Picosecond spectrally resolved fluorescent measmements together with the coupled kinetic rate equ... more Picosecond spectrally resolved fluorescent measmements together with the coupled kinetic rate equation model simulations of the data have been employed to determine the rates and pathways of heterogeneous excitation transport in the membranes of photosynthetic bacteria Rhodobacter sphaeroides and Chromatium minutissimum. Excitation transport from bacteriochlorophyll molecules B800 to B850, belonging to the same pigment-pigment-protein complex BSOO-850, proceeds in l-2 ps at room temperature and at 77 IL The intercomplex excitation transport from B850 to B875 takes about 10 ps for most excitations. In the minor part of BSOO-850 complexes, the excitation transport to B875 complex takes much longer, about 50 ps. The macroscopic rate constant of excitation trapping by open reaction centres is shown to be the same for all the bacteria studied, although the number of antenna molecules per reaction centre differs significantly. This seems to be an indication of the intrinsic homogeneity of...
Dion-Jacobson (DJ) type 2D perovskites with a single organic cation layer exhibit a narrower dist... more Dion-Jacobson (DJ) type 2D perovskites with a single organic cation layer exhibit a narrower distance between two adjacent inorganic layers compared to the corresponding Ruddlesden-Popper perovskites, which facilitates interlayer charge transport. However, the internal crystal structures in 2D DJ perovskites remain elusive. Herein, in a p-xylylenediamine (PDMA)-based DJ perovskite bearing bifunctional NH3 + spacer, the compression from confinement structure (inorganic layer number, n = 1, 2) to nonconfinement structure (n > 3) with the decrease of PDMA molar ratio is unraveled. Remarkably, the nonconfined perovskite displays shorter spacing between 2D quantum wells, which results in a lower exciton binding energy and hence promotes exciton dissociation. The significantly diminishing quantum confinement promotes interlayer charge transport leading to a maximum photovoltaic efficiency of ≈11%. Additionally, the tighter interlayer packing arising from the squeezing of inorganic octahedra gives rise to enhanced ambient stability.
Photo-generated charge carrier dynamics in Ruddlesden–Popper 2D perovskites with linear (n-BA) an... more Photo-generated charge carrier dynamics in Ruddlesden–Popper 2D perovskites with linear (n-BA) and branched (iso-BA) butylamine as spacing cations have been studied by using transient absorption and time-resolved photoluminescence spectroscopies.
The optical properties of monolayer molybdenum disulfide (MoS2)/Ag nanoparticle (NP) hybrids and ... more The optical properties of monolayer molybdenum disulfide (MoS2)/Ag nanoparticle (NP) hybrids and their application to surface catalytic reactions were studied by transmission, photoluminescence (PL) and Raman spectroscopies. The local surface plasmon resonance (LSPR) of Ag nanoparticles was tuned to better match the exciton energy of monolayer MoS2. The PL of the hybrids was enhanced by more than 50 times when the local surface plasmon resonance (LSPR) peak was tuned systematically from 438 nm to 532 nm, indicating a stronger coupling and higher energy transfer rate between the plasmon of the Ag NPs and the excitons of the MoS2. Additionally, photocatalytic reactions of 4-nitrobenzenethiol (4NBT) were performed on the MoS2, the Ag nanoparticles, and the hybrid MoS2 with Ag nanoparticles. On the MoS2 substrate alone, there is no photocatalytic reaction. With a low laser intensity, the probability of a chemical reaction occurring for molecules directly adsorbed onto the Ag NPs is much lower than the probability of a reaction involving those molecules adsorbed onto the MoS2/Ag substrate. At a higher power, although the electric field was reduced by approximately 30% by the MoS2 layer, there is better efficiency for the plasmon-exciton co-driven surface catalytic reactions on the MoS2/Ag substrate compared to the Ag substrate alone. Our findings illustrate the potential to control hot carriers for better surface catalytic reactions by tuning the exciton-plasmon coupling between the 2D transition metal dichalcogenides (TMDCs) and Ag NPs.
