
Problem-Independent Handling of Constraints

by Use of Metric Penalty Functions

Frank Ho�meister

EUnet Deutschland GmbH

Emil-Figge-Stra�e 80

D-44227 Dortmund

Joachim Sprave

University of Dortmund

Department of Computer Science

D-44221 Dortmund

Abstract

Unlike scienti�c test functions, real world prob-
lems are in general constrained optimization prob-
lems. Furthermore, due to undetermined �rst and
second order derivatives only direct optimization
methods can be used to attack these problems.
Then, in most cases, constraints are dealt with by
use of so-called penalty functions. An alternate
approach as used by Rechenberg [1] and Schwe-
fel [2] simply discards infeasible test points while
generating a new one.

This paper presents a synthesis of both ap-
proaches avoiding the design of problem-
dependent surrogate functions in the former case
as well as the excessive waste of computational
resources and implicit information contained in
infeasible test points in the latter case. It is ap-
plicable to any direct optimization method with
just minor modi�cations. Its feasibility is demon-
strated by its integration into an Evolution Strat-
egy (ES), a special kind of Evolutionary Algo-
rithm (EA), which | due to its internal model
of the problem (internal strategy parameters) |
has the capacity to pro�t from the implicit infor-
mation provided by infeasible test points.

Introduction

So-called real world optimization problems often not only
have a high complexity with respect to the number of
variables (dimension of the problem) but also have a
possibly large number of constraints to be satis�ed for a
feasible solution. In many cases, satisfaction of the con-
straints is a bigger problem than �nding an optimal value
for the objective function.

De�nition 1 (Constrained Optimization)
Minimize f(~x) subject to:

gi(~x) � 0 ; 8i 2 f1; : : : ;mg (1)

hj(~x) = 0 ; 8j 2 f1; : : : ; lg (2)

~x = (x1; : : : ; xn) 2 IRn

f : D ! IR ; D � IRn

gi : IRn ! IR
hj : IRn ! IR

where gi(~x) is called an unequality constraint and hj(~x)
is called an equality constraint . A test point ~x satisfy-
ing (1) and (2) is called feasible, if not infeasible. The
set M � D satisfying (1) and (2) is called the feasible

domain.

In general, due to undetermined derivatives direct opti-
mizationmethods are the only ones which can be applied
to these problems. The basic principle of a direct opti-
mization method follows the working scheme sketched
below:

~x0t = 
(~xt) = ~xt +�~xt (3)

~xt+1 =

�
~x0t ; if F (~x0t)� F (~xt)
~xt ; else

(4)

where � denotes the compare operator used to valuate
di�erent test points, and F : IRn ! IR the valuation
function. For a simple hill climbing strategy, � is the
less-or-equal operator, and F = f . In the following F (~x)
is used to show how di�erent ways of handling constraints
are incorporated into direct optimization methods.

Most direct optimization methods do not care for con-
straints and domains D � IRn. Special heuristics for
dealing explicitly with constraints like re
ecting an infea-
sible test point along the border to the feasible domain
are in use [3], but their e�ectiveness highly depends on
the characteristics of the given problem. Hence, they re-
quire careful and sometimes tedious analysis of the prob-
lem prior to their application.

As a workaround, a so-called penalty function p(~x) is
used to provide a valuation that handicaps infeasible
test points against feasible ones by de�ning a surrogate
function F which is evaluated instead of the objective
function on IRn. Indirect methods normally require the
surrogate function to preserve properties like smoothness



and di�erentiability. Furthermore it must satisfy

f(~x) � f(~y) ) F (~x) � F (~y) (5)

to guarantee that an optimum of the objective function
is an optimum of the surrogate function, as well.

Some direct search algorithms also integrate partial

penalty functions into their evaluation procedure, e.g. the
Rosenbrock strategy[4]. Partial penalty functions take ef-
fect only near the borders of the feasible region:

F (~x) =

�
f(~x) ; if gi(~x) � �
p(~x) ; else

(6)

where � is a rather crucial parameter: a large value can
hide an optimum near the border from the algorithm, a
very low value may not penalize infeasible points su�-
ciently.

Ideally, � would be set to zero, and the surrogate function
F would be de�ned with respect to

F (~x) < F (~x0) ; 8~x 2M;~x0 =2M (7)

A surrogate function like this normally causes the loss
of smoothness at the transition from the feasible to the
infeasible region which even some direct methods require
for their step size adaption. Nevertheless, if a search
strategy rests only on comparisons of test points an ideal
partial penalty function can be de�ned as follows:

p(~x) = mc(~x) + dc(~x) (8)

dc(~x) = k~x� ~ck (9)

where dc(~x) is a measure for the distance to the feasible
domain with ~c representing the closest feasible point near
~x de�ned by an arbitrary norm k � k. dc(~x) is required to
guide the search towards the feasible domain M while
sampling the infeasible domain IRn nM , mc(~x) being an
adjusting value required to link f(~x) and p(~x). A penalty
function according to (8) is very handy if the design of a
feasible starting point is di�cult to accomplish.

