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Abstract

Many years ago Mycielski [8] showed, for any positive integer
k, the existence of a triangle-free graph with chromatic number k.
An obvious question concerns the minimum number of vertices such
a graph G must have. Every vertex v in a minimum G is k-color
critical, that is, χ(G−v) = k−1. A vertex v for which χ(G−v) = k is
called k-color stable. This paper addresses relationships between the
minimum number of vertices in triangle-free graphs in which every
vertex is k-color critical and those in which every vertex is k-color
stable.

Keywords: graph coloring, triangle-free graphs, color critical vertices and
graphs, color stable vertices and graphs.

1 Introduction

Let G be a graph with vertex set V (G). The following notation is standard,
and it and other terminology can be found in Chartrand and Zhang [1]
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or Gross and Yellen [5]. The minimum and maximum degrees of G are,
respectively, δ(G) and ∆(G). The open and closed neighborhoods of a
vertex v in graph G are, respectively, NG(v) and NG[v], and if it is clear
what graph is under consideration, we simply use N(v) and N [v]. The
graph with vertex v removed from G is denoted G− v, and G−X, where
X ⊆ V (G), is the graph resulting from removing all vertices of X from
G. The expression G + v indicates a graph obtained from G by adding a
vertex v, in which case N(v) must be specified. The chromatic number of
G is χ(G). When convenient a k-coloring of a graph will be expressed as
a function c : V (G) → {1, 2, . . . , k} so c(v) is the color assigned to vertex
v. A color class of a k-coloring c is a maximal subset W ⊆ V (G) such that
c(w) has the same value for all w ∈W .

The problem of determining the smallest number of vertices in a triangle-
free graph having a given chromatic number k has received some interest.
Early mentions appear in Erdös [4] and Chvátal [3]. Here, this number
of vertices is denoted m(k). It is easy to determine these numbers when
1 ≤ k ≤ 3: m(1) = 1 (uniquely achieved by K1), m(2) = 2 (K2), and
m(3) = 5 (C5). Chvátal [3] showed that m(4) = 11 and the Grötzsch
graph shown in Figure 1 is the unique such graph. As reported by Jenson
and Royle [7], Toft in 1988 asked for the value of m(5), and they, using a
computer search, discovered that m(5) = 22 and there are 80 such graphs.t
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Figure 1: Grötzsch graph

The vertices of a graph achieving the value m(k) are vertex color critical,
that is, removal of any vertex reduces the chromatic number by one. We
formalize the concept in the following definition. Any coloring considered
in this paper is assumed to be proper.
Definition 1. Let G be a graph with vertex set V (G).

1. Vertex v ∈ V (G) is vertex color critical (vcc) if χ(G− v) = χ(G)− 1.

2. G is a k-vcc graph if χ(G) = k and every v ∈ V (G) is vcc.

3. G is a minimum k-vcc graph if every k-vcc graph has at least |V (G)|
vertices.
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4. m(k) is the number of vertices of a minimum triangle-free k-vcc graph.

The standard definition of a graph G being color critical is that χ(H) <
χ(G) for every proper subgraph H. In particular, the chromatic number
decreases if any vertex or any edge is removed. This is confirmed in Char-
trand and Zhang [1] on page 175 where they also state that every graph
G of chromatic number k has a k-color critical subgraph. This study is
concerned only about vertex removal decreasing the chromatic number and
hence the term vertex color critical.

If a vertex v in graph G is not vcc, then χ(G − v) = χ(G). This paper
studies triangle-free graphs for which this property holds for every vertex.
The following definition is similar to the one given above.
Definition 2. Let G be a graph with vertex set V (G).

1. Vertex v ∈ V (G) is vertex color stable (vcs) if χ(G− v) = χ(G).

2. G is a k-vcs graph if χ(G) = k and every v ∈ V (G) is vcs.

3. G is a minimal k-vcs graph if, for every vertex v ∈ V (G), G − v is
not a k-vcs graph, that is, G− v contains at least one vcc vertex.

