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Abstract: Perhaps the very first elementary exercise one encounters in
graph theory is the result that any graph on at least two vertices must have
at least two vertices with the same degree. There are various ways in which
this result can be non-trivially generalised. For example, one can interpret
this result as saying that in any graph G on at least two vertices there is a
set B of at least two vertices such that the difference between the largest
and the smallest degrees (in G) of the vertices of B is zero. In this vein we
make the following definition. For any B ⊂ V (G), let the spread sp(B) of
B be defined to be the difference between the largest and the smallest of
the degrees of the vertices in B. For any k ≥ 0, let sp(G, k) be the largest
cardinality of a set of vertices B such that sp(B) ≤ k. Therefore the first
elementary result in graph theory says that, for any graph G on at least
two vertices, sp(G, 0) ≥ 2.

In this paper we first give a proof of a result of Erdös, Chen, Rousseau and
Schelp which generalises the above to sp(G, k) ≥ k+ 2 for any graph on at
least k+2 vertices. Our proof is short and elementary and does not use the
famous Erdös-Gallai Theorem on vertex degrees. We then develop lower
bounds for sp(G, k) in terms of the order of G and its minimum, maximum
and average degree. We then use these results to give lower bounds on
sp(G, k) for trees and maximal outerplanar graphs, most of which we show
to be sharp.
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1 Introduction

One of the most fascinating aspects of combinatorics is that a trivial state-
ment can be turned into a non-trivial result or even a very difficult problem
by some very natural generalisation. Very often this involves the use of the
pigeonhole principle. An application of this principle gives what we call the
first elementary result in graph theory: any graph on at least two vertices
has at least two vertices with the same degree. This result has been gener-
alised in various directions, for example: a characterisation of those graphs
which have only one repeated pair of degrees [1], and a characterisation of
graphic sequences, that is, those sequences of positive integers which can
be realised as the degree sequence of some graph [5, 6] .

In this paper we consider the following generalisation of the first elementary
result in graph theory, introduced in [3]. Let G = (V,E) be a graph. For
B a subset of the vertex set V , we define the spread of B as sp(B) =
{max(deg(u))−min(deg(v)) : u, v ∈ B}, where the degrees are the degrees
in graph G. We then let, for an integer k ≥ 0, sp(G, k) be max{|B| :
sp(B) ≤ k}, namely the largest cardinality of a subset of vertices of G with
spread at most k.

The first elementary result of graph theory therefore says that, if G has
order at least 2, then sp(G, 0) ≥ 2. The number sp(G, k) is also a general-
isation of the maximum occurrence of a value in the degree sequence of a
graph, as defined in [2] and denoted by rep(G), since rep(G) = sp(G, 0).

The result sp(G, 0) ≥ 2 was extended to general spreads in [3] where the
following theorem was proved.

Theorem 1.1 (Erdös, Chen, Rousseau and Schelp). Let G be a graph on
n ≥ k + 2 vertices, then sp(G, k) ≥ k + 2.

In this paper, in Section 2, we give a short and elementary proof of Theorem
1.1 avoiding the use of the Erdös-Gallai theorem. Then, in the same section,
we develop a lower bound for Sp(G, k) in terms of the parameters n, δ, d,
∆, which are respectively the number of vertices, the minimum degree, the
average degree and the maximum degree of the graph G. Doing so we
generalize the technique introduced in Lemma 2.1 in [2].

Then in Section 3, we consider the sharpness of the lower bounds obtained in
Section 2 attained by trees and maximal outer-planar graphs (abbreviated
to MOPs). We conclude in Section 4 with some concluding remarks and
open problems.
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Any standard graph theoretic terms and results not defined in this paper
can be found in [8].

2 Bounds for sp(G, k)

The proof given in [3] of Theorem 1.1 uses the celebrated Erdös-Gallai
characterization of graphic sequences [4]. Here we give a very short and
elementary (avoiding Erdös-Gallai theorem) alternative proof.

Proof of Theorem 1.1.