2D perovskites have recently been shown to exhibit significantly improved environmental stability... more 2D perovskites have recently been shown to exhibit significantly improved environmental stability. Derived from their 3D analogues, 2D perovskites are formed by inserting bulky alkylammonium cations in-between the anionic layers. However, these insulating organic spacer cations also hinder charge transport. Herein, such a 2D perovskite, (iso-BA)2(MA)3Pb4I13, that contains short branched-chain spacer cations (iso-BA+) and shows a remarkable increase of optical absorption and crystallinity in comparison to the conventional linear one, n-BA+, is designed. After applying the hot-casting (HC) technique, all these properties are further improved. The HC (iso-BA)2(MA)3Pb4I13 sample exhibits the best ambient stability by maintaining its initial optical absorption after storage of 840 h in an environmental chamber at 20 °C with a relative humidity of 60% without encapsulation. More importantly, the out-of-plane crystal orientation of (iso-BA)2(MA)3Pb4I13 film is notably enhanced, which increases cross-plane charge mobility. As a result, the highest power conversion efficiencies (PCEs) measured from for current density versus voltage curves afford 8.82% and 10.63% for room-temperature and HC-processed 2D perovskites based planar solar cells, respectively. However, the corresponding steady-state PCEs are remarkably lower, which is presumably due to the significant hysteresis phenomena caused by low charge extraction efficiency at interfaces of C60/2D perovskites.
Lead-based perovskite nanocrystals (NCs) have outstanding optical properties and cheap synthesis ... more Lead-based perovskite nanocrystals (NCs) have outstanding optical properties and cheap synthesis conferring them a tremendous potential in the field of optoelectronic devices. However, two critical problems are still unresolved and hindering their commercial applications: one is the fact of being lead-based and the other is the poor stability. Lead-free all-inorganic perovskite Cs3 Bi2 X9 (X=Cl, Br, I) NCs are synthesized with emission wavelength ranging from 400 to 560 nm synthesized by a facile room temperature reaction. The ligand-free Cs3 Bi2 Br9 NCs exhibit blue emission with photoluminescence quantum efficiency (PLQE) about 0.2 %. The PLQE can be increased to 4.5 % when extra surfactant (oleic acid) is added during the synthesis processes. This improvement stems from passivation of the fast trapping process (2-20 ps). Notably, the trap states can also be passivated under humid conditions, and the NCs exhibited high stability towards air exposure exceeding 30 days.
The journal of physical chemistry letters, Jan 18, 2017
All-inorganic colloidal perovskite quantum dots (QDs) based on cesium, lead, and halide have rece... more All-inorganic colloidal perovskite quantum dots (QDs) based on cesium, lead, and halide have recently emerged as promising light emitting materials. CsPbBr3 QDs have also been demonstrated as stable two-photon-pumped lasing medium. However, the reported two photon absorption (TPA) cross sections for these QDs differ by an order of magnitude. Here we present an in-depth study of the TPA properties of CsPbBr3 QDs with mean size ranging from 4.6 to 11.4 nm. By using femtosecond transient absorption (TA) spectroscopy we found that TPA cross section is proportional to the linear one photon absorption. The TPA cross section follows a power law dependence on QDs size with exponent 3.3 ± 0.2. The empirically obtained power-law dependence suggests that the TPA process through a virtual state populates exciton band states. The revealed power-law dependence and the understanding of TPA process are important for developing high performance nonlinear optical devices based on CsPbBr3 nanocrystals.
Organometal halide perovskites have attracted tremendous attention for optoelectronic application... more Organometal halide perovskites have attracted tremendous attention for optoelectronic applications. Charge carrier trapping is one of the dominant processes often deteriorating the performance of devices. Here, we investigate the details of trap behavior in colloidal nanoparticles (NPs) of CH3NH3PbBr3 perovskites with mean size of 8 nm and the corresponding bulk crystals (BCs). We use excitation intensity dependence of photoluminescence (PL) dynamics together with comprehensive simulation of charge carrier trapping and the trap-state dynamics. In the bulk at very low excitation intensities the PL is quenched by trapping. A considerable fraction of the traps become filled if excitation fluence is increased. We identified two different traps, one exhibiting ultralong lifetime (∼70 μs) which leads to efficient accumulation of trap filling even at relatively low excitation intensities. In colloidal NPs, the average number of surface traps is estimated to be 0.7 per NP. It means about 30% excitation would unde...
