

# Combining Factorization Model and Additive Forest for Recommendation

Presenter: Tianqi Chen

Team ACMClass@SJTU

August 11, 2012



#### Team ACMClass@SJTU

- Original team name: undergrads
- Members are students from ACMClass in SJTU
- All members are undergraduates, except the presenter:)





#### Outline

Overview of General Approach

Go Beyond Factorization Models

More Example Models used in Solution

**Results and Conclusion** 





#### Overview of Our Solution



#### Feature-based Matrix Factorization

$$\hat{r}_{ui} = \left(\sum_{c \in C(u)} \alpha_c^{(u)} \mathbf{p}_c\right)^T \left(\sum_{c \in C(i)} \beta_c^{(i)} \mathbf{q}_c\right) + \sum_{c \in C(u,i)} \gamma_c^{(u,i)} g_c \quad (1)$$

- Θ = {**p**, **q**, g}, trained via stochastic gradient descent
   α<sub>c</sub><sup>(u)</sup>: user feature of user u: user social network/action, keyword/tag
- β<sup>(i)</sup><sub>c</sub>: item feature weight of item(celeberity) i: item taxonomy/network
- γ<sub>c</sub><sup>(u,i)</sup>: global feature related to interaction between u and i: user age/gender bias





Overview of General Approach

Go Beyond Factorization Models

More Example Models used in Solution

**Results and Conclusion** 





#### Additive Forest

$$\hat{r}_{ui} = \sum_{s=1}^{S} f_{s,root(i,s)}(\mathbf{x}_u)$$
<sup>(2)</sup>

- $x_u$ : property feature of user u
- ► f<sub>s,root(i,s)</sub>: function defined by a regression tree
- Learning via gradient boosting algorithm



# An Example of Additive Forest



Vract.

# Factorization Model vs Additive Forest

|                                   | Factorization   | Additive Forest           |  |  |
|-----------------------------------|-----------------|---------------------------|--|--|
| handling of sparse matrix<br>data | very well       | capable, not very<br>well |  |  |
| combination of different          | linear combina- | nonlinear com-            |  |  |
| information                       | tion            | position                  |  |  |
| handling of continuous            | need predefined | automatic seg-            |  |  |
| property                          | segmentation    | mentation                 |  |  |
| model complexity control          | rogularization  | feature selection,        |  |  |
|                                   | regularization  | prunning                  |  |  |

- Both models have their own advantages on different aspect
- Understanding their properties and knowing when to use which one is very important





# Information Combination: User Social Network

Factorization Model

$$\hat{r}_{ui} = \left(\frac{1}{\sqrt{|F(u)|}}\sum_{j\in F(u)}\mathbf{p}_j\right)^T \mathbf{q}_i$$

- F(u) : follow set of u
- Linear combination



"Follow both A and B" =  $p_A^T q_{i+} p_B^T q_i$ 

#### Additive Forest

- Condition composition
- Feature selection



Continuous Feature Handling: User Age

Factorization Model

$$\hat{r}'_{ui} = \mathbf{p}_u^T \mathbf{q}_i + W_{i, \frac{ag(u)}{ag(u)}} \qquad (3)$$

- ag(u): age segment index
- Require predefined partition age bias parameters







# Factorization Model vs Additive Forest

|                                   | Factorization   | Additive Forest           |  |  |
|-----------------------------------|-----------------|---------------------------|--|--|
| handling of sparse matrix<br>data | very well       | capable, not very<br>well |  |  |
| combination of different          | linear combina- | nonlinear com-            |  |  |
| information                       | tion            | position                  |  |  |
| handling of continuous            | need predefined | automatic seg-            |  |  |
| property                          | segmentation    | mentation                 |  |  |
| model complexity control          | rogularization  | feature selection,        |  |  |
|                                   | regularization  | prunning                  |  |  |

- Both models have their own advantages on different aspect
- Understanding their properties and knowing when to use which one is very important







Overview of General Approach

Go Beyond Factorization Models

More Example Models used in Solution

**Results and Conclusion** 





#### Time-aware Model

Traditional Time Bin Model

 $\hat{r}'_{ui}(t) = \hat{r}_{ui} + b_{i,binid(t)}$ 

binid(t): time bin index of t

Our Time-aware Model

$$\hat{r}'_{ui}(t) = \hat{r}_{ui} + \sum_{s=1}^{S} f_{s,i}(t)$$

▶ f<sub>s,i</sub>(t): k-piece step function



#### User Sequential Pattern

$$\hat{r}'_{ui}(t) = \hat{r}_{ui} + \sum_{s=1}^{S} f_s(x_{seq})$$
(4)

Features include in *x<sub>seq</sub>*:

- time difference between clicks
- average click speed of current user



#### **Final Model**

$$\hat{r}_{ui} = \left(\sum_{c \in C(u)} \alpha_c^{(u)} \mathbf{p}_c\right)^T \left(\sum_{c \in C(i)} \beta_c^{(i)} \mathbf{q}_c\right) + \sum_{c \in C(u,i)} \gamma_c^{(u,i)} g_c + \sum_{s=1}^S f_{s,root(s,i)}(x_{ui})$$
(5)

- Combination of all the factorization model and additive forest
- Boosting from result of factorization part



