

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INSTITUTO DE INFORMÁTICA
PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

ELDER RIZZON SANTOS

Creative Agency

Thesis presented in partial fulfillment of the
requirements for the degree of Doctor of
Computer Science

Prof. Dr. Rosa Maria Vicari
Advisor

Porto Alegre, December, 2010.

CIP – CATALOGAÇÃO NA PUBLICAÇÃO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Pós-Graduação: Prof. Aldo Bolten Lucion
Diretor do Instituto de Informática: Prof. Flávio Rech Wagner
Coordenador do PPGC: Prof. Álvaro Freitas Moreira

 Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

Santos, Elder Rizzon

Creative Agency [manuscript] / Elder Rizzon Santos. – Porto
Alegre: PPGC da UFRGS, 2010.

131 f.:il.
Advisor: Prof.ª Dr.ª Rosa Maria Vicari.

Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação. Porto Alegre, BR –
RS, 2010.

1. Computational creativity. 2. Intelligent agents. 3. Concept
blending. I. Vicari, Rosa Maria. II. Título.

AGRADECIMENTOS

Imagino que, daqui alguns anos, quando estiver contando sobre a experiência do
doutorado os detalhes (trabalho, estudos, sucessos e frustações) irão desaparecer aos
poucos e os bastidores humanos tornar-se-ão o personagem principal do meu relato.
Muito além de uma tese e publicações, o maior impacto do doutorado é a formação do
doutorando e nesta formação, pouca coisa é realizada sem a participação de outras
pessoas. Em quatro anos de doutorado, bem, há muita gente nos bastidores. Com
certeza, todos merecem meu muito obrigado, e para quem ler, lembrar de sua
participação nos bastidores e não encontrar seu nome, tenha certeza que merece sim
meus sinceros agradecimentos.

Minha querida orientadora e mãe acadêmica, Rosa Vicari, merece muitos
agradecimentos pelo apoio, puxões de orelha, brainstorms em aeroportos e todas as
oportunidades para eu me desenvolver e desenvolver também minha pesquisa.

Meus pais, Vilmar e Suely, possuem minha eterna gratidão pela atenção, amor e
apoio incondicionais. Desde sempre ao meu lado, dedicando suas preciosas vidas para a
minha educação e minha felicidade. Nenhuma agradecimento chega aos pés de toda a
dedicação deles, assim, em um singelo ato de gratidão, dedico esta tese aos meus pais.
Outra pessoa que está há muito tempo nos bastidores é meu irmão Marcos, a quem eu
agradeço pelo exemplo de convicção e coragem para ir em direção ao que lhe faz feliz.

Tão importante quanto quem sempre esteve ao meu lado, é quem eu encontrei, me
encontrou e aceitou me ajudar para que eu me encontre sempre mais. Sou privilegiado
por ter uma pessoa assim em minha vida, minha querida Ciça, sempre me apoiando,
muitas vezes até puxando para frente e sempre minha inspiração, fundamental para
todos os momentos do doutorado, especialmente os mais difíceis. Obrigado por tudo.
Agradeço também à minha segunda família, Maria Alice, Vini, Luis Fernando e
Simone. A companhia e carinho de vocês é inestimável.

Os anos de trabalho na UFRGS, tanto na Informática quanto no CINTED,
oportunizaram conhecer muita gente do bem, em especial meu amigo e parceiro de
incontáveis tradicionais mates uruguaios, Tiago Primo, sempre disposto para bate-papo,
um brainstorm ou um jogo de tênis. Agradeço também aos meus colegas e amigos
Evandro, Luciano, Alexandre R., Marta, Eliane, Gilleanes, Preto, Alexandro, Kieling,
Michelle e Bernardo pelos almoços descontraídos e ricas trocas de experiências.

Todos os meus amigos e companheiros do Método DeRose contribuíram
imensamente para meu aprimoramento pessoal e, portanto, para o sadio
desenvolvimento do meu doutorado. Em especial agradeço ao meu amigo e monitor
Fabiano Gomes pelo seu exemplo de dedicação incansável e excelentes aulas práticas.
Agradeço também aos meus amigos Márcio, Aline, Tanara, Pati, Maile, Maurício,
Mateus, Toninho, Mônica, Carlinha, Fernanda F., Tiago e Odilon pelo companheirismo
sempre alegre e descontraído.

Meus agradecimentos também à UFRGS e a todos os professores e funcionários do
PPGC e CINTED, bem como às agências de fomento à pesquisa Brasileiras (CAPES,
CNPq e FINEP). Finalmente, agradeço aos professores que compuseram a banca de
avaliação da minha tese, profs. Rafael Bordini, Jomi Hübner, Renato Fileto, Antônio
Rocha Costa e Michael Móra pelas preciosas críticas construtivas.

CONTENTS

LIST OF ABBREVIATIONS .. 6	

FIGURE INDEX ... 7	

TABLE INDEX ... 8	

ABSTRACT ... 9	

RESUMO ... 10	

1	
 INTRODUCTION .. 11	

1.1	
 Research Problem ... 13	

1.2	
 Research Goals .. 13	

1.3	
 Research Strategy ... 14	

1.4	
 Research Process Outline ... 16	

1.4.1	
 Phase A .. 17	

1.4.2	
 Phase B .. 17	

1.4.3	
 Phase C .. 18	

1.4.4	
 Phase D .. 19	

1.5	
 Research Chronogram .. 19	

2	
 RELATED WORK ... 21	

2.1	
 Creativity ... 21	

2.2	
 Computational Creativity .. 23	

2.3	
 Concept Blending .. 26	

2.3.1	
 Governing Principles ... 28	

2.3.2	
 Network Typology .. 32	

2.4	
 Divago ... 37	

2.5	
 GRIOT and Algebraic Semiotics ... 42	

2.6	
 Agent Adaption ... 43	

2.7	
 Summary .. 46	

3	
 CONCEPT BLENDING MODEL .. 48	

3.1	
 Specification in operational semantics .. 48	

3.2	
 Blend-based Adaptation ... 55	

3.3	
 Blend-based Recommendation .. 70	

4	
 CONCLUSION ... 80	

REFERENCES .. 83	

APPENDIX 1 <AGENT MODEL WITH INTEGRATED ADAPTATION
MECHANISM> .. 90	

APPENDIX 2 <EVENT LISTENER FOR CB AGENT> 97	

APPENDIX 3 <EXAMPLE AGENT> .. 98	

APPENDIX 4 <MOFICATION FUNCTION FOR SEMANTICALY

ENHANCED BELIEFS> ... 100	

APPENDIX 5 <RANDOM MOFICATION FUNCTION FOR BELIEFS> .. 103	

APPENDIX 6 <FUNCTOR COMPARISON FUNCTION> 105	

APPENDIX 7 <LITERAL INTERSECTION COMPARISON FUNCTION>

 .. 106	

APPENDIX 8 <EVENT SIMULATION COMPARISON FUNCTION> 109	

APPENDIX 9<LEXICAL SIMILARITY COMPARISON FUNCTION> 111	

APPENDIX 10<RANDOM SOP> .. 112	

APPENDIX 11<ITERATION φ> ... 113	

APPENDIX 12<BLENDING INTERNAL ACTION> 114	

APPENDIX 13 <HIERARCHY-BASED COMPARISON FUNCTION> 117	

APPENDIX 14 <WORD SIMILARITY COMPARISON FUNCTION> 119	

APPENDIX 15 <RESUMO EM PORTUGUÊS> .. 121	

LIST OF ABBREVIATIONS

AI Artificial Intelligence

API Application Programming Interface
BDI Belief, Desire, Intention

CB Concept Blending
CC Computational Creativity

CI Conceptual Integration
DL Description Logics

FOAF Friend Of A Friend
HCI Human-Computer Interface
IMS Instructional Management Systems

JNI Java Native Interface
JSON Java Simplified Object Notation

KR&R Knowledge Representation and Reasoning
LIP Learner Information Package

LD Learning Design
MAPL Multi-Agent Planning Language

OBAA Agent-Based Learning Objects
OWL Web Ontology Language

PRS Procedural Reasoning System
REST Representational State Transfer

SOS Structural Operational Semantics
STRIPS Stanford Research Institute Problem Solver

FIGURE INDEX

Figure 1 Outputs of design research ... 15	

Figure 2 The central elements of the constructive research approach 15	

Figure 3 Research onion ... 16	

Figure 4 Research process outline following the constructive research. 16	

Figure 5 Systemic view of creativity .. 25	

Figure 6 Blending basic diagram .. 27	

Figure 7 Compression Hierarchy for Analogy/Disanalogy .. 30	

Figure 8 Compression Hierarchy for Cause/Effect .. 30	

Figure 9 Single-scope network ... 33	

Figure 10 Blending Typology ... 35	

Figure 11 The creative general problem solver .. 38	

Figure 12 Divago’s architecture ... 39	

Figure 13 Blending projection applied to two concept maps ... 41	

Figure 14 Classical abduction (i) compared to manipulative abduction (ii) 45	

Figure 15 Relationship between our work and the state-of-the-art 46	

Figure 16 Adaptation Terminology .. 56	

Figure 17 Adaptation inputs ... 58	

Figure 18 Belief comparison functions .. 61	

Figure 19 Trigger comparison function .. 62	

Figure 20 Context comparison function ... 63	

Figure 21 Inputs and generic space for the adaptation example 65	

Figure 22 Counterpart relations from the adaptation study .. 66	

Figure 23 Initial configuration of the adaptation blend .. 67	

Figure 24 Double-scope blend for adaptation .. 68	

Figure 25 Adaptation blend with modified α and Sop ... 69	

Figure 26 Inputs for the learning recommendation blending ... 71	

Figure 27 Inputs for the authoring recommendation blending 72	

Figure 28 Hierarchy-based comparison function example ... 73	

Figure 29 Word similarity function based on Wikipedia ... 74	

Figure 30 Metaphor-based recommendation blend .. 77	

Figure 31 Authoring recommendation blend .. 78	

TABLE INDEX

Table 1 Research Chronogram ... 19	

Table 2 Summary of computational models for concept blending 46	

ABSTRACT

This PhD thesis describes an interdisciplinary research on computational creativity
and cognitive agents. Our motivation to integrate these two areas is to study the human
skill that uses previous experiences and knowledge to solve unpredicted problems and
situations. Imbued by that motivation, our purpose is to improve the applicability of the
agent’s knowledge, inspired in the way that we humans understand and experience the
world.

Our approach towards that research view is to adopt theories and results from
cognitive and neural sciences as the grounding to a computational model of agents
capable of acting creatively. Thus, we adopt the concept blending theory
(FAUCONNIER; TURNER, 1998) – that originated from cognitive linguistics and
theory of the mind – as the grounding of our model. Therefore, our proposal of creative
agents integrates an implementation of concept blending into a BDI structure. In
concrete terms, we use Jason’s implementation of AgentSpeak to manipulate the agent’s
theoretical (beliefs) and practical (desires and intentions) reasoning.

Hence, the main topic of study of this research is the utilization of concept blending
in a structure of intelligent agents. Consequently, we observe our contributions under
two perspectives. Regarding computational creativity, we specify a model for concept
blending that explicitly defines rules to represent a blending typology. Furthermore,
integrating a BDI structure to the model allows the automated construction of inputs and
domain information to feed the blending process.

Focusing on agents, our contribution is on the process of creative reasoning applied
to supply alternative ways to use practical and theoretical knowledge. Given the
blending specification defined here, it is possible to integrate different adaptation
strategies to handle intention failure or other adaptation scenarios. Another feature is the
possibility to work with different knowledge representations given its descriptive logics
(using the OWL language) definition. The blending specification is also applied to
model the reasoning of an educational recommender system.

Finally, the defined model represents an initial work towards a cognition model
where blending, agency and other cognitive operations (e.g. learning) interact together
to simulate different features of the human thinking.

Keywords: Computational creativity, intelligent agents, concept blending.

Agência Criativa

RESUMO

A presente tese de doutorado descreve uma pesquisa interdisciplinar nas áreas de
criatividade computacional e agentes cognitivos. A motivação para a integração dessas
áreas é o estudo da habilidade humana de utilizar suas experiências prévias e
conhecimento geral para resolver problemas e lidar com situações a partir do momento
em que as mesmas são apresentadas. Imbuídos dessa motivação, nosso propósito é
ampliar a utilização do conhecimento de agentes, inspirado na forma como, nós,
humanos entendemos e vivenciamos o mundo.

Nossa abordagem para concretizar essa visão de pesquisa é adotar teorias e
resultados das ciências cognitivas e neurociências como fundamentação para um
modelo computacional de agentes capazes de atuar criativamente. Assim sendo,
adotamos a teoria do concept blending (fusão conceitual – tradução do autor)
(FAUCONNIER; TURNER, 1998), advinda da lingüística cognitiva e teoria da mente
como a fundação de nosso modelo. O modelo de agentes criativos proposto integra uma
implementação da fusão conceitual em uma estrutura BDI. Concretamente, utilizamos a
implementação da linguagem AgentSpeak fornecida pelo framework Jason, para
manipular o raciocínio teórico (crenças) e prático (desejos, planos e intenções) do
agente.

Logo, o objeto principal de estudo desta tese é a utilização da fusão conceitual em
uma estrutura de agentes inteligentes visando contribuições em criatividade
computacional e agentes. Considerando a área da criatividade computacional,
especificamos um modelo da fusão conceitual que define explicitamente as regras
necessárias para representar uma tipologia da fusão. Ademais, a integração de uma
estrutura de agentes BDI ao modelo possibilita a construção automatizada das entradas
e de informações de domínio para utilizar o processo de fusão.

Focando na área de agentes, nossa contribuição é caracterizada pela aplicação do
processo de raciocínio criativo para fornecer alternativas de uso do conhecimento
prático e teórico. Dada a especificação da fusão aqui apresentada, é possível integrar
diferentes estratégias de adaptação para lidar com a falha de intenções ou outras
situações que requerem adaptação. Outra funcionalidade é a capacidade de utilizar
diferentes representações de conhecimento, assumindo a disponibilidade de uma
definição descritiva (na linguagem OWL) da representação. O modelo de fusão
conceitual também é aplicado na modelagem do raciocínio de um sistema de
recomendação educacional.

Finalmente, nosso modelo de fusão representa um trabalho inicial em direção a um
modelo cognitivo no qual fusão, agência e outras funções cognitivas (e.g.
aprendizagem) interagem para simular diferentes funcionalidades do pensamento
humano.

Palavras-Chave: Criatividade computacional, agentes inteligentes, fusão conceitual.

11

1 INTRODUCTION

Creative agency. As our title suggests, we are interested in applying creativity to an
agent structure. However, our title can also be read backwards (agent-based creativity)
and will still make sense, since the utilization of an agent structure to creative reasoning
is important on its own. Agency, a conceptualization from philosophy that generally
captures the human ability to decide and act autonomously, is adopted in social
sciences, psychology, cognitive sciences, biology, economy and computer sciences.
Inside Computer Science, agency is a research field that belongs to Artificial
Intelligence (AI). Under a computational perspective, agency challenges researchers to
provide theories and models of autonomy that can be executed by computers.

Creativity is related to the process undertaken by humans to generate new concepts
and artifacts – in the broadest spectrum of applicability. As a process, it is mostly
studied by neurosciences, cognitive sciences, psychology and philosophy. As a property
(attributed to a certain thing, concrete or abstract), it is typically considered by social
sciences and art appreciation. Both the process and the property views are subject of
study by computational creativity researchers.

As most AI sub-fields, computational agency and computational creativity
concentrate substantial research effort on the multidisciplinary links with different
areas, often resulting in simulation models and insights useful for all the areas involved.
Our research agenda is motivated by the idea that AI models should serve as means to
aid on the challenge of understanding how the human mind works. We are especially
interested on the human ability to use previous experiences and knowledge to respond
to novel situations, creating new possibilities and solutions as a problem is presented.

Our approach to study this behavior is by modeling creativity as reasoning
integrated to an agent structure. Considering creativity as a process modeled by
computational reasoning, we are able to position it inside a traditional AI perspective of
knowledge representation and reasoning (HARMELEN; LIFSCHITZ; PORTER, 2007).
Most works from AI can be categorized in terms of how they represent and reason over
their knowledge (also seen as static and dynamic aspects). Furthermore, each one of
those categories is usually the result of studies on how we use knowledge in our minds.

For instance, early works on AI were mostly based on philosophy and mathematics,
yielding one of the most successful approaches of the field: logic-based reasoning
(HOFWEBER, 2009; COLMERAUER, 1985; KOWALSKI, 1986). Today, works on
logic and its applications still provide important results for the field and computation in
general. Recent works on logic attempt to improve the performance of reasoners while
keeping or enhancing expressiveness. Beyond that, there are the works that use logic-
based formalisms to represent modal, temporal, ontological, probabilistic and spatial
knowledge (to name a few).

12

Understanding that not everything can be modeled with logic, or that logic is not
adequate for every kind of knowledge, hybrid or totally different paradigms for
knowledge representation were developed. For example, frames (MINSKY, 1974) and
semantic networks (QUILIAN, 1968) were grounded on psychology discoveries and
developed to naturally accommodate hierarchical and classification inferences. On the
other hand, Bayesian networks (PEARL, 1985), which originated from statistics,
received computational models that represent cause-effect and propagation of evidences
in large chains of knowledge. In direct opposition to all symbolic approaches, neural
networks (MCCULLOCH; PITTS, 1943) are the most prominent of sub-symbolic
(connectionist) representations. Following inspiration from biology (brain studies)
neural networks provide several ways to implement automated and semi-automated
learning.

In this project, we follow developments from cognitive sciences on Concept
Blending (CB) (FAUCONNIER; TURNER, 1998), considered to be an innate sub-
conscious human skill that integrates knowledge creating novel conceptualizations.
Inside computational creativity, the utilization of CB theory to specify the creative
reasoning places our work under general creativity models. Specific models are
developed to simulate creative activities such as composing music (MARTINS, 2004;
MARTINS; MIRANDA, 2006; PEARCE; MÜLLENSIEFEN; WIGGINS, 2008),
painting (COLTON, 2008), writing poetry (VEALE; HAO, 2008; HERVÁS, R. et al.
2007) and jokes (BINSTEAD, K. et al. 2006). Under general creative models, the
knowledge gap we study is the consideration of practical knowledge, along with
theoretical during creative reasoning. Thus, in more theoretical terms, we are trying to
integrate creative reasoning inside a broader cognitive structure, allowing creativity to
work with intentionality. To achieve this in a computational model, we propose the use
of constructs supplied by agent theories and languages. This is what we meant by
reading the title of this project backwards: agent-based creativity.

We limit our agency scope to cognitive agents implementing intentional systems.
Thus, in a theoretical perspective, we consider autonomy as a property resulting from
several cognitive processes and, here, we focus on the aspect of intentionality.
Specifically, we adopt Bratman’s Belief Desire and Intention (BDI) approach as an
intentional theory to ground this work. Bratman (1987) can be considered as one of the
most influential works on autonomous agents. His BDI theory has its roots on
philosophy of the mind and folk psychology. BDI theory represents the agent’s
knowledge about the world as beliefs, desires represent how the agent wants the world
to be, and intentions are desires that the agent is committed to achieve. This paradigm to
specify autonomy inspired the development of several agent architectures (KUMAR;
SHAPIRO, 1994; MORLEY; MYERS, 2004; D'INVERNO, M. et al. 2004), languages
(DASTANI, M. et al.. 2003; RAO; GEORGEFF 1991; RAO, 1996) and also variations
of the theory itself (GOVERNATORI; ROTOLO, 2008; CHOLVY, 2004;
BROERSEN, J. et al. 2001). Most of these works also consider resource bounding
agency, which was introduced by Bratman (1988). The philosophical and psychological
grounding of the theory, together with a compatible practical (but restrictive)
architecture are the main reasons for the success of the approach.

The main approach for the design of resource bounded BDI agents – Procedural
Reasoning Systems (PRS) (GEORGEFF; LANSKY, 1987; RAO; GEORGEFF, 1991)
use the abstraction of plans, which allow the expression of procedural knowledge inside
agents (usually programmed with declarative languages). Plans specify pre-defined

13

recipes to handle particular world configurations (defined by the plan’s pre-conditions).
In this case, plans work as heuristics to reduce the search for a viable option, allowing
the agent to perform practical reasoning, the reasoning towards action
(WOOLDRIDGE, 1995), in a timely fashion. However, at the same time that resource-
bounding action allows the agent to promptly interact with its environment, it also
constrains the possibilities of action. Wooldridge (1995, 2000) argues that achieving a
balance between reasoning and acting is one the main challenges of agent development
and research.