4. G is a minimum k-vcs graph if every k-vcs graph has at least |V (G)|
vertices.

5. M(k) is the number of vertices of a minimum triangle-free k-vcs
graph.

The two definitions above aren’t completely parallel since minimal vcc
graphs are undefined. The reason is every k-vcc graph is minimal since
it does not contain a proper k-vcc minimal subgraph and hence is not of
interest. Any bipartite graph not equal to K1,n, n ≥ 2, is an example of
a 2-vcs graph. It is easy to see by examining all graphs on at most four
vertices (see Harary [6]) that M(1) = 2 (the unique graph achieving this is
2K1) and M(2) = 4 (the only graphs achieving this are C4, P4, and 2K2).
The study reported here was motivated by examining the relation between
m(k) and M(k).

It is clear that m(k) is the smallest number of vertices in a triangle-free
graph of chromatic number k such that every color class has at least one
vertex. We will show M(k) is the smallest number of vertices in a triangle-
free graph of chromatic number k such that every color class has at least
two vertices. This idea can be extended as is described in Problem 7 of
Section 6.

Section 2 presents needed preliminary results and Section 3 gives relation-
ships involving m(k) and M(k). Section 4 determines the value of M(3),
along with the set of all graphs that achieve it. The determination of M(k),
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k ≥ 4, appears to be a difficult problem and in Section 5 bounds are shown
for M(4). The final section presents some open problems.

2 Preliminaries

This section develops the background needed for later results.
Lemma 3. G is a k-vcs graph if and only if, for every k-coloring of G,
every color class has at least two vertices.

Proof: If a color class has only a single vertex, removal of that vertex
reduces the chromatic number by one and G is not k-vcs. If G is not k-vcs,
there is a vcc vertex v whose removal reduces the chromatic number. The
k − 1 coloring of G − v can then be extended to a k-coloring of G with v
the only vertex of color k.

The next definition describes three graphs based on graph G that are useful
in exploring properties of k-vcc and k-vcs graphs.
Definition 4. Let G be a graph with vertex set V (G) = {v1, v2, . . . , vn},
and let W = {w1, w2, . . . , wn} and Z = {z1, z2} be sets of vertices used in
the constructions described below.

1. F0(G) has vertex set V (G)∪W where V (G) induces G and N(wi) =
NG(vi) for 1 ≤ i ≤ n.

2. F1(G) = F0(G) + z1 where N(z1) = W .

3. F2(G) = F1(G) + z2 where N(z2) = W .

F1(G) is the well-known Mycielski graph [8] of G.
Observation 5. Let G be a graph with χ(G) = k,

1. χ(F0(G)) = k and χ(F1(G)) = χ(F2(G)) = k + 1.

2. F0(G) is k-vcs.

3. If G is k-vcc, then F1(G) is (k + 1)-vcc.

4. If G is k-vcs, then F2(G) is (k + 1)-vcs.

Proof:

1. A k-coloring of G can be extended to one of F0(G) by assigning wi

the same color as vi, 1 ≤ i ≤ n. It is known the Mycielski graph
F1(G) has chromatic number k+ 1 and a k+ 1-coloring of F1(G) can
be extended to one of F2(G) by assigning z2 the same color as z1.
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2. For any vertex v of F0(G), F0(G) − v has a subgraph isomorphic to
G so has chromatic number k. Therefore F0(G) is k-vcs.

3. F1(G) − z1 is isomorphic to F0(G) so z1 is vcc in F1(G). Consider
vertex vi, 1 ≤ i ≤ n. Since G is vcc, there is a k-coloring of the
vertices of V (G) such that vi is the only vertex with color k. In
F1(G)− vi color every vertex of W with k and color z1 with 1. Thus
χ(F1(G)− vi) = k and vi is vcc in F1(G). Finally consider vertex wi,
1 ≤ i ≤ n. Color the vertices of F1(G) − wi so that vi is the only
vertex of V (G) with color k, wj , j 6= i, is colored the same as vj , and
z1 is colored k. Thus wi is vcc in F1(G).

4. For x ∈ {z1, z2}, F2(G) − x is isomorphic to F1(G) so x is vcs in
F2(G). Let x ∈ {vi, wi}, 1 ≤ i ≤ n. Note that F2(G) − {vi, wi} is
isomorphic to F2(G− vi). Thus k + 1 = χ(F2(G)) ≥ χ(F2(G)− x) ≥
χ(F2(G)−{vi, wi}) = χ(F2(G−vi)) = χ(G−vi)+1 = k+1 implying
x is vcs in F2(G).