With mc(~x) = const, e.g.

mc(~x) = max
~xi2M

ff(~xi)g (10)

and dc(~x) = 0 the above penalty function degradates to
a barrier function, which has the serious disadvantage
of not guiding the search towards the feasible domain,
which might result in premature stagnation. Hence, with
this kind of penalty function a feasible starting point is
always recommended if not required.

In any case, objective function f(~x) and penalty func-
tion p(~x) need to be linked by mc(~x) (8) in order to

guide the search and to support the generation of the
next test point, if �~x turns out to be a function based
on the history of the search, e.g.

�~x = z (f(~xt); f(~xt�1)) (11)

= kf(~xt) � f(~xt�1)k G(0; 1) (12)

with G(0; 1) being a normalized Gaussian random num-
ber. For a complicated objective function f(~x) with un-
known characteristics de�ning mc(~x) can be a tedious
task, especially, if a case like (12) has to be considered.

An alternative to using a surrogate function F (~x) is the
implicit handling of constraints as part of the genera-
tion of a new test point (3) as it is done in Evolution
Strategies according to Schwefel [2], i.e.

~x0t = 
0(~xt) (13)


0(~xt) =

8<
:


(~xt) ; if gi(~x) � 0
^ hj(~x) = 0


0(~xt) ; else
(14)

Equations (3) and (13) provide a recursive de�nition for
a generating loop, which guarantees to yield a feasible
point. It iterates as long as 
(~xt) generates an infeasible
test point.

Using a generating loop frees from de�ning a surrogate
function F (~x) (6) and from establishing the required link
between p(~x) and f(~x) (8). This approach is universal
and can be incorporated into any other search methods
as EAs, although there is no evidence that it is actually
done.

E�ectively, (13) is equivalent to a barrier function as part
of a surrogate function. If an optimum is located at an
active constraint gi(~x) = 0 a great deal of e�ort is wasted
to generate feasible test points without adjusting the in-
ternal strategy parameters to cope with the situation, i.e.
implicit information provided by infeasible points is not
exploited. Hence, there is no guidance towards the fea-
sible domain to speed up the search. When starting the
search with an infeasible starting point is not handled
e�ciently this way because the search might be stuck
on a plateau. Depending on the characteristics of gener-
ating �~x (e.g. normal or uniform distributed) the opti-
mization method will not have a chance to �nd a feasible
starting point.

As a conclusion, in order to deal e�ectively with con-
straints, for any given test point ~x a function dc(~x) is
required (9). It provides some measure of \infeasibil-
ity" guiding the search towards the feasible domain, thus
increasing the exploitation of any generated test point
speeding up the overall search.

In two recent studies, Michalewicz [5, 6] compared sev-
eral approaches to handle constraints in Genetic Algo-
rithms (GAs) using a measure of infeasibility as de-
scribed above. Except for the lethal o�spring method of



ES, all of them de�ne surrogate functions F : IRn ! IR,
so they have to satisfy (5) and (7). Although the ES ap-
proach has been shown as inferior to integrated penalty
functions, the advantage of generality cannot be denied.

In fact, there is no need to assign a real valued quality to
search points to compare them, as we will show in this
paper. As reasoned above, only a quality order on test
points must be provided, which is also su�cient for EAs
with rank based selection. By introducing a generalized
compare operator � we will combine the ease of the gen-
erating loop with the measure of infeasibility provided
by dc(~x) in order to avoid the de�nition of a problem-
dependent and/or optimization method-dependent sur-
rogate function F (~x) and show the feasibility of this ap-
proach. By changing the quality domain we avoid all
problems that arise from (5) and (7).

Transparent Constraints

The basic principle of a direct optimization method was
de�ned in (3). For our purpose F (~x) and � will be re-
de�ned:

De�nition 2

F : IRn ! IB � IR (15)

F (~x) =

�
(0; f(~x)) ; if ~x 2M
(1; dc(~x)) ; else

(16)

� : (IB�IR)� (IB�IR)! IB (17)

y0i = (bi; yi) (18)

y01 � y02 = (b1 < b2) (19)

_ (b1 = b2) ^ (y1 � y2) (20)

with IB = f0; 1g. The function dc will be re�ered to as
the metric penalty function (MPF) in the following. In
order to modify an existing (direct) optimizationmethod
according to (15) and (17) the following steps have to be
accomplished:

� change the domain of variables receiving objective
values

� replace any invocation of f(~x) by F (~x)

� replace any comparison of objective values y1 � y2
by y1 � y2

If for a given set of constraints it is impossible to de-
termine an appropriate measure for the distance to the
feasible domain (9), de�ning dc(~x) = number of vio-

lated constraints might be a last resort providing a very
\rough" measure (??).