Current approaches to deal with that issue follow different perspectives, such as use
of emotions (JIANG; VIDAL; HUHNS, 2007; STEUNEBRINK; DASTANI; MEYER,
2007), norms (DASTANI; TINNEMEIER; MEYER, 2009; GANGEMI, 2008; CONTE;
ANDRIGHETTO; CAMPENNÍ, 2009) and learning (SUBAGDJA; SONENBERG;
RAHWAN, 2009; FUJITA, 2009; SEN; AIRIAU, 2007; SHOHAM; POWERS;
GRENAGER, 2007; STONE, 2007). We limit our scope to approaches that increase the
utilization of an agent’s knowledge, without specifying an application context.
Specifically, we are focused on approaches that allow the agent to adapt to situations
that were not pre-programmed in the plan library. Thus, we refer to works on planning
and agent learning.

Finally, our consideration of creative agency regards the use of creative reasoning to
improve the applicability of the agent’s knowledge (adaptation), inspired in the way that
humans understand and experience the world.

1.1 Research Problem
Summarizing our introductory argument, the motivation for this work lies on the

impact of computational models to better understand human intelligence, specifically
our ability to use our experience to handle new situations. Our research is located on the
intersection between computational creativity and cognitive agency. Inside
computational creativity, this research is positioned on computational models of human
creativity, following the CB theory. On the agent side, we place our work under BDI
architectures and languages. Imbued by our motivation and context, we characterize our
research question as follows:

Q1. How can creativity support intentionality?
This main research question is unfolded into two intermediary questions:

Q1.1. How can creativity be computationally modeled in order to produce
theoretical and practical knowledge?

Q1.2 How can creativity support the utilization of knowledge as a means to adapt to
unforeseen situations?

1.2 Research Goals
From our research questions we propose the following goal for our project:
G1. Propose a computational model for creativity.
G2. Apply the model from G1 as a means to support an intentionality model.
Given the intermediary questions we establish the following specific goals:

14

G1.1. Specify a representation of the blending theory considering both theoretical
and practical knowledge.

G2.1. Propose the utilization of the creative representation defined in G1.1 as an
adaptation mechanism to support agent-based intentionality.

1.3 Research Strategy
In this research project we are following the design research (also known as

constructive research) strategy. According to Lukka (2003), design research is a
research procedure for producing innovative constructions, intended to solve problems
in the real world, and, thus, making a contribution to the field in which it is applied.
Kasanen, Kari and Arto (1993) cite mathematical algorithms and theorems, artificial
languages (Braille’s alphabet, Morse alphabet, computer languages) and new
pharmaceuticals as examples of the output of a design research approach.

Hence, the new construction – central notion of the approach – is an abstract notion
that can be concretized in many different ways. All human artifacts (e.g. models,
diagrams, plans, commercial products and information systems) are considered to be
constructions. Such constructions are characterized by the fact that they were
developed, not discovered (LUKKA, 2003).

March and Smith (1995) propose four kinds of outputs for the constructive
approach: consctructs, models, methods and instantiations. In this context, constructs
are the conceptual vocabulary of problem domain. They arise during the
conceptualization of the problem and are refined throughout the design cycle. Related to
constructs, a model specifies the relationships among them. Methods provide a way to
manipulate the constructs aiming at realizing a solution model. Finally, an instantiation
concretizes constructs, models and methods in an environment.

Vaishnavi and Kuechler (2004) present another output called better theories. Also
perceived as theory building, better theories relates to the output that improve a method
or instantiation already established, such as software engineering communities devoted
to improve software maintenance and reuse. An additional way to view the better
theories conceptualization is through the research artifact that, when being evaluated,
brings new understanding to previously established relations among constructs. Carrol
and Kellog (1989) exemplify this situation on the Human-Computer Interface (HCI)
where artifacts themselves constitute the most effective medium for theory development
in the field. Figure 1 illustrates the relation among different levels of abstraction in
research artifacts and the design research output terminology.

15

Figure 1 Outputs of design research (adapted from Vaishnavi and Kuechler, 2004)

In terms of process, Kazanen, Kari and Arto (1993) summarize the main phases of
the design research approach:

1. Find a practically relevant problem which also has research potential.
2. Obtain a general and comprehensive understanding of the topic.

3. Innovate, i.e., construct a solution idea.
4. Demonstrate that the solution works.

5. Show the theoretical connections and the research contribution of the solution
concept.

6. Examine the scope of applicability of the solution.
Those authors also argue that these phases may be applied in different orders,

varying from case to case. Lukka (2003) goes further on the process of design research,
describing the phases identified in (KAZANEN, KARI; ARTO, 1993). In addition,
Lukka (2003) presents a diagram (illustrated by Figure 2) summarizing the central
aspects of the constructive research approach.

Figure 2 The central elements of the constructive research approach (LUKKA, 2003)

Positioning design research in a broad scope of research, it can be viewed as a
research strategy, since it provides a structure for the research work, guiding the way
that empirical evidence is collected and analyzed. Furthermore, design research is more
aligned to pragmatic research since the quality of the constructed knowledge is
evaluated in terms of its utility. Figure 3 presents the research onion, proposed by
Saunders, Thornhill and Lewis (2006), with slight modifications to add design research
and a few extra philosophies.

16

Figure 3 Research onion (adapted from (SAUNDERS; THORNHILL;LEWIS, 2006))

1.4 Research Process Outline
Following the constructive research strategy, we organize our work into four phases,

as illustrated by Figure 4. Each phase is constituted by specific research processes
(stages) and by resulting products. We also associate each phase to its respective
constructive research stages (numbered bellow each phase).

Figure 4 Research process outline following the constructive research.

Next, we describe each phase in terms of their stages and products, contextualizing
its importance for the research as a whole. In addition, we briefly describe the results of
each phase, describing the development of the work against the proposed stages. During

17

the following description we will label the stages with S.Px, where S regards to stage, P
represents the phase and x a numerical ordering of P stages.
1.4.1 Phase A

The first phase regards the two initial constructive research stages (KASANEN;
KARI; ARTO, 1993): identification of a problem with practical and scientifical
relevance, and understanding of the investigating theme. These stages were developed
mostly by bibliography research. Our main focuses of investigation through literature
revision are computational creativity (S.A1), concept blending (S.A2), knowledge
representation and reasoning (S.A4) and agency (S.A5). Based on the studies on CC and
CB, we are able to specify a set of the requirements summarizing CB in terms of its
constructs and processes (S.A3). Given an understanding of KR&R and agency we
describe a mapping between the CB requirements previously established and possible
ways to represent them computationally (S.A6). Such mapping was the main outcome
of phase A, serving as a guide for the development of the next phase.
1.4.2 Phase B

This phase encompasses the third stage from constructive research: “Innovate, i.e.
construct a solution idea” (KAZANEN; KARI; ARTO, 1993). In our research, this was
the most important stage since it is here that our model is defined. The development
began by limiting the scope of the model (S.B1). We specify some limitations due to the
broad scope of CB applicability. As stated by Fauconnier and Turner (1998), CB theory
aims to explain how we humans integrate known concepts to construct new ones. But,
this integration can be applied to virtually anything that we are able to conceive.

As a result, a full computational account of CB would require multi-dimensional
representations (e.g. symbolic conceptualization, associated emotional and sensorial
perceptions, contextualization and episodic associations) and connections of a single
concept. Even when considered alone, each one of those dimensions constitutes
research themes on their own. Therefore we limit the design scope of our model in
terms of which constructs and processes will be considered and also to which extent
when relating to the original conceptualization.

Closely related to our scope limitations is the definition of the representation
paradigms (S.B2) that will be used to specify the model. This stage is based on the
mapping provided by S.A4, further specifying the role of the representation in the whole
model.

Next, we specified our model – given our limitations and knowledge paradigm – to
represent conceptual blending integrated to an intentionality structure (S.B3). In this
level, the model define how blending is represented and how the blending process will
handle BDI-based intentionality structures (also represented). Given our focus on
adaptation, our specification provides additional structures (specific frames and
template networks) and triggers to allow adaptation. The specification is written in
traditional Structural Operational Semantics (SOS) (PLOTKIN, 1981, 2004).

Finally, we implemented the specification (S.B4) using the Jason (BORDINI;
WOOLDRIDGE; HüBNER, 2007) framework and the OWL language as syntax for the
blending engine. This stage was partially developed since we applied more time on the
development of the specification and only descriptive representations (OWL) are
considered in the implementation. Specific KR&R necessary for CB is integrated
through Application Programming Interfaces (API) – when available – and, if not, we

18

adopt alternatives such as the Java Native Interface (JNI) or Java Simplified Object
Notation (JSON).

In consequence of all phase B stages, the outcome is an agent architecture with an
integrated concept blending mechanism. Regarding this outcome, we consider that the
developed specification (S.B3) together with the models from phase C partially results
in an agent architecture. The remaining part would be technical details from the
implementation that could be applied to further specify the model (e.g. specific
language details).

By specifying how intentional structures can be used during blending (S.B5), even
in the specification level, we give an important step toward goals G1, G1.1 and G2. The
foundations to achieve Goal G2.2 are also supplied by the model and partial architecture
from phase B.
1.4.3 Phase C

Here, we cover the remaining aspects to achieve the proposed goals. This phase
develops the fourth stage of constructive research, which is to demonstrate that the
solution works. Although the partial implementation from S.B5 and the specification
from S.B3 already demonstrate that at least parts of the solution work, we view that
both implementation and model as structures that need to be filled with content in order
to make sense. Therefore, our initial idea for phase C was to implement two case studies
to consider the practical aspects of the architecture. In practice, we did not developed
two case studies, rather we developed two studies with the goal to test the constructs
specified on phase B. Still, we will present our original idea of the case studies and the
respective limitation to test studies.

Our first case study aimed at studying how our architecture would behave during
adaptation tasks (S.C1). Since the blending mechanism is implemented on the
architectural level of Jason, we are able to test it with already developed agents, with
minimum configuration effort. The integration of blending into an agent architecture
were developed using the Jason API. Our stage S.C1 focused on the specification with
operational semantics of a blend-based adaptation, its implementation, and on
functionality tests with one example agent. Upon completion of this study, goal G2.1 is
achieved, since we specify how blending can be applied to adaptation tasks.

Next, we applied the developed model to specify an agent that recommends
educational resources based on the student’s history and on the meta-data specification
of the resources (S.C2). A complete study over recommendation systems require at least
a statistical analysis of recommendations’ success and a comparison to algorithms
implementing the same kind of recommendation. Such study is not part of our research
project. Here, we are interested in verifying the utilization of the creative mechanism as
language primitives (implemented as internal actions in Jason by our architecture). In
the context of the application, which is a research project to provide learning content on
Digital TV (DTV), mobile and web platforms, creative reasoning is applied to surprise
the user or to establish relations among content following a an association pattern
different from the traditional approaches (based on deduction and generalization).

Both studies represent a proof of concept (S.C3) for the architecture and model,
providing content so that the creative reasoning mechanism can be tested. Thus, the
product of phase C concludes the developmental part of our research as goals G1, G1.1
and G2 are studied through the cases.

19

1.4.4 Phase D
On the last phase of the research project the link between the model and the

theoretical reference is presented. In addition, the applicability scope of the solution is
examined (KAZANEN; KARI; ARTO, 1993). Hence, the two first stages of phase D
propose an analysis of our model (S.B6) and proofs (S.C3) given a background of
computational creativity, agency and lastly, an integrative perspective of the fields. The
first stage focuses on the model (S.D1) while the second studies aspects shown by the
tests (S.D2). One of the products of this phase is the observations and discussion to CB
theory triggered by the development of the model (S.D3). We believe that our model
can contribute especially on regard to the representation and utilization of intentionality
– considered as a vital relation inside blending theory (Section 2.3). The last product of
our research positions our results as the initial steps towards a theory of creative agency
(S.D4).

1.5 Research Chronogram
Next we present our research chronogram describing the development of this work

from the beginning to its conclusion. Besides the stages defined in Section 1.4, the
chronogram illustrated by Table 1 contains activities that were part of the PhD but do
not provide a direct contribution to the research itself.

Table 1 Research Chronogram

Stages Year / Semester

R Obtaining credits in disciplines
R P1. Paper publishing (AAMAS, PROMAS)
R S.A5 Understanding agency – BDI approaches

2 0 0 7 / 1

R Obtaining credits in disciplines
R S.A5 Understanding agency – AI and Education
R P2. Paper publishing (ITS, ICALT, CAEPIA, PRIMA)

2 0 0 7 / 2

R Qualification Exam – KR&R, specific theme: Ontologies
R S.A4 Understanding KR&R – Survey
R French Proficiency Test

2 0 0 8 / 1

R S.A5 Understanding KR&R – Concept Phil., Symbol Grounding
R S.A5 Understanding Agency – AgentSpeak (L, DL), Jason
R OBAA project (proposal and devlopment)

2 0 0 8 / 2

R P3. Paper publishing (WCCE – 2 papers)
R S.A2 Understanding Concept Blending
R S.A3 CB Requirements
R S.A6 Mapping of CB and KR&R approaches

2 0 0 9 / 1

R S. A2 Understanding Concept Blending
R S.A3 CB Requirements
R S.A6 Mapping of CB and KR&R approaches
R P4. Paper publishing (EPIA)
R S.A1 Understanding Conceptual Creativity
R S.B1 Define Model Scope
R S.B2 Define KR&R paradigms
R S.B3 Specify the Model
R S.C2 Recommendation Case Study

2 0 0 9 / 2

20

R P5. Paper publishing (WEBMEDIA, not accepted)
R S.B3 Specify the Model
R Thesis writing
R S.B4 Implement the Specification
R S.B5 CB Agent Architecture
R Thesis writing
ü S.C1 Adaptation Case Study
ü P5. Paper publishing (Int. J. K-Based Systems)

2 0 1 0 / 1

ü S.D1 Analysis of the Architecture
R S.D2 Analysis of the Conceptual Proofs
R S.D3 Observations to CB Theory
R S.D4 Theory of Creative Agency
ü P6. Paper publishing (Int. J. AAMAS)
R P7. Paper publishing (RENOTE)
ü P8. Paper publishing (ICCC 2011)
R PhD Thesis conclusion and defense

2 0 1 0 / 2

Caption:

R Completed.
ü Partially developed

21

2 RELATED WORK

In this section we describe the works that most affect our goals. As a result, this
section does not illustrate a complete survey of the fields, instead, it presents sufficient
works to contextualize our contributions. Each section begins with a brief
contextualization on how the described area affects our work. Our presentation of
related work also focuses more on creativity than agency. This decision was made
because, for us, creativity and its computational counterpart were a less explored topic
than agency. The remaining part of the section is organized as follows: section 2.1
presents a theoretical perspective on creativity, while section 2.2 presents a
computational perspective, introducing computational creativity; next, section 2.3
describes the theory of concept blending; in section 2.4 we present Divago (a
computational implementation of CB); section 2.5 describes algebraic semiotics (a
partial formalization of CB); finally, section 2.6 presents works on agent adaptation.

2.1 Creativity
This section introduces the topic of creativity from a theoretical perspective. The

concepts and views given here are fundamental for a discussion about the applicability
of our model in general studies of creativity (research stages S.D3 and S.D4). Our
ambitious view is that we may contribute on the research about how humans are able to
create new ideas and also use this ability on our daily lives. Furthermore, based on the
concepts presented here we also position our research in terms of general perspective on
creative behavior (research goal G1).

As with any conceptualization representing something that humans do, but cannot
explain how, creativity does not have its precise definition – no news for the AI
researcher here. For the purposes of this work, we consider creativity as a process that
generates new ideas or concepts. This line of thought follows the theoretical stand by
Boden (2004), which goes further on the definition:

Creativity is the ability to come up with ideas or artefacts that are new,
surprising and valuable. (BODEN, 2004, p.1)

Boden begins her definition by relating creativity to the ability to generate ideas. Her
intuition is to view creativity as a generic act of creation, so, considering ideas, it might
be a new thought, concept, poem, music, mathematical theorem, cooking recipe, joke,
and so on. She also mentions structures and artifacts which positions creativity in the
realm of concrete things, like paintings, sculptures, origami and vacuum cleaners. In
summary, Boden views creativity as the ability to generate ideas and artifacts, in the
broadest context possible (BODEN, 2004).

To describe novelty, Boden (1998, 2004) introduces two kinds of creativity:
Psychological and Historical – (P and H creativity, respectably). P-creativity

22

contextualizes novelty inside the individual or system itself (e.g. children often come up
with ideas that are new to them, but that have been on textbooks for years). If someone
comes up with an idea that no one else has had it before, then the idea is considered H-
creative. Boden (2004) argues that H-creativity is a special case of P-creativity and,
hence, the study of how creativity happens is in the realm of P-creativity. Dorin and
Korb (2009) and Saunders and Gero (2002) present the application of creativity to
artificial life. Both works define creativity in similar ways, based on Boden’s H-
Creativity approach.

Still looking at Boden’s definition, she also characterizes a creative idea as being
surprising – with regard to three interpretations. The first specifies surprise as its
unfamiliarity or the improbability of its occurrence (e.g. winning the lottery). An
alternative interpretation of a surprising idea is the one that unexpectedly fits into a
paradigm (style of thinking) that you already have. Here, the surprise is to realize that
this new idea is part of an already established paradigm – e.g. “how did I not think of
that first?” In addition, an idea might surprise because of its apparent impossibility, it
breaks paradigms and even evokes more ideas considered impossible and that, now, on
the shed of this new idea, might become reality.

Finally, the last term in the definition of creativity refers to the value of the new
idea. Defining value, or what is valuable – or interesting, useful, beautiful, … – is, to
say the least, subjective and dependent on the situation where value is being assessed.
As stated by Boden (2004) herself, her notion of new has two meanings and her notion
of surprising, three; but the notion of valuable, no one is able to tell how many
meanings it has, and might have. Although context-dependent and potentially
controversial, having value inside the definition of creativity actually reflects our
general perception of creativity. I might hear a Beatles’ song and consider it highly
creative but at same time, you might hear the same song and consider it a mere
evolution of British rock and roll with influences from the hippie culture. While value
remains a subjective perception, we will not be able to settle on a scientific theory for
creativity. However it does not restrain research on the processes that generate creative
ideas (BODEN, 1998, 2004).

Focusing on how creativity occurs, Boden (2004) distinguishes three main kinds of
creativity: combinatorial, exploratory and transformational. Combinatorial creativity
combines familiar ideas with unfamiliar connections (e.g. poetic imagery, collage in
painting or textile art, and analogies). Exploratory and transformational creativities are
properly explained under the perspective of conceptual spaces, which Boden consider to
be structured styles of thought. These styles are part of a culture or a group and are not
originated by one individual mind (e.g. ways of writing poetry, styles of painting or
music and culinary schools).

Boden’s view of conceptual spaces is not definitive, works influenced by neural and
cognitive sciences (FAUCONNIER; TURNER, 2002, 2008) tend to consider spaces as
packages of concepts dynamically constructed by our brains as we interact with the
world (making coffe, writing a thesis, driving a car, trees, cars, among others). Still,
Boden’s exploratory and transformational creativities make sense in either view of
conceptual spaces. Exploratory creativity generates new ideas by exploring hidden
possibilities inside a previously established conceptual space, for example, the “thinking
outside the box” idea that makes perfect sense – it fits in the space – but was not explicit
in the current paradigm.

23

Moving to a more surprising kind of creativity, the transformational process result in
impossible, unthinkable ideas, relative to an established conceptual space. It is that kind
of idea that breaks, or at least changes current paradigms, welcoming new thoughts that
were previously inconceivable.

To balance Boden’s theoretical (philosophy) discussion on creativity, we present the
view proposed by Duch and Pilichowski (2007), where the authors follow discoveries
on neurosciences to contextualize creativity. Hence, according to Duch and Pilichowski,
the process of creativity is defined as follows:

Creativity involves neural processes that are realized in the space of neural
activities reflecting relations in some domain (in the case of words,
knowledge about morphological structures), with two essential components:
1) distributed chaotic (fluctuating) neural activity constrained by the strength
of associations between subnetworks coding different words or concepts,
responsible for imagination, and 2) filtering of interesting results, amplifying
certain associations, discovering partial solutions that may be useful in view
of the set goals. (DUCH; PILICHOWSKI, 2007, p.126)

In that definition, filtering is viewed as a process that relies on several features, like
previous expectations, current associations and arousing emotions. Duch and
Pilichowski discuss that creativity requires prior knowledge, imagination and filtering
of the results. According to his view, imagination is constrained by the possible
compositions of elementary operations (activations of neurons and neural-networks).
Duch and Pilichowski propose that filtering imagination by domain, forming conceptual
spaces (reflecting different neural configurations) is also an important aspect for
creativity.

2.2 Computational Creativity
Shifting the focus to computer science, this section presents an overview on

computational creativity. Far from a survey, our aim here is to describe the main
approaches of the field, allowing us to characterize our contribution on computational
approaches to creativity (research stages S.A1, S.D3, S.D4).

