing systems
such as GraphChi [3], X-Stream [14], and TurboGraph [15]
have shown great potential in big graph analytics. For example,
running the PageRank algorithm on a Twitter graph of 1.5
billion edges, Spark needs 8.1 minutes with 50 machines (100
CPUs) [16], while GraphChi only spends 13 minutes with just
a single MacMini of 8GB RAM and 256GB SSD drive; for
the belief propagation algorithm on a Web graph of 6.7 billion
edges, PEGASUS takes 22 minutes with 100 machines [5],
while GraphChi uses 27 minutes on a single PC. These results
suggest that disk-based graph computing on a single PC is not
only highly competitive even compared to parallel processing
over large clusters, but it is very affordable also.

In general, graph computation is performed by iteratively
executing a large number of update functions. The disk-based
approach organizes the graph data into a number of shards
on disk, so that each shard can fit in the main memory. Each
shard contains all needed information for computing updates
of a number of vertices. One iteration will execute all shards.
A central issue is how to manage the computing states of
all shards to guarantee the correctness of processing, which
includes loading graph data from disk to main memory, and
synchronizing intermediate results to disk so that the latest
updates are visible to subsequent computation. Therefore, there
is a huge amount of data to be accessed per iteration, which
can result in extensive IOs and become a bottleneck of the
disk-based approach. This generates great interests in new
architectures for efficient disk-based graph computation.

The seminal work for disk-based graph computation is
the GraphChi system [3]. GraphChi organizes a graph into
a number of shards and processes each shard in turn. To
execute a shard, the entire shard – its vertices and all of their
incoming and outgoing edges – must be loaded into memory
before processing. This constraint hinders the parallelism of
computation and IO. In addition, after the execution, the
updated vertex values need to be propagated to all the other
shards in disk, which results in extensive IOs. The TurboGraph
system [15] addresses these issues with a new computing
model, pin-and-sliding (PAS), and by using expensive SSD.
PAS aims to process incoming, partial graph data without de-
lay, but it is applicable only to certain embarrassingly parallel
algorithms. The X-Stream system [14] explores a different,

978-1-4799-7964-6/15/$31.00 © 2015 IEEE ICDE Conference 20151131

edge-centric processing (ECP) model. However, it is done by
writing the partial, intermediate results to disk for subsequent
processing, which doubles the sequential IOs while incurring
additional computation cost and data loading overhead. Since
the ECP model uses very different APIs from previous vertex-
centric based system, the user need to re-implement many
graph algorithms on ECP which causes high development
overhead. Moreover, certain important graph algorithms such
as community detection [17] cannot be implemented on the
ECP model (explained in Section IV-B).

In this work, we present VENUS, a disk-based graph com-
putation system that is able to handle billion-scale problems
very efficiently on a moderate PC. Our main contributions are
summarized as follows.

A novel computing model. VENUS supports vertex-centric
computation with streamlined processing. We propose a novel
graph storage scheme which allows to stream in the graph data
while performing computation. The streamlined processing can
exploit the large sequential bandwidth of a disk as much as
possible and parallelize computation and disk IO at the same
time. Particularly, the vertex values are cached in a buffer in
order to minimize random IOs, which is much more desirable
in disk-based graph computation where the cost of disk IO is
often a bottleneck. Our system also significantly reduces the
amount of data to be accessed, generates less shards than the
existing scheme [3], and effectively utilizes large main memory
with a provable performance guarantee.

Two new IO-friendly algorithms. We propose two IO-
friendly algorithms to support efficient streamlined processing.
In managing the computing states of all shards, the first
algorithm stores vertex values of each shard into different
files for fast retrieval during the execution. It is necessary to
update on all such files timely once the execution of each
shard is finished. The second algorithm applies merge-join to
construct all vertex values on the fly. Our two algorithms adapt
to memory scaling with less sharding overhead, and smoothly
turn into the in-memory mode when the main memory can
hold all vertex values.

A new analysis method. We analyze the performance of our
vertex-centric streamlined processing computation model and
other models, by measuring the amount of data transferred
between disk and main memory per iteration. We show that
VENUS reads (writes) significantly less amount of data from
(to) disk than other existing models including GraphChi. Based
on this measurement, we further find that the performance of
VENUS improves gradually as the available memory increases,
till an in-memory model is emerged where the least overhead is
achieved; in contrast, existing approaches just switch between
the in-memory model and the disk-based model, where the
performance can be radically different. The purpose of this
new analysis method is to clarify the essential factors for good
performance instead of a thorough comparison of different
systems. Moreover, it opens a new way to evaluate disk-based
systems theoretically.

Extensive experiments. We did extensive experiments using
both large-scale real-world graphs and large-scale synthetic
graphs to validate the performance of our approach. Our

the input graph
...

sharding

graph storage

offline preprocessing

online graph computing

big graph task buffer managementshard

execution

structure value

think-like-a-

vertex program

Fig. 1. The VENUS Architecture

experiments look into the key performance factors to all disk-
based systems including computational time, the effectiveness
of main memory utilization, the amount of data read and write,
and the number of shards. And we found that VENUS is up
to 3x faster than GraphChi and X-Stream, two state-of-the-art
disk-based systems.

The rest of the paper is organized as follows. Section II
gives an overview of our VENUS system, which includes a
disk-based architecture, graph organization and storage, and an
external computing model. Section III presents algorithms to
substantialize our processing pipeline. We extensively evaluate
VENUS in Section IV. Section V reviews more related work.
Section VI concludes the paper.

II. SYSTEM OVERVIEW

VENUS is based on a new disk-based graph computing
architecture, which supports a novel graph computing model:
vertex-centric streamlined processing (VSP) such that the
graph is sequentially loaded and the update functions are
executed in parallel on the fly. To support the VSP model,
we propose a graph storage scheme and an external graph
computing model that coordinates the graph computation and
with CPU, memory and disk access. By working together,
the system significantly reduces the amount of data to be
accessed, generates a smaller number of shards than the
existing scheme [3], and effectively utilizes large main memory
with provable performance guarantee.

A. Architecture Overview

The input is modeled as a directed graph G = (V,E),
where V is a set of vertices and E is a set of edges. Like
existing work [18], [19], the user can assign a mutable vertex
value to each vertex and define an arbitrary read-only edge
value on each edge. Note that this does not result in any loss of
expressiveness, since mutable data associated with edge (u, v)
can be stored in vertex u. Let (u, v) be a directed edge from
node u to node v. Node u is called an in-neighbor of v, and v
an out-neighbor of u. (u, v) is called an in-edge of v and an
out-edge of u, and u and v are called the source and destination
of edge (u, v) respectively.

Most graph tasks are iterative and vertex-centric in nature,
and any update of a vertex value in each iteration usually in-
volves only its in-neighbors’ values. Once a vertex is updated,

1132

the value table

the structure table

v-shard

shard shard shard

...

Fig. 2. Vertex-Centric Streamlined Processing

it will trigger the updates of its out-neighbors. This dynamic
continues until convergence or certain conditions are met. The
disk-based approach organizes the graph data into a number of
shards on disk, so that each shard can fit in the main memory.
Each shard contains all needed information for computing
updates of a number of vertices. One iteration will execute
all shards. Hence there is a huge amount of disk data to be
accessed per iteration, which may result in extensive IOs and
become a bottleneck of the disk-based approach. Therefore,
a disk-based graph computing system needs to manage the
storage and the use of memory and CPU in an intelligent way
to minimize the amount of disk data to be accessed.