The nonlinear optical response of a material system contains detailed information about its elect... more The nonlinear optical response of a material system contains detailed information about its electronic structure. Standard approaches to nonlinear spectroscopy often use multiple beams crossed in a sample, and detect the wave vector matched polarization in transmission. Here, we apply a phase-synchronous digital detection scheme using an excitation geometry with two phase-modulated collinear ultrafast pulses. This scheme can be used to efficiently detect nonlinear coherent signals and incoherent signals, such as higher harmonics and multiphoton fluorescence and photocurrent, from various systems including a photocell device. We present theory and experiment to demonstrate that when the phase of each laser pulse is modulated at the frequency phi(1) and phi(2), respectively, nonlinear signals can be isolated at the frequencies n(phi(2) - phi(1)), where n = 0, 1, 2, ... . This approach holds promise for performing nonlinear spectroscopic measurements under low-signal conditions. (Less)
Photoluminescence (PL) of organo-metal halide perovskite semiconductors can be enhanced by severa... more Photoluminescence (PL) of organo-metal halide perovskite semiconductors can be enhanced by several orders of magnitude by exposure to visible light. We applied PL microscopy and super-resolution optical imaging to investigate this phenomenon with spatial resolution better than 10 nm using films of CH3NH3PbI3 prepared by the equimolar solution-deposition method, resulting in crystals of different sizes. We found that PL of ∼100 nm crystals enhances much faster than that of larger, micrometer-sized ones. This crystal-size dependence of the photochemical light passivation of charge traps responsible for PL quenching allowed us to conclude that traps are present in the entire crystal volume rather than at the surface only. Because of this effect, "dark" micrometer-sized perovskite crystals can be converted into highly luminescent smaller ones just by mechanical grinding. Super-resolution optical imaging shows spatial inhomogeneity of the PL intensity within perovskite crystals and the existence of <100 nm-sized localized emitting sites. The possible origin of these sites is discussed.
Picosecond spectrally resolved fluorescent measmements together with the coupled kinetic rate equ... more Picosecond spectrally resolved fluorescent measmements together with the coupled kinetic rate equation model simulations of the data have been employed to determine the rates and pathways of heterogeneous excitation transport in the membranes of photosynthetic bacteria Rhodobacter sphaeroides and Chromatium minutissimum. Excitation transport from bacteriochlorophyll molecules B800 to B850, belonging to the same pigment-pigment-protein complex BSOO-850, proceeds in l-2 ps at room temperature and at 77 IL The intercomplex excitation transport from B850 to B875 takes about 10 ps for most excitations. In the minor part of BSOO-850 complexes, the excitation transport to B875 complex takes much longer, about 50 ps. The macroscopic rate constant of excitation trapping by open reaction centres is shown to be the same for all the bacteria studied, although the number of antenna molecules per reaction centre differs significantly. This seems to be an indication of the intrinsic homogeneity of...
Dion-Jacobson (DJ) type 2D perovskites with a single organic cation layer exhibit a narrower dist... more Dion-Jacobson (DJ) type 2D perovskites with a single organic cation layer exhibit a narrower distance between two adjacent inorganic layers compared to the corresponding Ruddlesden-Popper perovskites, which facilitates interlayer charge transport. However, the internal crystal structures in 2D DJ perovskites remain elusive. Herein, in a p-xylylenediamine (PDMA)-based DJ perovskite bearing bifunctional NH3 + spacer, the compression from confinement structure (inorganic layer number, n = 1, 2) to nonconfinement structure (n > 3) with the decrease of PDMA molar ratio is unraveled. Remarkably, the nonconfined perovskite displays shorter spacing between 2D quantum wells, which results in a lower exciton binding energy and hence promotes exciton dissociation. The significantly diminishing quantum confinement promotes interlayer charge transport leading to a maximum photovoltaic efficiency of ≈11%. Additionally, the tighter interlayer packing arising from the squeezing of inorganic octahedra gives rise to enhanced ambient stability.