We present a few conceptualizations of the field, its main perspectives and a
categorization scheme. All the concepts discussed so far regard (represent) Boden’s
theoretical creativity approach – although a bias towards computational models can be
noted on the descriptions of creative processes. When considering computational
creativity, Boden (2004) notes that computational approaches can help on investigating
new hypotheses of how the mind works, but she does not commit to a definition for it.
Wiggins (2006), proposes a set-theory-based formalization of Boden’s
conceptualizations, in an attempt to further specify her theory. Along with the
formalization, Wiggins also constrains Boden’s definition of creativity, seeing it
through the perceptive perspective:

The performance of tasks which, if performed by a human, would be deemed
creative. (WIGGINS, 2006, p.451)

Wiggins assumes that creativity is too subjective to define, thus he proposes a
definition grounded on the perception of creativity, in the sense that, although we are
not able to precisely define it, we know it when we see it. Since Wiggin’s purpose is to
further specify Boden’s view, after his definition of creativity, he conceptualizes
computational creativity as follows:

24

The study and support, through computational means and methods, of
behavior exhibited by natural and artificial systems, which would be deemed
creative if exhibited by humans. (WIGGINS, 2006, p.451)

Moreover, Wiggins also characterizes a creative system as a collection of processes,
natural or automatic, which is capable of achieving or simulating behavior that would
be considered creative in humans. A similar definition of computational creativity is
presented by Franová and Kodratoff (2009) where it is considered to be the whole set of
methods by which a computer may simulate creativity. We consider computational
creativity as a field of study that has the potential to help us understand how creativity
occurs in humans. Thus, we define computational creativity as the study of creativity
through (based on) computational methods. The ways that the study can be conducted
actually represent the main streams of work under computational creativity.

One stream researches ways to model the process of creativity generically,
formalizing specific properties of creative reasoning and then contextualizing them into
a broader framework of cognition (CARDOSO, A. et al.. 2001; PEREIRA; CARDOSO,
2006; PEREIRA, 2007; BLAIN, 2007; SAUNDERS, 2006; WIGGINS 2006;
COLTON, 2008). A second line is represented by more specific works that attempt to
mimic human creativity in specific domains, like music composition and improvisation
(MÁNTARAS, 2006; PEARCE; MÜLLENSIEFEN; WIGGINS, 2008), joke
(BINSTED, K. et al.. 2006), poetry (PILICHOWSKI; DUCH, 2008), story (ZHU;
HARREL, 2008), painting generation (COLTON; MÁNTARAS; STOCK, 2008), and
theater interpretation (MORAES, 2004). These works not necessarily commit to a
formal creative model, rather, they use specific techniques (e.g. neural networks,
Bayesian networks and genetic algorithms) leading to context-specific creative
behavior.

Most of these works also consider, implicitly, the output of a creative system as an
action contextualized by the environment and also by other actors (an audience, other
musicians, other actors, etc.). According to our perspective, this line differs from the
one followed in this research in terms of the abstraction of action. In our context, we
observe action and practical knowledge in a higher abstraction level, considering a
model of practical reasoning itself. The specific creative systems in general have
outputs that can be perceived as actions, but are not modeled into an explicit practical
reasoning framework. Thus, we do not position our work on this line of computational
creativity. Finally, a third line groups systems and techniques to support creative work
(SAUNDERS, 2009; HÉLIE; SUN, 2008). Regarding this division of computational
creativity, we position our work on the first stream (computational models of
creativity).

Recalling Boden’s theory, she proposes a distinction between Psychological and
Historical creativities. This division actually represents the main stands (positions) on
creativity, P represents a focus on the phenomenon of creation while H represents a
focus on the result of the phenomena, a view that positions the creation inside a context
(societal, cultural, historical, …).

Our view focuses on the P side, since we want to empower the agents with a kind of
reasoning that allow them to further use what they know or what they can do. Moving to
a multi-agent perspective, H-creativity also present opportunities for research, given
that a societal and normative context is present and influentiates the agent behavior. A
general account of the H view is presented by Csikszentmihalyi (1988). Figure 5

25

illustrates that view, examining creativity from systemic perspective (boxes represent
systems and ellipses, actors).

Figure 5 Systemic view of creativity (CSIKSZENTMIHALYI, 1988)

Csikszentmihalyi considers that the individual, its societal (interactive) field and its
cultural (symbolic) domain are the basis (boxes plus ellipses) of a creative system. In
this system, creativity is fostered by the interactions (arrows) among the individual, the
domain and the field. Saunders and Gero (2002) note that in such perspectives,
creativity is as much the result of the appreciation of a work as it is the product of the
creator.

Following the line of H-creativity, Ritchie (2007) proposes a framework for the
assessment of computational creativity by specifying a set of criteria to be applied on a
generated artefact. A key assumption on Ritchie’s framework is that all the criteria must
be based solely on empirically observable factors, ignoring the process behind the
production. Focusing on what is observed, Ritchie aims at mimicking how humans
judge art works, usually without awareness of the artist’s mental or emotional processes
that lead to the production. Hence, the proposed framework puts a computer program on
the same level of a human creator, since the assessment relies on a human to judge the
output of a creative program. Ritchie establishes the set of criteria around the properties
of quality and novelty. These properties are specified in terms of class membership and
an inspiring set, which is applied during the assessment for comparison purposes. A
total of eighteen criteria are defined (e.g. average typicality, average quality, good
result, good typical and atypical results) composing an evaluation table.

On the opposite side, Colton (2008) defines guidelines for the assessment of
computational creativity following a P-creativity perspective. Colton assumes that the
process of generating an artefact does matter, and that humans consider it when judging
a creative product. Basing his argumentation on artwork appreciation, especially on the
impact that knowing how an art piece was produced has on the enjoyment of a work,
Colton defines his framework around three properties: skill, appreciation and
imagination. These properties constitute what Colton calls the creative tripod,
representing the behaviors that a creative system must exhibit in order to be considered
creative. Colton proposes the use of the tripod when developing the creative software –
as a guide to the developer – and also as an intuitive way to present computer-generated
art to non-technical consumers.

26

2.3 Concept Blending
Since the beginning of this research, our main motivation was how could agents

make better use of their knowledge? How can agents go beyond traditional logical
reasoning towards other kinds of human-like reasoning? These questions lead us to
study how our brains represent and reason over symbols and concepts. Studying
philosophical and cognitive studies on how our brain uses and represent concepts
(MURPHY, 2002), we came along a hybrid theory that originated from cognitive
linguistics that follows developments from neurosciences and philosophy of the mind
called concept blending.

This section describes the CB theory and is the basis for our model of creativity
(goal G1, G1.1; stages S.A2, S.A3 and S.A5). Although blending is not seen as a theory
for creativity, it can be used to explain the production of creative artifacts, since
essentially, it explains how our mind produces new conceptualizations.

 Concept blending, also known as Conceptual Integration (CI), is considered to be a
general cognitive operation related to analogy, categorization, framing and mental
modeling (FAUCONNIER; TURNER, 1998). The theory is based on empirical
observation of meaning construction in different domains, including mathematics, social
sciences, human-computer interaction, literature, music and mainly linguistics. It
originated in the field of cognitive linguistics with the goal of explaining how we
understand creative phenomena such as metaphors and counterfactuals.

According to Fauconnier and Turner (FAUCONNIER; TURNER, 2002;
FAUCONNIER, 2008) conceptual integration follows the developments from embodied
cognition and describes a mental capacity that leads to new meaning, global insight, and
conceptual compressions useful for memory and manipulation of otherwise diffuse
ranges of meaning. Although creative and insightful constructions can be explained in
terms of CB products, CB itself does not hold to fully explain creativity since some
important points are not defined, such as the selection of inputs for the process.

Despite its importance, especially to provide computational models for the theory,
detailed aspects of the operation are not defined and perhaps are not part of the original
research agenda of the authors. In (FAUCONNIER; TURNER, 2002) conceptual
integration is characterized as a non-algorithmic and non-deterministic operation. These
characteristics lead to a mind model where operations are executed in parallel and the
innumerous possible lines of thought are seen as a source of variety and creativity.
Reasoning operations such as analogy and categorization are also examples of aspects
of the theory that are important but not defined.

In a nutshell, conceptual integration takes as input two mental spaces, constructs a
partial match between them and then projects selectively to a new space, the blend,
which leads to new emergent structure. This structure arises through composition,
completion and elaboration. Integration takes place in networks of mental spaces that
represent our neurological structure. As blends are created they expand the network and
might modify previously established mental spaces. Figure 6 illustrates this structure:
the big circles represent the spaces, small black circles inside the spaces are the
concepts, dotted lines represent projections while the regular lines represent the cross-
space matching between the inputs. Both kinds of lines are seen as connections among
spaces.

27

Figure 6 Blending basic diagram (FAUCONNIER; TURNER, 2002)

Input spaces for the integration process are set up according to the perceived
stimulus and its context (specific, generic, counterfactual, among others). The
perception evokes concepts and related information that will shape the mental spaces at
hand. After a network of spaces is established, a partial cross-space mapping connects
counterparts in the input spaces. Establishing counterpart connections can be performed
with several kinds of relations: analogical, metaphoric, role, frame-based and vital
relations mappings.

Along with connecting counterparts, a generic space is built-up from the inputs. This
space captures the common structure between the inputs mapping its paired
counterparts. The resulting generic space and the cross-space mapping are used during
the selective projection operation. Selective projection takes elements from the inputs,
mappings and generalizations and projects some of them to a new space, the blend.

Although important, selective projection is not defined in the theory. Nonetheless,
the blending theory describes restrictions and principles that can be applied to selective
projection, but are not explicitly linked to this operation (mainly composition and
completion). We consider that this gap exists because the theory is still in its early days
and evidence from neurosciences is necessary before formalizing that kind of process. A
formalization of selective projection is one aspect for a complete account of the creative
process.

In our interpretation of the blending process, selective projection is performed
through composition and completion of the inputs and related spaces. Elements from the
inputs can be composed providing relations that do not exist in either input.
Composition considers mostly counterpart relations, which can be included separately
in the blend (each part is projected onto the same blend, but as separate elements) or as
the same element in the blend (a fusion of the elements).

Completion brings background knowledge to the integration process. It uses
previously established frames to provide pattern completion. The definition of frame
used in blending is broader than the classical one known to AI (MINSKY, 1974). In this
case, frames specify general organizational aspects, for any kind of purpose and with
any granularity. It is possible to have a “soccer game” frame as well as a “meaning of a
PhD” frame. How frames are established is an issue not discussed in the theory.

28

When the blend space is ready, a process called elaboration can simulate its
execution according to the principles defined for the blend (usually obtained from
completion). Elaboration attempts to capture our capacity to imagine the impact of an
element inside a hypothetical scenario (how it would turn out if it existed in the concrete
reality). From the principles (time scale, physics dynamics, space, and so on)
innumerous possibilities for elaboration arise. This operation can also execute
repeatedly and as long as desired.

A question that comes to mind is when will the process stop? According to the
theory, blending is an unconscious process that runs practically all the time. The general
goal is to support human-scale interaction and understanding of the world. Human-scale
is a property difficult to define and in our opinion can be seen like intelligence is seen
by the strong AI community. Bringing human-scale to blending gives us purpose under
the form of vital relations, which impose restrictions to the process.

Fauconnier and Turner (2002), characterize the operations that we have presented so
far as the constitutive principles of the blending process. Since they contextualize the
blending theory under a greater scheme of cognition, the constitutive principles are seen
as a first level of constraints to the process. We do not share this view, we consider that
the constitutive principles are the basic operations of the process, allowing a network of
concepts to be modified, expanded and understood accordingly. Still, we will maintain
the original terminology through the text. To summarize, the constitutive principles of
blending are: input definition, cross-space connections, generic space definition,
selective projection, composition, completion and elaboration.
2.3.1 Governing Principles

Along with the constitutive principles, governing principles are also defined as a
stronger source of constraints to the process. Constitutive principles are related to the
structure and dynamics of the blends while governing principles characterize strategies
for optimizing the emerging blend. Governing principles have a higher abstraction level
and guide the blending process towards the generic goal of achieving human-scale.
Thus, the intuition is to constrain and prioritize operations that will bring about
understanding, sensing and acting to blends in a human-like fashion.

Our repetition of what is human-scale is on purpose, since we would like to clarify
that it is closer to a general research goal for concept blending – and cognitive sciences
– than a conceptualization of a clear goal to be achieved by blending. Nonetheless,
achieving human-scale is the purpose behind governing principles, to restrain the
operation towards human-scale acting. To conclude, our presentation of these principles
assumes that achieving human-scale is implicitly defined in every governing principle,
instead of a clearly qualified goal to be achieved. The exceptions to our simplifying
assumption are the vital relations.

Although Fauconnier and Turner do not specify a formal connection between vital
relations and human-scale, we consider that these kinds of relations characterize some
aspects of what they mean by human-scale. Fauconnier and Turner (2002) characterize
vital relations as “Vital relations are what we live by, but they are much less static and
unitary than we imagine” (FAUCONNIER; TURNER, 2002). Specifically under
blending, vital relations are conceptual relations that tend to show up many times,
representing relations like cause-effect or change. In our interpretation of the blending
theory, vital relations can be applied as filters for the links established during cross and
inner space connecting, generic space definition and selective projection.

29

Fauconnier and Turner (2002) present the following list of vital relations: change,
identity, time, space, cause-effect, part-whole, representation, role, analogy, disanalogy,
property, similarity, category, intentionality and uniqueness. Having a general idea of
vital relations and their role in blending is fundamental to understand the governing
principles. Most of them establish operations and unique utilizations of vital relations.
The main categories of governing principles are compression, topology, pattern
completion, integration, maximization and intensification of vital relations, web,
unpacking and relevance.

Although compression can be seen as a general method, in the sense that anything
can be compressed into something else (e.g. a carrot can be compressed to a vegetable
and a collection of states can be compressed into a country), in blending compression is
mostly applied to vital relations. Therefore, the governing principles of compression
present some guidelines on how vital relations can be compressed into others, guiding
compression towards human scale.

The simplest case of compressing vital relations is when only one relation is
compressed into itself. Fauconnier (2008) describes that it can be achieved by scaling
and by syncopation. When a vital relation has a scale of some sort, like time that may be
represented by a time interval, the scale – and everything it represents – can be
compressed into a single point. For instance, a time scale representing how long a
student took to complete his graduation course can be compressed into a single moment,
his graduation ceremony. A chain of causes and effects can also be compressed to few
or only one cause and one effect.

In addition, the range of effects, its kinds, its causalities and the respective kinds
may be similarly compressed (e.g. a diffuse or fuzzy causation can be compressed into a
precise one). Likewise, multiple roles can be compressed into a single composite role
(e.g. mother, father and son become family). Also, patterns with little or fuzzy
intentionality and long arrays of intentions can be compressed similarly to the cause-
effect compression. Similarly, the vital relation of change also falls into this kind of
compression, several changes into an object or concept are intuitively compressed into
the final object.

Another way to compress a single relation into itself is through syncopation.
Syncopation refers to the process of dropping scalar events, like a moment in a time
scale, but keeping a few key events. Like most of the concepts from the blending
theory, details of what characterizes a “key event” are left for the reader to consider. An
example of syncopation is keeping only being born, first kiss, getting married, having
children, having great-children, passing away from a time scale representing an
individual’s lifetime.

Increasing complexity, there are patterns for compressing one or more vital relations
into another. Fauconnier and Turner (2002) proposes hierarchies of compression in
order to compress multiple relations into a single one. For instance, consider the vital
relation of representation connecting a representation to the thing itself. Inside a blend,
representation can be compressed to uniqueness. A concrete example is our direct
understanding that a photo represents a person. Contextualizing this example inside
blending, between the photo and the person, we have the relations of representation and
part-whole yielding a uniqueness relation in the blend. As presented by Fauconnier and
Turner (2002), this is what happens – in blending terms – when a police officer points at
and ID photo and asks: “Do you know this man?”

30

The relation among representation, part-whole and uniqueness is an example of the
possible interplay among vital relations. Fauconnier and Turner (2002) establishes two
hierarchies describing connections among vital relations. Far from being an exhaustive
and final list of vital relations hierarchies, they represent what the authors have already
researched. Figure 7 illustrates a hierarchical view of the relations among
analogy/disanalogy and other relations, while Figure 8 illustrates the hierarchy for the
cause-effect vital relation.

Figure 7 Compression Hierarchy for Analogy/Disanalogy (FAUCONNIER; TURNER,

2002)

Figure 8 Compression Hierarchy for Cause/Effect (FAUCONNIER; TURNER, 2002)

Another compression principle is achieving inner-space scalability. To understand
scalability it is necessary to have in mind the general goal of achieving human scale. In
this context, inner-space scalability pushes the network construction towards having all
the necessary connections of vital relations available in a timely fashion. Going to the
network perspective, this means that even originally outer-space relations, such as
representation, analogy, disanalogy and identity must be scalable to a single blend,
providing readily available meaning and understanding to different situations –

31

achieving human-scale. Fauconnier and Turner (2002) exemplify this kind of situation
illustrating that the outer-space relation of representation between a person and his
label, for example, his name, is available in a single blend, where the name becomes a
part and a property of the person.

Next, there is the principle of creating a new relation through compression. This
principle relates to the idea that inherent to a new blend there is a possibility to create
new connections – thus new meaning – that were not part of the inputs. What this
principle states is that creating new relations inside blends constitute an important part
of the blending theory, specially regarding emergent meaning.

Highlights compression is another one of the compression principles and regards the
property of highlighting in terms of vital relations a whole network of concepts. Once
more the importance of compression in connecting different networks and providing all
the necessary information at once is prioritized. Finally, borrowed compression is a
principle that applies an opposing force to creating new compressions. This principle
guides the network construction towards borrowing compressions from networks that
already have a tightly integrated scenario projecting a coherent compression to a blend.

The remaining governing principles provide optimization pressures beyond
compression. The topology principle states the following: “set up the blend and the
inputs so that useful topology in the inputs and their outer-space relations is reflected by
inner-space relations in the blend”. Considering the topology principle, Fauconnier and
Turner (2002) describe five possibilities to align current topologies from the inputs to
the blend while optimizing compression.

First, simply not providing a counterpart of the relation on the blend. Although some
information might be lost, the remaining relations might be emphasized and bring a
better understanding of its importance. Second, it is possible to project the relation
while scaling it in the blend. Third, syncopation may be applied during the projection.
Fourth, the relation may be compressed into another relation. Fifth, a mutual inner-
relation from the input spaces may be projected to the blend taking the relation from one
space, but the compression from the other.

In opposition to topology, is the web principle – although in few situations the
former aligns with the latter. While topology pushes blend construction towards keeping
the overall topologies from the inputs, web pushes the maintenance of connections
among spaces, sometimes limiting topological connections. Correspondingly, the web
principle is defined as: “manipulating the blend as a unit must maintain the web of
appropriate connections to the input spaces easily and without additional surveillance or
computation”. In result of this principle, during blend development we should not
disconnect valuable web connections to and from the inputs.

Another governing principle is pattern completion, which states that existing
integrated patterns should be used as inputs to complete elements in the blend.
Additionally, use an already developed frame whose relations reflect compressed
versions of the outer-space relations between the inputs. Related to pattern completion
is the integration principle that simply states: “achieve an integrated blend”. Integration
in the blended space allows it to be manipulated as a single unit, allowing the blend to
be directly utilized without constantly referencing other spaces. Consequently,
integration is seen as sub-goal of creating human-scale blends.

32

Allied to this view are the principles for promoting vital relations through their
intensification and maximization. Maximizing vital relations directs projections and
creation of new relations towards an integration network with many supplementary vital
relations in the blend and in the outer-space connections. Hence, the principle of
maximizing vital relations is to maximize them in the whole network and specifically
inside and outside the blended spaces (inner and outer space vital-relations). Although
maximization can be seen as intensification (and vice-versa), the last reflects the idea to
intensify the vital relations already available instead of any one possible.

Since blending has the compression principle, it is expected to have another for
decompression. Such principle is called unpacking and regards the possibility that the
blend all by itself should prompt for the reconstruction of the entire network. Following
this principle, the blend works like a mnemonic or triggering device, presenting
compressions that allow us to unpack them into full networks.

Finally, the relevance principle asserts that an element in the blend should have
relevance – in a broad sense – including relevance for linking to other spaces and for
running the blend. Relevance also pressures networks to have relations in the blend that
are compressions of important outer-space relations between the inputs. Fauconnier and
Turner (2002) relate relevance to unpacking: “network relevance can be satisfied for an
element in the blend if it can be successfully taken as a prompt for unpacking”.