VENUS, its architecture depicted in Fig. 1, makes use
of a novel management scheme of disk storage and the
main memory, in order to support vertex-centric streamlined
processing. VENUS decomposes each task into two stages: (1)
offline preprocessing and (2) online computing. The offline
preprocessing constructs the graph storage, while the online
computing manages the interaction between CPU, memory,
and disk.

B. Vertex-Centric Streamlined Processing

VENUS enables vertex-centric streamlined processing
(VSP) on our storage system, which is crucial in fast loading
of graph data and rapid parallel execution of update functions.
As we will show later, it has a superior performance with much
less data transfer overhead. Furthermore, it is more effective in
main memory utilization, as compared with other schemes. We
will elaborate on this in Section II-C. To support streamlined
processing, we propose a new graph sharding method, a new
graph storage scheme, and a novel external graph computing
model. Let us now provide a brief overview of our sharding,
storage, and external graph computing model.

Graph sharding. Suppose the graph is too big to fit in the
main memory. Then how it is organized on disk will affect
how it will be accessed and processed afterwards. VENUS
splits the vertices set V into P disjoint intervals. Each interval
defines a g-shard and a v-shard, as follows. The g-shard stores
all the edges (and the associated attributes) with destinations
in that interval. The v-shard contains all vertices in the g-
shard which includes the source and destination of each edge.
Edges in each g-shard are ordered by destination, where the
in-edges (and their associated read-only attributes) of a vertex
are stored consecutively as a structure record. There are |V |
structure records in total for the whole graph. The g-shard and

1

4

5

6

7

9

2

3

8

Fig. 3. Example Graph

the v-shard corresponding to the same vertex interval make
a full shard. To illustrate the concepts of shard, g-shard, and
v-shard, consider the graph as shown in Fig. 3. Suppose the
vertices are divided into three intervals: I1 = [1, 3], I2 = [4, 6],
and I3 = [7, 9]. Then, the resulting shards, including g-shards
and v-shards, are listed in Table I.

In practice, all g-shards are further concatenated to form the
structure table, i.e., a stream of structure records (Fig. 2). Such
a design allows executing vertex update on the fly, and is cru-
cial for VSP. Using this structure, we do not need to load the
whole subgraph of vertices in each interval before execution
as in GraphChi [3]. Observing that more shards usually incur
more IOs, VENUS aims to generate as few number of shards
as possible. To this end, a large interval is preferred provided
that the associated v-shard can be loaded completely into the
main memory, and there is no size constraint on the g-shard.
Once the vertex values of vertices in v-shard is loaded and
then held in the main memory, VENUS can readily execute
the update functions of all vertex with only “one sequential
scan” over the structure table of the g-shard. We will discuss
how to load and update vertex values for vertices in each v-
shard in Section III.

Graph storage. We propose a new graph storage that aims
to reduce the amount of data to be accessed. Recall that
the graph data consists of two parts, the read-only structure
records, called structure data, and the mutable vertex values,
called value data. We observe that in one complete iteration,
the entire structure data need to be scanned once and only
once, while the value data usually need to be accessed multiple
times as a vertex value is involved in each update of its out-
neighbors. This suggests us to organize the structure data as
consecutive pages, and it is separated from the value data. As
such, the access of the massive volume structure data can be
done highly efficiently with one sequential scan (sequential
IOs). Specifically, we employ an operating system file, called
the structure table which is optimized for sequential scan, to
store the structure data.

Note that the updates and repeated reads over the value
data can result in extensive random IOs. To cope with this,
VENUS deliberately avoids storing a significant amount of
structure data into main memory as compared with the existing

1133

TABLE I
SHARDING EXAMPLE: VENUS

Interval I1 = [1, 3] I2 = [4, 6] I3 = [7, 9]

v-shard I1 ∪ {4, 6, 8, 9} I2 ∪ {1, 2, 7, 9} I3 ∪ {1, 2, 5, 6}

g-shard 2,4,6,8 → 1 1,6,9 → 4 1,5,9 → 7
4,6,9 → 2 1,2,6,7 → 5 6,7,9 → 8

2,4 → 3 1,2,7,9 → 6 1,2 → 9

S(I) 4 1 1
6 2 2
8 7 5
9 9 6

TABLE II
SHARDING EXAMPLE: GRAPHCHI

Interval I1 = [1, 2] I2 = [3, 5] I3 = [6, 7] I4 = [8, 9]

Shard 2 → 1 1 → 4,5 1 → 6,7 1 → 9
4 → 1,2 2 → 3,5 2 → 6 2 → 9
6 → 1,2 4 → 3 5 → 7 6 → 8
8 → 1 6 → 4,5 7 → 6 7 → 8
9 → 2 7 → 5 5 → 6,7 9 → 8

9 → 4

system GraphChi [3] and instead caches value data in main
memory as much as possible. VENUS stores the value data
in a disk table, which we call the value table. The value
table is implemented as a number of consecutive disk pages,
containing the |V | fixed length value records, each per vertex.
For simplicity of presentation, we assume all value records
are arranged in ascending order (in terms of vertex ID). Our
key observation is that, for most graph algorithms, the mutable
value on a directed edge (u, v) can be computed based on the
mutable value of vertex u and the read-only attribute on edge
(u, v). Consequently, we can represent all mutable values of
the out-edges of vertex u by a fixed-length mutable value on
vertex u.

External computing model. Given the above description of
graph sharding and storage, we are ready to present our graph
computing model which processes the incoming stream of
structure records on the fly. Each incoming structure record
is passed for execution as the structure table is loaded se-
quentially. A higher execution manager is deployed to start
new threads to execute new structure records in parallel, when
possible. A structure record is removed from main memory
immediately after its execution, so as to make room for next
processing. On the other hand, the required vertex values of the
active shard are obtained based on v-shard, and are buffered
in main memory throughout the execution of that shard. As
a result, the repeated access of the same vertex value can be
done in the buffer even for multiple shards. We illustrate the
above computing process in Fig. 2.

We use the graph in Fig. 3 to illustrate and compare the
processing pipelines of VENUS and GraphChi. The sharding
structures of VENUS are shown in Table I, and those for
GraphChi are in Table II where the number of shards is
assumed to be 4 to reflect the fact that GraphChi usually uses
more shards than VENUS. To begin, VENUS first loads v-

TABLE III
NOTATIONS

Notation Definition

n,m n = |V |, m = |E|
gs(I) g-shard of interval I
vs(I) v-shard of interval I
S(I) {u 6∈ I|(u, v) ∈ gs(I)}
δ δ =

∑
I |S(I)|/m

P number of shards
M size of RAM
C size of a vertex value record
D size of one edge field within a structure record
B size of a disk block that requires unit IO to access it

shard of I1 into the main memory. Then we load the g-shard
in a streaming fashion from disk. As soon as we are done
loading the in-edges of vertex 1 (which include (2, 1), (4, 1),
(6, 1), and (8, 1)), we can perform the value update on vertex
1, and at the same time, we load the in-edges of vertices
2 and 3 in parallel. In contrast, to perform computation on
the first interval, GraphChi needs to load all related edges
(shaded edges in the table), which include all the in-edges and
out-edges for the interval. This means that for processing the
same interval, GraphChi requires more memory than VENUS.
So under the same memory constraint, GraphChi needs more
shards. More critically, because all in-edge and out-edges
must be loaded before computation starts, GraphChi cannot
parallelize IO operations and computations like VENUS.