Photo-generated charge carrier dynamics in Ruddlesden–Popper 2D perovskites with linear (n-BA) an... more Photo-generated charge carrier dynamics in Ruddlesden–Popper 2D perovskites with linear (n-BA) and branched (iso-BA) butylamine as spacing cations have been studied by using transient absorption and time-resolved photoluminescence spectroscopies.
The optical properties of monolayer molybdenum disulfide (MoS2)/Ag nanoparticle (NP) hybrids and ... more The optical properties of monolayer molybdenum disulfide (MoS2)/Ag nanoparticle (NP) hybrids and their application to surface catalytic reactions were studied by transmission, photoluminescence (PL) and Raman spectroscopies. The local surface plasmon resonance (LSPR) of Ag nanoparticles was tuned to better match the exciton energy of monolayer MoS2. The PL of the hybrids was enhanced by more than 50 times when the local surface plasmon resonance (LSPR) peak was tuned systematically from 438 nm to 532 nm, indicating a stronger coupling and higher energy transfer rate between the plasmon of the Ag NPs and the excitons of the MoS2. Additionally, photocatalytic reactions of 4-nitrobenzenethiol (4NBT) were performed on the MoS2, the Ag nanoparticles, and the hybrid MoS2 with Ag nanoparticles. On the MoS2 substrate alone, there is no photocatalytic reaction. With a low laser intensity, the probability of a chemical reaction occurring for molecules directly adsorbed onto the Ag NPs is much lower than the probability of a reaction involving those molecules adsorbed onto the MoS2/Ag substrate. At a higher power, although the electric field was reduced by approximately 30% by the MoS2 layer, there is better efficiency for the plasmon-exciton co-driven surface catalytic reactions on the MoS2/Ag substrate compared to the Ag substrate alone. Our findings illustrate the potential to control hot carriers for better surface catalytic reactions by tuning the exciton-plasmon coupling between the 2D transition metal dichalcogenides (TMDCs) and Ag NPs.
2D perovskites have recently been shown to exhibit significantly improved environmental stability... more 2D perovskites have recently been shown to exhibit significantly improved environmental stability. Derived from their 3D analogues, 2D perovskites are formed by inserting bulky alkylammonium cations in-between the anionic layers. However, these insulating organic spacer cations also hinder charge transport. Herein, such a 2D perovskite, (iso-BA)2(MA)3Pb4I13, that contains short branched-chain spacer cations (iso-BA+) and shows a remarkable increase of optical absorption and crystallinity in comparison to the conventional linear one, n-BA+, is designed. After applying the hot-casting (HC) technique, all these properties are further improved. The HC (iso-BA)2(MA)3Pb4I13 sample exhibits the best ambient stability by maintaining its initial optical absorption after storage of 840 h in an environmental chamber at 20 °C with a relative humidity of 60% without encapsulation. More importantly, the out-of-plane crystal orientation of (iso-BA)2(MA)3Pb4I13 film is notably enhanced, which increases cross-plane charge mobility. As a result, the highest power conversion efficiencies (PCEs) measured from for current density versus voltage curves afford 8.82% and 10.63% for room-temperature and HC-processed 2D perovskites based planar solar cells, respectively. However, the corresponding steady-state PCEs are remarkably lower, which is presumably due to the significant hysteresis phenomena caused by low charge extraction efficiency at interfaces of C60/2D perovskites.
Lead-based perovskite nanocrystals (NCs) have outstanding optical properties and cheap synthesis ... more Lead-based perovskite nanocrystals (NCs) have outstanding optical properties and cheap synthesis conferring them a tremendous potential in the field of optoelectronic devices. However, two critical problems are still unresolved and hindering their commercial applications: one is the fact of being lead-based and the other is the poor stability. Lead-free all-inorganic perovskite Cs3 Bi2 X9 (X=Cl, Br, I) NCs are synthesized with emission wavelength ranging from 400 to 560 nm synthesized by a facile room temperature reaction. The ligand-free Cs3 Bi2 Br9 NCs exhibit blue emission with photoluminescence quantum efficiency (PLQE) about 0.2 %. The PLQE can be increased to 4.5 % when extra surfactant (oleic acid) is added during the synthesis processes. This improvement stems from passivation of the fast trapping process (2-20 ps). Notably, the trap states can also be passivated under humid conditions, and the NCs exhibited high stability towards air exposure exceeding 30 days.