In the earlier works on blending theory, the governing principles were called
optimization principles (FAUCONNIER; TURNER, 1998). But, since they serve more
as guidelines than optimization per se, the name governing principles fits better. In
addition, these principles should be seen as competing pressures guiding the blends
towards human-scale.
2.3.2 Network Typology

By means of constitutive and governing principles the general operation of blending
gets described. But still, even considering that all the optimization pressures are applied,
and that contextualizing (valuing appropriateness and important relations) is easily
available, blending is capable of generating many possibilities of networks. It is argued
that this capacity to generate novel conceptualizations – despite its complexity – is
where lies the greatest contribution of the blending theory. In the middle of a world of
possibilities, Fauconnier and Turner (2002) identified four types of network that have
specific interpretations for human cognitive functions.

The first identified type is the simplex network, which is based on frames and roles.
One of the input spaces is a frame and the other has possible values to be mapped
through roles. In this case, blending is straightforward integrating the frame and the
values in the simplest way. Simplex networks do not have competing frames or
incompatible counterpart elements, neither organizing frames for the inputs.

Still considering the importance of frames, Fauconnier and Turner (2002) define
mirror networks, where all spaces (inputs, generic and blend) share the same organizing
frame. An organizing frame specifies the nature of the activity, events, participants,
scales, relevance and any other important aspect for the understanding of the scenario.
In addition, the organizing frame provides a topology for the space, organizing relations
among elements of the space. Since the inputs and generic space share the same
organizing frame, cross-space mapping becomes straightforward and clashes may occur
only on more specific levels. Considering compressions, mirror networks perform them

33

over time, space, identity, role, cause-effect, change, intentionality and representation,
both for inner and outer space connections.

Now, dealing with different organizing frames are the single-scope networks. In this
kind of network, only one of the organizing frames is projected to the resulting blend.
The input that supplies the organizing frame is called source and the other, which
focuses on the understanding, is called the target. Having these source and target
blending can be used to generate and explain “source-target” metaphors. Figure 9
illustrates a single-scope network with the “boxing CEOs” example (FAUCONNIER;
TURNER, 2002).

Figure 9 Single-scope network (FAUCONNIER; TURNER, 2002)

Moving to a more cognitive explanation, Fauconnier and Turner (2002) argue that
single-scope networks give the feeling that “one thing” is providing insight into
“another thing”, independently of the distance between the things (spaces). Inferences,
compressions and emotions from the source, which already is well known to us, will be
applied to the target, thus applying the same general feeling of knowing to the target.

Besides different organizing frames for the inputs, blends generated by double-scope
networks have an organizing frame with parts from each of the sources and with an
emergent structure of its own. Both organizing frames contribute to the result and the
differences between the inputs provide clashes and contradictions offering challenges to
the imagination, resulting in potentially creative blends (FAUCONNIER; TURNER,
2002).

An example provided by Fauconnier and Turner (2002) is the computer desktop
interface – actually, Imaz and Benyon (2007) provide a rich study on human-computer
interfaces and concept blending. In the desktop example, the inputs have different
organizing frames: the first is the frame of office work, with files, folders and trashcans;
the second, computer commands to create, delete and organize files. The resulting blend

34

allows finding files, moving things to the trash, printing, and so on. Thus, the blend’s
frame has structure from both input’s frames with a meaning of its own.

Fauconnier and Turner (2002) uses double-scope blending to explain several parts
and results of human cognition, like culture, form and meaning, language and
grammatical constructions. An unpublished paper by Brandt (BRANDT, 2002), who
wrote a PhD thesis on literary analysis using concept blending (BRANDT, 2000)
describes a more specified typology of integration networks considering their purpose
and cognitive aspects. Figure 10 illustrates Brant’s typology.

35

Figure 10 Blending Typology (BRANDT, 2002)

Brandt’s typology begins by distinguishing conceptual integration from other kinds
of integration, like nature’s evolutionary structures and low-level sensorial-only
integration. Since the focus of her work is on cognitive semiotics, she goes further on
conceptual integration leaving other kinds of integration for future work. Conceptual
integration is divided on three groups according to how spaces are considered during
integration. Brandt proposes clear distinctions among integrations that may occur inside

36

one space (intraspace), integrations between two spaces (interspace) and integrations
among domains of spaces (fusion).

Intraspace integration has five specific types: semiotic, schematic, figurative,
scenarial, and syntactic. Intraspace semiotic integration regards the integration of signs,
like an angry facial expression, gestures and greetings. Schematic integrations regard
only structural integrations of the space, such as table leg, head of state and more is up,
which integrates a quantity schema with a directional one. On the other side, figurative
integrations consider aspects like shape and motion leading to purely figurative
interpretations (e.g. an hour glass waist and head of lettuce). Scenarial integration
considers compositions of space elements to work as single scenario, like the
availability of language and utterances in a communication scenario. Ultimately,
syntactic integration connects grammatical structures to their meaning in a single space.

Fusion integrations can have more than two spaces as inputs, but here, the spaces are
considered to be fusions of categories or entire realms of knowledge. Brandt considers
these spaces as domains and not as mental spaces. She characterizes fusion blending as
task-oriented and functional, being more applied in problem-solving activities. Dividing
fusion blends by their quantitative aspects, Brandt defines domain and concept blends.

Domain blends bring together two or more domains of knowledge blending structure
from each input. This kind of blending goes beyond the local task of the individual,
considering a broader temporal scope, such as the history of ideas from a whole field.
Examples of domain blends are the fields of AI, neuroscience, psychology and literary
studies. Reducing the scope of fusion blends, Brandt defines the concept blends
category, essentially applying the same process of domain blending to a smaller scale.
Recalling Fauconnier’s and Turner’s terminology, fusion blends would be represented
by single and double scope networks.

Ultimately, conceptual integration is sub-divided in order to categorize interspace
blends, which are also called semiotic blends. These blends have only two inputs that
are not fused (a single-scope network). Thus, semiotic blends organize the inputs as
vertical layers; the top one gives meaning to the bottom one, as conceptual metaphor. In
this case, the source input works as a predicate of the target (e.g. love is a journey).
Mental space blends generalizes the idea considering double-layer integration of any
kind – not only source/target. That category is divided into expressive and functional
blends.

Expressive blends are related to communication and expressive acts. The first sub-
category is virtual co-existence where time is compressed to a single moment, allowing
a simultaneous experience of two spaces in the resulting blend (e.g. imagine yourself
discussing with Alan Turing the future of computer sciences). Instead of simultaneity,
the next sub-category, called virtual being, considers the blend as a superposition
between the inputs – in this context regarded as reference and the presentation. During
elaboration, the blend oscillates the inputs, giving more attention to the reference at
some times and to presentation on the others. For instance, counterfactual, pretense and
generalizations – using Garfield to represent the whole category of cats).

Remaining on superposition, virtual contrast blends puts one space in the foreground
(presentation) and the other in the background (reference). The difference to virtual
being blends is that here the distance between the layers is bigger and, hence, the blend
does not oscillate much during elaboration (e.g. negation and irony). Finally, expressive
analogy considers analogies produced to explain relations to the individual or someone

37

else. Such communicative analogies occur, for example, when comparing one situation
to another in order to facilitate the listener comprehension.

The second sub-category of mental space blends are functional blends. In opposition
to expressive blends, functional blends describe functionalities achieved through
blending. On the typology, Brandt (2002) divides functional blends by the way that the
functionality is developed. For example, she proposes the functional analogical blends
category, where blends are characterized by an iconic connection between the inputs,
providing a functionality (e.g. solving something) using analogies. Brandt exemplifies
analogical blends referring to a group of people trying to make a coffee machine to
work. One person might suggest turning it off and then on again, like on a computer.
Another suggests jiggling the handle, like on a water closet. In this example problem
and solution are on the same domain, the machinery one, which is another characteristic
of analogical blends.

Another way to provide functionality is applying causal links to the inputs. Causal
informative blends adopt some kind of measure system to compute a specific state of
affairs, which will be represented by the blend. An alternative causal blend is the
performative kind, where cause-effect relations serve the purpose to influence a state of
affairs, like in cultural rites.

Finally, symbolic connections between inputs from different domains are the last
way to develop a functional blend (BRANDT, 2002). Such symbolic connections lead
to metaphoric behavior (as if scenarios) and to non-expressive pretense. In metaphoric
behavior, the individual (also called cognizer) interacts with something as if it were
something else from a different domain (e.g. someone talking to his computer, or
threatening it because the printer does not work). The non-expressive variation of that
behavior happens when the individual is not aware of his own pretense, it is like he is
living in the blend – this point is also discussed by Fauconnier and Turner (2002).

2.4 Divago
Under computational creativity, Divago (from the portuguese expression “eu

divago”) is the work that most relates to ours. Following the early works of Fauconnier
and Turner (1998, 2000), Pereira (2007) developed one of the most complete
computational creativity model based on concept blending, the Divago system. Thus,
the relation to our model is straightforward, providing a comparison basis and also
insights to the design of our model (goal G1 and stages S.A.2)

Pereira (2007) proposes a creative general problem solver – an analogy to the
classical problem solver by Ernst and Newell – resulting from the establishment of a set
of principles for creative systems. Furthermore, the Divago system, which implements
most of the creative problem solver, is presented and analyzed using Ritchie’s
framework (RITCHIE, 2007).

According to a top-down approach, we first present Pereira’s principles and then a
summary of Divago. After a discussion of creativity and creative systems, Pereira
describes a set of guiding principles that represent what he considers as fundamental for
computational creativity. First, he describes the knowledge principle, which is the basis
for the creative act. Accordingly, Pereira argues that both quality and quantity of
knowledge must be available and treated with equal importance. In respect to quantity,
heterogeneity of knowledge must also be present, representing not only the problem
domain, but also different perspectives and different domains. Related to knowledge is

38

re-representation, stating that a body of knowledge should be understood according to
different viewpoints.

Associated to knowledge reasoning, the bisociation principle represents the ability to
find unprecedented associations, usually through cross-domain exploration of structures
and concepts apparently distant and unrelated. Still on reasoning, being able to reason
about reasoning is also considered as a principle for creative systems – meta-reasoning.
Pereira also brings the notion of evaluation, as presented by Csikszentmihalyi (1988)
and Boden (1998), in terms of self and society as a principle. Another one is interaction
with the environment, which contextualizes creativity inside historical, cultural and
societal aspects.

Returning to internal aspects of creativity, the purpose principle asserts that there is
always a purpose in any creation, even in the cases where it is very subtle. Such view
proposes a goal-oriented perspective for creative systems. In addition, the
divergence/convergence principle assumes the existence and importance of different
modes of thinking to creativity. Divergent thinking is related to free associations, allows
inconsistencies and relaxation of constraints, while convergent thinking is rational and
methodic. The last principle presented by Pereira (2007) is ordinary processes. This
principle reflects Pereira’s theoretical position in terms of how creativity occurs, in
cognitive terms. His stand is that, not necessarily, the process behind creativity is
cognitively different from the process of rational reasoning – they might share the same
grounding of any other cognitive phenomenon.

All those principles are put together in the creative general problem solver that is
illustrated in Figure 11. The boxes represent the principles and the arrows interactions
and dependencies among them.

Figure 11 The creative general problem solver (PEREIRA, 2007)

Pereira discusses the implementability of his creative problem solver concluding
that, to some extent, any of the components can be computationally implemented,
perhaps even reduced to a search problem. Although, meta-level reasoning is considered
to be one of the most challenging components, since it requires assessment and self-
organization. In terms of applicability, it is argued that the model can be relevant where
the generation of concepts is the goal, such as in design, architecture and arts. Another
point raised – that actually reflects our position – is that it can help domain-specific
implementations when no solution is found or to find novel ways to improve the system.

39

The creative general problem solver is implemented using logic programming in the
Divago system. An overview of the system is illustrated by Figure 12, where it is
notable the similarity with the generic model.

Figure 12 Divago’s architecture (PEREIRA, 2007)

As described by Pereira, the process of concept invention begins by feeding the
mapper with two concepts. In Divago, the choice of what concepts to use is either given
by the user or by a random process. Every concept is kept in the knowledge base and
each one is defined through different kinds of representations, namely concept maps,
rules, frames, integrity constraints and instances. Although based on the symbolic
paradigm (Prolog language), Pereira argues that the same mechanisms could be applied
to other paradigms, like neural networks. Pereira’s formalization considers concept
maps as semantic networks describing concepts or domains. More specifically, each
concept map is a graph representing concepts, and the arcs represent the relations
among concepts.

Divago itself does not distinguish concepts from domains, meaning that every
domain is by itself a concept and every concept can be seen as a domain. Hence, the
distinction between concept and domain depends on granularity and is subjective –
dependent on the user’s input.

Summarizing, concept maps are viewed as the factual part of a concept’s
representation. Considering reasoning, rules, frames and integrity constraints constitutes
the inferential part of the representation. In this context, rules are defined to explain a
concept’s inherent causality or specific heuristics. Rules are defined by their domain,
name, positive and negative conditions and conclusions to be added and removed, if the
conditions hold. Considering the whole process, rules can be applied to the inputs,
before the process or to the blend, after its construction.

Frames share the same syntax of rules, but they have a different semantics in the
system. Usually they describe meta-level concepts integrated to a specific situation,
structure or relation (such as cause-effect), tying a set of elements into a single one –
intuitively broader and more abstract. Syntactically, frames represent conditions that the
associated concept must satisfy. When it does, it is considered that the concept
integrates the frame. Semantically, they can be specified as goals and, thus, help
structuring the blend towards meaningful results. Inside Divago’s process, in a similar
way than the utilization of rules, frames are also applied during elaboration.

40

Accordingly to the frame’s functionality, it is classified as organizing, pattern
identifying or transforming. A frame is considered as organizing if it determines the
whole structure of a concept’s concept map. It is considered as pattern identifying if it
matches a pattern within a larger concept map. Finally, transforming frames specify
specific transformations that may occur during blending.

Our study of Divago indicates that the system itself does not note those distinctions
among kinds of frames, they are mostly used by the developer, in order to properly
control the process and to analyze the results. In the experiments described in
(PEREIRA, 2007), the author specified generic frames representing relations such as
analogy, day compression and role projection.

Another kind of representation part of Divago’s knowledge base is integrity
constraints. This serve to specify logical impossibilities, such as defining that something
cannot be dead and alive at the same time. Each constraint consists of the
domain/concept where it applies plus logical expressions to be satisfied and unsatisfied
(positive and negative sets).

Finally, Divago allows the definition of instances, which allows the user to assign
concrete values to parts of the concept’s specification (elements of the concept map).
Considering all those representations allowed in Divago, a concept is defined by its
theory and instances. A concept theory regards concept maps, frames, rules and
integrity constraints related to the concept. Intuitively, instances represent the set of
concept’s instances. Besides different concept theories and instances, the knowledge
base also maintains a generic domain, in which generic frames and special kinds of
map’s relations are specified.

Having the concepts, the mapper provides a structural alignment between them. The
general idea of this component is to implement the cross-space matching of concept
blending. Recalling that, inside Divago, each concept is associated to a concept map,
given two concepts, the mapper finds a set of mappings between their concept maps,
each pair having one element from each map. In this implementation, a spread
activation (QUILLIAN, 1968) algorithm (using the flood-fill technique) looks for the
largest isomorphic pair of sub-graphs inside the concept maps. Two graphs are
considered to be isomorphic if they have the same relational structure (arcs), without
considering the elements (nodes). Another aspect of Pereira’s algorithm is that it begins
with a random pair of elements, so, the perfect mapping (largest isomorphous sub-
graphs) is not guaranteed.

Given a pair of concepts and a mapping between them (either generated by the
mapper or by any other source), the blender module generates the set of all possible
blends (represented by a set of projections). Each projection is a non-deterministic
operation that maps an element x from a concept map CM, and the respective
counterpart y, when available by the mapping, to a new element in the blend, which is
either x, 0, x|y or y. The compound x|y can be read as both x and y at the same time
(PEREIRA, 2007). Thus, a blending projection defines for each element of CM, what its
correspondent will be in the blend. When element x has a counterpart (y), it can be
projected as a copy of itself (x), as a compound (x|y), as a counterpart (y) or not be
projected at all (0). Figure 13 illustrates these projections, with the horse element and its
counterpart bird, mapped by the relation M. In this case, the projections are horse,
horse|bird, bird or nothing.

41

Figure 13 Blending projection applied to two concept maps (PEREIRA, 2007)

Pereira (2007) specifies an algorithm that transfers the knowledge from the inputs to
a temporary space, called blendoid, which have all the possible projections associated
with the respective knowledge elements. According to the blending theory, this stage
would be the composition of the blend.

Continuing the data flow of Divago, the blender will provide a blendoid
(representing the search space of all possible blends) to the factory that will search this
space trying to find the best blend. A new concept, represented by the selected blend, is
the output of the factory module. Relating to the blending theory, the factory provides
an implementation of the selective projection, choosing which elements from the input
will be projected to the blend, and how. Going to a more detailed level, Divago’s
factory implements selective projection through a genetic algorithm that performs
search over strings representing the possible projections (the blendoid). Pereira (2007)
presents an overview of the complexity of the search, which is, for an input of two
concept maps and a mapping of size s, 42s x 2l-2s where l represents the elements from
the inputs.

Each sequence of projections is represented by the individuals and the fitness
function – phenotype – is based on blending’s governing principles (provided by the
constraints module) and on integrity verification by the elaboration module. The
algorithm uses roulette-wheel selection, prioritizing individuals with high fitness. In
consequence of the genetic algorithm, the best solution is not guaranteed.

When the factory receives the blendoids, they have already been pre-processed by
the constraints module, which evaluates each possibility according to the governing
principles. Each principle supplies an evaluation value that will be part of a weighted

42

sum, resulting in the fitness value of each individual (set of projections). The user gives
the weight of each principle. Pereira makes clear that his concretization of the
governing principles regard solely his model, it is not generic and was not based on
measurements from cognitive experiments. Under Divago, each governing principle is
formalized as a function applying some sort of comparison. In the case of integration,
pattern completion, unpacking and relevance the formalization uses frame comparisons.
Topology considers the amount of relations from the input maps that were projected
without modifications. Maximization of vital relations uses the amount of vital relations
present in the blend (compression is not considered and the modeling of VR is like any
other relation, with the difference that a set of labels is defined for them). Web depends
on values for topology and unpacking.

Another input to the factory component is made by the elaboration module,
responsible for providing blending elaboration and completion. In theory, elaboration
and completion occurs after the blend is ready, but Divago considers those stages during
blend selection. Thus, elaboration and completion have equal importance relating to the
other considerations of the selection. The elaboration module runs the respective rules
and frame conclusions and also attempts to complete frames using pattern completion.
First, rule-based elaboration takes place, executing the rules from the generic domain
and then specific rules applicable to the blend’s domain. If a rule’s conditions hold, the
engine executes the respective consequences, already present in the rule’s definition.
Frame-based elaboration verifies which frames are integrated by the blend and then
executes their consequences, just like the rules.

Considering the divergent and convergent strategies described by Pereira (2007),
Divago actually implements these strategies at the same time, through the factory and
elaboration modules.

2.5 GRIOT and Algebraic Semiotics
Zhu and Harrel (2008) describe GRIOT, an interactive narrative system that uses

concept blending and an intentionality scale to control the system. An algorithm called
Alloy, which implements the algebraic semiotics formalization (GOGUEN, 1999;
GOGUEN; HARREL, 2004), provides the creative and imaginative part of the system.
The algebraic semiotics approach was one of the first formalizations of the blending
theory and represents another important related work (research stage S.A2). Although a
partial formalization, the approach of using semiotics is unique and has its
computational counterpart, providing us with another system to compare with.

Applied to narrative generation, imagination (provided by Alloy) is used to integrate
memory from dreams with the current situation. Thus, providing what the authors call
daydreaming narratives. Intentionality plays a secondary role on the described system. It
is characterized by a numeric scale defining how interactive the system will be. Such
intentionality scale also defines the proportion of daydreams relative to the main
narrative, the proportion of automatically selected actions against user-selected actions
and the proportion subjective output (generated through blending) relative to previously
defined structures of descriptive exposition.

Goguen’s algebraic semiotics approach formalizes blending by adopting algebraic
semantics to describe the structure of complex signs and the blends from these
structures. The basic notion of algebraic semantics is a theory, consisting of type and
operations and the respective subtype declarations and axioms (ZHU; HARREL, 2008).

43

Related to the basic notion of theory, is the conceptualization of a semiotic system (also
known as semiotic theory or sign system), which adds level ordering to the types and
priority ordering on the elements of each level (establishing a hierarchy among the
signs). The priority is defined by a sign’s constructor, which represents the rules for
combining signs resulting in a new sign of a different kind. In Goguen’s (1999)
formalization, constructors are further specified by a set of parameters (e.g. a “cat” sign
on a computer screen can have parameters for defining its size and location on the
screen, but do not change the cat’s identity). Given these basic structure of algebraic
semantics, it is possible to define semiotic theories such as a book theory: book can be
the top sort (type), chapter the secondary sort, head and content tertiary sorts, and title
and page number fourth level sorts. In this example, one book’s constructor may build
chapters from their heading and content, while another builds page heads from a title
and page number. Among the constituents of head, title has priority over page number,
and among those for chapter, head has priority over content (GOGUEN, 1999; ZHU;
HARREL, 2008).

