GLOD: A Driver-Level Interface for Geometric Level of Detail

Jonathan Cohen” David Luebke’
Johns Hopkins University

Nathaniel Duca’

Brenden Schubert”
*University of Virginia

http://www.cs.jhu.edu/~graphics/GLOD

1 INTRODUCTION

Level of detail (LOD) techniques are widely used today among
interactive 3D graphics applications, such as CAD design,
scientific visualization, virtual environments, and gaming,
allowing applications to trade off visual fidelity for interactive
performance. Many excellent algorithms exist for LOD genera-
tion as well as for LOD management [Luebke 2003]. However, no
widely accepted programming model has emerged as a standard
for incorporating LOD into programs.

Existing tools generally fall into two categories: mesh simplifi-
ers and scene graph toolkits. Mesh simplifiers address the LOD
generation problem, taking a complex object and producing
simpler LODs, but they do not attempt to address LOD manage-
ment at all. Scene graphs such as OpenGL Performer [Rohlf
1994] perform LOD management, but go to the opposite extreme;
they provide heavyweight “all or nothing” solutions that lump
LOD in with myriad other aspects of an interactive computer
graphics system, constraining the form of the overall application.

In this sketch we present GLOD, a tool for geometric level of
detail that provides a full LOD pipeline in a lightweight and
flexible application programmer’s interface (API). This API is a
powerful, extendible, yet easy-to-use LOD system, supporting
discrete, continuous, and view-dependent LOD, multiple simplifi-
cation algorithms, and multiple adaptation modes. GLOD is not a
scene graph system; instead, it is an API integrated with OpenGL,
an existing and popular low-level rendering API. With this
formulation, we start to think of geometric level of detail as a
fundamental component of the graphics pipeline, much like mip-
mapping is a fundamental component for controlling detail of
texture images.

2 GLOD API

Our design goals for the GLOD API focus on providing a light-
weight model for the creation, management, and rendering of
geometry. To maximize its appeal to multiple audiences, GLOD
should be fast, extensible to different LOD algorithms, and easy
to integrate into existing applications. Furthermore, it should
allow incremental adoption rather than locking developers into all
pieces of the GLOD framework. To accomplish these goals,
GLOD API is tightly integrated with the industry standard
OpenGL API, so our design decisions are guided as if GLOD
were a component of OpenGL.

The data handled by GLOD is organized into three principal
units: patches, objects, and groups. A patch is the principal unit of
rendering. A patch is specified to GLOD using the OpenGL
vertex array interface. Drawing a patch is much like drawing a
vertex array, the chief difference being that what you get is an
LOD of the original arrays. The application may change rendering
state, such as bound textures, on a per-patch basis at the time of
rendering; GLOD does not interfere with rendering state.

An object is the principal unit of LOD generation. The applica-
tion designates one or more patches as an object before initiating
the LOD generation process. Thus multiple patches may be
simplified together into crack-free levels of detail. GLOD also
supports memory-efficient instancing of objects to provide
efficient LOD management for applications which render objects
in multiple locations.

A group is the principal unit of LOD management. An applica-
tion places one or more objects into a group. At each frame,

Group Params

Vertex Arrays Hierarchies

Patch & Object Params
Vertex Arrays

- THierarchy - »-|
Generation & Group OpenGL
Instantiation [-------- »| Management |-------- h

The GLOD object and dataflow model.

GLOD adapts the LOD of all patches of all objects in each group
according to the specified adaptation mode and current OpenGL
viewing matrices.

The GLOD pipeline is designed to allow flexible motion of
data into and out of it as desired by the application, as illustrated
above. The original geometry is specified as patches using the
vertex array mechanism. The application can then set a number of
per-patch and per-object LOD generation parameters to determine
how the LOD hierarchy is constructed. For example, parameters
may be used to select a simplification operator, error metric,
hierarchy type (e.g. discrete, continuous, view-dependent),
importance values, etc. A special hierarchy type allows the
programmer to manually build discrete hierarchies from a set of
existing LODs. An entire hierarchy may be read back by the
application to save it to disk, allowing it to be re-used in a later
execution without regenerating it. Group parameters specify
management modes such as the error mode (object-space or
screen-space), adaptation mode (error threshold or triangle
budget), morphing parameters, etc. After adapting a group, the
individual adapted patches may be read back, again through the
vertex array mechanism. The application can store these vertex
arrays, pass them to OpenGL for rendering, etc. This complete set
of data paths allows applications to incrementally adopt GLOD.

3 DISCUSSION

We have currently limited the scope of GLOD to filtering geo-
metric detail without interfering with rendering state. This has
several benefits. The application may safely employ complex
rendering algorithms, including multi-pass algorithms, as well as
custom vertex and fragment programs. For example, applications
can use normal mapped LODs without difficulty in GLOD. Many
user-defined vertex program parameters can pass through GLOD
filtering. However, this is not applicable for all vertex programs.
Also, our non-interference policy makes some forms of LODs,
such as textured impostors, difficult to support because they
require us to change rendering state.

This system will ultimately become an open source system to
encourage level of detail research to migrate from the research lab
to full deployment. With a wide array of simplification algo-
rithms, hierarchical data representations, and management
policies in their hands, all available through the setting of a few
parameters, application developers will have tremendous power to
select the implementations that meet their needs.

REFERENCES

Luebke, D., M. Reddy, J. Cohen, A. Varshney, B. Watson, and R.
Huebner. Level of Detail for 3D Graphics. Morgan Kaufman.
2003.

Rohlf, J. and J. Helman. IRIS Performer: A High Performance
Multiprocessing Toolkit for Real-Time 3D Graphics. Proceed-
ings of SIGGRAPH 94. July 24-29. pp. 381-395.