Suppose, on the contrary, that G is a graph with n = m(k+ 1) + r vertices,
m ≥ 1, 1 ≤ r ≤ k + 1 with sp(G, k) ≤ k + 1. Let the vertices of G be
{v1, . . . , vm(k+1), vm(k+1)+1 = u1, . . . , , vm(k+1)+r = ur}. By assumption on
G, deg(vj+k+1) ≥ deg(vj) + k + 1 for j = 1, . . . , n− k − 1, as each interval
has k+ 2 vertices and we assumed that spG) ≤ k+ 1. Hence in particular,

deg(uj) = deg(vm(k+1)+j) ≥ m(k + 1) + deg(vj) (1)

for j = 1, .., r.

How many vertices among v1, . . . , vr can u1, . . . , ur be adjacent to?

Clearly each uj can be adjacent among vr+1, . . . , vn to at most n − r − 1
vertices and

n− r − 1 = m(k + 1) + r − r − 1 = m(k + 1)− 1. (2)

Hence, using (1) and (2), uj is adjacent to at least d(uj)−m(k + 1) + 1 ≥
m(k + 1)) + deg(vj)−m(k + 1) + 1 = d(vj) + 1 vertices among v1, . . . , vr.
But then consider the bipartite graph H with v1, . . . , vr on one side and
u1, . . . , ur on the other side. Clearly, if degH(uj) denotes the degree of
vertex uj in H, we obtain

r∑

j=1

deg(vj) ≥ e(H) ≥
r∑

j=1

degH(uj) ≥
r∑

j=1

deg(vj) + 1,

a contradiction.

�
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Before stating our main results in this section , we observe that

sp(G, k) = sp(G, k),

since for any two vertices u, v ∈ V (G),

degG(u)− degG(v) = (n− 1− degG(u))− (n− 1− degG(v))

= degG(v)− degG(u).

Theorem 2.1. Let G be a graph on n vertices average degree d, minimum
degree δ and maximum degree ∆. Then:

1. sp(G, k) ≥ max
{

n(k+1)
2d−2δ+k+1 ,

n(k+1)
2∆−2d+k+1

}
.

2. sp(G, k) ≤ (k + 1)sp(G, 0).

Proof. Let r = sp(G, k) and set n = rt + b, where 0 ≤ b ≤ r − 1, and
consider the intervals

I1 = [δ, δ + k], I2 = [δ + k + 1, δ + 2k + 1], . . . ,

It = [δ + (t− 1)(k + 1), δ + t(k + 1)− 1], Ib = [δ + t(k + 1), . . . , n− 1].

Each interval Ij contains at most r vertices from V (G) for otherwise
sp(G, k) ≥ r + 1. There are t such intervals containing at most rt vertices
altogether and at least b elements from the interval Ib so that the total
number of vertices is rt+ b = n. The smallest degree sum is achieved when
we take exactly r elements in each interval Ij with value δ + (j − 1)(k+ 1)
and the b elements in Ib equals δ+ t(k+1), so that the total sum of degrees
is

2e(G) = dn

≥ r[δ + (δ + k + 1) + . . .+ (δ + (t− 1)(k + 1)) + b(δ + t(k + 1))]

=
2rtδ + rt(t− 1)(k + 1)

2
+ b(δ + t(k + 1))

=
rt[2δ + (t− 1)(k + 1)]

2
+ b(δ + t(k + 1))

=
(n− b)[2δ + (t− 1)(k + 1)]

2
+ b(δ + t(k + 1))

= nδ +
n(t− 1)(k + 1)

2
− bδ − b(t− 1)(k + 1)

2
+ bδ + bt(k + 1)
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= nδ +
n(n− b)

r − 1)(k + 1)
− bt(k + 1)

2
+
b(k + 1)

2
+ bt(k + 1)

= nδ +
n(k + 1)(nr − 1)

2
− nb(k + 1)

2r
+
bt(k + 1)

2
+
b(k + 1)

2

= nδ +−nb(k + 1)

2r
+
rbt(k + 1)

2r
+
rb(k + 1)

2r

= nδ +
n(k + 1)(nr − 1)

2
− nb(k + 1)

2r
+

(n− b)b(k + 1)

2r
+
rb(k + 1)

2r

= nδ +
n(k + 1)(nr − 1)

2
− b2(k + 1)

2r
+
rb(k + 1)

2r

= nδ +
n(k + 1)(nr − 1)

2
+
b(r − b)(k + 1)

2r
(3)

≥ nδ +
n(k + 1)(nr − 1)

2

taking b = 0 in (3). Hence dn ≥ nδ +
n(k+1)( n

r−1)

2 which after rearranging

gives r ≥ n(k+1)
2d−2δ+k+1 , the first expression.