In addition, Goguen (1999) uses sign systems to represent blending’s conceptual
maps. Next, Goguen specifies semiotic morphisms, which provide a way to describe the
dynamics (mappings, translations, interpretations and representations) of signs in one
system to signs into another system. Ideally, a semiotic morphism preserves as much of
the structure of the source system as possible. But, since the ideal is not always
practical, Goguen defines the notion of partial morphisms.

Hence, morphisms are defined as functions or predicates that provide mappings
from sorts to sorts, sub-sorts to sub-sorts, data sorts to data sorts, constructors to
constructors, and so on. These morphisms are specified by rules, defining also their
properties (identity, association, isomorphism and inversion) and how to compose them.
Given the level of preserving the source’s definition, another formalization is of the
notion of morphism’s quality. Considering all the constructs of a semiotic theory,
concept blending is formalized as semiotic morphisms between inputs, among inputs
and generic space and, among generic space, input and blend.

Zhu’s implementation of concept blending based on algebraic semiotics produces
blends based solely on the structure of the spaces, without considering the meaning of
the signs. The algorithm was implemented in LISP, using depth first strategy over two
binary trees representing the possible relations among inputs and generic space. Since
the algorithm considers only structure, data sorts and constants are not identified
(GOGUEN; HARREL, 2004). Zhu and Harrel (2008) state that only governing
principles related to structure were implemented on the algorithm. In conclusion, Zhu
and Harrel argue that the main contribution of his model of blending is as an
“experimental formal tool for precisely representing and testing structural aspects of
concept blending”, rather than a cognitive model.

2.6 Agent Adaption
In this section we present approaches based on planning to provide agent adaptation.

Such works are directly related to goals G2 and G2.1, and also to research stages S.A4
and S.C1. The approaches described here follow a traditional planning perspective to
adaptation. Thus, they provide an important source for comparison, since our work
suplies adaptations through concept blending, instead of planning.

44

Considering adaptation to unforeseen situations through further applicability of
agent’s knowledge, Meneguzzi and Luck, (2008, 2009) describes an approach based on
the manipulation of plans. In (MENEGUZZI; LUCK, 2008), an extension to
AgentSpeak is defined in order to allow dynamic plan generation and declarative goal
representation. Declarative goals are constituted by a conjunction of beliefs desired to
be true simultaneously. They also establish triggers to activate the planning mechanism.
Essentially, the planning module translates relevant plans to the Stanford Research
Institute Problem Solver (STRIPS) (FIKES; NILSSON, 1990) language, allowing the
construction of new plans according to the translated operators. If the STRIPS planning
find a way to achieve the goal, the resulting plan is added to agent’s library.
Furthermore, Meneguzzi and Luck (2008) also specify an algorithm to generate the
plan’s context so that it can be executed with less chance of failing – only the necessary
conditions will be part of the context.

Going in a similar direction, but with different goal, Meneguzzi and Luck (2009)
specify template plans to deal with norms and also primitives for meta-reasoning over
plans. With these two constructs, the idea is to be able to modify the agent’s behavior
according to the norms it has chosen to follow. The primitives were implemented as
internal actions, under Jason’s framework (BORDINI; WOOLDRIDGE; HÜBNER,
2007). Therefore, those primitives are used inside the plans definition, allowing the
specification of plans that interfere with the practical reasoning. For instance, a plan to
prohibit certain actions to be performed.

Subagdja, Sonenberg and Rahwan (2009) describe an architecture for an intentional
learning agent. This approach positions learning as any other task to be performed by
the agent, allowing learning to be controlled by the deliberation process. Hence,
computational resources can be controlled in the usual fashion. According to Subagdja,
Sonenberg and Rahwan (2009), intentional learning refers to the cognitive processes
that explicitly have learning as a goal instead of learning as an incidental outcome. A
requirement of this kind of learning is the awareness of one’s own knowledge. In
addition, it requires strategies or know-how about how to accomplish a learning goal.
Subagdja argues that agent learning is triggered when the agent’s reasoner needs to
improve its performance in some task. Thus, in this case, the learning framework was
not developed to deal with novel situations or problems.

Subagdja implements intentional learning for BDI agents using meta-level plans
allowing an introspective operation over the agent’s internal state (beliefs, desires and
intentions). Such approach is not new and was present on the original PRS
implementation (GEORGEFF; LANSKY, 1987; RAO; GEORGEFF, 1991). A meta-
level plan contains actions to monitor intentions, control deliberations and manage
commitment (modifying current intentions) (SUBAGDJA; SONENBERG; RAHWAN,
2009). Consequently, the representation of learning through meta-level plans begins by
defining the conditions that will trigger the learning process. For instance, such
conditions can be based on changes in performance, amount of failures and time
constraints. These conditions also represent the general learning goal of the plan. In
addition to the learning goal, the developer also defines the learning context and
applicability, specifying preconditions and/or utility. Finally, the meta-level plan’s body
specifies the learning activities, such as belief updates, plan modification and intention
monitoring.

Considering reasoning, Subagdja’s approach implements manipulative abduction.
Classical abduction infers plausible causes to explain certain effects – in opposition to

45

deduction where effects are inferred from a set of clauses. In manipulative abduction,
the lack of knowledge is compensated by the execution of actions. It is as if the agent is
thinking through doing and not only about doing. Subagdja illustrates the difference
between abduction and manipulative abduction with Figure 14. The top most part of the
figure illustrates classical abduction, where the agent first constructs a series of actions
and then, if reasonable, he executes them. Next, on the bottom of Figure 14, the agent
uses the actions themselves to construct the plan. It does not have the complete plan at
the beginning, the plan is built while the actions are executed.

Figure 14 Classical abduction (i) compared to manipulative abduction (ii)

(SUBAGDJA; SONENBERG; RAHWAN, 2009)

Moving to a lower-level of abstraction, Subagdja, Sonenberg and Rahwan (2009)
specifY two sets of primitives to be used to describe a learning plan. Those sets are
defined in general terms, no concretization in an agent language is provided. Although,
the authors argue that most PRS-based implementations have the necessary constructs
to implement the primitives. The first set of primitives relates to monitoring and
managing intentions and overall execution (e.g. achieve, wait, perform, monitor,
history, current plan, applicable plans, current goals). Second, a set of primitives to
manipulate plans is defined (e.g. create plan, update plan, remove plan, append plan
acts, set plan conditions and include utility).

Given this framework, Subagdja, Sonenberg and Rahwan (2009) describe
experiments developed using the JAM agent architecture (HUBER, 1999). The
experiments illustrate how the learning framework can be used to implement domain-
specific learning strategies. It is clear that the developer is left with the task to define the
learning plans based on the primitives and the general intuition of manipulative
abduction. As future work, Subagdja, Sonenberg and Rahwan point in the direction of
the specification of learning design patterns.

Brenner and Nebel (2009), propose the continual planning approach, which
implements manipulative abduction in a different way. Differently from (SUBAGDJA;
SONENBERG; RAHWAN, 2009), Brenner’s focus is on planning itself, rather than
learning. This approach to continual planning specifies a balance between planning and
action in the form of a planning algorithm that manipulates constructs defined in MAPL

46

(BRENNER, 2003). Thus, agents are capable of deliberately postpone parts of their
planning process in order to prioritize information gathering, relevant for the later
refinement of the plan.

The research presented by Leite and Soares (2006) specify an agent architecture that
allows the modeling of the agent evolution. In this context, evolution regards the
changes on the agent’s knowledge representation and reasoning in response to
environments where change occurs in several levels (e.g. not only the facts, but also the
rules that govern an environment may change). Although not explicitly characterized as
a work on agent adaptation, we observe that the framework can be applied to this end.

2.7 Summary
Concluding our related work presentation, the works that are directly related to ours

are the ones that propose computational models of blending. Under computational
creativity, such models can be positioned under general creative models. Inside Figure
15, the contextualization on computational creativity is depicted by the ellipsis on the
left side of the Figure. On the left side of Figure 15 we also summarize the main streams
and works on computational creativity. Another stream of related works consider
agency and, more specifically, approaches to agent adaptation. Our presentation of that
field focused on rational – or traditional – strategies to allow the agent alternatives of
action to unpredicted situations. Under adaptation, our work proposes a creative
approach, differing from the state-of-the-art on the possible applications of the model
and, mainly, on the kind of reasoning applied to generate the alternative options. On
Figure 15, the ellipsis on its rightmost side depicts our context under agency.

Figure 15 Relationship between our work and the state-of-the-art

Going further on the relations between this work and computational models of
concept blending, we compare the models considering which elements of the blending
theory are specified, which applications are described and which knowledge
representations paradigms were adopted. Table 2 presents a summarized comparison of
the blending models according to those criteria.

 Table 2 Summary of computational models for concept blending

Model Elements of Blending Applications KR&R

Divago Constitutive principles
governing principles (partial)

Concept
generation

Logic programming
(PROLOG) and

47

Vital relations (partial) conceptual maps

Griot Constitutive principles (partial)
Governing principles (partial)

Narrative
generation

Sign system,
LISP

48

3 CONCEPT BLENDING MODEL

In this section we present a computational specification of the blending process
using operational semantics. This model focuses on the constitutive principles and on
the general operation of blending. Therefore, vital relations and governing principles are
not present in our model. We impose these limitations to the model since those elements
require a broader view of cognition that cannot be achieved considering only autonomy.
For instance, the governing principles of pattern completion and relevance are directly
related to the evaluation of the decisions on the environment and on the performer as
well.

Thus, without considering learning, we could model those principles only
superficially. However, considering blending as a part of a broader cognitive structure
and modeling the remaining elements from blending, constitute the main future work of
this research. With regard to our scope limitations, first we specify a computational
model of blending (Section 3.1). Then, we describe how adaptation can be specified
with regard to the blending model (Section 3.2). In a similar fashion, a recommendation
system based on blending is defined on Section 3.3.

3.1 Specification in operational semantics
Concept blending is defined as a set of constitutive and governing principles applied

to two conceptual spaces (input spaces) resulting in a new conceptual space, called
blend. Theoretically, blending produces new knowledge, gives new meaning and
constitutes the fabric of our imaginations.

Our computational model of blending begins with the definition of a mind M, which
represents an agent’s available knowledge. Under blending, knowledge is represented
by concepts and their relations (set of concepts C). Besides that, there might also be
available organizational knowledge that can be applied to group concepts into
conceptual spaces with specific meaning, called organizational frames. In order to avoid
misinterpretations regarding Minsky’s frame representation (MINSKY, 1974), we will
call those blend-related frames as organizational schemes, denoted by O. Thus, a mind
is defined by:

And an organizing scheme is defined by its terminology that specifies the concept’s

hierarchy (TE), the respective classes (CA) and properties (PA) assertions:

In concept blending, a concept can be anything – incorporating all kinds of
perceptions and elaborations from our imagination. Our approach to model this very

!

M = C,O

!

O = TE, CA, PA

49

broad conceptualization is to consider a concept as any computational resource
annotated (described) with terminological information. Therefore, a concept is
symbolically defined as an individual from a description logics (DL) representation
(BAADER; HORROCKS; SATTLER, 2007). Specifically, we adopted the OWL1
language (MOTIK, B. et al.. 2008) to provide the descriptive syntax for the concepts.

Essentially, an individual is defined by assertions representing either object or data
properties. Object properties allow the association of individuals, while data properties
associate direct values (e.g. string, integer, bytecode) to an individual. Consequently, a
concept c is constituted by sets of data and object properties (DP and ObP,
respectively). Besides, an individual may also have class assertions specifying its
membership to a set of classes (CA).

Given this configuration, a conceptual space CS, can be defined as any sub-set of M,

. Granularity, in this case, depends on the current situation and, consequently
on the purpose of the blend. The blending theory does not elaborate on how conceptual
spaces are produced.

According to the blending theory, the resulting blend B, may contain concepts that
were not part of the input spaces nor of the whole set of concepts, M. Thus, although B
is a conceptual space, it does not adhere to the rule that a conceptual space is a sub-set
of M. In fact, concepts from B might be added to M. Consequently, we loosely define a
blend as a set of concepts (C) and an organizing scheme (o).

The blending process is defined by a set of operations that can be performed on two
input spaces – conceptual spaces named I1 and I2 () resulting in a blend B.
Actually, it can be viewed as an operator, that, when applied to two conceptual spaces,
will generate a new one according to the blending theory.

The operations performed (denoted by the set OP) are the constitutive principles of
the theory: modification, completion and composition – which may be applied during
the selective projection – and elaboration, which is executed after the blend is ready.
Selective projection itself is considered as an operation under our model. Not officially
part of the constitutive principles is the establishment of counterpart relations between
the input spaces. Counterpart relations are established given the set of defined
comparison functions, CF. Finally, BC refers to configuration parameters (blend
typology – , element selection function – α, a stopping condition – , and an
operation selection function Sop). Hence, the blending process is initially specified as
follows:

From the theory, it is unclear when and how to apply each constitutive principle
given a particular configuration in terms of input concepts and their relations to the

1 Web Ontology Language: www.w3.org/TR/owl-features/

!

c = DP, ObP, CA

!

CS " M

!

B = C,o

!

I1,I2 " M

!

"

!

"

!

BP = I1, I2, OP, CF, BC

!

BC = ",#,$,Sop

!

" #{simplex, mirror, single $ scope, double $ scope}

50

other input. Hence, we focus more on the definition of the operations rather than their
order of execution. Nonetheless, some ordering must be provided, thus, we define a
selection function , which given the inputs, their counterpart relations and a set of
possible operations, chooses a specific action to be performed. Pereira (2007), uses a
different approach, generating all the possible blends and then searching this space for a
blend that better satisfies a given criteria. In a certain way, our selection function plays
the role of Pereira’s criteria. But, at this point, we have no evidence to support a full
account of when each operation must be performed given a certain situation. The set OP
of available operations is specified by the set of modification functions , a completion
function co and a composition function cm. Elaboration is left out since it is executed
after the blend is ready.

The modification operation is applied to a single concept performing changes on it.

Ideally, for each type of concept representation, we would have available a modifier
function that changes the concept in some way while keeping its membership to its
original type. The set represents all the available modification functions, . Thus,
given the selection to execute a modification function to a concept c, and the availability
of the respective type specific function, rule Mod1 is applied. If there is no type specific
modification function available, rule Mod2 is applied. This rule attempts to apply a
function directly with on raw representation, given that there is one available.

Modification rule Mod1:

Modification rule Mod2:

Another possible operation is completion (co) where the intuition is to bring
information from sources related to the space to complete a given concept. Whether a
concept is incomplete or not is always in respect to other representations of the same
type. Thus, we ground our completion operation on the possible organizing schemes of
the considered space (rule Comp1). In the case that the organizing scheme does not
contain such type, we look into the concept’s declaration verifying if there is a type
assertion and, that this assertion holds for rest of the concept’s declaration.

Completion Rule Comp1

!

Sop

!

"

!

OP = ",co,cm

!

µ

!

"

!

µ

!

Sop (OP) = µ " type c()() # {}
c $c'

where
c'= µ c()

!

Sop (OP) = µ " type c()() = {}
c #c'

where

c'= µ rawType c()()

51

Completion Rule Comp2

Composition (cm) is a constitutive principle that aims at joining two concepts into a
single one. Although Fauconnier and Turner, 2003 shows only examples of composition
between two, they never state that it cannot be executed with several concepts. Here, we
consider only composition between two concepts. A composition may hold certain
properties from one concept while bringing the remaining from the other. According to
the blending theory, composition may occur with any two concepts from the input
spaces, related or not.

Essentially, we define the composition in terms of the concepts’ asserted properties.
We also consider the relation between the concepts – if assertive – into the composition.
This principle makes use of the element selection (α) function that here takes the form
of a random function. Our idea is that given more knowledge about the current domain,
the α function might be customized to represent some of heuristic or tendency.

Composition rule

One thing that comes to mind when we consider applying this kind of operations
into a symbolic representation is: will the result be useful, or, will it make sense? In our
opinion, if the resulting concept from a composition actually is useful at a given
situation is not for the blending process to decide. We consider that such evaluations
should be made inside a broader cognitive context, possibly integrating learning,
embodiment and other cognitive properties into a single structure.

Returning to the blending process, the establishment of counterpart relations
between the inputs can be seen as the first step of the process. Thus, the initial step is
triggered by the rule defCPR to define the inputs’ counterpart relations Briefly, the
intuition is to make explicit the relations between the concepts from I1 and I2. As most
of the elements in the blending theory, any kind of relation can be considered.

!

Sop (OP) = co isMember c,O() " {}
c #c'

where
c'= c$ assertionsFrom(T)
T = membership(c,O)

!

Sop (OP) = co declaredType c() " {}
c #c'

where
c'= c$ assertionsFrom(D)
D = declaredType(c)

!

Sop (OP) = cm assertionsFrom c1,c2,relations c1,c2()() " {}
c1,c2 #c '

where

c'= newConcept $ A()()
A = assertionsFrom c1,c2,relations c1,c2()()

52

Fauconnier and Turner (2002) point out to the role of vital relations as potential concept
comparators. Given such broad scope of potential relations between concepts, we define
concept comparison as a function that returns a relation between the concepts.
We consider that a blending engine has several comparison functions available, each
one defined in terms of the types of concepts it is able to handle and also a
terminological description of the relation.

Given our descriptive logics usage, we consider that fc(c1, c2) applies when to
concepts c1 and c2 (represented as individuals in DL) are members of the class specified
in the function definition (denoted as t1 and t2, respectively). An individual’s
membership to a certain class can be directly asserted in the A-Box or it can be inferred
based on the individual’s properties and the representation’s T-Box. Class membership
is a descriptive logic inference and the reader is referred to Baader, 2007 for a full
account of this inference mechanism.

Definition of counterpart relations rule – defCPR

Following the establishment of the counterpart relations (denoted by CPR), he rule
to configure the generic space (defGen) is applied. Here, the generic space contains
common aspects between the inputs. Thus, it is constituted by the intersections between
the inputs’ concepts and organizing schemes.

Generic space definition rule – defGen

Now that the counterpart relations and the generic space are specified, the process
continues by applying the constitutive principles and selectively projecting the elements
to the blend. These operations are performed according the desired typology of the
blend, specified by the blending configuration (). In general, the typology determines
the conceptual space where the constitutive principles are applied. Therefore, before
presenting the blending rules we define the function for applying the constitutive
principles, represented by the set of operations OP. The function is applied to a
conceptual space . Another important parameter received by the function is the
current blending configuration BC. Considering the stopping condition , the
constitutive principles are applied to cs, introducing changes (defined by Sop) on the
space until is satisfied.

!

fc(c1,c2)

!

appComp " {} I1# I2 " {}
I1,I2,OP,CF,BC,defCPR $ I1,I2,OP,CPR,BC,defGen
where
appComp =%c1& I1,%c2 & I2 $CF(t1 = type(c1), t2 = type(c2))
CPR =%c1& I1,%c2 & I2,%fc& appComp$ fc(c1,c2)
type(c) = membership(c)

!

O1 " {}#O2 " {}
I1,I2,OP,CPR,BC,defGen $ I1,I2,OP,CPR,GEN,BC,Blend
where
I1 $ C1,O1
I2 $ C2,O2

GEN = O1%O2()& assertions(C1)% assertions(C2)()

!

"

!

cs"M

!

"

!

"

53

Application of constitutive principles – applyCP

Following the blending typology defined by Fauconnier, 2002 we specify four
possibilities for blending. A simplex blend considers a simple frame and role
integration. In this case, the first input space is regarded as the frame and, thus supplies
O1 as the blend’s organizing scheme while I2 supplies the values to fill O1’s roles
(property assertions denoted by p).

Simplex blend rule

Next, Fauconnier and Turner (2002) specify the mirror blend where all the spaces
(inputs, generic and blend) have the same organizing scheme. Thus, the blend will
maintain the organizing space but will selectively project the result of applying the
constitutive principles against all spaces.

Mirror blend rule

Considering different organizing frames for the inputs, single-scope blends choose
only one of the organizing schemes to be projected to blend (the source). The other
input (called target) is used to fill the source’s properties.

!

applyCP(cs,BC) =

while "
 # c1 $cs(),# c2 $cs% c2 & c1(),Sop (OP) if Sop (OP) = cm

 # c1 $cs(),Sop (OP) otherwise

'

(
)

*
)

!

" = simplex O1 # {}
I1,I2,OP,CPR,GEN,BC,Blend $B
where
I1 $ C1,O1
I2 $ C2,O2

BC$"

B = terminology(O1)% roles
roles =&p'O1 $((simplex% applyCP(simplex))
simplex = c 'C2) p

!