The journal of physical chemistry letters, Jan 18, 2017
All-inorganic colloidal perovskite quantum dots (QDs) based on cesium, lead, and halide have rece... more All-inorganic colloidal perovskite quantum dots (QDs) based on cesium, lead, and halide have recently emerged as promising light emitting materials. CsPbBr3 QDs have also been demonstrated as stable two-photon-pumped lasing medium. However, the reported two photon absorption (TPA) cross sections for these QDs differ by an order of magnitude. Here we present an in-depth study of the TPA properties of CsPbBr3 QDs with mean size ranging from 4.6 to 11.4 nm. By using femtosecond transient absorption (TA) spectroscopy we found that TPA cross section is proportional to the linear one photon absorption. The TPA cross section follows a power law dependence on QDs size with exponent 3.3 ± 0.2. The empirically obtained power-law dependence suggests that the TPA process through a virtual state populates exciton band states. The revealed power-law dependence and the understanding of TPA process are important for developing high performance nonlinear optical devices based on CsPbBr3 nanocrystals.
Organometal halide perovskites have attracted tremendous attention for optoelectronic application... more Organometal halide perovskites have attracted tremendous attention for optoelectronic applications. Charge carrier trapping is one of the dominant processes often deteriorating the performance of devices. Here, we investigate the details of trap behavior in colloidal nanoparticles (NPs) of CH3NH3PbBr3 perovskites with mean size of 8 nm and the corresponding bulk crystals (BCs). We use excitation intensity dependence of photoluminescence (PL) dynamics together with comprehensive simulation of charge carrier trapping and the trap-state dynamics. In the bulk at very low excitation intensities the PL is quenched by trapping. A considerable fraction of the traps become filled if excitation fluence is increased. We identified two different traps, one exhibiting ultralong lifetime (∼70 μs) which leads to efficient accumulation of trap filling even at relatively low excitation intensities. In colloidal NPs, the average number of surface traps is estimated to be 0.7 per NP. It means about 30% excitation would unde...
The nonlinear optical response of a material system contains detailed information about its elect... more The nonlinear optical response of a material system contains detailed information about its electronic structure. Standard approaches to nonlinear spectroscopy often use multiple beams crossed in a sample, and detect the wave vector matched polarization in transmission. Here, we apply a phase-synchronous digital detection scheme using an excitation geometry with two phase-modulated collinear ultrafast pulses. This scheme can be used to efficiently detect nonlinear coherent signals and incoherent signals, such as higher harmonics and multiphoton fluorescence and photocurrent, from various systems including a photocell device. We present theory and experiment to demonstrate that when the phase of each laser pulse is modulated at the frequency phi(1) and phi(2), respectively, nonlinear signals can be isolated at the frequencies n(phi(2) - phi(1)), where n = 0, 1, 2, ... . This approach holds promise for performing nonlinear spectroscopic measurements under low-signal conditions. (Less)
Photoluminescence (PL) of organo-metal halide perovskite semiconductors can be enhanced by severa... more Photoluminescence (PL) of organo-metal halide perovskite semiconductors can be enhanced by several orders of magnitude by exposure to visible light. We applied PL microscopy and super-resolution optical imaging to investigate this phenomenon with spatial resolution better than 10 nm using films of CH3NH3PbI3 prepared by the equimolar solution-deposition method, resulting in crystals of different sizes. We found that PL of ∼100 nm crystals enhances much faster than that of larger, micrometer-sized ones. This crystal-size dependence of the photochemical light passivation of charge traps responsible for PL quenching allowed us to conclude that traps are present in the entire crystal volume rather than at the surface only. Because of this effect, "dark" micrometer-sized perovskite crystals can be converted into highly luminescent smaller ones just by mechanical grinding. Super-resolution optical imaging shows spatial inhomogeneity of the PL intensity within perovskite crystals and the existence of <100 nm-sized localized emitting sites. The possible origin of these sites is discussed.
Uploads
Papers by Tõnu Pullerits