While the values m(k) and M(k) are defined only for triangle-free graphs,
the concept can be considered for all graphs. However, as is shown next,
the extension to general graphs may be of little value.
Observation 6. The minimum number of vertices in a k-vcc graph is k
and in a k-vcs graph is 2k.

Proof: Any k-vcc graph has at least k vertices and the complete graph Kk

is vcc so the first result holds. From Observation 5 Part 2, the 2k vertex
graph F0(Kk) is k-vcs. The fact there must be at least 2k vertices in any
k-vcs graph follows from Lemma 3.

Theorem 7. If G is a minimal k-vcs graph, then δ(G) ≥ k − 1.

Proof: The result is obvious if k ≤ 2. Otherwise assume δ(G) ≤ k − 2
and let v be a minimum degree vertex of G. Since G is minimal k-vcs,
χ(G− v) = k and G− v has a vcc vertex v′. Thus G− v has a k coloring
in which v′ is the only vertex colored k. Since in G vertex v has no more
than k− 2 neighbors, the coloring of G− v can be extended to G by giving
v some color less than k; hence v′ is the only vertex colored k in G and
therefore is vcc, a contradiction.

Theorem 8. Let graph G have an independent set of vertices B. Then
χ(G−B) ≥ χ(G)− 1.

Proof: The result is immediate when k = 1. Otherwise suppose k ≥ 2 and
there is an independent set of vertices B such that χ(G − B) ≤ χ(G) − 2.
Then any χ(G)−2 coloring ofG−B can be extended to a χ(G)−1 coloring of
G by coloring all the vertices of B with color χ(G)−1, a contradiction.
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A vertex v of a graph is called triangle-free if N(v) is an independent set
of vertices.
Lemma 9. Let G 6= K1,n be a graph with triangle-free vertex v. Then
χ(G−N [v]) ≥ χ(G)− 1.

Proof: The result is immediate if χ(G) ≤ 2 since G 6= K1,n. Otherwise
suppose χ(G−N [v]) ≤ χ(G)−2. Any χ(G)−2 coloring of G−N [v] can be
extended to a χ(G) − 1 coloring of G by assigning the vertices of N(v) to
color χ(G)− 1 and v to any color less than χ(G)− 1, a contradiction.

Corollary 10. Let G 6= K1,n be a triangle-free graph. Then for every
vertex v ∈ V (G), χ(G−N [v]) ≥ χ(G)− 1.
Lemma 11. Let G 6= K2 be a graph of chromatic number k with triangle-
free vcc vertex v. Then G− v is (k − 1)-vcs.

Proof: The result is true for K1,n, n ≥ 2, so assume G 6= K1,n. Since v is
vcc, χ(G− v) = k− 1. If G− v is not (k− 1)-vcs, there is a vertex v′ which
is vcc in G− v so χ(G−{v, v′}) = k− 2. Thus there is a k-coloring of G in
which v′ is the only vertex colored k− 1 and v the only vertex colored k. If
v and v′ are not adjacent, v can be recolored k−1, contradicting χ(G) = k.
If v and v′ are adjacent, v′ ∈ N(v) so {v, v′} ⊆ N [v] and χ(G − N [v]) ≤
χ(G − {v, v′}) = k − 2. Since the vertices of N(v) are independent and
G 6= K1,n, it follows from Lemma 9 that χ(G − N [v]) ≥ k − 1, a final
contradiction that shows G− v is (k − 1)-vcs.

Corollary 12. Let G 6= K2 be a triangle-free graph of chromatic number
k. Then for every vcc vertex v ∈ V (G), G− v is (k − 1)-vcs.
Lemma 13. Let G be a k-vcs triangle-free graph, k ≥ 3, with a vertex v
such that χ(G−N [v]) = k − 1. Then G−N [v] is a (k − 1)-vcs graph.