C. Analysis

We now compare our proposed VSP model with two pop-
ular single-PC graph computing models: the parallel sliding
windows model (PSW) of GraphChi [3] and the edge-centric
processing model (ECP) of X-Stream [14]. Specifically, we
look at three evaluation criteria: 1) the amount of data trans-
ferred between disk and main memory per iteration; 2) the
number of shards; and 3) adaptation to large memory.

There are strong reasons to develop our analysis based
on the first criterion, i.e., the amount of data transfer: (i) it
is fundamental and applicable for various types of storage
systems, including magnetic disk or solid-state disk (SSD),
and various types of memory hierarchy including on-board
cache/RAM and RAM/disk; (ii) it can be used to derive
IO complexity as in Section III-C, which can be based on
accessing that certain amount of data with block device; and
(iii) it helps us to examine other criteria, including the number
of shards and large memory adaption. We summarize the
results in Table IV, and show the details of our analysis
below. Note that the second criterion is related closely to IO
complexity, and the third criterion examines the utilization of
memory.

For easy reference, we list the notation in Table III. For our
VSP model, V is split into P disjoint intervals. Each interval
I has a g-shard and a v-shard. A g-shard is defined as

gs(I) = {(u, v)|v ∈ I},

and a v-shard is defined as

vs(I) = {u|(u, v) ∈ gs(I) ∨ (v, u) ∈ gs(I)}.

1134

Note that vs(I) can be split into two disjoint sets I and S(I),
where S(I) = {u 6∈ I|(u, v) ∈ gs(I)}. We have∑

I

|S(I)| ≤
∑
I

|gs(I)| = m.

Let δ be a scalar such that∑
I

|S(I)| = δm, where 0 ≤ δ ≤ 1.

It can be seen that∑
I

|vs(I)| =
∑
I

|S(I)|+
∑
I

|I| = δm+ n.

Let C be the size of a vertex value record, and let D be the
size of one edge field within a structure record. We use B to
denote the size of a disk block that requires unit IO to access
it. According to [14], B equals to 16MB for hard disk and
1MB for SSD.

Data transfer. For each iteration, VENUS loads all g-shards
and v-shards from disk, which needs Dm and C(n+δm) data
read in total. When the computation is done, VENUS writes
v-shards back to disk which incurs Cn data write. Note that
g-shards are read-only.

Unlike VENUS where each vertex can access the values of
its neighbors through v-shard, GraphChi accesses such values
from the edges. So the data size of each edge is (C+D). For
each iteration, GraphChi processes one shard at a time. The
processing of each shard is split into three steps: (1) loading
a subgraph from disk; (2) updating the vertices and edges;
(3) writing the updated values to disk. In steps 1 and 3, each
vertex will be loaded and written once which incurs Cn data
read and write. For edges data, in the worst case, each edge is
accessed twice (once in each direction) in step 1 which incurs
2(C + D)m data read. If the computation updates edges in
both directions in step 2, the size of data write of edges in
step 3 is also 2(C +D)m. So the data read and write in total
are both Cn+ 2(C +D)m.

In the disk-based engine of X-Stream, one iteration is
divided into (1) merged scatter/shuffle phase and (2) gathering
phase. In phase 1, X-Stream loads all vertex value data and
edge data, and for each edge it writes an update to disk. Since
updates are used to propagate values passed from neighbors,
we suppose the size of an update is C. So for phase 1, the size
of read is Cn+Dm and the size of write is Cm. In phase 2,
X-Stream loads all updates and update each vertex, so the size
of data read is Cm and the size of write is Cn. So for one
full pass over the graph, the size of read is Cn+ (C +D)m
and the size of write is Cn+ Cm in total.

Number of shards. For interval I , VENUS only loads the
v-shard vs(I) into memory and the g-shard gs(I) is loaded in
a streaming fashion. So the number of shards is determined
by the total size of v-shards and we have P = C(n+δm)

M . In
contrast, GraphChi loads both vertex value data and edge data
for each interval, so the number of shards P in GraphChi is
Cn+2(C+D)m

M . In X-Stream, edges data are also loaded in a
streaming fashion, so the number of intervals is P = Cn

M .

We can see that the number of shards constructed in
VENUS is always smaller than that in GraphChi. In Section III,

we will show that the smaller of the number of shards, the
lower of IO complexity.

Adaptation to large memory. As analyzed above, for our
VSP model, the size of data needed to read in one iteration
is C(n+ δm) +Dm. So one way to improve performance is
to decrease δ. Here we show that δ does decrease as the size
of available memory increases, which implies that VENUS
can exploit the main memory effectively. Suppose the memory
size is M , and the vertex set V is split into P intervals
I1, I2, . . . , IP , where vs(Ii) ≤ M for i = 1, . . . , P . Then,
by definition, δm =

∑P
i=1 |S(Ii)|. Now, consider a larger

memory size M ′ such that M ′ ≥ |vs(I1)| + |vs(I2)| ≥ M .
Under the memory size M ′, we can merge interval I1 and
I2 into It, because |vs(It)| ≤ |vs(I1)| + |vs(I2)| ≤ M ′.
Suppose δ′m = |S(It)| +

∑P
i=3 |S(Ii)|. By the definition of

S(I), it can be shown that S(It) ⊆ S(I1) ∪ S(I2), and thus
|S(It)| ≤ |S(I1)|+ |S(I2)|. Therefore we have δ′ ≤ δ, which
means as M increases, δ becomes smaller. When M ≥ Cn,
we have P = 1 where δ = 0. In such a single shard case, the
data size of read reaches the lower bound Cn+Dm.

III. ALGORITHM

In this section, we discuss the full embodiment of our
vertex-centric streamlined processing model, to describe the
details of our graph storage design, the online computing
state management, and the main memory usage. It consists
of two IO-friendly algorithms with different flavor and IO
complexity in implementing the processing of Section II. Note
that the IO results here are consistent with the data transfer size
results in Section II because the results here are obtained with
optimization specialized for disk-based processing to transfer
the same amount of data. Since the computation is always
centered on an active shard, the online computing state mainly
consists of the v-shard values that belong to the active shard.

Our first algorithm materializes all v-shard values in each
shard, which supports fast retrieval during the online com-
puting. However, in-time view update on all such views is
necessary once the execution of each shard is finished. We
employ an efficient scheme to exploit the data locality in all
materialized views. And this scheme shares a similar spirit
with the parallel sliding window of [3], with quadratic IO
performance to P , namely the number of shards. In order
to avoid the overhead of view maintenance at run time, our
second algorithm applies “merge-join” to construct all v-
shard values on-the-fly, and updates the active shard only. The
second algorithm has an IO complexity linear to P . Finally,
as the RAM becomes large, the two algorithms adapt to the
memory scaling with less sharding overhead, and finally the
two algorithms automatically work in the in-memory mode to
seamlessly integrate the case when the main memory can hold
all vertex values.

A. Physical Design And The Basic Procedure

The tables. The value table is implemented as a number
of consecutive disk pages, containing |V | fixed-length value
records, each per vertex. For the ease of presentation, we
assume all value records are arranged in the ascending order
of their IDs in the table. For an arbitrary vertex v, the disk

1135

TABLE IV
COMPARISON OF DATA TRANSFERRED BETWEEN SINGLE-PC GRAPH COMPUTING SYSTEMS

category PSW ECP VSP

Data size (read) Cn+ 2(C +D)m Cn+ (C +D)m C(n+ δm) +Dm

Data size (write) Cn+ 2(C +D)m Cn+ Cm Cn

No. of shard Cn+2(C+D)m
M

Cn
M

C(n+δm)
M

Procedure ExecuteVertex(v, R(v), VB, I)
input : vertex v, structure record R(v), value buffer VB,

and interval I .
output: The updated record of v in the value table.