Experimental Results

Since ES is the only direct optimization method that al-
ready provides a general way to handle constraints, it is
consequent to use it for experimental comparisons.While
two-membered ES can be described simply as (3) where
�~xt is a vector of Gaussian distributed random variables,
recent variants, the multi-membered ESs, manage a set of
points (population) per iteration (generation), instead of
a single one, and they have more complex acceptance
rules. In terms of ES, points in the search space are
also called individuals, and discarded infeasible points
are treated as lethal mutations. For a comprehensive in-
troduction to ES the reader is referred to [7].

Some theoretical investigations on ESs were made us-
ing a simple constrained function, the so-called corridor

model([7],p. 134�.):

f(~x) = �x1
w.r.t. gj(~x) = b� jxjj � 0

(21)

This becomes an n-dimensional right-angled corridor
along the x1 axis. Since there is no �nite optimum, is it
possible to measure the progress after a certain number
of evaluations. The corridor model was used for theoret-
ical approximations of the optimum step size (mutation
variance) of ESs with lethal mutations[1]. In order to
de�ne an MPF for the corridor, the obvious way to val-
uate the infeasibility of test points is to compare their
Euclidean distances to the feasible region:

dc(~x) =

vuut mX
i=0

H(�gi(~x))gi(~x)2 (22)

where H : IR! f0; 1g is the Heavyside function:

H(y) =

�
1 : y > 0
0 : y � 0

(23)

This is comparable to a partial penalty approach and
should lead to a faster progress than lethal mutations.
To simulate the case that the constraints are binary, i.e.
that they only indicate whether a point is feasible or not,
the corridor model was also implemented with

dc(~x) =
mX
i=0

H(�g(~x)) (24)

The metric used here is the number of violated con-
straints, which is an information that is always available
if more than one restriction function is present.

Two test series were computed on the corridor model
with dimension 30. The strategy was a (15; 100)-ES. Each



-800

-600

-400

-200

0

200

0.5 1 1.5 2 2.5 3 3.5 4

B
es

t f
(x

) 
af

te
r 

50
.0

00
 e

va
lu

at
io

ns

Step size

Lethal Mutations
MPF (Euklidian distance)

MPF (No. of violated constraints)

Figure 1: Corridor with �xed mutation variances

run was stopped after 50:000 evaluations, and the best
value achieved so far was taken as a measure of progress.
Each evaluation of the constraints was counted as an
additional objective function call, assuming that restric-
tions and objective function evaluations take about the
same computational time.

The �rst test series was computed with �xed step sizes in
order to �nd out whether the theoretical optimum vari-
ance is also valid for MPF. According to [1], the maxi-
mum progress should be achieved with

�opt = b

p
2�

n
(25)

where b is the corridor width from (21). For b = 1 and
n = 30 we obtain a value of about 0:08. Figure 1 shows
the relationship between step sizes and the best objec-
tive function value after 50:000 evaluations. It can be
seen that both the lethal mutation method and the MPF
gain the maximum progress at 0:18, slightly above the
theoretical estimation1, but at di�erent levels: MPF goes
nearly twice as far, but is more sensitive to missetting of
the step size. The most surprising result from these ex-
periments is that there is no notable di�erence between
the two metrics used as MPF. This might be a property
of the ES comma selection type: only the 15 best point
are used to generate the next generation, hence it does

1Since the optimum step size had been determined for an
(1 + 1)-ES, it is not surprising that the higher selection pressure
of a (15;100) allows a more risky sampling of test points.

not matter whether the remaining points are infeasible
or just bad. With a step size larger than half the corridor
all strategies tend to gain no progress.

In a second test series, the ES self-learning of step sizes
was enabled. One common step size for all variables of
an individual (test point) was used, and all individuals
got the same step size initially. It was of special interest
to observe how sensitive the di�erent strategies react on
inadequate settings of the initial step sizes.

The results are shown in �gure 2. With lethal mutations,
no progress could be achieved with initial step sizes above
twice the corridor width, and below it is outperformed
by both MPF variants.

The Euclidean MPF method entered the feasible region
very quickly and adapts suitable step sizes almost inde-
pendent of the initial step size, as expected. Again, the
MPF variant that simply counts the number of violated
constraints performs considerable well: although it has
only slightly more information about the infeasibilty of
points, it succeeds to adapt suitable step sizes with very
bad initial settings.