Proof: If G − N [v] is not a (k − 1)-vcs graph, it contains a vcc vertex w
and has a (k− 1)-coloring in which w is the only vertex colored k− 1. This
coloring can be extended to a k-coloring of G by coloring the vertices of
N(v) with k and v with any color less than k − 1, which is possible since
k ≥ 3. Now w is the only vertex colored k − 1 and hence is vcc in G,
contradicting the fact that G is a k-vcs graph.

3 Relationships involving m(k) and M(k)

For the remainder of this paper, all graphs are assumed to be triangle-free.
This section determines bounds on m(k) and M(k). The first shows M(k)
lies strictly between m(k) and m(k+1) and hence implies m(k) lies strictly
between M(k − 1) and M(k).
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Theorem 14. For k ≥ 2, m(k) < M(k) < m(k + 1).

Proof: Suppose G is a minimum k-vcs graph. For every vertex v ∈ V (G),
χ(G−v) = k. Then m(k) ≤ |V (G−v)| < |V (G)| = M(k). Next assume G is
a minimum (k+1)-vcc graph. From Corollary 12, G−v is a k-vcs graph for
any vertex v ∈ V (G). Thus M(k) ≤ |V (G− v)| < |V (G)| = m(k + 1).

The next result presents similar relationships between vcc values and vcs
values, further indicating they have similar growth rates.
Theorem 15.

1. For k ≥ 4, m(k − 1) + k + 1 ≤ m(k) ≤ 2m(k − 1) + 1.

2. For k ≥ 3, M(k − 1) + k + 1 ≤M(k) ≤ 2M(k − 1) + 2.

Proof:

1. Let G be a minimum k-vcc graph and v ∈ V (G) a vertex of maximum
degree ∆(G). It follows from Corollary 10 that χ(G−N [v]) = k − 1.
Since G is triangle-free, it is not complete. Since k ≥ 4, it is not
an odd cycle. Thus, using Brooks’ Theorem, k = χ(G) ≤ ∆(G) =
|N [v]| − 1. Therefore m(k − 1) + k + 1 ≤ |V (G)| − |N [v]| + k + 1 ≤
m(k)− |N [v]|+ |N [v]| = m(k). Next let G be a minimum (k− 1)-vcc
graph. By Observation 5 Parts 1 and 3, F1(G) is k-vcc so m(k) ≤
|V (F1(G))| = 2|V (G)|+ 1 = 2m(k − 1) + 1.

2. Let G be a minimum k-vcs graph and v ∈ V (G) a vertex of maximum
degree. G is not complete and it is not an odd cycle since such cycles
are not vcs. From Corollary 10, χ(G−N [v]) ≥ k−1. If χ(G−N [v]) =
k − 1, Lemma 13 and Brooks’ Theorem imply M(k − 1) + k + 1 ≤
|V (G−N [v])|+k+1 = |V (G)|−(∆(G)+1)+k+1 ≤M(k)−(k+1)+
k+1 = M(k). If χ(G−N [v]) = k, Theorem 14 and Brook’s Theorem
imply M(k − 1) + k + 1 < m(k) + k + 1 ≤ |V (G −N [v])| + k + 1 =
|V (G)| − (∆(G) + 1) + k+ 1 ≤M(k)− (k+ 1) + k+ 1 = M(k). Now
assume G is a minimum (k − 1)-vcs graph. From Observation 5 Part
4, F2(G) is a k-vcs graph. Therefore M(k) ≤ |F2(G)| = 2|V (G)|+2 =
2M(k − 1) + 2.

The left inequality of Theorem 15 Part 1 was previously found by Chvátal
[3]. The following theorem presents an upper bound on M(k) that is helpful
in determining M(3) but is less useful for higher chromatic numbers.
Theorem 16. For k ≥ 3, M(k) ≤ 3m(k − 1) + 2.

Proof: Let G be a minimum (k − 1)-vcc graph. We construct a vcs graph
H with 3|V (G)| + 2 vertices. From Observation 5, F1(G) has 2|V (G)| +
1 vertices and chromatic number k. Now H is formed by adding n =
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|V (G)| vertices X = {x1, x2, . . . , xn} and a single vertex z3 so H will have
3|V (G)| + 2 vertices. The additional edges are given, for 1 ≤ i ≤ n, by
N(xi) = NF1(G)(vi) ∪ {z3}. It is easy to see χ(H) = k. We must show H
is vcs. Let u ∈ V (H). If u ∈ N [z1] ∪ N [z3], H − u contains a subgraph
isomorphic to F1(G) and thus has chromatic number k. If u = vi, 1 ≤ i ≤ n,
(V (G)− {vi}) ∪ {wi} ∪X ∪ {z3} induces a subgraph isomorphic to F1(G)
so it has chromatic number k. Thus H is vcs and the theorem follows.