1 foreach s ∈ R(v) do
2 let Q be the b s

NB
c-th page of the value table;

3 if s ∈ I ∧Q 6∈ V B then
4 Pin Q into VB;
5 let val be the value record of v in the value table;
6 val ← UpdateVertex(R(v), VB);
7 return;

page containing its value record can be loaded in O(1) time.
Specifically, the number of the value records in one page, NB ,
is NB = bBC c, where B is the page size and C is the size of
the vertex value. Thus, the value record of v can be found at
the slot (v mod NB) in the b v

NB
c-th page.

Note that the edge attributes will not change during the
computation. We pack the in-edges of each vertex v and their
associated read-only attributes into a variable length structure
record, denoted as R(v), in the structure table. Each structure
record R(v) starts with the number of in-edges to vertex v,
followed by the list of source vertices of in-edges and the
read-only attributes. One structure record usually resides in
one disk page and can span multiple disk pages for vertices of
large degrees. Hence, there are |V | such records in total. As
an example, for the graph in Fig. 3, the structure record R(4)
of vertex 4 contains incoming vertices 1, 6, and 9 and their
attributes.

The basic procedure. In VENUS, there is a basic execution
procedure, namely, Procedure ExecuteVertex, which represents
the unit task that is being assigned and executed by multiple
cores in the computer. Moreover, Procedure ExecuteVertex also
serves as a common routine that all our algorithms are built
upon it, where the simplest one is the in-memory mode to be
explained below.

Procedure ExecuteVertex takes a vertex v ∈ I , the structure
record R(v), the value buffer VB (call-by-reference), and the
current interval I as its input. The value buffer VB maintains
all latest vertex values of v-shard vs(I) of interval I . In VB,
we use two data structures to store vertex values, i.e., a frame
table and a map. Note that vs(I) can be split into two disjoint
vertex sets I and S(I). The frame table maintains all pinned
value table pages of the vertices within interval I; the map
is a dictionary of vertex values for all vertices within S(I).
Therefore, VB supports the fast look-up of any vertex value of
the current v-shard vs(I). Procedure ExecuteVertex assumes
the map of VB already includes all vertex values for S(I).

Algorithm 1: Execute One Iteration with Views

1 let I be the first interval;
2 load view(I) into the map of VB;
3 foreach R(v) in the structure table do
4 if v 6∈ I then
5 foreach internal J 6= I do
6 view(J).UpdateActiveWindowToDisk();
7 unpin all pages and empty the map, in VB;
8 set I to be the next interval;
9 load view(I) into the map of VB;

10 ExecuteVertex(v,R(v),VB, I)
11 return;

How to realize this is addressed in Section III-B. Suppose
vertex s is an in-neighbor of v, if the value table page of s
has not been loaded into the frame table yet, we pin the value
table page of s at Line 4. After all required vertex values for
R(v) are loaded into memory, we execute the user-defined
function, UpdateVertex(), to update the value record of
v at Line 6. This may implicitly pin the value table page of v.
All pages will be kept in the frame table of VB for later use,
until an explicit call to unpin them.

Consider the graph in Fig. 3 and its sharding structures in
Table I. Suppose I = I1. For the value buffer VB, the frame
table contains value table pages of vertex 1, 2, and 3 in I1,
and the map contains vertex values of vertex 4, 6, 8, and 9 in
S(I1).

We can now explain our in-memory mode. It requires that
the entire value table be held in the main memory and hence
only one shard exists. In this mode, The system performs
sequential scan over the structure table from disk, and for
each structure record R(v) we encountered, an executing
thread starts Procedure ExecuteVertex for it on the fly. In
Procedure ExecuteVertex, note that I includes all vertices in
V and the map in VB is empty. Upon the end of each call of
Procedure ExecuteVertex, R(v) will be no longer needed and
be removed immediately from the main memory for space-
saving. So we stream the processing of all structure records in
an iteration. After an explicitly specified number of iterations
have been done or the computation has converged, we can
unpin all pages in VB and terminate the processing. To overlap
disk operations as much as possible, all disk accesses over
structure table and value table are done by concurrent threads,
and multiple executing threads are concurrently running to
execute all subgraphs.

B. Two Algorithms

When all vertex values cannot be held in main memory, the
capacity of VB is inadequate to buffer all value table pages.

1136

The in-memory mode described above cannot be directly
applied in this case, otherwise there will be seriously system
thrashing. Based on the discussion of Section II-B, we split V
into P disjoint intervals, such that the vertex values of each
v-shard can be buffered into main memory.

In this case, we organize the processing of a single shard
to be extendible in terms of multiple shards. The central issue
here is how to manage the computing states of all shards
to ensure the correctness of processing. This can be further
divided into two tasks that must be fulfilled in executing each
shard:

• constructing the map of VB so that the active shard
can be executed based on Procedure ExecuteVertex
according to the previous discussion;

• synchronizing intermediate results to disk so that the
latest updates are visible to any other shard to comply
with the asynchronous parallel processing [3].

Note that these two tasks are performed based on the v-shard
and the value table. In summary, the system still performs
sequential scan over the structure table from disk, and contin-
uously loads each structure record R(v) and executes it with
Procedure ExecuteVertex on the fly. Furthermore, the system
also monitors the start and the end of the active shard, which
triggers a call to finish the first and/or the second tasks. This
is the framework of our next two algorithms.

The algorithm using dynamical view. Our first algorithm
materializes all v-shard values as a view for each shard,
which is shown in Algorithm 1. Specifically, we associate each
interval I with view(I) which materializes all vertex values
of vertices in S(I). Thus the first task is to load this view into
the map of VB, which is done for Line 2 or Line 9. Then, at
the time when we finish the execution of an active shard and
before we proceed to the next shard, we need to update the
views of all other shards to reflect any changes of vertex values
that can be seen by any other shard (Line 5 to Line 6). To do
this efficiently, we exploit the data locality in all materialized
views.

Specifically, the value records of each view are ordered by
their vertex ID. So in every view, say the i-th view for the
i-th shard, all the value records for the j-th interval, i 6= j, are
stored consecutively. And more importantly, the value records
in the (j+1)-th interval are stored immediately after the value
records for the j-th. Therefore, similar to the parallel sliding
window of [3], when the active shard is shift from an interval
to the next, we can also maintain an active sliding window
over each of the views. And only the active sliding window of
each view is updated immediately after we finish the execution
of an active shard (Line 6).

Consider the example in Fig. 3 and Table I. For compu-
tation on interval I2, loading the vertex values in S(I2) can
be easily done with one sequential disk scan over view(I2),
because the latest vertex values are already stored in view(I2).
After computation, we need to propagate the updated value
records to other intervals. In this example, we update those
vertex values in the active sliding windows of view(I1) and
view(I3) (shaded cells in Table I).

Algorithm 2: Execute One Iteration with Merge-Join

1 let I be the first interval;
2 join S(I) and the value table to polulate the map of
VB;

3 foreach R(v) in the structure table do
4 if v 6∈ I then
5 unpin all pages and empty the map, in VB;
6 set I to be the next interval;
7 join S(I) and the value table to populate the

map of VB;
8 ExecuteVertex(v,R(v),VB, I)
9 return;

The algorithm using merge-join. Our second algorithm uses
merge-join over the v-shard and the value table. Its main
advantage is without the overhead to maintain all views at run
time. It is shown in Algorithm 2. Specifically, we join S(I)
for each interval I with the value table to obtain all vertex
values of S(I). Since both S(I) and the value table are sorted
by the vertex ID, it is easy to use a merge-join to finish that
quickly. The join results are inserted into the map of VB at
Line 2 and Line 7. All vertex values are directly updated in the
value table, and any changes of vertex values are immediately
visible to any other shard.