Also since sp(G, k) = sp(G, k) and using d = n− 1− d and δ = n− 1−∆,
we get

sp(G, k) = sp(G, k) ≥ n(k + 1)

2∆− 2d+ k + 1
.

2. For sp(G, k), the spread is determined by a set of vertices with degrees
p, p + 1, . . . , p + k respectively. Let Si be the set of vertices of degree i in
this set. Then 0 ≤ |Si| ≤ sp(G, 0), hence sp(G, k) ≤ (k + 1)sp(G, 0).

Remark: Observe that in equation (3) we used b = 0, but if we substitute
b = n− rt, then after some further algebra we get

r ≥ 2n(δ − d+ t(k + 1))

t(t+ 1)(k + 1)
(4)

This will prove useful once we have a lower bound r∗ on r using Theorem
2.1 and an upper bound t∗ on t since from n = rt + b we get n ≥ r∗t + b
hence n−b

r∗ = t∗ ≥ t.

Clearly r is at least the minimum in equation (4) over all t such that
1 ≤ t ≤ t∗.

We shall use this remark several times in section 3.
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3 Realisation of the lower bounds in certain
families of graphs.

The characterisation of graphic sequences in general given in [4, 5, 6] is
too wide to force restrictions on the degree sequence so that the bounds of
Theorem 2.1 are attained. It is therefore interesting to investigate classes of
graphs whose structure imposes such restrictions. In this section we show
that trees and maximal outerplanar graphs come very close to having this
required structure: for both classes, their average degree d which appears
in the bound of Theorem 2.1, is known in terms of the number n of vertices,
and their structure forces severe restrictions on the possible degrees which
their vertices can have.

3.1 Trees

Theorem 3.1. Let k ≥ 0 and T be a tree on n ≥ k + 2 vertices. Then

1. sp(T, 0) = rep(T ) ≥ dn3 e which is sharp for n = 1 (mod 3).

2. For k ≥ 1, sp(T, k) ≥ nk+2
k+1 and this is sharp.

Proof. 1. The case k = 0 is from [2] and sharpness for n = 1 (mod 3) is
achieved by a tree made up of a path on 3k+ 2 vertices, with a path of two
edges attached to the vertices v3 . . . v3k to give a tree T on 3k+2+2(3k−2) =
9k − 2 vertices. This gives 3k vertices of degree 1, 3k vertices of degree 2
and 3k − 2 vertices of degree 3, and hence sp(T, 0) = 3k = n+2

3 .

1. For a tree, δ = 1 and d = 2(n−1)
n , and substituting into Theorem 2.1

with k = 1 gives

2n

4− 4
n − 2 + 2

=
2n2

4(n− 1)
=

n2

2(n− 1)
>
n+ 1

2
.

Hence in n = rt+ b we just have t = 1 otherwise rt > n. Furthermore since
sp(T, k + 1) ≥ sp(T, k) we get that for all k ≥ 1 we may assume t = 1.

For trees and k ≥ 1 the lower bound (4) (with t = 1) gives

r ≥ 2n(δ − d+ t(k + 1))

t(t+ 1)(k + 1)
=

2n(12 + 2/n+ k + 1)

2(k + 1)
=
n(k + 2

n )

k + 1
=
nk + 2

k + 1
.
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This is sharp for every k ≥ 1, as can be seen with trees having degrees
only 1 and k + 2 using the following following equations with nj being the
number of vertices of degree j:

1. Vertex counting: n1 + nk+2 = n

2. Edge counting: n1 + (k + 2)nk+2 = 2n− 2

Then solving for n1 we get n1 = nk+2
k+1 = sp(T, k) as required.