4 M(3)

The value of M(3) is determined and then all graphs that achieve it are
found.
Theorem 17. M(3) = 8.

Proof: Since m(2) = 2 and M(2) = 4, Theorem 15 Part 2 shows M(3) ≥ 8
and Theorem 16 yields M(3) ≤ 8.

Lemma 18. Let G be a minimum 3-vcs graph. Then 2 ≤ δ(G) ≤ ∆(G) =
3.

Proof: From Theorem 7, δ(G) ≥ 2. Let v be a vertex of maximum degree.
By Corollary 10, 2 ≤ χ(G−N [v]) and, since χ(G) = 3, χ(G−N [v]) ≤ 3. If
χ(G−N [v]) = 3, |V (G)| − (∆(G) + 1) ≥ 5 implying ∆(G) ≤ 2, meaning G
is bipartite, a contradiction to G being 3-vcs. Thus χ(G −N [v]) = 2 and,
by Lemma 13, G − N [v] is 2-vcs. Thus G − N [v] has at least 4 = M(2)
vertices so |V (G)−N [v]| = 8−∆(G)− 1 ≥ 4 so ∆(G) ≤ 3. Since G is not
an odd cycle, ∆(G) = 3.

Lemma 19. Let G be a minimum 3-vcs graph. Then G has a subgraph
that is an 8-cycle.

Proof: Lemma 18 and its proof show G has a degree 3 vertex so G−N [v]
has four vertices, has chromatic number 2, and is 2-vcs. Therefore, since
M(2) = 4, G − N [v] is a minimum 2-vcs graph. From the discussion
following Definition 2, G − N [v] is C4, P4, or 2K2. We examine each
separately. Let N(v) = W = {w0, w1, w2} and V (G − N [v]) = X =
{x0, x1, x2, x3}.
Suppose G − N [v] = C4. The vertices of X can be 2-colored. Since there
are no triangles, the vertices in W must be adjacent in X only to vertices
of the same color so the same two colors suffice for W . Thus G can be
3-colored with only vertex v colored 3, contradicting that G is 3-vcs.

Next assume G−N [v] = P4 where the path is given by < x0, x1, x2, x3 >.
If x0 and x3 do not have a common neighbor, then X can be 2-colored
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and a contradiction arises as in the preceding case. Otherwise assume
w1 has neighbors x0 and x3. Since w0 and w2 are not adjacent, G −
N [w1] must induce the path < w0, x1, x2, w2 > or < w2, x1, x2, w0 >.
Without loss of generality, assume the former so G contains the 8-cycle
< v,w0, x1, x0, w1, x3, x2, w2 >.

Finally let G−N [v] = 2K2 where x0 is adjacent to x1 and x2 is adjacent to
x3. At least one vertex in each K2 must be adjacent to a common vertex
in W . Without loss of generality assume w1 is adjacent to x1 and x2.
G−N [w1] is 2K2, since other possibilities have already been considered in
the previous two cases, with vertex set {w0, w2, x0, x3}. Since w0 and w2

are not adjacent and x0 and x3 are not adjacent, we may assume without
loss of generality that w0 and x0 are adjacent and so are w2 and x3. Then
G contains the 8-cycle < v,w0, x0, x1, w1, x2, x3, w2 >.

The next theorem gives a characterization of minimum 3-vcs graphs. Given
an 8-cycle with vertices in order < v0, v1, v2, v3, v4, v5, v6.v7 >, a bisecting
chord is an edge vivi+4 where arithmetic is modulo 8.
Theorem 20. Graph G is a minimum 3-vcs graph if and only if the eight
vertices of V (G) contain an 8-cycle subgraph, 2 ≤ δ(G) ≤ ∆(G) = 3, and
the cycle has at least two bisecting chords.