Again, we consider the example in Fig. 3 and Table I.
Suppose that we want to update interval I1. First, we need to
load S(I1) = {4, 6, 8, 9} into the map of VB. To load S(I1),
we use a merge-join over the vertex table and S(I1). Since the
vertex table and S(I1) are both sorted by vertex ID, we just
need one sequential scan over the vertex table. The updated
values of vertices in I1 are written to the value table directly
which incurs only sequential IOs.

Finally, as the RAM becomes large enough to hold the
complete value table, only one shard and one interval for all
vertices presents. The view/merge-join is no longer needed.
Both algorithms automatically work in the in-memory mode.

C. Analysis of IO costs

To compare the capabilities and limitations of the two
algorithms, we look at the IO costs of performing one iteration
of graph computation using the theoretical IO model [20]. In
this model, the IO cost of an algorithm is the number of block
transfers from disk to main memory adding the number of non-
sequential seeks. So the complexity is parametrized by the size
of block transfer, B.

For Algorithm 1, the size of data read is C(n+δm)+Dm
obtained from Table IV. Since loading does not require any
non-sequential seeks, the number of read IOs is C(n+δm)+Dm

B .
On the other hand, to update all v-shards data, the number of
block transfers is C(n+δm)

B . In addition, in the worst case, each
interval requires P non-sequential seeks to update the views
of other shards. Thus, the total number of non-sequential seeks
for a full iteration has a cost of P 2. So the total number of
write IOs of Algorithm 1 is C(n+δm)

B + P 2.

For Algorithm 2, the number of read IOs can be analyzed
by considering the cost of merge-join for P intervals, and then

1137

TABLE V
BIG-O BOUNDS IN THE IO MODEL OF SINGLE-MACHINE GRAPH

PROCESSING SYSTEMS

System # Read IO # Write IO

GraphChi [3] Cn+2(C+D)m
B + P 2 Cn+2(C+D)m

B + P 2

X-Stream [14] Cn+(C+D)m
B

Cn
B + Cm

B logM
B
P

Alg. 1 C(n+δm)+Dm
B

C(n+δm)
B + P 2

Alg. 2 P Cn
B + Dm

B
Cn
B

adding to this the cost of loading the structure table. The cost of
merge-join for each interval is Cn

B . The size of structure table
is Dm. Thus, the total number of read IOs is P Cn

B + Dm
B . For

interval I , the cost of updating the value table is C|I|
B . Hence,

the total number of write IOs is
∑
I
C|I|
B = Cn

B .

Table V shows the comparison of GraphChi, X-Stream, and
our algorithms. We can see that the IO cost of Algorithm 1
is always less than GraphChi. Also, when P is small, the
numbers of read IOs of Algorithm 1 and Algorithm 2 are
similar, but the number of write IOs of Algorithm 2 is much
smaller than that of Algorithm 1. These results can guide us
in choosing proper algorithms for different graphs.

IV. PERFORMANCE

In this section, we evaluate our system VENUS and
compare it with two most related state-of-the-art systems,
GraphChi [3] and X-Stream [14]. GraphChi uses the parallel
sliding window model and is denoted as PSW in all figures.
X-Stream employs the edge-centric processing model and thus
is denoted as ECP. Our system is built on the vertex-centric
streamlined processing (VSP) model which is implemented
with two algorithms: Algorithm 1 materializes vertex values
in each shard for fast retrieval during the execution, which is
denoted as VSP-I; Algorithm 2 applies merge-join to construct
all vertex values on the fly, which is denoted as VSP-II. The
two algorithms use the same vertex-centric update function
for a graph task and an input parameter indicates which
algorithm should be used. VENUS is implemented in C++.
We ran each experiment three times and reported the averaged
execution time. We deliberately avoid caching disk pages
by the operating system as explained in Section IV-A. All
algorithms are evaluated using hard disk, so we do not include
TurboGraph [15] due to its requirement of SSD drive on the
computer. Like GraphChi and X-Stream, VENUS allows user
to explicitly specify a main memory budget. Specifically, we
spend half of the main memory budget for the frame table
in VB, which are managed based on the LRU replacement
strategy; and another 1

4 of the main memory budget is for the
map in VB leaving the rest memory for storing auxiliary data.
All experiments are conducted on a commodity machine with
Intel i7 quad-core 3.4GHz CPU, 16GB RAM, and 4TB hard
disk, running Linux.

We mainly examine four important aspects of a system
which are key to its performance: 1) computational time; 2)
the effectiveness of main memory utilization; 3) the amount
of data read and write; and 4) the number of shards. We
experiment over 4 large real-world graph datasets, Twitter [21],
clueweb12 [22], Netflix [23], and Yahoo! Music user ratings

TABLE VI
FOUR REAL-WORLD GRAPH DATASETS AND FOUR SYNTHETIC GRAPH

DATASETS USED IN OUR EXPERIMENTS

Dataset # Vertex # Edge Type

Twitter 41.7 million 1.4 billion Directed
clueweb12 978.4 million 42.5 billion Directed
Netflix 0.5 million 99.0 million Bipartite
KDDCup 1.0 million 252.8 million Bipartite
Synthetic-4m 4 million 54.37 million Directed
Synthetic-6m 6 million 86.04 million Directed
Synthetic-8m 8 million 118.58 million Directed
Synthetic-10m 10 million 151.99 million Directed

used in KDD-Cup 2011 [24] as well as synthetic graphs. We
use the SNAP graph generator1 to generate 4 random power-
law graphs, with increasing number of vertices, where the
power-law degree exponent is set as 1.8. The data statistics
are summarized in Table VI. We consider the following data
mining tasks, 1) PageRank [25]; 2) Weakly Connected Com-
ponents (WCC) [17]; 3) Community Detection (CD) [17]; and
4) Alternating Least Squares (ALS) [26]. Our four algorithms
essentially represent graph applications in the categories of
iterative matrix operations (PageRank), graph mining (WCC
and CD), and collaborative filtering (ALS). Certain graph
algorithms like belief propagation [3], [14] that require the
mutable value of one edge to be computed recursively based
on the mutable values of other edges, cannot be implemented
on VENUS without modifications.

In Table VII, we report the preprocessing time of GraphChi
and VENUS under 8GB memory budget. The preprocessing
step of our system is split into 3 phases: (1) counting degree for
each vertex (requiring one pass over the input file) and dividing
vertices into P intervals; (2) writing each edge to a temporary
scratch file of the owning interval; and (3) sorting edges by
their source vertices in each scratch file to construct a v-shard
and g-shard file; in constructing the v-shard and g-shard file in
(3), the processing consists of merging adjacent intervals and
counting distinct vertices in those corresponding scratch files
till the memory budget is reached. These phases are identical to
those used in GraphChi except that we further merge adjacent
intervals in phase 3. The total IO cost of preprocessing is
5 |E|
B + |V |

B (B is block size) which is the same as GraphChi [3].
Therefore, the preprocessing cost is proportional to the graph
size. These results are verified in Table VII. Note that there is
no preprocessing in X-Stream.