3.2 Maximal outerplanar graphs

We now consider maximal outerplanar graphs. In general, for a maximal
outerplanar graph G on n vertices, bound (1) gives

sp(G, k) ≥ (k + 1)n

4(2n− 3)

n
− 4 + k + 1

≥ (k + 1)n

(5 + k)n− 12

n

≥ (k + 1)n2

(5 + k)n− 12

>
(k + 1)n

5 + k
.

We define

MOP (n, k) = min{sp(G, k):G is maximal outer-planar on n vertices}.

We prove the following results.

Theorem 3.2. For maximal outerplanar graphs

1. MOP (n, 0) > n
5 .

2. MOP (n, 1) ≥ n
3 + 1.

3. MOP (n, 2) ≥ 4n
9 .

4. For k ≥ 3, MOP (n, k) ≥ (k−2)n
k−1 .

Bounds 1 and 2 and 4 are sharp up to small additive constants.
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Proof.

1. MOP (n, 0) = min{rep(G):G is maximal outer-planar on n vertices}.
Bound (1) gives MOP (n, 0) > n

5 which is the same as the lower
bound given for rep(G) in [2]. The construction given in [2] gives
rep(G) = n−4

5 + 2 = n
5 + 6

5 when n = 4 (mod 10).

2. For k = 1, the above observation gives MOP (n, 1) > n
3 . Hence we

may use t = 1, 2 and for t = 2 and k = 1 we get using bound ( 4 )

MOP (n, 1) ≥ 2n(2− 4n−6
n + 4)

12
=
n(2n+ 6)

6n
=

2n+ 6

6
=
n

3
+ 1.

The following construction realises this bound up to a constant.

Arrange three sets of vertices U = {u1, . . . , up−1}, V = {v1, . . . , vp}
and W = {w1, . . . , wp−1}. U will be the upper vertices, V will be in
the middle vertices and W the bottom ones.

Let ui be connected to vi and vi+1; let wi be connected to vi and
vi+1 and to wi−1 and wi+1, except w1 which is only connected to w2,
and wp−1 which is only connected to wp−2. Let vi be also connected
to vi−1 and vi+1 (except the first and the last). Figure 1 shows this
construction with p = 5.

U

V

W

U

V

W

U

V

W

U

V

W

Figure 1: The above construction for p = 5

This is a maximal outerplanar graph with p− 1 vertices of degree 2,
four vertices of degree 3, p− 3 vertices of degree 4 and p− 2 vertices
of degree 6. So we have 3p − 2 vertices and sp(G, 1) = p + 3 =
(3p−2)+11

3 = n+11
3 , which differs from the lower bound by 8

3 .

3. For MOP (n, 2), bound (1) gives MOP (n, 2) ≥ 3n
7 while bound (4)

(with t=2) gives MOP (n, 2) ≥ 4n
9 . We shall present a construction

attaining the lower bound 5n+19
11 later on.
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4. In [7], the authors define βk(n) to be the maximum number of vertices
of degree at least k amongst all maximal planar graph of order n.
They show that for k ≥ 6 and n ≥ k + 2,

βk(n) ≥
⌊
n− 6

k − 4

⌋
.

Since δ = 2 for any maximal outerplanar graph, it follows that

MOP (n, k) ≥ n−βk+3(n) ≥ n−
⌊
n− 6

k − 1

⌋
≥ n(k − 2) + 6

k − 1
≥ (k − 2)n

k − 1
.

We now give a construction taken [7] from which shows that this
bound is sharp up to and additive decreasing function of k. Let B be
the graph in Figure 2.

u

v

w

y

z

x

Figure 2: The graph B

The graph B′ is obtained by replacing the edges ux and yz by paths
P and Q respectively, containing k − 3 internal vertices each. The
vertex v is joined to every vertex on P and the vertex w is joined to
every vertex in Q. We then create the graph F tk by taking the union
of t copies of the graph B′. Figure 3 shows an example with k = 4
and t = 3. The graph F tk has n = 2t(k− 1) + 6 vertices. Such graphs
have 2t + 2 vertices of degrees 2 and 2t(k − 3) + 2 vertices of degree
3, two vertices of degree 4 and 2t vertices of degree k + 3. This gives

MOP (n, k) = 2t(k−2)+6 = 2(k−2)

(
n− 6

2(k − 1)

)
+6 =

(k − 2)n+ 6

k − 1
.