" = mirror O1 =O2 =Ogen()#O1 $ {}
I1,I2,OP,CPR,GEN,BC,Blend %B

where :
I1 % C1,O1
I2 % C2,O2

GEN % Cgen,Ogen

BC%"

B = terminology(O1)& assertions
assertions ='p(O1 %)(mirror& applyCP(mirror))

mirror = c (C1&C2 &Cgen()* p

54

Single-scope blend rule

Finally, double-scope blends use both organizing schemes to form a new one. Thus,

this kind of is, potentially, the one that might generate the most surprising blends.

Double-scope blending rule

Considering the blending semantics defined in section, its utilization requires the
specification of terminological and assertive knowledge from the domain. Besides,
specific comparison and modification functions might be defined for a proper operation
of the blend. We do not state that such functions are mandatory because we can always
reduce a representation to simple data types (e.g. char, real and bytecode). Clearly, this
comes with a price. When performing generic operations directly in original
representation, we ignore the concept’s structure and any other semantics and rules that
might be attached to it. Moreover we risk corrupting the concept’s representation.

Despite its importance to generate working blends, concept-specific functions and
operations also have their price. The issue with this design is that we add more tasks to
the developer, difficulting even more the development of AI systems. Fortunately, the
result of hard work pays well. Having specific functions and the respective terminology
and assertions regarding a representation actually allows our system to work with

!

" = single # scope O1 $ {}%O2 $ {}
I1,I2,OP,CPR,GEN,BC,Blend &B
where :
I1 & C1,O1
I2 & C2,O2

BC&"

B = terminology Osource()' assertions

source = (I1,I2()
target = I1' I2()) source

assertions =*p+ source&(Ctarget ' applyCP Ctarget()()

!

" = double # scope
I1,I2,OP,CPR,GEN,BC,Blend $B
where :
I1 $ C1,O1
I2 $ C2,O2

GEN $ Cgen,Ogen

BC$"

B = organization% concepts

organization = & O1%O2 %Ogen % appCP O1%O2 %Ogen()()
concepts = & C1%C2 %Cgen % appCP C1%C2 %Cgen()()

55

heterogeneous knowledge representation. Hence, we go a little further on the blending
model making it closer to the theory itself. According to our theoretical model, it is
possible to integrate symbols, images and other representation paradigms in a single
blend. Another feature of our model is the specification of blending typology allowing
the utilization of different kinds of blends. Actually, none of the studied computational
models of blending specify Fauconnier’s and Turner’s typology.

3.2 Blend-based Adaptation
Here we describe an integration of the blending model (Section 3.1) with an

AgentSpeak agent architecture, provided by the Jason framework. The purpose of this
study is to describe how blending can be applied as a mechanism for agent adaptation
(Goal 1.1). By integrating blending to a BDI agent architecture we also want to study
how inputs for the blending process can be composed (Goal 2.1).

Such integration was achieved by specializing Jason’s agent model (Appendix 1), in
a way that every intention failure or lack of applicable plans triggers the adaptation
mechanism. Using Jason 1.3.3 we also implemented an event listener to provide
callbacks to the agent on the event of intention failure (Appendix 2). Another part of the
integration is the definition of a descriptive representation of the agent’s knowledge. In
this case, we did not develop an OWL specification of all the BDI components. Rather,
we defined a shallow terminology for our domain of BDI agent adaptation.

Our intuition is that specific agent configurations, both static (beliefs and plans) and
dynamic (desires and intentions), are modeled as individuals of that terminology.
Therefore, descriptive logics work as a bridge between a specific representation – in this
case the agent components – and the blending engine. We consider the agent
terminology as a shallow one since we focused more on the vocabulary and basic terms
to differentiate concepts than on a big hierarchy and a set of rules and axioms to restrict
it. Another reason to follow this line is that the rules associated to the concepts – in the
case of BDI – are modeled and used by the Jason reasoning engine.

Observing the terminology, it is clear that we did not consider the full Jason’s syntax
to represent beliefs and plans in OWL. For instance, according to the Jason
implementation of AgentSpeak-L, a belief is constituted by a literal that can be negated
and can also represent variables, constants and terms. We did not go into such detail in
the OWL representation since in the blending process itself, this information is not used.
A more specific terminology facilitates the associations between concepts, and can be
further used when the reasoning is also specified on the same abstraction level. In this
study the reasoning is separated, it is not manipulated during blending.

Although it is possible to model reasoning in more abstract terms, we realized that
such modeling would be too ambitious to cover on this thesis, since it would be
necessary an in-depth study on meta-level reasoning (future work). Thus, most of
classes’ definitions are used directly to specify the properties, making little use of class-
specific axioms. An overview of the adaptation terminology is depicted by Figure 16,
where each ellipsis represent a class. When an adaptation situation is configured, the
OWL terminology is used to create the inputs for the blending engine. Hence, each
conceptual space is represented by one individual and, the concepts are represented by
the property assertions of each individual (e.g. hasBelief, hasPlan, hasFailedPlan,
hasTrigger).

56

Figure 16 Adaptation Terminology

Although not specified by the blending theory, it is clear that the definition of the
input spaces consider, at least, the current situation and the purpose of the blend.
Regarding our blending model, we need to specify two inputs in terms of their concepts
and organizing schemes. Given that a terminology about the situation and purpose is
available, any concept definition can be used as an organizing scheme for an input.
Similarly, all the available individuals representing the concepts may be used to
compose the space given the chosen organization. So far, we have not envisioned a way
to automatically compose the input spaces without some kind of representation
(declarative or imperative) regarding a situation or purpose.

Therefore, this study has adaptation as the purpose and failed intention or lack of
options as situations. Sometimes, these situations should simply fail and the agent
should directly move on with its reasoning. Nonetheless, given those situations, our
agent will always attempt an adaptation. Since those situations are detected directly on
the agent’s reasoning cycle, we do not explicitly define them in a terminology.

However, a class defines adaptation specifying the kinds of concepts that should be
available in order to achieve an adaptation. This definition does not specify an output
since it would not be coherent to the blending theory, where the desired output is not
established. The initial direction is given by the purpose but the output is not explicit.
Hence, the following class defines adaptation:

Class: Adaptation
 EquivalentTo:
 and (hasFailedPlan exactly 1 Plan)
 and (hasTriggerEvt exactly 1 string)
Throughout this section we will use a simple agent program to exemplify the

blending functions and rules. We developed a single reactive agent that takes his
decisions based solely on its current knowledge, with no other kind of decision
reasoning. This agent program has knowledge related to ingredients available in his
kitchen (beliefs) and also knowledge on how to cook a risotto and sushi rolls (plans)
(the full code is presented on Appendix 3). Our example agent uses the modified agent
class in order to init the adaptation mechanism. Since we separated the agent model
from the agent program the configuration of which class to use is defined on system’s
configuration file, which can be easily modified.

When the practical reasoning has no available options for a given world
configuration or when an intention has failed, we automatically create an individual of
the adaptation class. In the case of no options, the property hasFailedPlan is not added
to the individual. Consequently, this individual and the definition of the class adaptation
constitute a conceptual space and is the input I1 for the blending process,

. Returning to our agent example, the failure of the intention

!

BP = I1, I2, OP, CF, BC

57

to cook a risotto – with the plan to add the ingredients being the plan that failed –
generates the following adaptation individual:
Individual: adaptation1
 Types:
 Adaptation
 Facts:
 hasFailedPlan p2,
 hasTriggerEvt "+!cozinharRisoto(X, Y)"^^xsd:string
Individual: p2
 Types:
 Plan
 Facts:
 hasTriggerEvt "+!adicionarIngredientesMexer(P)"^^xsd:string,
 hasContext "cozinhando(P)"^^xsd:string,
 hasPlanBody "?ing(funghi);
 ?ing(brie);

?ing(vbr);
?ing(manteiga);
.adicionaIng(P, vbr);
.mexer(10);
.adicionaIng(P, fungui);
.mexer(2);
.adicionaIng(P, brie);
.mexer(2);
.adicionaIng(P, manteiga);
.print("fim do plano addIngMexer")."^^xsd:string

Making an analogy with the blending theory, the whole individual adaptation1
represents a conceptual space to be used as the first input. The explicit type declaration
stating that the individual belongs to the Adaptation class also represents an assertion of
the space’s organizing scheme. Finally, the definition of the individual also contains
two property assertions, which refer to the concepts that constitute the conceptual space.

As for the second input space, it is possible to also define it as an individual member
of an already defined class (an organizing scheme), in the same way that we defined the
adaptation one. However, for this scenario we chose not to use an organizing scheme
for the second input. We followed this line because, in this context, the relevant
organizational information is already modeled in the AgentSpeak semantics.
Consequently, the second input, I2 is an individual representing the agent’s plan library
plus its current beliefs. In fact, the second input could be composed either only by the
agent’s plans or only by its beliefs. It could also contain more information from
annotated beliefs and knowledge from external sources (e.g. the semantic web). Thus,
according to our agent example, the second one would be represented by the following
individual (we suppressed the plan individuals and listed only part of the beliefs):

Individual: cs
 Facts:
 hasPlan pcs1,
 hasPlan pcs2,
 …

 hasLiteral "ing(agriao)."^^xsd:string,

58

 hasLiteral "ing(arroz_jap_curto)."^^xsd:string,
 hasLiteral "ing(nori)."^^xsd:string,

 hasLiteral "panelaFogao(pan_ferro)."^^xsd:string
 …
Figure 17 illustrates both inputs in an analogy to the way that Fauconnier

graphically represents the blends. In this case, the ellipses represent conceptual spaces
and, thus both I1 and I2. Each underlined element characterizes a concept specified by a
property assertion.

Figure 17 Adaptation inputs

Recalling the components of the blend process , OP
represents the set of constitutive principles to be applied on the input spaces. The
constitutive principle of modification actually requires domain-specific information in
order to modify the concept without corrupting it. Thus, we developed modification
functions to deal with beliefs and plans.

Concept modification might modify the concept in a way that brings great insight
into a situation or it might make no sense at all. In our opinion it is not on blending that
evaluation plays an important role. Rather, evaluating if a modification is useful or not,
besides dependency on the situation, is executed by other cognitive processes, like
learning or perceiving.

Hence, we modeled one annotation-based modification function that is used only if a
belief is annotated with terminological information – semantically enhanced belief –
(using Jason’s DL extension defined by Klapiscak and Bordini (2008)). In this case, the
function attempts to substitute an individual with another one from the same type
(modification by substitution). We consider this function to be annotation-based

!

BP = I1, I2, OP, CF, BC

59

because it can be applied to any kind of annotated representations – such as resources
from the semantic web.

Modification function for semantically enhanced beliefs (Appendix 4)

For instance, the belief “ingredient(short_sushi_rice)[o(kitchen)]” indicates that this

sushi rice is member of the class ingredient from the restaurant ontology. Thus, this
belief would fall into the first possibility of the modification function. Consequently, the
aforementioned belief is modified by maintaining its functor (ingredient) and by
substituting short sushi rice for another member of the class ingredient. One possible
outcome would be “ingredient(apple)” or “ingredient(pasta)”. If the hierarchy is more
specialized, the modifications will be closer to the original concpet. For example, if
instead of ingredient we considered a hierarchy for food with rice being one subclass,
then, the belief “rice(short_sushi)” could be modified to “rice(long_risotto)”. A further
specified ontology also allows the utilization of upper-classes in the cases where there
are no other members of the class being considered.

When the belief represent a property (e.g. hasIngredient(norimakisushi, nori) or
hasExpirationDate(nori, 11-2012)), the second option of the modification rule is to use
the property’s range definition, if available. Considering that the property hasIngredient
is defined with a range assertion of classes Ingredient or Food, the specified
modification function will change the attributive part of the assertion. Again, we use the
members of the classes from the range definition to substitute the attribute. For
example, hasIngredient(norimakisushi, nori) may be modified to
hasIngredient(norimakisushi, lasagna_pasta). Finally, if the property does not have a
range assertion, the function attempts to infer the membership of the attribute and, if
inferred, the attribute is modified with another member of the inferred class.

Relying on randomness we also developed one function to deal with beliefs and
another to deal with plans. The main issue with this kind of function is that the
modifications might result in non-executable plans and in non-grounded beliefs. This
issue is related to the symbol grounding problem (HARNAD, 1990; WILLIAMS, 2008;
NILSSON, 2007; CREGAN, 2007) where, essentially, symbolic representations are
detached from a real observation of the world. Usually, grounding approaches study
how to model the link between perception and symbolic representations. Without this
kind of information, which is readily available for us humans and, thus, is assumed as
given in the blending theory, the modification of a symbol does not yield its imaginative
counterpart (based on the perception). In awareness of this limitation, we defined the
random modification functions as follows:

!

µ(b[o]) =

fb"# c $membersOf fb,o()() if b$CA
fb"# c $membersOf ra()() if b$PA% if b has range def.

fb"# c $membersOf oldTerm()() if b$PA

&

'
(

)
(

where
fb = functor(b)
CA = classAssertions
PA = propertyAssertions
ra = rangeAssertions(b)
oldTerm = type(#(terms(b)))

60

Modification function for beliefs (random modification, Appendix 5)

Considering the belief ingredient(dried tomato), the application of this function

might result the belief ingredient(tomato) but it might result on the belief
ingredient(tofehan_sqc), which possibly can not be used during the execution of plans.

Modification function for plans

The next component of the blend process is the set of comparison functions (CF).
This component is responsible for establishing the counterpart relations between the
inputs. Recalling the theory, these relations between concepts from the inputs may be
constructed from any kind of connection. According to our interpretation, the
counterpart relations are the result of applying certain types of associations over the
inputs. For example, it is possible to apply similarity measures, deduction, subsumption
and part-of relations to two given concepts from the inputs. Thus, we consider that the
associations are realized by applying certain kinds of reasoning on the concepts.

Taking adaptation into account, the role of the comparison functions is to reveal
associations between the problem situation and the available knowledge, potentially
contributing to a solution. Therefore, the adaptation comparison functions (CF)
represent an adaptation strategy to generalize a plan’s context, easing its applicability
and also the straightforward strategy to look for alternatives given the intention trigger.

Relying on the set of programming interfaces and implementations provided by
Jason, the comparison functions were developed with more focus on testing our engine
than on providing an in-depth concept analysis. We developed two sets of comparison
functions, one focused only on beliefs and the other on plans.

Our first belief-based comparison (Appendix 6) verifies if two beliefs share the same
functor. In this function it is assumed the availability of a functor function (represented
by func) able to retrieve the functor of a belief. Figure 18 illustrates this function by
establishing associations between the belief ing(agriao) and other beliefs that share the
same functor from the other space. Those associations are depicted by the lines bellow
the (a) marking. For illustrative purposes we did not depict the functor relations from
the belief ing(arroz_jap).

Another belief comparison verifies if one belief contains the other, as a simple

metric of lexical similarity (Appendix 7). In this case, we assume that the intersection is

!

µ(b) = fb" rm # terms b()()()
where
fb = functor(b)
rm = randomModification(term)

!

µ(p) = rm(te) : rm(ct)" rm # actions body()()()
where
rm = randomModification()
p = te : ct" body

!

fc(b1,b2) =
func(b1) if func(b1) = func(b2)

{} otherwise
"

$

61

computed regarding each term or list of terms that compose the beliefs. Figure 18 shows
an example of the belief comparison considering the literal’s terms. The association
depicted by a line marked with (b) shows the relation between two beliefs that share a
common term (“arroz_jap”).

Figure 18 Belief comparison functions

Comparing literals (beliefs and goals) to plans, we check if a plan is triggered by the
literal, considering all the possible events (addition or deletion of beliefs, achievement
and test goals). This comparison is based on the unification operator (unification) as
defined by Bordini, Wooldridge and Hübner (2007). By simulating events on a given
literal, this function verifies if an already defined trigger is able to handle the simulated
event. In the opposite way, the function analyses if the simulated event would have a
candidate plan (Appendix 8). Figure 19 illustrates three associations (denoted by the
lines) realized by the trigger comparison. The topmost line illustrates the relation
between ing(nori) and the trigger +ing(X), meaning that the addition of that belief
would be handled by the +ing event. Similarly, simulating a test goal addition with the
belief, would generate an event to be handled by ?ing(X) – illustrated by the middle
line. The last relation illustrate the applicability of the function on events generated
inside plans, in this case, the event is already constructed and only the unification is
performed.

!

fc(b1,b2) = b1"b2

!

"

!

tc = {+!,"!,+?,"?}

fc(l, p) =
tc# l if te $ tc# l
{} otherwise
%
&
'

where
p = te : ct(h

62

Figure 19 Trigger comparison function

Finally we compare a belief against the plan’s context. This comparison can go in
several ways, one way is to check if the belief alone satisfies the context (1) Appendix 8
– PlanHelper class. In Figure 20 the association through context satisfiability is depicted
by the line marked with (a). The relation is established since the belief
cozinhando(arroz_jap_c) is sufficient to satisfy the context cozinhando(P). Another
comparison based on a plan’s context is to verify if a belief constitutes it, ignoring the
remaining of the context’s logical expression (2). Hence, this last function analyses only
if there is a lexical relation between the given literal and the context Appendix 9. An
example of this function is presented on Figure 20 by the relations (depicted by lines)
marked with (b). In this case there is a partial relation between the context and the
beliefs.

(1)

(2)

!

fc(b, p) =
b if b " ct
{} otherwise

$
%

where
p = te : ct& h

!

fc(b, p) =
b if b" ct # {}()
{} otherwise

$
%
&

where
p = te : ct' h

63

Figure 20 Context comparison function

Following our description of blending components for the adaptation study, the last
one is the blending configuration given by the set . α specifies a
decision function applied to choose one concept given a collection of them. Actually,
this function represent blending’s selective projection, which chooses certain concepts
from the spaces and their relations and projects them (after the application of the
constitutive principles) to the resulting blend. However, the theory does not elaborate on
the criteria for the element selection. In our opinion, this aspect is related to other
cognitive functions such as learning from experience, emotions, current paradigm and
sensorial feedback. Since, in this work we are focusing on the blending model itself, we
specify α as a random selection function:

static Object alpha(Collection<?> c){
 Random r = new Random();
 int i = r.nextInt(c.size());
 return c.toArray()[i];
}

One stream of future work on the model actually is to use blending and learning in a
single model. Thus, we will be able to study different ways to implement selective
projection given the agent’s experience. Closely related to α is the function to select a
constitutive principle to be applied during the selective projection (Sop). Hence, in our
model the selective projection is modeled by α (selection of concepts) plus Sop
(selection of constitutive principles). We consider that this function also represents an
input from other cognitive functions, and so, it is left undefined by the blending theory.
In conjunction with α, Sop can be applied to denote domain-specific heuristics or
restrictions. For instance, given a domain where modification cannot occur, Sop can be
modeled to never allow this operation over concepts. On the subject of agent adaptation,
Sop does not represent any kind of heuristic, rather, like α, it is implemented as a random
decision function with the same probability for each operation (Appendix 10):

!

BC = ",#,$,Sop

!

Sop =

float r = random(0,1)
µ if r " 0.33
cm if r > 0.33 and r " 0.66
co if r > 0.66

$
% %

&
%
%

64

Another part of the blend configuration is given by φ, which specifies a stopping
condition for the process. In the blending theory, there is no condition to suspend the
process. Instead, it is assumed that blending occurs all the time in a subconscious level
directly integrated with the other cognitive functions. Since our blending specification is
not yet part of a broader model for cognition we added a stopping condition to the
process. Therefore, this condition can be specified in terms of a domain-specific
evaluation function to be applied to current blend or an iteration threshold. Considering
our adaptation scenario, it is possible to define an evaluation in terms of option
availability, but it does not ensure the quality of the option – which is closely related to
the agent’s domain. For that reason, we chose to specify the stopping condition as an
iteration limit (Appendix 11).

Finally, the last element of the blend configuration is the kind of blend, according to
Fauconnier’s typology. Although we modeled the blend process following the typology,
the specified types do not restrict the process itself. In the theory, a typology is defined
to exemplify the most common blend and how they come about in our daily life.
Nonetheless, for the purposes of our model the typology allowed us to specify a process
that, as the authors themselves state, is non-algorithmic and non-deterministic.

Although it is theoretically possible that blending occurs without the definition of its
type, in our adaptation study we restricted ourselves to blending as a process governed
by a given type. Considering both the amount of possibilities and the utilization of
blending components – which provides a richer example – we applied double-scope
blending to the adaptation study (κ=double-scope). Hence, examining the double-scope
rule, it is noticeable that it does not have any requirement for its application and the
initial configuration of the process follows the same approach as the other kinds of
blend.

