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Decomposition of complete graphs
into bi-cyclic graphs with eight edges
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Abstract: We show that each of the 35 non-isomorphic bi-cyclic graphs
with eight edges decomposes the complete graph K,, whenever the necessary
conditions are satisfied.

1 Introduction

A decomposition of the complete graph K, is a collection of mutually
edge disjoint subgraphs D = {G1,Ga,...,Gs} such that every edge of K,
appears in exactly one graph G; € D. If each subgraph G, is isomorphic to a
given graph G, then we say that the collection D forms a G-decomposition
of K, or a G-design. When s = n, the decomposition is cyclic if there
exists an ordering (z1, 2, ..., x,) of the vertices of K, and an isomorphism
¢ : V(G;) = V(Gjt1), such that for every j = 1,2,...,n, we have ¢(x;) =
x;41 for each ¢ = 1,2, ..., n. The subscripts are taken modulo n. Similarly,
the decomposition is 1-rotational if there exists an ordering (z1, z2,...,2y)
of the vertices of K, and an isomorphisms ¢ : V(G;) = V(G;41) such that
for every j = 1,2,...,n—1 we have ¢(x;) = 2,41 foreachi =1,2,...,n—1
where the subscripts here are taken modulo n — 1 and ¢(z,,) = x,.

A finite graph G with no loops or multiple edges is called bi-cyclic if it
contains exactly two cycles. It can be also viewed as a forest with exactly
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two edges added such that once we add the first one and create a cycle, the
second one shares at most one vertex with that cycle. In the following sec-
tions we present the necessary and sufficient conditions for decompositions
of complete graphs into bi-cyclic graphs with eight edges and prove that
each of them decomposes the complete graph K, whenever the necessary
conditions are satisfied.

We will use standard decomposition methods based on p-labelings, intro-
duced by Rosa [13] and later modified by other authors.

2 Related results

There has been a significant activity recently in the area of decompositions
of complete graphs into graphs with eight edges.

This section will summarize what is known about classification of graphs
where |(E(G)| = 8 that form decompositions of complete graphs.

Graphs with five vertices and eight edges were examined by Colbourn, Ge,
and Ling [4]. There are only two non-isomorphic graphs with five vertices
and eight edges, shown in Figure 1.

G20 G2
Figure 1: Connected graphs with 8 edges and 5 vertices
Colbourn, Ge and Ling proved the following results for the graphs G5 ; and
Gs 2.

Theorem 2.1 (Colbourn, Ge, Ling 2008). There exists a decomposition of
K, into Gao if and only if n =0 (mod 16) except possibly when n = 32 or
n = 48.

Theorem 2.2 (Colbourn, Ge, Ling 2008). There exists a decomposition
of Ky, into Ga1 if and only if n = 0,1 (mod 16) except when n = 16 and
possibly when n = 48.
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Kang, Yuan, and Liu researched graphs with six vertices and eight edges
in 2005 [12]. There are 22 non-isomorphic graphs of this type, and they
proved the following theorem with respect to decompositions of complete
graphs.

Theorem 2.3 (Kang, Yuan, Liu 2005). Let G be a connected graph with siz
vertices and eight edges. Then G forms a decomposition of K,, if and only
if n=0,1 (mod 16) and n > 16 with two possible exceptions for n = 32.

The two missing cases were settled by Forbes and Griggs in 2018 [10]. The
graphs are shown in Figure 2.

M1 M2

Figure 2: Graphs M; and M,

Theorem 2.4 (Forbes, Griggs 2018). Graphs My and My shown in Fig-
ure 2 form a decomposition of Kss.

Therefore, the following theorem holds.

Theorem 2.5 (Kang, Yuan, Liu 2005, Forbes, Griggs 2018). Let G be a
connected graph with siz vertices and eight edges. Then G forms a decom-
position of K, if and only if n =0,1 (mod 16) and n > 16.

We were unable to find any results on graphs with eight edges and seven
vertices. Therefore, we study the connected ones along with other related
graphs in the following sections.

For graphs with eight edges and eight vertices, Kang and Zhang [14] deter-
mined the spectrum completely for the four graphs shown in Figure 3.

Theorem 2.6 (Kang, Zhang 2015). Let G; be a connected graph with eight
vertices and eight edges shown in Figure 8. Then G; forms a decomposition
of K,, if and only if n =0,1 (mod 16) and n > 16.
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Gl G2 G3 G4

Figure 3: Graphs G, G2, G3, G4 by Kang and Zhang

Bipartite connected unicyclic graphs with eight edges and eight vertices
other than Cs were studied by Fahnenstiel and Froncek in [7]; Cs decom-
positions exist if and only if n =1 (mod 16) as proved by Rosa [13].

Theorem 2.7 (Fahnenstiel, Froncek 2019). Let G be a connected bipartite
unicyclic graph with eight vertices and eight edges other than Cgs. Then
there exists a G-decomposition of K, if and only if n = 0,1 (mod 16) and
n > 16.

The disconnected case was recently completely settled by Freyberg and
Tran [9].