Proof: Suppose G is a minimum 3-vcs graph. From Lemmas 18 and 19, G
has an 8-cycle subgraph and 2 ≤ δ(G) ≤ ∆(G) = 3. If G has no bisecting
chords it can be 2-colored since any chords must be of the form vivi+3,
a contradiction to χ(G) = 3. If G has only one bisecting chord vivi+4,
removal of vi leaves a bipartite graph, contradicting G being 3-vcs. Thus
G must have at least two bisecting chords.

Now assume G has an 8-cycle subgraph, 2 ≤ δ(G) ≤ ∆(G) = 3, and at
least two bisecting chords. Since a bisecting chord creates 5-cycles and
8 < 11 = m(4), χ(G) = 3. For every vertex v ∈ V (G), G − v contains a
5-cycle so χ(G− v) = 3 and G is 3-vcs.

We now show explicitly all minimum 3-vcs graphs.
Theorem 21. Graph G is a minimum 3-vcs graph if and only if it is
isomorphic to one of the graphs in Figure 2.

Proof: From Theorem 20, the graphs of Figure 2 are minimum 3-vcs graphs
and any other minimum 3-vcs graph G must contain one of these as a proper
subgraph. The only way this might be possible is if chords are added to
one of these graphs. This is impossible in Figure 2(a) since ∆(G) = 3 and
adding an edge to the graph of (b) results in that of (a). In the graph
of (c) any permissible additional chord is bisecting and adding one or two
produces either graph (b) or graph (a). Possible additional chords to the
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graph of (d) are the bisecting v2v6 and v3v7 and nonbisecting chords v2v7
and v3v6. Without loss of generality, add chord v2v7 and observe that the
result contains the 8-cycle {v0, v4, v3, v2, v1, v5, v6, v7} with bisecting chords
v0v1, v2v7, and v4v5 and the graph is isomorphic to that in (b).
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Figure 2: Minimum 3-vcs graphs

5 M(4)

In this section lower and upper bounds for M(4) are obtained. Theorem
15 Part 2 implies, using M(3) = 8, that 13 ≤ M(4). Employing Theorem
16 and m(3) = 5 gives M(4) ≤ 17. The two following subsections improve
each of these bounds by one.

5.1 M(4) ≥ 14

We first demonstrate the structure of a 13-vertex 4-vcs graph, if such a
graph exists, is highly restricted. Then Theorem 23 shows there are no
such graphs.
Lemma 22. If G is a 4-vcs graph with 13 vertices, G is 4-regular.

Proof: Since M(4) ≥ 13, G must be minimum 4-vcs so, by Theorem 7,
δ(G) ≥ 3. Therefore, for every v ∈ V (G), |V (G−N [v])| ≤ 9 < 11 = m(4),
implying χ(G − N [v]) = 3. By Lemma 13, G − N [v] is a 3-vcs graph, so
|V (G)| − (∆(G) + 1) ≥ M(3) = 8 and thus ∆(G) ≤ 4. Suppose v ∈ V (G)
has degree 3 and w is any neighbor of v. Since G is 4-vcs, χ(G−w) = 4 and
v has degree 2 in G− w. Thus removing v from G− w does not lower the
chromatic number so the 11-vertex graph G−{v, w} has chromatic number
4. But the Grötzsch graph is the only triangle-free 4-chromatic graph with
11 vertices and it has a degree 5 vertex, a contradiction. We conclude G
has no degree 3 vertices and hence must be 4-regular.
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Let G be a 13-vertex 4-vcs graph. Since it is 4-regular, its structure can be
described as follows for any vertex v ∈ V (G). Let W = {w1, w2, w3, w4} be
the set of four vertices adjacent to v. Each wi, 1 ≤ i ≤ 4, has three edges to
the 8-vertex graph G−N [v] which is 3-vcs as shown in the previous proof.
These facts are assumed in the proof of the following theorem.
Theorem 23. M(4) ≥ 14.

Proof: If M(4) = 13, a smallest vcs-graph G is 4-regular from Lemma 22
and has 26 edges. Four of these edges join v to W and another 12 connect
W with G−N [v] for a total of 16, leaving 10 for G−N [v]. Since G−N [v]
is 3-vcs and M(3) = 8, G − N [v] must be one of the graphs (c) and (d)
in Figure 2. Note that each degree 3 vertex in these graphs has exactly
one edge to W and at most two wi’s can have edges to two degree three
vertices.