A. Exp-1: PageRank on Twitter Graph

The first experiment runs PageRank on the Twitter graph.
We compare the four algorithms (PSW, ECP, VSP-I, VSP-
II) under various memory budgets from 0.5GB to 8GB. Note
that PSW and VSP-I/VSP-II use Linux system calls to access
data from disk, where the operating system caches data in
its pagecache. This allows PSW and VSP-I/VSP-II to take
advantage of extra main memory in addition to the memory
budget. On the other hand, X-Stream uses direct IO and does
not benefit from this. Therefore, for the sake of fairness, we

1http://github.com/snap-stanford/snap

1138

0.5 1 2 4 8

500

1000

1500

2000

Mem (GB)

E
la

p
se

d
 T

im
e
 (

se
c
.)

PSW

ECP

VSP−I

VSP−II

(a) Overall Time

0.5 1 2 4 8
0

500

1000

1500

Mem (GB)

E
la

p
se

d
 T

im
e
 (

se
c
.)

PSW

VSP−I

VSP−II

(b) Waiting Time

0.5 1 2 4 8
0

20

40

60

80

100

Mem (GB)

#
 o

f
S

h
a
rd

s

PSW

VSP

(c) Number of Shards

0.5 1 2 4 8
0

5

10

15

20

25

Mem (GB)

D
a
ta

 S
iz

e
 o

f
W

ri
te

 (
G

B
)

PSW

ECP

VSP−I

VSP−II

(d) Data Size of Write

0.5 1 2 4 8
0

5

10

15

20

25

30

35

Mem (GB)

D
a
ta

 S
iz

e
 o

f
R

e
a
d

 (
G

B
)

PSW

ECP

VSP−I

VSP−II

(e) Data Size of Read

0.5 1 2 4 8
0

0.5

1

1.5

2

2.5

3
x 10

4

Mem (GB)

#
 I

O

VSP−I

VSP−II

(f) Number of IOs

Fig. 4. PageRank on Twitter Graph

TABLE VII
PREPROCESSING TIME (SEC.) OF GRAPHCHI AND VENUS

Dataset GraphChi VENUS

Twitter 424 570
clueweb12 19,313 18,845
Netflix 180 75
KDDCup 454 169
Synthetic-4M 17 18
Synthetic-6M 23 30
Synthetic-8M 34 41
Synthetic-10M 47 53

use pagecache-mangagement2 to disable pagecache in all our
experiments.

The results of processing time are reported in Fig. 4(a),
where we can see that VSP is up to 3x faster than PSW
and ECP. For example, in the case that the budget of main
memory is 8GB, PSW spends 1559.21 seconds. ECP also
needs 1550.2 seconds. However, VSP-I and VSP-II just need
477.39 and 483.47 seconds, respectively. To further illustrate
the efficiency of VSP, we also examine various performance
factors including preprocessing, sharding, data access, and
random IOs, as shown below.

In Fig. 4(b), we compare PSW and VSP in terms of
the overall waiting time before executing a next shard. For
PSW, it includes the loading and sorting time of each memory
shard; for VSP, it includes the time to execute unpin calls,
view updates, and merge-join operations. Note that the time

2https://code.google.com/p/pagecache-mangagement/

of scanning the structure table is evenly distributed among
processing all vertices, and is not included here. It can be
observed that PSW spends a significant amount of time
for processing the shards before execution. In contrast, such
waiting time for VSP is much smaller. This is due to that
VSP allows to execute the update function while streaming in
the structure data. For example, in the case that the budget of
main memory is 8GB, PSW spends 749.78 seconds. However,
VSP-I and VSP-II just needs 104.01 and 102.12 seconds,
respectively. Note that about the half share of the processing
time of PSW is spent here, which spends far more time than
our algorithms.

VSP also generates significantly smaller number of shards
than PSW, as shown in Fig. 4(c). For example, in the case
that the budget of main memory is 0.5GB and 1GB, PSW
generates 90 and 46 number of shards, respectively. And these
numbers for our algorithms are 15 and 4. This is because VSP
spends the main budget of the memory on the value data of a
v-shard, while the space needed to keep related structure data
in memory is minimized.

Fig. 4(d) and Fig. 4(e) show the amount of data write and
read, respectively. We observe that the data size written/read
to/from disk is much smaller in VSP than in the other systems.
Specifically, PSW has to write 24.7GB data to disk, and read
the same amount of data from disk, per iteration, regardless
of memory size. These numbers for ECP are 11GB and
28GB under 8GB memory budget, which are also very large
and become a significant setback of ECP in its edge-centric
streamlined processing. In sharp contrast, VSP only writes
0.24GB, which is 100X and 50X smaller than PSW and ECP,
respectively. In terms of data size of read, VSP reads 12.7-
16.8GB data under various memory budgets. The superiority of

1139

Connected Component Community Detection
0

1000

2000

3000

4000

5000

Task

E
la

p
se

d
 T

im
e
 (

se
c
.)

PSW

ECP

VSP−I

VSP−II

(a) WCC & CD

Netflix KDDCup
0

500

1000

1500

Datasets

E
la

p
s
e
d

 T
im

e
 (

s
e
c
.)

PSW

ECP

VSP−I

VSP−II

(b) ALS

Netflix KDDCup
0

5

10

15

Task

D
a
ta

 S
iz

e
 o

f
W

r
it

e
 (

G
B

)

PSW

ECP

VSP−I

VSP−II

(c) Data Size of Write

Netflix KDDCup
0

5

10

15

Task

D
a
ta

 S
iz

e
 o

f
R

e
a
d

 (
G

B
)

PSW

ECP

VSP−I

VSP−II

(d) Data Size of Read

Fig. 5. More Graph Mining Tasks

VSP in data access is mainly due to the separation of structure
data and value data and caching the value data in a fixed buffer.

Although VSP-I and VSP-II perform very closely, they
have slight difference in terms of IO performance, as shown
in Fig. 4(f). For most cases, VSP-II incurs less IOs than
VSP-I because it is free of maintaining the materialized view
in executing shards. However, when the memory budget is
smaller than 1GB, the number of P increases quickly. In this
case, VSP-II is slower due to the heavy access of the value
table.

B. Exp-2: More Graph Mining Tasks

After the evaluation under various RAM sizes, we further
compare the four algorithms for other graph mining tasks.
We set the memory budget as 4GB for all algorithms. In
detail, Fig. 5(a) shows the processing time of running WCC
and CD over Twitter, where our algorithms, VSP-I and VSP-
II, clearly outperform the other competitors. For example,
in terms of the WCC task, the existing algorithms, PSW
and ECP, spend 1772.57 and 4321.06 seconds, respectively,
while our algorithms spend 942.74 and 972.43, respectively.
In this task, ECP is much slower than PSW. One reason is
that both PSW and our algorithms can employ the selective
scheduling [3], [19] to skip unnecessary updates on some
vertices/shards. However, this feature is infeasible for ECP
because it is edge-centric and thus cannot support selective
scheduling of vertices.

For the CD task, Fig. 5(a) shows the performance of
PSW and our algorithms. In detail, PSW spends 2317.75
seconds. VSP-I and VSP-II just need 1614.65 and 1617.04
seconds, respectively. The CD task cannot be accomplished
by ECP, because CD is based on label propagation [17],
where each vertex chooses the most frequent label among its
neighbors in the update function. The most frequent label can
be easily decided in terms of vertex-centric processing, where
all neighbors and incident edges are passed to the update
function. However, this is not the case for the edge-centric
processing while ECP cannot iterate all incident edges and all
neighbors to complete the required operation.