Theorem 2.8 (Freyberg, Tran 2019). Let G be a bipartite disconnected
unicyclic graph with eight edges. Then there exists a G-decomposition of
K, if and only if n =0,1 (mod 16) and n > 16.

Connected unicyclic graphs with eight edges and eight vertices with pen-
tagon were studied by Froncek and Kingston [11]; they have shown that
each of the ten non-isomorphic connected unicyclic graphs with eight edges
containing a pentagon decomposes the complete graph K, whenever the
necessary conditions are satisfied.

Theorem 2.9 (Froncek, Kingston 2019). Let G be a connected unicyclic
graph with eight vertices and eight edges where the unique cycle is a pen-
tagon. Then there exists a G-decomposition of K, if and only if n = 0,1
(mod 16) and n > 16.

The disconnected case for unicyclic graphs with pentagon was completely
solved by by Freyberg and Froncek [8]. They also fully solved the case of
unicyclic graphs with a triangle or heptagon, both connected and discon-
nected.
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Theorem 2.10 (Freyberg, Froncek 2019). Let G be a disconnected uni-
cyclic graph with eight vertices and eight edges where the unique cycle is a
pentagon. Then there exists a G-decomposition of Ky, if and only ifn = 0,1
(mod 16) and n > 16.

Theorem 2.11 (Freyberg, Froncek 2019). Let G be a unicyclic graph with
eight vertices and eight edges where the unique cycle is a triangle or hep-
tagon. Then there exists a G-decomposition of K, if and only if n = 0,1
(mod 16) and n > 16.

Therefore, the class of unicyclic graphs with eight edges is completely
solved.

Theorem 2.12. Let G be a unicyclic graph with eight edges. Then there ex-
ists a G-decomposition of K,, if and only if G % Cs andn = 0,1 (mod 16),
or G2 (Cs and n =1 (mod 16).

As a natural next step, we further investigate graphs with exactly two cycles
and eight edges.

3 Tools and methods

Our tools are graph labelings arising from the p-labeling, first defined by
Rosa [13], who called it a p-valuation.

Definition 3.1. Let G be a graph with n edges. A p-labeling of G is an
injection f : V(G) — {0,1,...,2n} inducing the length function { : E(G) —
{1,2,...,n} defined as

{(uv) = min{|f(u) — f(v)],2n + 1 = [f(u) = ()]}
with the property that
{l(uwv)|luv € E(G)} ={1,2,...,n}.

A more restrictive yet well studied is the graceful labeling, also introduced
by Rosa in [13] and called originally a S-valuation.

Definition 3.2. Let G be a graph. A graceful labeling of G is a p-labeling
such that 0 < f(u) < n for every vertex u € V(G) and (uv) = | f(u) — f(v)]
for every edge uv € E(G).
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Rosa [13] proved that if a graph G with n edges has one of the above
labelings, then a G-decomposition of the complete graph Ky, 1 exists.

Theorem 3.3 (Rosa 1967). A cyclic decomposition of the complete graph
Koy 41 into subgraphs isomorphic to a given graph G with n edges exists if
and only if there exists a p-labeling of the graph G.

In some cases, more restrictive modifications of the above labelings allow
decompositions of bigger complete graphs, in particular, Ko,ry1 for any
positive integer k. The following labeling was also introduced by Rosa [13].

Definition 3.4. An «-labeling is a graceful labeling with the additional
property that there exists an integer A\ such that for each edge uwv either

Flu) A< F(v) or f(v) <A< f(u).

An a-labeled graph must be bipartite, and when V; and V5 is a partition
of the vertex set V(G) of the graph G, then without loss of generality if
u € Vq, then f(u) < X and if v € Vo, then f(v) > A.

Rosa also proved the following [13]:

Theorem 3.5 (Rosa 1967). If a graph G with n edges has an a-labeling,
then there exists a decomposition of the complete graph Kopgi1 into sub-
graphs isomorphic to G for any positive integer k.

Bunge, Chantasartrassmee, El-Zanati, and Vanden Eynden [3] found a more
restrictive version of p-labeling, which is similar to a-labeling in the sense
that it allows decompositions of bigger complete graphs into certain tripar-
tite graphs.

Definition 3.6. Let G be a tripartite graph with n edges having the vertex
tripartition {A, B,C}. A p-tripartite labeling of G is a one-to-one function
h:V(G)—{0,1,2,...,2n} that satisfies

(rl) his a p-labeling of G.
(r2) If av € E(G) with a € A, then h(a) < h(v).

(r3) If e =bc € E(G) with b € B and ¢ € C, then there exists an edge ¢’ =
b with v/ € B and ¢ € C such that |h(c)—h(b)|+|h(c")—h(D')] = 2n.

(r4) If b € B and ¢ € C, then |h(b) — h(c)| # 2n.
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Note that e and €’ in (r3) need not be distinct.

They proved the following.

Theorem 3.7 (Bunge, Chantasartrassmee, El-Zanati, Vanden Eynden
2013). If a tripartite graph G with n edges has a p-tripartite labeling, then
there exists a cyclic G-decomposition of Koniy1 for every positive integer

k.