#### Outline

Overview of General Approach

Go Beyond Factorization Models

More Example Models used in Solution

**Results and Conclusion** 





#### **Experiment Results**

| ID | model                   | public | private | $\Delta_{public}$ | $\Delta_{\textit{private}}$ |
|----|-------------------------|--------|---------|-------------------|-----------------------------|
| 1  | item bias               | 34.6%  | 34.0%   |                   |                             |
| 2  | 1 + user  follow/action | 36.7%  | 35.8%   | 2.1%              | 1.8%                        |
| 3  | 2 + user age/gender     | 38.0%  | 37.2%   | 1.3%              | 1.4%                        |
| 4  | 3 + user tag/keyword    | 38.5%  | 37.6%   | 0.5%              | 0.4%                        |
| 5  | 4 + item taxonomy       | 38.7%  | 37.8%   | 0.2%              | 0.2%                        |
| 6  | 5 + time-aware model    | 39.0%  | 37.9%   | 0.3%              | 0.1%                        |
| 7  | 6 + age/gender(forest)  | 39.1%  | 38.0%   | 0.1%              | 0.1%                        |
| 8  | 7 + sequential patterns | 44.2%  | 42.7%   | 5.1%              | 4.7%                        |

Table: MAP@3 of different methods

- User Modeling and Sequential Patterns contributes the most
- Time-aware model is more effective in public data

All of them are important for winning



# Summary

- Seems Ensemble methods do not work in our experiment
- Choose right methods to utilize different kinds of data
  - Factorization models are powerful, but also have drawbacks
  - Additive forest can automatic cut the continuous features, sometimes smarter than human
- Use automatic cutting to build robust time-aware model
- Fully utilize the available information
- Source code: svdfeature.apexlab.org







# Thank You, Questions?



#### Appendix

#### The rest parts of the slides are appendix





# **Objective Function**

Loss function of Pairwise Ranking: AUC optimization

$$L_{u} = \frac{1}{|\{(i,j)|r_{ui} > r_{uj}\}|} \sum_{(i,j):r_{ui} > r_{uj}} C(\hat{r}_{ui} - \hat{r}_{uj})$$
(6)

Pseudo loss function of LambdaRank: MAP optimization

$$L_{u} = \frac{1}{|\{(i,j)|r_{ui} > r_{uj}\}|} \sum_{(i,j):r_{ui} > r_{uj}} |\Delta_{ij}MAP|\mathcal{C}(\hat{r}_{ui} - \hat{r}_{uj})$$
(7)

•  $\Delta_{ij}MAP$  is MAP change when we swap *i* and *j* in current list

#### • C(x) is a surrogate convex loss function

- logistic loss(BPR):  $C(x) = \ln(1 + e^{-x})$
- hinge loss(maximum margin): C(x) = max(0, 1 x)
- L<sub>u</sub> is normalized by number of pairs(  $|\{(i,j)|r_{ui} > r_{uj}\}$ Balance over all users is important

#### **BiLinear Model**

$$\hat{r}_{ui} = \mathbf{x}_{u}^{T} \mathbf{W} \mathbf{y}_{i}$$
(8)

- ► W: weight matrix
- **x\_u**: property vector of user *u*
- y<sub>i</sub>: property vector of item i

Example: Social aware Model

$$\hat{r}_{ui} = \frac{1}{\sqrt{|F(u)|}} \sum_{c \in F(u)} W_{c \to i}, \ x_{uc} = \begin{cases} \frac{1}{\sqrt{|F(u)|}} & c \in F(u) \\ 0 & c \notin F(u) \end{cases}, \ y_{uc} = \mathbf{e}_i$$

ト  $W_{c \to i}$ : confidence of rule u follows  $c \to u$  accept i数据和知识管理实验室



#### Factorization Model vs BiLinear Model

BiLinear

#### Factorization

- $\hat{r}_{ui} = \mathbf{x}_{u}^{T} \mathbf{W} \mathbf{y}_{i} \qquad \qquad \hat{r}_{ui} = \mathbf{x}_{u}^{T} \mathbf{P}^{T} \mathbf{Q} \mathbf{y}_{i}$
- Feature-based matrix factorization can be viewed as a factorized version of bilinear model.
- Advantage of **W**: direct modeling effect of  $c \rightarrow i$
- Advantage of P<sup>T</sup>Q: less parameter, topic level matching
  - ► When **W** is large and with sparse data support, use factorization
  - When W is small and with dense data support, use bilinear



#### User Social Network and Action

$$\hat{r}_{ui} = \left(\frac{1}{\sqrt{|F(u)|}}\sum_{j\in F(u)}\mathbf{p}_j + \frac{1}{\|\alpha_u\|_2}\sum_{j\in A(u)}\alpha_{u,j}\mathbf{y}_j\right)^T\mathbf{q}_i + b_i \quad (10)$$

- F(u) : set of items user u followed
- A(u): set of items user u has action with
- $\alpha_u$ : weight by action count





Item Taxonomy and Social Network

#### Taxonomy

$$\mathbf{q}'_{i} = \mathbf{q}_{i} + \mathbf{q}_{c^{1}(i)} + \mathbf{q}_{c^{2}(i)} + \mathbf{q}_{c^{3}(i)} + \mathbf{q}_{c^{4}(i)}$$
(11)

# Taxonomy aware parameter sharing c<sup>k</sup>(i): k-th level category of item i belongs to

Social Network

$$\mathbf{q}'_i = \mathbf{q}_i + \sum_{j \in \textit{cofollow}(i)} \mathbf{q}_j$$