The next task is ALS, which is tested over both datasets of
Netflix and KDDCup. The overall processing time is given in
Fig. 5(b). In this test, the performance of PSW is much slower
than ECP and our algorithms, but ECP is slightly better than
both VSP-I and VSP-II. For example, in terms of the ALS task
over KDDCup, PSW spends 1446.01 seconds. ECP spends
259.99 seconds. VSP-I and VSP-II spend 357.04 and 190.32
seconds, respectively.

We compare the total data size being accessed per iteration
of the four algorithms in Fig. 5(c) and Fig. 5(d). ECP still
accesses more data than we do. For example, ECP has to
access 2.64GB and 8.23GB disk data, including both read
and write, for Netflix and KDDCup, respectively. For VSP-I
and VSP-II, these numbers are just 2.41 and 3.96. However,
our VSP is slightly slower, because VSP requires more non-
sequential seeks than ECP. Finally, note that because VSP-I
and VSP-II are both working in the in-memory mode due to the
small graph size of Netflix and KDDCup, so they read/write
the same amount of data size.

C. Exp-3: The Synthetic Datasets

To see how a system performs on graphs with increasing
data size, we also did experiments over the 4 synthetic datasets.
We test with PageRank and WCC, and report the running time
in Fig. 6(a) and Fig. 6(b) respectively. Again, we see that VSP
uses just a fraction of the amount of time as compared to the
other two systems.

In general, the processing time increases with the number
of vertices. However, the time of PSW and ECP increases
much faster than VSP. For example, when the number of
vertices increases from 4 million to 10 million, the time of
PSW increases by 40.81 and 76.68 seconds for the task
of PageRank and WCC, respectively; and the time of ECP
increases by 74.13 and 198.72 seconds. In contrast, the time of
VSP-1 just increases by 21.85 and 49.93 seconds. The superior
performance of VSP is mainly due to the less amount of data
access per iteration, as shown in Fig. 6(c) and Fig. 6(d).

D. Exp-4: On the Web-Scale Graph

In this experiment, we compare GraphChi, X-Stream, and
VENUS on a very large-scale web graph, clueweb12 [22],
which has 978.4 million vertices and 42.5 billion edges. We
choose not to use yahoo-web [27] which has been used in
many previous works [3], [14], because the density of yahoo-
web is incredibly low where 53% of nodes are dangling nodes
(nodes with no outgoing edges), and testing algorithms and
systems on yahoo-web might give inaccurate speed report. On
the other hand, the number of edges in clueweb12 are an order
of magnitude bigger and only 9.5% of nodes in clueweb12
are dangling nodes. We run 2 iterations of PageRank for
each system. As shown in Table VIII, VENUS significantly
outperforms GraphChi and X-Stream by reading and writing
less amount of data.

1140

4M 6M 8M 10M
0

50

100

150

Vertices

E
la

p
se

d
 T

im
e

(s
ec

.)

PSW

ECP

VSP−I

VSP−II

(a) PageRank

4M 6M 8M 10M
0

50

100

150

200

250

300

350

Vertices

E
la

p
se

d
 T

im
e

(s
ec

.)

PSW

ECP

VSP−I

VSP−II

(b) WCC

4M 6M 8M 10M
0

0.5

1

1.5

Vertices

D
at

a
S

iz
e

o
f

W
ri

te
 (

G
B

)

PSW

ECP

VSP−I

VSP−II

(c) Data Size of Write

4M 6M 8M 10M
0

1

2

3

4

5

6

Vertices

D
at

a
S

iz
e

o
f

R
ea

d
 (

G
B

)

PSW

ECP

VSP−I

VSP−II

(d) Data Size of Read

Fig. 6. The Synthetic Datasets

TABLE VIII
EXPERIMENT RESULTS: PAGERANK ON CLUEWEB12

System Time Read Write

PSW 15,495 s 661GB 661GB
ECP 26,702 s 1,121GB 571GB
VSP-I 7,074 s 213GB 43GB
VSP-II 6,465 s 507GB 19GB

V. RELATED SYSTEMS

There are several options to process big graph tasks: it
is possible to create a customized parallel program for each
graph algorithm in distributed setting, but this approach is
difficult to generalize and the development overhead can be
very high. We can also rely on graph libraries with various
graph algorithms, but such graph libraries cannot handle web-
scale problems [1]. Recently, graph computing over distributed
or single multi-core platform has emerged as a new framework
for big data analytics, and it draws intensive interests [1], [2],
[3], [4], [5], [6], [7], [8], [9], [10], [11]. Broadly speaking, all
existing systems can be categorized into the so-called data-
parallel systems (e.g. MapReduce/Hadoop and extensions) and
graph-parallel systems.

The data-parallel systems stem from MapReduce. Since
MapReduce does not support iterative graph algorithms orig-
inally, there are considerable efforts to leverage and improve
the MapReduce paradigm, leading to various distributed graph
processing systems including PEGASUS [5], GBase [9], Gi-
raph [28], and SGC [29]. On the other hand, the graph-parallel
systems use new programming abstractions to compactly
formulate iterative graph algorithms, including Pregel [1],
Hama [7], Kingeograph [10], Trinity [11], GRACE [19], [18],
Horton [30], GraphLab [2], and ParallelGDB [31]. There is

also work trying to bridge the two categories of systems,
such as GraphX [32]. As a recent branch of graph parallel-
systems, the disk-based graph computing systems, such as
GraphChi [3], X-Stream [14], and TurboGraph [15], have
shown great potential in graph analytics, which do not need
to divide and distribute the underlying graph over a number
of machines, as did in previous graph-parallel systems. And
remarkably, they can work with just a single PC on very large-
scale problems. It is shown that disk-based graph computing
on a single PC can be highly competitive even compared to
parallel processing over large scale clusters [3].

Disk-based systems. The disk-based systems, including
GraphChi [3], TurboGraph [15], and X-Stream [14], are
closely related to our work. Both GraphChi and VENUS
are vertex-centric. Like our system VENUS, GraphChi also
organizes the graph into a number of shards. However, unlike
VENUS which requires only a v-shard to be fit into the mem-
ory, GraphChi requires each shard to be fit in main memory. As
a result, GraphChi usually generates many more shards than
VENUS under the same memory constraint (Fig. 4(c)), which
incurs more data transfer (Fig. 4(d) and Fig. 4(e)) and random
IOs. Furthermore, GraphChi starts the computation after the
shard is completely loaded and processes next shard after the
value propagation is completely done. In contrast, VENUS
enables streamlined processing which performs computation
while the data is streaming in. Another key difference of
VENUS from GraphChi lies in its use of a fixed buffer to
cache the v-shard, which can greatly reduce random IOs.

The TurboGraph can process graph data without delay, at
the cost of limiting its scope on certain embarrassingly parallel
algorithms. In contrast, VENUS can deal with almost every
algorithms as GraphChi. Different from VENUS that uses hard
disk, TurboGraph is built on SSD. X-Stream is edge-centric

1141

and allows streamlined processing like VENUS, by storing
partial, intermediate results to disk for later access. However,
this will double sequential IOs, incur additional computation
cost, and increase data loading overhead.

VENUS improves previous systems in several important
directions. First, we separate the graph data into the fixed
structure table and the mutable value table file, and use a
fixed buffer for vertex value access, which almost eliminates
the need of batch propagation operation in GraphChi (thus
reducing random IOs). Furthermore, each shard in VENUS is
not constrained to be fit into memory, but instead, they are
concatenated together forming a consecutive file for stream-
lined processing, which not only removes the batch loading
overhead but also enjoys a much faster speed compared to
random IOs [14]. Compared to TurboGraph, VENUS can
handle a broader set of data mining tasks; compared to X-
Stream, VENUS processes the graph data just once (instead
of twice in X-Stream) and without the burden of writing the
entire graph to disk in the course of computation.