The above labelings enable isomorphic decompositions of complete graphs
of odd order, but similar methods exist for complete graphs of even order
under certain circumstances. It is well known that certain p-labeled graphs
can form isomorphic decompositions of Ko,y (see, e.g., [6]):

Theorem 3.8. Let G be a graph with n edges and let v be a vertex of
degree one in G. If G — v has a p-labeling, then there exists a 1-rotational
G-decomposition of Ka,,.

Theorem 3.8 is based on the following idea. We pick a vertex o, in Ko,
and decompose Ks,, — T2, cyclically into 2n — 1 copies of the graph G — v.
Then we identify v with x5, to obtain a decomposition of K5, by adding
back the pendant edge uv, where u is the only neighbor of v in G.. Because
the vertex u is each copy of G — v projected onto a different vertex x;,i =
1,2,...,2n—1, the edge uv is projected onto different edges z;x2, in Kop,.
The length of uv is denoted by oco.

The labeling used in the above theorem can be formally defined as follows.

Definition 3.9. Let G be a graph with n edges and edge uv where deg(v) =
1. A 1-rotational p-labeling of G consists of an injective function f: V(G) —
{0,1,2,...,2n — 2,00} such that f(w) = oo that induces a length function
¢: E(G) = {1,2,...,n— 1,00} which is defined as

O(zy) = min{|f(z) — f(y)l,2n — 1 = [f(z) — f(y)[}

for x,y # v and
L(uv) = oo

with the property that
{{(zv) :zv € E(G)} ={1,2,...,n—1,00}.

A generalization of the above method for tripartite graphs was found by
Bunge [2].
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Definition 3.10. Let G be a tripartite graph with n edges, vertex triparti-
tion {A, B, C'}, and edge uw where deg(w) = 1. A 1-rotational p-tripartite
labeling of the graph G is a 1-rotational p-labeling that satisfies the follow-
ing:

(t1) f(w) = oo,
(t2) f(a) < f(v) for all av € E(G) \ {vw} with a € A, and

t or every edge bc € wit € B and c € C there exists an edge

3) f dge bc € E(G) with b € B and C th i d
e/ =b'¢ with b € B and ¢ € C such that |h(c)—h(b)|+|h(c)—h()| =
2n.

Bunge [2] proved the following theorem, which is another important tool in
our decompositions.

Theorem 3.11 (Bunge 2018). If a tripartite graph G with n edges has a
1-rotational p-tripartite labeling, then there exists a cyclic G-decomposition
of Kony for each positive integer k.

4 Catalog

First we provide a catalog of all bi-cyclic graphs with eight edges. By
H,(j, k;1) we denote the i-th type of a connected graph containing cycles C;
and CY joined by a path with [ edges, and by D;(j, k;) a disconnected graph
with the same parameters. When the cycles belong to different components,
we deonte the graph by D;(j, k; —).

5y &by b

Hi(5,3;0) Dy (5,3

Do P DO

Hy(4.3:0) Hy(4,3:0) Hy(4,3:0) Hy(4,3:0)

Hi(4,4;0)
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D B B b

D (4,3:0) Dy(4,3;-) D5(4,3: ) Ds(4,3;-)
Hi(4,3:1) Hi(3,3;0) Hy(3,3;0) Hy(3,3;0)
Hi(3,3;0) Hs(3,3;0) He(3,3;0) Hz(3,3;0)

Q
&

Dy(3,3;0) D1(3,3;0) Dj3(3,3;0) Di4(3,3;0)

Yo
Doo

Dy(3.3:-) Dy(3,3;-) Dy(3,3:-) Dy(3,3;-)

38



ool B RO

Ds(3,3; — D( D7(3,3;-) Hi(3,3;2)

SN,

H,(3,3:1) Hy(3,3;1) Di(3,3:1)

5 Labelings and main result

We first observe that because the graphs H;(5, 3;0), D1(5,3;—), H1(4,4;0)
and Dj(4,4; —) have all vertices of even degrees, they cannot decompose
Ki6n, since its vertices have an odd degree.

Observation 5.1. The graphs
Hy(5,3;0), D1(5,3;—), H:1(4,4;0) and D1(4,4;-)

do not decompose Kign for any n.

Although the graphs H;(4,3;1) and H;(3, 3;2) do not admit a 1-rotational
p-tripartite labeling, they still decompose K¢y, as shown by El-Zanati [5].

Theorem 5.2 (El-Zanati 2018). There exists a decomposition of Kygy, into
graphs Hy(4,3;1) and H1(3,3;2) for every positive integer n.

Now we present labelings for the graphs where the labelings exist. In the
left column, we show a p-tripartite labeling for decompositions of Kigy1,
in the right one a l-rotational p-tripartite labeling for decompositions of
K16n'
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Our main result now follows directly from Observation 5.1, Theorem 5.2
and the above labelings.

Theorem 5.3. A bi-cyclic graph G with eight edges decomposes the com-
plete graph K, if and only if

e there is a verter of an odd degree and n = 0,1 (mod 16), or

o all vertices have even degrees and n =1 (mod 16).
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