Thus, the elements described so far constitute the initial configuration for the blend
process, . Looking into the configuration of the blending rules
the transition to the blend parts from a slightly different configuration:

. Thus, from the initial configuration we first
establish the generic space, given the two input spaces. As defined by the rule defGen,
(presented on Section 3.1), in essence, the generic space contains the elements that are
common to both inputs.

Recalling our example agent and its inputs – illustrated in Figure 17 – the only
common aspect between the inputs is the fact that both of them contain at least one plan.
Although the referred plan and the property assertion are different, the common aspect
is that both inputs point to a plan. Since the inputs have different organizing schemes,
this aspect is not projected to the generic space. In the blending theory the generic space
may contain the blend’s purpose, but in a very subjective and abstract way. The purpose
sometimes is beyond the organizing scheme. This aspect is not present in our current
model and constitutes another part of our future research. Figure 21 illustrates the
generic space constructed given the adaptation inputs. Like the input spaces, the generic
is depicted by an ellipsis that represents a conceptual space. The dashed lines illustrate
the common concepts that originated the generic space.

!

BP = I1, I2, OP, CF, BC

!

I1,I2,CPR,GEN,OP,BC "Blend

65

Figure 21 Inputs and generic space for the adaptation example

After the establishment of the generic space, the rule defCPR is applied to retrieve the
counterpart relations between the concepts. Given the set CF of comparison functions,

the rule attempts to apply, for each pair of concepts, the respective function. If no
compatible function is available, it is verified if a more generic function – using the

primitive types – may be applied. Hence, in

Figure 22 we illustrate the counterpart relations established from the comparison
functions defined in this Section. A numbered straight line depicts each counterpart
relation.

66

The first relation (1) shows a contextual relation between a plan’s context and a
literal that satisfies it. Next, the relations marked with a (2) denote both a literal relation
– considering the test goal as a literal instead of a goal – and also a trigger/literal
relation since simulating the addition of a test goal with the literals will trigger the test
goal. During the establishment of the counterpart relations the descriptive representation
is considered only to tell which are the concepts of the space. After that, our
implementation of the BDI comparison functions uses the original representation since
most of the methods use the Jason API to compute the similarity. This technical detail
depends on each implementation, but we believe that more specialized knowledge
representations, like multimedia, will also compute the associations using the original
reasoner instead of implementing it on top of OWL. Another reason is that, for the
blending, OWL has the role of describing the knowledge and thus, does not represent all
the dimensions of the knowledge.

Figure 22 Counterpart relations from the adaptation study

Assuming the definition of the generic space and of the counterpart relations, the
configuration to continue the blending is set. Figure 23 illustrates the initial
configuration for the double-scope blending rule. Again, the conceptual spaces are
depicted by the ellipses (I1, I2 and the generic space), the dashed lines represent the
concepts that lead to the generic space (GEN) and the black lines illustrate the
counterpart relations (CPR).

67

Figure 23 Initial configuration of the adaptation blend

Now that the necessary elements are ready, the selective projection takes place. In
the case of double-scope blending, both the organizing schemes and the concepts are
subject to change. Although modifying the organizing scheme is present in the double-
scope rule, in this adaptation study it does not have an impact over the practical
reasoning since only the agent performs it. In order for the modifications on the
organizing schemes to impact the practical reasoning, it is necessary to model it with
meta-level rules. Given a definition of the reasoning in meta-level rules, any
modification on a meta-rule also modifies the outcome of the reasoning. Such
specification of practical reasoning with meta-level rules and a possible generalization
to other kinds of reasoning characterize a future work of this research.

The selective projection of concepts, denoted by
, chooses concepts (α) from the

inputs, generic space, counterpart relations and from the application of the constitutive
principles on the concepts. Given our current definition of α as a random selection
function, any concept might be projected. Thus, it is as if we randomly chosen an
answer from our imagination and then tested on the real world if the answer is correct.
This is a subject where further researches from cognitive and neurological sciences
needs to be incorporated in the blending theory in order to specify the selective
projection. Figure 24 illustrates a possible outcome of applying double-scope blending
to the inputs. In that figure the gray dashed lines depict the connection to generic space
while the gray direct lines depict the associations. The black lines represent the concepts
that were chosen by the selective projection and that constitute the blend. Inside the
Figure 24, the blend is depicted by the ellipsis on the bottom.

In this specific case, the intention’s trigger was projected allowing a possible plan to
unify its trigger to the one of the intention (depicted by line marked with 1). A plan
from the second input space (cozinharArrozSushi) is also projected to the blend and its

!

concepts = " C1#C2 #Cgen # appCP C1#C2 #Cgen()()

68

parameter is unified with the event that generated the intention (line 2). Besides that,
three beliefs are projected to the blend (lines that follow the mark 3).

Given the resulting blend, the modified agent class (Appendix 1) adds a plan to
handle failure of the intention or a plan to handle the event, in the case of lack of
options. Then, the plan is added as defined in the blend – considering that a plan is
defined. If there are beliefs in the blend, they are added to the library. After the
modifications, the agent cycle continues normally, which corresponds to the elaboration
phase of blending, where the blend is executed.

Figure 24 Double-scope blend for adaptation

In our adaptation study, the counterpart relations are established between beliefs,
plans and beliefs and plans. Prioritizing the projection of concepts with relations avoid
the direct copy of concepts unrelated to the situation. In a similar way, Sop can be
customized, for instance, to use more completion and suppress modification. Due to
those modifications on the selection of concepts, the process tend to generate blends
that make more sense – what Pereira (2007) characterize as a convergent strategy.
Whether or not making sense is better for adaptation depends on the agent’s domain and
its context. As we previously stated, this kind of evaluation is not a part of the blending
theory and should be modeled separately. Here, we describe how blending can be used
as a way to generate alternatives for adaptation, without evaluating them. Figure 25

69

illustrates an adaptation blend where counterpart relations have more chance to be
projected than non-related concepts. The notation is equal to the one adopted on Figure
24, where the selective projection is depicted by black lines. Here, the plan that failed
was projected and, due to the relations between the beliefs and the test goals, they had
more chance to be subject to the constitutive principles. Thus, one of them was
modified and the other two were composed with different individuals of the same type
that were available on the second space.

Figure 25 Adaptation blend with modified α and Sop

Our approach to model adaptation is in terms of the blending constructs defined in
Section 3.1 (terminology and comparison and modification functions). The definition of
the comparative functions is a fundamental aspect to produce blending. In this study, we
defined simple functions that reflect a simple kind of adaptation (similarity and
alternative plans given a common context and/or triggering event). Despite its
simplicity, the model indicates several possibilities for enhancements and
experimentation on adaptation strategies. Our intuition is that with the blending model,
we are able to integrate different adaptation mechanisms in the same structure. There is
also the possibility to experiment with different kinds of blend and selection functions
(α and Sop).

70

3.3 Blend-based Recommendation
Our second study considers an educational recommender system designed as a BDI

agent that uses blending to provide content-based recommendation (RESNICK;
VARIAN, 1997; WEI; HUANG; FU, 2007). As presented in Sections 1.4.3 and 1.4.4,
the purpose of this study is to test the blending model as a reasoning process. Thus,
recommendation provides only an application context and, improving the state-of-the-
art on recommender systems is not part of this research. Each user is modeled by a
single recommender agent which, given a certain situation, will automatically
recommend educational content.

We consider two main recommendation situations, one characterized by learning
and the other by authoring. Here, we simplify the learning process and consider only
recommendations of learning objects (CHURCHILL, 2007), given the current learning
path being followed by the student. Considering authoring, the recommendation is
directed for didactic materials developers, tutors and course teachers. Hence, authoring
recommendations are constituted by parts of objects representing suggestions and
examples about the specification of the metadata.

Since it is the agent that controls when an user will receive a recommendation, the
blending mechanism was implemented as a Jason internal action (Appendix 12). Thus,
blending may be executed inside any plan. The only requirement to use that internal
action is a mapping between the beliefs and an OWL representation – since our
implementation of blending adopts the OWL syntax.

Another aspect of the recommendation study is that we consider the existence of
multiple agents, but they are unaware of each other. Hence, there is no interaction
between the agents. In the context of recommender systems, agent interaction is more
relevant when we consider other kinds of recommendation, such as collaborative
filtering (RESNICK P. et al. 1994; SHARDANAND; MAES, 1995). Here, each agent
manages a single user model that follows the terminology established by FOAF2, IMS
(Instructional Management Systems) LIP3 and IMS-LD4. FOAF already provides an
OWL representation compatible with our implementation. LIP and LD were modeled
with the OWL language in the context of the OBAA research project.

Consequently, FOAF, LIP and LD establish a vocabulary of terms and properties
that can be used to model learning activities and preferences of the user. Thus, the
definition of the user model does not impose any restriction in terms of minimal
information to construct an instance of it. This requirement depends on specific
application contexts and, in the case of the learner recommendation, the minimal
information is a description of the current learning activities. Moreover, in the authoring
scenario the requirement is the existence of at least one metadata about the under
development object. Those restrictions are modeled as the context of the respective
recommendation plans.

Given the user-related ontologies, the agent environment supplies perceptions
representing the user’s activities according to the concepts defined by them.

2 Friend of a Friend - http://www.foaf-project.org/
3 Learner Information Package - http://www.imsglobal.org/profiles/
4 Learning Design - http://www.imsglobal.org/learningdesign/

71

Consequently, the environment provides the interface between the Intelligent Tutoring
System (ITS) and the recommender agent. Following traditional agent models, the
actions are performed in the environment and, in this case, they reflect changes in the
ITS, possibly being noted directly by the user through his interface.

After processing each perception, the respective beliefs are updated accordingly.
Thus, the set of user-related beliefs actually represents the user model. Considering our
blending model, those beliefs constitute the first input (I1) of the process. As for the
second input, the available learning objects constitute it. Figure 26 illustrates an
example of I1 and I2 in the context of educational recommendation for students. Again,
the conceptual spaces are depicted by the ellipses and each underlined element
represents a concept. According to our implementation, each conceptual space is an
OWL individual and the concepts are modeled as property assertions.

Therefore, the example of I1 in Figure 26 considers an individual instead of the
AgentSpeak representation. In practice, this conversion is performed directly by the
internal action. Likewise, I2 is also constructed by the action. Although it is
recommended to use declarative knowledge during agent modeling, we left the
information about learning objects hidden from the agent. We followed this approach
since our recommendation model is still in its early stages and, for now, the agent would
not use that information.

For instance, considering trust measures on repositories or previous evaluations of
content developers imply on more elaborated decision procedures that justify the
awareness of the resources by the agent. In fact, those decision aspects and the
integration of more recommendation approaches constitute a subject for future research.
Hence, in this study, the recommendation internal action gathers the available learning
objects from the repository and assembles them into an OWL individual representing
the second input – depicted by I2 in Figure 26.

Figure 26 Inputs for the learning recommendation blending

72

Although constructed by the internal action, the second input is also based on a
terminology for learning objects. Specifically we adopted the OBAA ontology5 that
represents a Brazilian standard for educational resources developed in the Informatics
Institute and the Center for Interdisciplinary Research on Education from UFRGS
(BEZ; VICARI; SILVA; RIBEIRO; GLUZ; PASSERINO; SANTOS; PRIMO; ROSSI;
BORDIGNON; BEHAR; FILHO; ROESLER, 2010). Assuming the availability of
objects, the second input space constitutes possible recommendations in terms of
learning resources. In practice, it is necessary to define a filter to reduce the amount of
candidate objects. Such filter can be applied outside of blending or it could be
implemented in the α function plus a more restrictive comparative function. Our test
considered only a prototype repository of learning objects that work on the Web, Digital
TV and mobile devices. Thus, the amount of objects was not an issue.

Considering an authoring recommendation, the definition of the first input follows
the same approach as described for the student recommendations. Since the user is a
tutor or a course organizer developing an object, its model reflects this situation by
containing only more generic information about the user (FOAF) and about the object
being developed (i.e. a partial description of its metadata). In Figure 27 we illustrate an
example of the inputs for the authoring recommendation. Similar to the learning
context, in the authoring recommendation the available learning objects also constitute
the second input. We follow the same graphical notation as the previous Figure.

Figure 27 Inputs for the authoring recommendation blending

Another element of the blending process is the set of comparison functions. In the
case of recommendation, these functions represent the similarity measures being
considered. Here, we consider three kinds of similarity between an user model and a
learning object model. Since both models are represented in OWL, it is possible to
analyze their concepts in regard to their positions in the hierarchy. Thus, we check if

5 http://www.portalobaa.org/obaac/padrao-obaa/concretizacao-de-metadados-em-owl

73

one class is a super or sub-class in relation to the other. The implementation of this
function is presented in the Appendix 13. In Figure 28 we show examples of hierarchy
relations according to an ontology that describes educational categories. Following this
ontology, the individuals “ser humano e saúde”, “tecnologia e sociedade”, “terra e
universo” and “vida e ambiente” are members of the class “ciências naturais” which is a
branch of the ontology. Thus, all these individuals have at least one direct membership
in common (depicted by the lines in the Figure 28).

Figure 28 Hierarchy-based comparison function example

Disregarding the terminology, the literal content of related properties (e.g. activity
description and category, from the user and learning object models respectively) is
compared using a word similarity approach that uses Wikipedia as a corpus
(PONZETTO; STRUBE, 2007). In the Figure 29 we show an example of applying this
function on the properties foafinterest and hasActivityDescription from the user model
and the properties keyword and category from the learning objects. Thus, when the
similarity measure is above the defined threshold the words are regarded as similar
(illustrated by the lines in the Figure 29). The implementation of the function (Appendix
14) is based on the Wikipedia Similarity API6. Formally, we specify that function as
follows:

Word comparison function according to Wikipedia

6 http://www.h-its.org/english/research/nlp/download/wikipediasimilarity.php !

µ(w1,w2) = boolean extAPI :wikiMeasure w1,w2()()
where

boolean(real) =
true if real > 0.8
false otherwise

"

$

74

Figure 29 Word similarity function based on Wikipedia

Finally, also considering the literal content of the properties, we verify if one word is
analogous to the other with regard to the ConceptNet database (LIU; SINGH, 2004).
ConceptNet, essentially, is a semantic network representing common sense knowledge
built and evaluated by volunteers through the Internet. Havasí, C. et al.. (2009) describe
an analogy-based inference mechanism to virtually reduce the size of the network –
making it more usable by humans.

The inference mechanism is distributed as an API but its results can also be accessed
directly using ConceptNet’s REST (Representational State Transfer) API. Therefore,
the results of the inference establish an analogy space inside ConceptNet (SPEER;
HAVASÍ; LIEBERMAN, 2008). Grounded on the analogy space, ConceptNet is able to
compute similarity among concepts. Thus, we refer to that analogy space to compute
analogies for the recommendation conceptual spaces. Our resulting analogy comparison
function is very similar to the Wikipedia word comparison. Actually, the difference is
on the way that similarity is computed and on the interpretation of the measure.

To the best of our knowledge, the integration of ConceptNet and the analogy space
was developed and made available for the English corpus. Hence, the Portuguese
version of ConceptNet does not use the analogy space. Since the learning objects from
our repositories are in Portuguese, we were not able to test the comparison function
directly with the objects.

Function to compute analogy between words according to ConceptNet

!

µ(w1,w2) = boolean extAPI : analogyMeasure w1,w2()()
where

boolean(real) =
true if real > 0.5
false otherwise

"

$

75

With the definition of I1, I2 and FC, the remaining blending elements to be specified
are BC and Μ – part of the OP component. The latter is a set of modification functions
that represent the constitutive principle of modification. Considering the constitutive
principles, we do not define any specific function for the learning recommendation.
Although possible to model, we would need to consider different kinds of multimedia
and its technical specificities in order to not corrupt the object. Besides, we are not
confident that in the case of recommending educational resources, it is interesting to
modify the objects since they represent complete and modular learning units. In our
perspective, this specific recommendation benefits more from the integration of the
comparative functions than on the constitutive principles.

However, in the context of authoring recommendation, the application of the
constitutive principles yields on blends that can be used on practice. For instance,
during authoring tasks, the agent may recommend suggestions on how to specify the
metadata based on already developed objects (I2). In this scenario of developing a new
object, certain metadata from I2 can be projected to the blend as a modification that
reflects given properties of the under-development object. Assuming the availability of
domain ontologies, that can be used to specify the object’s properties, it is possible to
use modification functions like the ones defined for the adaptation study.

Hence, we specify a modification function that, given an object property assertion –
stating that a subject is related to a target object – it modifies the target object by
choosing another individual from the same class or from the range definition. Thus, the
property assertion remains the same except for the target. On the function, the definition
of the axioms variable contains an intersection among domain, range and the suspension
points that represent the remaining OWL property axioms, such as symmetrical and
functional.

Modification function for authoring recommendation

!

µ assertion() =
modTarget = " c #membersOf range()() if range $ {}

modTarget = " c #membersOf class targetInd()()() otherwise

%
&
'

('

where
assertion = property subjectInd,targetInd()
property = name) axioms
axioms = domain) range) ...

Concluding our specification of the recommendation blending, we define the
configuration

!

BC = ",#,$,Sop . Together, α and Sop represent the selective projection –
α chooses which concepts will be project and Sop which constitutive principles will be
applied. Considering our recommendation context, we define three alpha functions that
are chosen by the agent and applied on different situations. First, we specify a selection
function following the same approach adopted in the adaptation study. Thus, this
function improves the chance to project concepts that have counterparts in the other
space.

Our second α function aims at choosing concepts that have more chance to surprise
the user. Clearly, there are several approaches to achieve this kind of recommendation
(WEI; HUANG; FU, 2007; SHARDANAND; MAES, 1995). Here, we look for objects

76

that belong to different domains in relation to the ones that the user is more used to. In
addition, it also considers objects developed for different learning strategies. Inside a
learning context, this kind of recommendation is useful when the current strategy and its
adopted objects are not resulting in satisfactory learning outcomes (specified by the
grades).

Finally, we developed an α function specific to prioritize objects that relate to at
least one that the learner has used and evaluated well. Ideally, this function should be
used with mirror blending, defined by the κ component. According to the blending
theory, mirror networks are capable of modeling metaphoric reasoning. By maintaining
the roles (represented by the properties) of one input, and projecting the values from the
other input would result in an “as if…” interpretation. Since, in this study, the inputs do
not share the same organizing frame but have common roles (their objects), this alpha
simulates that common aspect and improves the chances of projecting concepts of this
role. Another aspect considered by this function is the specific properties from the
objects, such as the learning strategy and utilization context.

Since mirror blending requires the same organizing schemes for both inputs, we
applied this last α in conjunction with single-scope blending. In this type of blending
one input serves as a source (providing the roles/properties) and the other as the target
(supplying the values/concepts). Opposing mirror blending, in single-scope there might
occur contradictions (called clashes in the theory) since the organizing schemes may
differ. Currently, the organizing schemes do not have such impact in our model. We
emphasize that the main reason for that is not considering meta-level reasoning rules
inside the schemes.

Thus, in Figure 30 we show an example of applying the metaphor inspired α and
single-scope blending (defined by κ) to gather recommendations for the student.
Recalling that, in this specific recommendation, the constitutive principles are not
applied, the role of blending is to choose which concepts (objects) to recommend, based
on the inputs, generic space and counterpart relations. This role can be noted in Figure
30 by the direct projection of objects “dengue” and “educação e criatividade” since they
relate to the category property of the already evaluated object (“viva saudável”). In the
Figure 30 the gray lines illustrate the relations among concepts – lines with the number
1 refer to hierarchy relations and with 2 refer to word similarity – and the dotted black
lines represent the projection of the concepts.

77

Figure 30 Metaphor-based recommendation blend

In the remaining situations we adopt double-scope blending allowing the projection
of any concept from the considered spaces to the blend. Therefore, this kind of blend
allows the projection of concepts from I1 (the user model) to the blend (the
recommendation). Although such projection is correct in regard to the theory, for this
specific scenario concepts projected from I1 are disregarded since they do not affect the
recommendation.

Considering authoring, we use only the α function that projects more concepts with
counterpart relations and double-scope as the kind of blending. Also present in this BC
configuration for authoring recommendation is the Sop function that chooses which
constitutive principles to apply. In this case, we use the same Sop function defined for
the adaptation study, where each constitutive principle has the same probability to be
chosen. Thus, in the Figure 31 we illustrate the a possible authoring blend, where the
topmost dotted gray lines denote the definition of the generic space, the gray lines refer
to the relations among concepts and the dashed lines and the black dashed lines pointing
to the blend space refer to the selective projection.

78

Figure 31 Authoring recommendation blend

In this study we showed how the restrictions and specificities of a given domain can
be modeled as blending elements. Our model of student recommendation imposes
restrictions to the blending mechanism, disabling the application of constitutive
principles. Without these principles, blending is used to consider different
representations and reasonings into a single model. Specifically in this recommendation
study, blending is used to choose leaning objects given the applied similarity measures
between the user model and the objects.