VI. CONCLUSION

We have presented VENUS, a disk-based graph compu-
tation system that is able to handle billion-scale problems
efficiently on just a single commodity PC. It includes a novel
design for graph storage, a new data caching strategy, and a
new external graph computing model that implements vertex-
centric streamlined processing. In effect, it can significantly
reduce data access, minimize random IOs, and effectively
exploit main memory. Extensive experiments on 4 large-scale
real-world graphs and 4 large-scale synthetic graphs show that
VENUS can be much faster than GraphChi and X-Stream,
two state-of-the-art disk-based systems. In future work, we
plan to improve our selective scheduling of vertex updates
and extend our system to SSD, which will further accelerate
VENUS greatly.

ACKNOWLEDGMENTS

The work is partly supported by NSFC of China (Grant
No. 61103049) and 973 Fundamental R&D Program (Grant
No.2014CB340304). The authors would like to thank the
anonymous reviewers for their helpful comments.

REFERENCES

[1] G. Malewicz, M. Austern, and A. Bik, “Pregel: a system for large-
scale graph processing,” in SIGMOD, 2010, pp. 135–145. [Online].
Available: http://dl.acm.org/citation.cfm?id=1807184

[2] Y. Low, D. Bickson, and J. Gonzalez, “Distributed GraphLab: A
Framework for Machine Learning and Data Mining in the Cloud,”
PVLDB, vol. 5, no. 8, pp. 716–727, 2012. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2212354

[3] A. Kyrola, G. Blelloch, and C. Guestrin, “GraphChi : Large-Scale Graph
Computation on Just a PC Disk-based Graph Computation,” in OSDI,
2012, pp. 31–46.

[4] X. Martinez-Palau and D. Dominguez-Sal, “Analysis of partitioning
strategies for graph processing in bulk synchronous parallel models,”
in CloudDB, 2013, pp. 19–26.

[5] U. Kang, C. E. Tsourakakis, and C. Faloutsos, “PEGASUS: A Peta-
Scale Graph Mining System Implementation and Observations,” in
ICDM. Ieee, Dec. 2009, pp. 229–238.

[6] R. Chen, X. Weng, B. He, and M. Yang, “Large Graph Processing in
the Cloud,” pp. 1123–1126, 2010.

[7] S. Seo, E. J. Yoon, J. Kim, S. Jin, J.-S. Kim, and S. Maeng, “HAMA:
An Efficient Matrix Computation with the MapReduce Framework,” in
CLOUDCOM. Ieee, Nov. 2010, pp. 721–726.

[8] E. Krepska, T. Kielmann, W. Fokkink, and H. Bal, “HipG: Parallel
Processing of Large-Scale Graphs,” SIGOPS Operating Systems Review,
vol. 45, no. 2, pp. 3–13, 2011.

[9] U. Kang, H. Tong, J. Sun, C.-Y. Lin, and C. Faloutsos, “GBASE : A
Scalable and General Graph Management System,” in KDD, 2011, pp.
1091–1099.

[10] R. Cheng, F. Yang, and E. Chen, “Kineograph : Taking the Pulse of a
Fast-Changing and Connected World,” in EuroSys, 2012, pp. 85–98.

[11] B. Shao, H. Wang, and Y. Li, “Trinity: A distributed graph
engine on a memory cloud,” in SIGMOD, 2013. [Online]. Available:
http://research.microsoft.com/jump/183710

[12] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” in OSDI, vol. 51, no. 1. ACM, 2004, pp. 107–113.

[13] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark : Cluster Computing with Working Sets,” in HotCloud, 2010,
pp. 10–10.

[14] A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-Stream: Edge-centric
Graph Processing using Streaming Partitions,” in SOSP, 2013, pp. 472–
488.

[15] W. Han, S. Lee, K. Park, and J. Lee, “TurboGraph: a fast parallel graph
engine handling billion-scale graphs in a single PC,” in KDD, 2013, pp.
77–85. [Online]. Available: http://dl.acm.org/citation.cfm?id=2487581

[16] C. Engle, A. Lupher, and R. Xin, “Shark: fast data analysis using
coarse-grained distributed memory,” in SIGMOD Demo, 2012, pp.
1–4. [Online]. Available: http://dl.acm.org/citation.cfm?id=2213934

[17] X. Zhu and Z. Ghahramani, “Learning from labeled and unlabeled
data with label propagation,” Tech. Rep., 2002. [Online]. Available:
http://lvk.cs.msu.su/∼bruzz/articles/classification/zhu02learning.pdf

[18] G. Wang, W. Xie, A. Demers, and J. Gehrke, “Asynchronous Large-
Scale Graph Processing Made Easy,” in CIDR, 2013.

[19] W. Xie, G. Wang, and D. Bindel, “Fast iterative graph computation with
block updates,” PVLDB, pp. 2014–2025, 2013. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2556581

[20] A. Aggarwal and J. S. Vlller, “The input/output complexity of sorting
and related problems,” CACM, vol. 31, no. 9, pp. 1116–1127, 1988.

[21] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social
network or a news media?” in WWW, 2010, pp. 591–600.

[22] Evgeniy Gabrilovich, M. Ringgaard, and A. Subramanya, “FACC1:
Freebase annotation of ClueWeb corpora, Version 1 (Release date 2013-
06-26, Format version 1, Correction level 0)”,” http://lemurproject.org/
clueweb12/, 2013.

[23] J. Bennett and S. Lanning, “The netflix prize,” in KDD-Cup Workshop,
2007, pp. 3–6. [Online]. Available: http://su-2010-projekt.googlecode.
com/svn-history/r157/trunk/literatura/bennett2007netflix.pdf

[24] G. Dror, N. Koenigstein, Y. Koren, and M. Weimer, “The Yahoo! Music
Dataset and KDD-Cup’11.” JMLR W&CP, pp. 3–18, 2012.

[25] R. M. Lawrence Page, Sergey Brin and T. Winograd, “The pagerank
citation ranking: Bringing order to the web,” 1998.

[26] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan, “Large-scale Parallel
Collaborative Filtering for the Netflix Prize,” in AAIM, 2008, pp. 337–
348.

[27] “Yahoo! AltaVista Web Page Hyperlink Connectivity Graph, circa
2002,” http://webscope.sandbox.yahoo.com/.

[28] “Giraph,” http://giraph.apache.org/.
[29] L. Qin, J. X. Yu, L. Chang, H. Cheng, C. Zhang, and X. Lin, “Scalable

big graph processing in mapreduce,” in SIGMOD, 2014, pp. 827–838.
[30] M. Sarwat, S. Elnikety, Y. He, and M. F. Mokbel, “Horton+: A

Distributed System for Processing Declarative Reachability Queries
over Partitioned Graphs,” PVLDB, vol. 6, no. 14, pp. 1918–1929, 2013.

[31] L. Barguñó, D. Dominguez-sal, V. Muntés-mulero, and P. Valduriez,
“ParallelGDB: A Parallel Graph Database based on Cache Specializa-
tion,” in IDEAS, 2011, pp. 162–169.

[32] R. Xin, D. Crankshaw, A. Dave, J. Gonzalez, M. Franklin, and I. Stoica,
“GraphX: Unifying Data-Parallel and Graph-Parallel Analytics,” Tech.
Rep., 2014.

1142