Therefore

MOP (n, k) ≥ (k − 2)n

k − 1
+

6

k − 1
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as required.

u

v

w

y

z

x

P

Q

Figure 3: The graph F 3
4

Remarks: Although we do not have a construction which attains the
bound in part 3 up to an additive constant, we show below the best con-
structions which we have which achieves the value of MOP (n, k), k = 2,
closest to this bound.

The following construction shows that

MOP (n, 2) ≥ 5n+ 19

11
for n= 5 (mod 11),

and hence for other values of n (mod 11) by adding at most 10 vertices.
Hence MOP (n, 2) ≥ 4n

9 + c(n, 11) where c(n, 11) depends on n (mod 11).

Consider a path V = v1, v2, . . . , v5p+3, a path u1, . . . , up above it and the
vertices w1, . . . , w5p+2 below the path. Let u1 be adjacent to v1 to v7, and
up adjacent to v5p−3 to v5p+3, while for 1 ≤ i ≤ p − 1, ui is adjacent to
v5i−3 to v5i+2. Vertex wj for 1 ≤ j ≤ 5p + 2 is adjacent to vj and vj+1.
This gives a total of n = 11p + 5 vertices: p vertices of degree 8, p − 1
vertices of degree 6, 4p + 2 vertices of degree 5, 2 vertices of degree 3 and

5p+ 2 vertices of degree 2. Thus Sp(n, 2) = 5p+ 4 = 5(n−5)
11 + 4 = 5n+19

11 .
Figure 4 shows an example of this constuction.
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Figure 4: The above construction for p = 3

It might be useful to try and see at this point where applying Theorem
2.1 does not work even for trees and maximal outerplanar graphs. Let us
elaborate on the simple observation we made in the introduction to this
section. For trees, the phenomenon we described occurs for k = 0 because
the proof of the Theorem would require degrees 1, 2, 3 with equal classes,
but already for k = 2 with degrees 1 and 4 in equal classes the average
degree would be 3 which is impossible for trees. Hence for k ≥ 2 it all
works out, with sharpness coming from t = 1 in (4) giving trees of degrees
1 and k + 2.

And again, for maximal outerplanar graphs, for k = 2 we should have
degrees 2, 5, 8 with equal classes which will only give n/3 and d = 5, but
this is too large as d = 4 for maximal outerplanars. So letting b = 0 in the
proof of Theorem 2.1, which anyway would give 3n/7, would force two big
equal classes and the remainder. Using (4) of Theorem 2.1 with t = 2 gives
4n/9 which would be possible if we could find maximal outerplanars with
4n/9 vertices of degree 2 and degrees 5 and n/9 vertices of degree 8, but
we could not find such constructions yet.

4 Conclusion

The results presented in this paper naturally lead to an unanswered question
and to the most likely next class for which one can investigate whether the
spread attains the bounds of Theorem 2.1.
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The obvious unanswered question is determining the best lower bound for
MOP (n, 2), that is, the minimum spread sp(G, 2) among all maximal out-
erplanar graphs on n vertices. We know, by the general lower bound given
by bound (4), that sp(G, 2) is at least 4n/9. While for the other spreads
we considered in Section 3 we could get close to the bound given by (4)
up to small additive constants, for MOP (n, 2) the family of outerplanar
graphs G on n vertices with lowest value for sp(G, 2) which we could find
gave sp(G, 2) approaching 5n/11.

Problem 1: Determine the correct order of magnitude of MOP (n, 2).

One can also consider maximal planar graphs. We define

MP (n, δ, k) = min

{
sp(G, k) :

G is a maximal planar on n vertices
with mininmum degree δ

}
.

Problem 2: Determine MP (n, δ, k) for δ = 3, 4, 5 and k ≥ 0.
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