Consider first that G − N [v] is isomorphic to Figure 2(c). If, for some i,
1 ≤ i ≤ 4, wi is adjacent to two degree three vertices, we may assume
without loss of generality they are v0 and v6. Now let c be a coloring of
G − N [v] defined as follows: c(v0) = c(v6) = 1, c(v2) = c(v4) = 2, and
c(v1) = c(v3) = c(v5) = c(v7) = 3. Then wi is adjacent only to vertices
of G − N [v] colored 1 or 3 so it can be colored 2. If a second vertex wj

of W is adjacent to two degree 3 vertices, they must be v2 and v4 so wj

is adjacent only to vertices of G − N [v] colored 2 or 3 and hence can be
colored 1. Any vertex of W adjacent to at least two degree 2 vertices of
G − N [v] can be colored 1 or 2. Therefore v can be colored 3 and G is
3-colorable, a contradiction.

Suppose next that G − N [v] is isomorphic to Figure 2(d). No wi can be
adjacent to three degree 2 vertices of G − N [v] so each must be adjacent
to exactly one degree 3 vertex. Without loss of generality, assume w1 is
adjacent to v0, w2 to v5, w3 to v1, and w4 to v4. Each wi must be adjacent
to one vertex from {v2, v3} and one from {v6, v7}. Note that, since w1 is
adjacent to v0, it must be adjacent to v6. Similarly w2 must be adjacent
to v7, w3 to v3, and w4 to v2. We now define a coloring c of G − N [v].
Set c(v0) = c(v5) = 3, c(v6) = 2, and c(v7) = 1. If w1 is adjacent to v2,
set c(v2) = c(v4) = 2 and c(v1) = c(v3) = 1. If w1 is adjacent to v3, set
c(v2) = c(v4) = 1 and c(v1) = c(v3) = 2. In either case we may extend
coloring c to G by c(w1) = 1, c(w2) = 2, c(w3) = c(w4) = 3, and c(v) = 4.
Thus either χ(G) = 3 or χ(G) = 4 and there is a coloring in which v is
the only vertex colored 4 meaning v is vcc in G. Each provides the final
contradiction to G being 4-vcs, so M(4) ≥ 14.
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5.2 M(4) ≤ 16

To show M(4) ≤ 16, it is sufficient to demonstrate a 16-vertex graph of
chromatic number four where the removal of any vertex leaves a graph also
of chromatic number four. The graph used for this purpose is based on the
Chvátal graph shown in Figure 3(a) which first appeared in Chvátal [2].
This graph is the smallest 4-regular triangle-free graph having chromatic
number four. The same reference indicates that the graph of Figure 3(b),
obtained by removing from the Chvátal graph the edge between vertices 1
and 2 of Figure 3(a), still has chromatic number four.
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(a) Chvátal graph
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(b) Chvátal graph with edge 12 removed

Figure 3: Two 12-vertex triangle-free graphs of chromatic number 4

There are several alternative depictions of the Chvátal graph, one of which
is that shown in Figure 4(a). The equivalence of the two representations
is shown by the vertex labelings in Figures 3(a) and 4(a). The graph in
Figure 4(b) corresponds to that in Figure 3(b).

The graph of Figure 5(a) is a supergraph of the Chvátal graph and
represents the first step in developing the vcs graph. Let V =
{v0, v1, v2, v3, v4, v5, v6, v7} form an 8-cycle in that order with four chords
vivi+4 for 0 ≤ i ≤ 3, W = {w0, w1, w2, w3} induce a 4-cycle, and
X = {x0, x1, x2, x3} induce a second 4-cycle. Arithmetic on the indices of V
is modulo 8 while on the indices of W and X it is modulo 4. The remaining
edges are given by the open neighborhoods N(wi) = {v2i, v2i+3, wi−1, wi+1}
and N(xi) = {v2i+1, v2i+4, xi−1, xi+1}. The graph of Figure 5(b), which is
the one we need, has the three additional edges w0x3, w1x1, and w2x2,
shown dashed in the figure. Call this graph G. The chromatic number of
G is four because it contains the Chvátal graph and it can’t be larger since
m(5) = 22.