Furthermore, a parallel mixed-integer EA with MPF
handling of constraints has been applied to a struc-
tural optimization problem with great success[8]. The
optimization of multi-layer optical coatings is a mixed-
integer and variable dimensional problem. In speci�c
problems, the qualitity of �lter designs is known to rise
monotonic with the so-called optical thickness. Since this



-800

-600

-400

-200

0

200

0.5 1 1.5 2 2.5 3 3.5 4

B
es

t f
(x

) 
af

te
r 

50
.0

00
 e

va
lu

at
io

ns

Initial step size

Lethal Mutations
MPF (Euklidian distance)

MPF (No. of violated constraints)

Figure 2: Corridor with variable mutation variances

value is restricted by the production process, the math-
ematical model must be constrained in order to obtain
useful results. In [8], the relation between optical thick-
nesses and the corresponding optimum �lter qualtity
has been estimated numerically and compared to the-
oretical estimations [9, 10] on a certain design prob-
lem. Due to the MPF, designs of arbitrary optical thick-
nesses could be evolved. Over the whole range of rea-
sonable optical thicknesses, the results from [8] are at
least very close to solutions found by others, even better
in some ranges. Furthermore, the results lead to conjec-
tures about a more accurate estimation of the relation
mentioned above. To achieve the same results with tra-
ditional penalty functions, one had to analyze the prob-
lem in order to obtain a lower bound for the quality of
a design depending on its thickness. But this, in turn, is
just the problem itself.

Conclusions

An alternative approach to handle constraints in direct
search methods is presented in this paper, introducing a
compromise between the most general way to handle con-
straints by just discarding infeasible points, and the de�-
nition of problem-speci�c penalty functions. The method
of metric penalty functions described here bases on the
premise that infeasible points must be always valuated
worse than feasible ones. There are of course problems
where this assumption does not hold, as reasoned in [6].

The major advantage of MPFs is that any information
available about violated constraints can be used to guide
the search towards the feasible region, without the con-
struction of an explicit surrogate function or biasing par-
tial penalty functions. No external parameter must be
added to an algorithm to pro�t from MPFs.

The experimental results demonstrate the capability of
MPFs to exploit the information gained from the restric-
tion functions, even if they only indicate whether a point
is feasible or not. MPFs are especially useful for Evolu-
tionary Algorithms because they extent their robustness
against non-optimum external parameter settings to the
constraint handling, as well.

References

[1] I. Rechenberg. Evolutionsstrategie: Optimierung

technischer Systeme nach Prinzipien der biologis-

chen Evolution. Frommann{Holzboog, Stuttgart,
1973.

[2] H.-P. Schwefel. Numerische Optimierung von

Computer-Modellen mittels der Evolutionsstrategie,
volume 26 of Interdisciplinary Systems Research.
Birkh�auser, Basel, 1977.

[3] S.M. Roberts and H.I. Lyvers. The gradient method
in process control. Ind. Eng., 1961.



[4] H. H. Rosenbrock. An automatic method for �nd-
ing the greatest or least value of a function. The

Computer Journal, 3(3):175{184, 1960.

[5] Z. Michalewicz. Genetic algorithms, nonlinear opti-
mization, and constraints. In L. Eshelman, editor,
Genetic Algorithms: Proceedings of the 6th Inter-

national Conference, pages 151{158. Morgan Kauf-
mann Publishers, San Francisco, CA, 1995.

[6] Z. Michalewicz. A survey of constraint handling
techniques in evolutionary computationmethods. In
J. R. McDonnell, R. G. Reynolds, and D. B. Fogel,
editors, Proceedings of the Fourth Annual Confer-

ence on Evolutionary Programming, pages 135{155.
The MIT Press, Cambridge, MA, 1995.

[7] H.-P. Schwefel. Evolution and Optimum Seeking.
Sixth-Generation Computer Technology Series. Wi-
ley, New York, 1995.

[8] Martin Sch�utz and Joachim Sprave. Application of
parallel mixed-integer evolution strategies with mu-
tation rate pooling. In P. Angeline and T. B�ack, edi-
tors, Proceedings of the Fifth Annual Conference on

Evolutionary Programming. The MIT Press, Cam-
bridge, MA, 1996.

[9] R. R. Willey. Predicting achievable design perfor-
mance of broadband antire
ection coatings. Applied
Optics, 32:5447{5451, 1993.

[10] A. V. Tikhonravov, M. K. Trubetskov, J. A. Do-
browolski, and B. T. Sullivan. OptimumSolutions to
Single-Band Normal Incidence Antire
ection Coat-
ing Problems. In Optical Interference Coatings,

Vol. 17, OSA Technical Digest Series, pages 49{51,
Washington DC, 1995. Optical Society of America.