We now show, for any vertex u of G, that G−u has chromatic number four.
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Figure 4: Alternative renderings of Chvátal graph with and without one
edge

If u ∈ W , V ∪ X induces the Chvátal graph. Similarly, if u ∈ X, V ∪W
induces the Chvátal graph.

When u ∈ V , the argument is more complicated. For six of the vi there
is a similar discussion. For illustration, consider G − v0. Notice that v0 is
adjacent to x2 and w0, to v4, and to v1 and v7. We search for a vertex in
W∪X adjacent to one of the first two, v4, and one of the last two. Vertex w2

is adjacent to x2, v4, and v7, so it satisfies the requirement. We now replace
v0 by w2. The subgraph induced by (V − {v0}) ∪ {w2} ∪X is isomorphic
to the graph of Figure 4(b) and hence has chromatic number four. We
will indicate this by the vertex set that induces the desired subgraph, that
is, (V − {v0}) ∪ {w2} ∪ X in this case. The remaining five results are
(V − {v2}) ∪ {x1} ∪W ,(V − {v3}) ∪ {x3} ∪W , (V − {v4}) ∪ {x2} ∪W ,
(V − {v6}) ∪ {w1} ∪X, and (V − {v7}) ∪ {w0} ∪X.

The graphs G − v1 and G − v5 appear to be more difficult to check and
our approach has been to exhaustively show four colors are required. In
each case we select a 5-cycle and color it with each of five 3-colorings that
together represent all possibilities. For each of these five colorings we give
a sequence, not necessarily the shortest, of additional vertices that, in the
given order, have the coloring forced upon them.

For G − v1 there is a small deviation from the above approach for one of
the colorings of the 5-cycle. A decision must be made when reaching a
vertex whose color is not forced. Then that vertex must be tested with two
different colors so there are two sequences necessary to prove some vertex
needs four colors. The selected 5-cycle is < v4, v5, v6, v7, w2 >. Each of the
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(a) 16-vertex supergraph of Chvátal graph
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(b) 16-vertex vcs graph

Figure 5: Supergraphs of Chvátal graph

following lines lists the colors assigned to those vertices in order, then the
sequence of additional vertices whose color is forced until the final vertex
which must be colored 4.

12123 v3, x1, x0, x2, x3

31212 x2, x1, x3, x0

23121 x2, x1, w1, v2, x0, x3

12312 w3, x1 = 1, x2, x3, w0, w1 and w3, x1 = 2, v3, w0, x0, x3

21231 v3, x1, x0, x3, w0, w3

For G− v5 the selected 5-cycle is < v0, v1, v2, v3, w0 >.

12123 v4, x0, x1, x2, x3

31212 v4, x0, x3, x1, x2

23121 w3, v6, v7, x1, x2, w2

12312 w1, x3, x0, x1, v4, x2, w2

21231 w1, v7, v6, w3, w2

Since the five possible colorings represent all cases, it follows that the chro-
matic numbers of G − v1 and G − v5 must both be four. In summary we
have the following:
Theorem 24. M(4) ≤ 16.
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6 Open Problems

1. Determine M(4).

2. Improve the bounds of Theorems 14 and 15.

3. Find an analytical characterization of minimum 4-vcs graphs.

4. Find an analytical characterization of minimum 5-vcc graphs and min-
imum 5-vcs graphs.

5. More generally, find m(k) and M(k) for k ≥ 6.

6. Find bounds on the number of edges in minimum k-vcs graphs and
minimum k-vcc graphs.

7. The value m(k) can be interpreted as the minimum number of vertices
in a k-chromatic triangle-free graph such that there is at least one
vertex of every color. In view of Lemma 3, it is seen that M(k) is
the minimum number of vertices in a k-chromatic triangle-free graph
such that there are at least two vertices of every color. This suggests
defining Mi(k) as the minimum number of vertices in a k-chromatic
triangle-free graph such that there are at least i vertices of every color.
Thus M1(k) = m(k) and M2(k) = M(k). Find bounds on Mi(k) and
any structural interpretation.
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