Following the blending theory, the resulting blends may serve as inputs for other
blends, establishing a network of blends. The definition of rules to coordinate the
chaining of blends and of the network utilization is defined by the governing principles,
which were not modeled and are subject of future research. Given the model presented
on Section 3.1, it is possible to specify blending in terms of a domain terminology and
assertions and comparison and modification functions. Our applications on adaptation
and recommendation indicates that the adoption of an agent structure complements well
the blending model since it provides a way to automate the specification of inputs and
the triggers of the blending mechanism.

79

Comparing to the model proposed by Pereira (2007), the main difference is on the
integration to a BDI structure, allowing blending to be automatically applied (in terms
of input construction and selection functions). Divago has the advantage to also model
blending’s governing principles. Although, we observe that governing principles is not
his main focus of research, since the author does not indicate evidence from blending or
other cognitive theories to argument his decision on the specification.

Still considering our related work, our approach to abstractly model the comparison
and modification functions is similar with the morphisms specified by Griot’s algebraic
semiotics. In terms of expressiveness, Griot further defines the semantics of a
modification in the context of symbolic representations. Directly comparing to our
model, Griot is more expressive for manipulating symbols but is less expressive on the
representation of non-symbolic representations.

80

4 CONCLUSION

Given our main research question: how can creativity support intentionality? We
contextualize our contributions under two main perspectives (intelligent agency and
computational creativity). Positioning our contributions on computational creativity we
relate it to our first intermediary question: How can creativity be computationally
modeled in order to produce theoretical and practical knowledge? Initially, the path
taken to answer this question was to specify a blending model focused on practical
knowledge (plans and actions). However, we noted that such path would also pass by
theoretical knowledge and that, according to a higher abstraction level, all kinds of
knowledge could be seen as a conceptualization. With this abstraction in mind, it is
possible to specify the process of blending in a more generic way. Therefore, we
specified blending as a set of rules and transitions among states representing the process
of constructing a blend. Given the set of rules and constructs necessary for blending, we
also defined four kinds of blend, as specified by theory’s typology developed by
Fauconnier and Turner (2002).

Regarding computational models of blending, one contribution of our model is an
explicit definition of the original blending typology. Future work on this subject lead to
the specification of other kinds of blends as proposed by Brandt (2002). Another
contribution to computational creativity is a blending model capable of manipulating
heterogeneous knowledge representations. This is possible due to the abstraction of a
concept and the utilization of descriptive logics as a bridge between the blending
operation and the knowledge representation.

Our utilization of descriptive logics follows the same approach as the utilization of
the OWL language to annotate resources on the semantic web. Specifically, we follow
the OWL syntax and semantics to describe the knowledge representations. Thus, our
model deals with heterogeneous representation by following a given terminology and
assertions about that representation. Further exploring this aspect of our model, it is
possible to experiment it with multimedia representations. We can benefit from already
developed ontologies and standards for multimedia on the semantic web and apply it to
our model. In fact, enabling blending to work with multimedia allows us to further
develop our second proof of concept, the educational recommender system. Therefore,
the recommendations could also consider the content of the resources.

Pereira (2007), describes an experiment where the concept of a house has a symbolic
representation and a geometric one for each of the house’s component. Consequently,
any symbolic blend with the house also has its graphical counterpart. Our model differs
in the consideration that there is only one representation annotated with information that
the blending process will use. Another difference is our utilization of OWL providing
compatibility with documents from the semantic web. Defining our model abstractly –
using operational semantics – allows developers to implement blending in any
programming language. We developed a partial implementation of the rules in Java,
using also the OWL-API (HORRIDGE; BECHHOFER, 2009) to manipulate the OWL

81

syntax, Pellet (SIRIN, E. et al.. 2007) to reason over the OWL representations and Jason
as the agent framework.

Recalling our motivation on the interplay between autonomy and creativity, we
define agent-based creativity as a subject of study of this thesis. On this matter, our
main idea was to use the BDI constructs to model the vital relation of intentionality
inside the blending model. However, intentionality is a property that results from the
application of practical reasoning over a set of beliefs and desires. Therefore, a
simplistic approach would be to map intentional relations between input spaces when,
for instance, one belief from input one is a desire in the other. Although it could be
possible to specify it in our model as comparison function, we concluded that it would
not impact on the blending process itself since we are considering a very specific case
of intentionality that does not correspond to broad view of intentionality as a vital
relation. Thus, an additional study of intentionality – possibly modeled with meta-level
components – is left for future work.

Adding meta-level reasoning to our model allows different reasoning rules to be
used inside the blending process. One way to use it would be on the definition of the
counterpart relations, where we could infer cause and effect chains among concepts.
Another interesting feature is the possibility to modify the reasoning rules and verify the
behavior of a conceptual space given such modifications (specially useful for double-
scope blending).

Following our agent-based creativity perspective, an important point that can be
modeled using agent constructs is the definition of the inputs, context, and purpose of
the blending. These elements are considered as given by the blending theory (there is no
definition on how the inputs are constructed). Hence, according to an agent perspective,
its current intentions and world configuration are applied to trigger the blending
process. Actually, the composition of the input spaces by the agent characterizes a
contribution for computational models of blending since none of the related works
specified how the inputs were constructed. The inputs are always given by the
developer who defines all the parameters for the blending. In the case of our study on
adaptation, the blending is triggered when an intention fails or when there is no
available option. In addition, the inputs are automatically constructed given a pre-
defined terminology on adaptation. Furthermore, our study on recommendation also
work in a similar way, the only difference is on the blending trigger, which is declared
in the agent code as an achievement goal.

Shifting the perspective to creative agency, the main result of this work is the
possibility to integrate different reasonings, strategies and representations in a single
blend. During the development of the agent adaptation study, we realized that the
strength of our model lies on the integration, on the blending itself, rather than on an
adaptation measure. Considering our blending model, adaptation is defined by a
terminology and functions for comparing and modifying belief and plans. In our study,
we defined comparison functions representing very simple adaptation strategies.
However, the model can also be applied to model other adaptation methods, like
abduction and/or hierarchical planning.

Thus, these methods are modeled as additional comparison functions fc that will
compose the FC set, used during blending. Moreover, the developer may specify the
random selection function α to consider a domain specific tendency or any heuristic. In
fact, that function can also be integrated to a learning mechanism. Similarly, the

82

function to select which constitutive principle to apply Sop, may also be customized.
Comparing to our related work on agent adaptation, our approach differs on the
reasoning mechanism. Currently, we are not able to provide any analysis in terms of
which adaptation method is better given a certain situation. On the field of adaptation,
we consider that our contribution is on a model to integrate different adaptation
mechanisms into a single one. Consequently, future work on blended adaptation may
specify case studies to analyze the integration of strategies against the adoption of a
single one.

Given our two main perspectives, agent-based creativity and creative agency we
realize that creativity and agency may also be viewed as parts of a greater cognitive
model. Many of the elements from blending that are too abstract or too subjective to
model computationally, could be at least partially modeled given the availability of
other cognitive functions like learning and embodiment. With these two additional
operations, the blending mechanism may also function as a supplier of actions to be
performed and perceived on several levels (e.g. internal and external). As the agent
begins to try actions and perceive its consequences the learning mechanism may infer
new cause and effect chains predicting effects of actions not yet tested. Therefore,
blending could be seen as playing the role of our imagination. Despite challenging, we
believe that this work initiated an approach to the integration of different cognitive
functions into a single model. Perhaps even towards a restricted concretization of
Minksy’s society of the mind (MINSKY, 1986).

Finally, returning to our main research question, we position our contribution under
a more theoretical perspective. Our model can be used to study aspects of CB theory
that have not been thoroughly studied. We see this work as the initial step towards a
deeper study on the cognition of creativity using computational models. Furthermore,
we see future works on theoretical aspects by the adoption of results from genetic and
neurosciences. Considering more technical aspects, given the concept model defined
here, the main future work is the specification of meta-reasoning improving the
expressivity of the organizing schemes. Therefore, the elaboration phase of the blending
process can also account the modifications on the reasoning rules. Still on the blending
model, another continuity of the research is the specification of the network model – as
envisioned by Fauconnier and Turner (1998) – which provides the foundation for the
definition of the governing principles.

Given a specification of the network model and of meta-level reasoning rules, it is
possible to experiment with integration of learning. Thus, we add a cognitive operation
that can provide evaluations and feedback over the generated conceptualizations.
Another aspect that can be modeled similarly is the social impact of the new artifacts.
Hence, we move on the direction of integrating H-creativity (BODEN, 2004) to
conceptual blending. The specification of Brandt’s typology (BRANDT, 2002) also
adds more contextual information to the blending operation. Together with the network
model and other cognitive operations, a further specified typology allows the creation
more fine-tuned conceptualizations.

83

REFERENCES

BAADER, F.; HORROCKS, I.; SATTLER, U. Description Logics. In: VAN
HARMELEN, F.; LIFSCHITZ, V.; PORTER, B. (Ed.). Handbook of Knowledge
Representation. [S.l.]: Elsevier, 2007. p. 135-180.

BEZ, M.; VICARI, R. M.; SILVA, J. M. C. da; RIBEIRO, A.; GUZ, J. C.;
PASSERINO, L.; SANTOS, E. R.; PRIMO, T.; ROSSI, L.; BORDIGNON, A.;
BEHAR, P.; FILHO, R.; ROESLER, V. Proposta Brasileira de Metadados para Objetos
de Aprendizagem Baseados em Agentes (OBAA). Renote, [S.l.], v.8, n.2, 2010.

BINSTED, K. et al. Computational Humor. IEEE Intelligent Systems, Piscataway, NJ,
USA, v.21, n.2, p.59–69, 2006.
BLAIN, P. J. A Computer Model of Creativity Based on Perceptual Activity
Theory. 2007. Tese (Doutorado em Ciência da Computação) – Griffith University.
BODEN, M. A. Creativity and artificial intelligence. Artificial Intelligence, [S.l.],
v.103, n.1-2, p.347 – 356, 1998. Artificial Intelligence 40 years later.
BODEN, M. A. The Creative Mind: myths and mechanisms. 2.ed. New York:
Routledge, 2004.
BORDINI, R. H.; WOOLDRIDGE, M.; HüBNER, J. F. Programming Multi-Agent
Systems in AgentSpeak using Jason (Wiley Series in Agent Technology). [S.l.]: John
Wiley & Sons, 2007.

BRANDT, L. Conceptual Integration Typology (4.0). 2002. Disponível em:
<http://www.hum.au.dk/semiotics/docs2/pdf/brandt_line/conceptual_integration.pdf>.
Acesso em junho de 2010.
BRANDT, L. Explosive Blends: from cognitive semantics to literary analisys. 2000.
Tese (Doutorado em Ciência da Computação) – Roskilde University.
BRATMAN, M. E.; ISRAEL, D. J.; POLLACK, M. E. Plans and resource-bounded
practical reasoning. Computational Intelligence, [S.l.], v.4, p.349–355, 1988.
BRATMAN, M. Intentions, Plans, and Practical Reason. Harvard: Harvard
UniversityPress, 1987.
BRENNER, M. Multiagent planning with partially ordered temporal plans. In:
IJCAI’03, 2003, San Francisco, CA, USA. Anais. . . Morgan Kaufmann Publishers Inc.,
2003. p.1513–1514.

BRENNER, M.; NEBEL, B. Continual planning and acting in dynamic multiagent
environments. Autonomous Agents and Multi-Agent Systems, [S.l.], v.19, n.3, p.297–
331, 12 2009.

84

BROERSEN, J. et al. The BOID architecture: conflicts between beliefs, obligations,
intentions and desires. In: AGENTS ’01: Fifth International Conference On
Autonomous Agents, 2001, New York, NY, USA. Anais. . . ACM, 2001. p.9– 16.

CARDOSO, A. et al.. An architecture for hybrid creative reasoning. In: PAL, S. K;
DILLON, T. S.; YEUNG, D. S. Soft computing in case based reasoning. London:
Springer-Verlag, 2001. p.147–177.
CARROLL, J. M.; KELLOGG, W. A. Artifact as theory-nexus: hermeneutics meets
theory-based design. SIGCHI Bull., New York, NY, USA, v.20, n.SI, p.7–14, 1989.
CHOLVY, L.; GARION, C. Desires, Norms and Constraints. In: AAMAS ’04, 2004,
Washington, DC, USA. Anais. . . IEEE Computer Society, 2004. p.724–731.
CHURCHILL, D. Towards a useful classification of learning objects. Educational
Technology Research and Development, [S.l.], v.55, n.5, p.479–497, 2007.
CREGAN, A. Symbol Grounding for the Semantic Web. In: ESWC, 2007. Anais. . .
Berlin:Springer-Verlag, v.4519, p.429-442, 2007. (Lecture Notes in Computer Science).
COLMERAUER, A. Prolog in 10 figures. Commun. ACM, New York, NY, USA,
v.28, n.12, p.1296–1310, 1985.
COLTON, S. Creativity versus the perception of creativity in computational systems.
In: AAAI Spring Symp. On Creative Intelligent Systems, 2008. Anais. . . [S.l.: s.n.],
2008. p. 14-20.

COLTON, S.; MÁNTARAS, R. L. de; STOCK, O. Computational Creativity: coming
of age. AI Magazine, [S.l.], v.30, p.11–14, 2009.

CONTE, R.; ANDRIGHETTO, G.; CAMPENNÍ, M. The Immergence of Norms in
Agent Worlds. In: ESAW, 2009. Anais. . . [S.l.: s.n.], 2009. p.1–14.

CSIKSZENTMIHALYI, M. Society, Culture, and Person: a systems view of creativity.
In: STERNBERG, R. J. The Nature of Creativity. [S.l.]: Cambridge University Press,
1988. p.325–339.
D’INVERNO, M. et al. The dMARS Architecture: a specification of the distributed
multi-agent reasoning system. Autonomous Agents and Multi-Agent Systems, [S.l.],
v.9, n.1-2, p.5–53, 2004.

DASTANI, M. et al.. A Programming Language for Cognitive Agents Goal Directed
3APL. In: PROMAS, 2003. Anais. . . [S.l.: s.n.], 2003. p.111–130.

DASTANI, M.; TINNEMEIER, N.; MEYER, J.-J. C. A Programming Language for
Normative Multi-Agent Systems. In: DIGNUM, V. (Ed.). Handbook of Research on
Multi-Agent Systems: semantics and dynamics of organizational models. [S.l.]: Infor-
mation Science Reference, 2009.

DORIN, A.; KORB, K. A New Definition of Creativity. Artificial Life: Borrowing
from Biology, [S.l.], p.11–21, 2009.

DUCH, W.; PILICHOWSKI, M. Experiments with computational creativity. Neural
Information Processing - Letters and Reviews, [S.l.], v.11, n.4-6, p.123–133, 2007.

FAUCONNIER, G. How Compression Gives Rise to Metaphor and Metonymy. In: 9th
Conference On Conceptual Structure, Discourse, And Language. Anais. . . [S.l.: s.n.],
2008.

85

FAUCONNIER, G.; TURNER, M. Conceptual Integration Networks. Cognitive
Science, [S.l.], v.22, n.2, p.133–187, 1998.
FAUCONNIER, G.; TURNER, M. The Origin of Language as a Product of the
Evolution of Modern Cognition. [S.l.]: Equinox Publishing, 2008.
FAUCONNIER, G.; TURNER, M. The Way We Think: conceptual blending and the
mind’s hidden complexities. [S.l.]: Basic Books, 2002.
FIKES, R. E.; NILSSON, N. J. STRIPS: a new approach to the application of theorem
proving to problem solving. In: ALLEN, J.; HENDLER, J.; TATE, A. (Ed.). Readings
in Planning. San Mateo, CA: Kaufmann, 1990. p.88–97.

FRANOVÁ, M.; KODRATOFF, Y. On Computational Creativity, ’Inventing’ Theorem
Proofs. In: ISMIS, 2009. Anais. . . [S.l.: s.n.], 2009. p.573–581.

FUJITA, M. Intelligence Dynamics: a concept and preliminary experiments for open-
ended learning agents. Autonomous Agents and Multi-Agent Systems, [S.l.], v.19,
n.3, p.248–271, 12 2009.
GANGEMI, A. Norms and plans as unification criteria for social collectives.
Autonomous Agents and Multi-Agent Systems, [S.l.], v.17, n.1, p.70–112, 2008.
GEORGEFF, M. P.; LANSKY, A. L. Reactive Reasoning and Planning. In: AAAI,
1987. Anais. . . [S.l.: s.n.], 1987. p.677–682.
GOGUEN, J. A.; HARRELL, D. F. Style as a Choice of Blending Principles. In:
ARGAMON, S.; DUBNOV, S.; JUPP, J. Style and Meaning in Language, Art, Music,
and Design: Papers from the AAAI Fall Symposium. Anais... [S.l.: s.n.], 2004.

GOGUEN, J. An Introduction to Algebraic Semiotics, with Application to User In
terface Design. Computation for Metaphors, Analogy, and Agents, [S.l.], p.242–291,
1999.
GOVERNATORI, G.; ROTOLO, A. BIO logical agents: norms, beliefs, intentions in
defeasible logic. Autonomous Agents and Multi-Agent Systems, [S.l.], v.17, n.1,
p.36– 69, 2008.

HARMELEN, F. van; LIFSCHITZ, V.; PORTER, B. (Ed.). Handbook of Knowledge
Representation (Foundations of Artificial Intelligence). [S.l.]: Elsevier Science,
2007.
HARNAD, S. The Symbol Grounding Problem. Physica D: Nonlinear Phenomena,
[S.l.], v. 42, p.335-346, 1990.
HAVASI, C. et al. Digital Intuition: applying common sense using dimensionality
reduction. Intelligent Systems, IEEE, [S.l.], v.24, n.4, p.24–35, 2009.
HÉLIE, S.; SUN, R. Knowledge integration in creative problem solving. In: Annual
Meeting Of The Cognitive Science Society, 30., 2008. Anais. . . [S.l.: s.n.], 2008.
HERVÁS, R. et al. Enrichment of Automatically Generated Texts Using Metaphor. In:
MICAI, 2007. Anais. . . [S.l.: s.n.], 2007. p.944–954.
HOFWEBER, T. Logic and Ontology. In: ZALTA, E. N. (Ed.). The Stanford
Encyclopedia of Philosophy. Stanford: [s.n.], 2009.
HORRIDGE, M.; BECHHOFER, S. The OWL API: a java api for working with owl 2
ontologies. In: OWLED, 2009. Anais. . . CEUR-WS.org:259, 2009.

86

HUBER, M. J. JAM: a bdi-theoretic mobile agent architecture. In: The Third
International Conference On Autonomous Agents (AGENTS’99), 1999. Anais. . . ACM
Press, 1999. p.236–243.

IMAZ, M.; BENYON, D. Designing with Blends: conceptual foundations of human-
computer interaction and software engineering. [S.l.]: The MIT Press, 2007.

JIANG, H.; VIDAL, J. M.; HUHNS, M. N. EBDI: an architecture for emotional agents.
In: AAMAS, 2007. Anais. . . [S.l.: s.n.], 2007. p.11.

KASANEN, F.; KARI, L.; ARTO, S. The constructive approach in management ac-
counting research. Journal of Management Accounting Research, [S.l.], v.5, p.243–
259, 1993.
KLAPISCAK, T.; BORDINI, R. H. JASDL: a practical programming approach combi-
ning agent and semantic web technologies. In: Declarative Agent Languages And
Technologies VI, 2008. Anais. . . [S.l.: s.n.]. v.5397.

KOWALSKI, R. Logic for problem-solving. The Netherlands: North-Holland
Publishing, 1986.

KUMAR, D.; SHAPIRO, S. C. The OK BDI Architecture. International Journal of
Artificial Intelligence Tools, [S.l.], v.3, n.3, p.349–366, March 1994.

LEITE, J.; SOARES, L. Adding Evolving Abilities to a Multi-Agent System. In:
CLIMA VII, 2006. Anais... Springer, 2006. p.246–265. (Lecture Notes in Computer
Science, v.4371).
LIU, H.; SINGH, P. ConceptNet - A Practical Commonsense Reasoning Tool-Kit. BT
Technology Journal, Hingham, MA, USA, v.22, n.4, p.211–226, 2004.
LUKKA, K. The constructive research approach. In: Case Study Research In Logistics,
2003. Anais. . . [S.l.: s.n.], 2003. v.B1, p.83–101.
MÁNTARAS, R. L. Towards artificial creativity : examples of some applications of ai
to music performance. In: FERNÁNDEZ-CABALLERO, A. et al. (Eds.). 50 Años de la
Inteligencia Artificial. [S.l.]: UCLM, 2006. p.43–49.

MARCH, S. T.; SMITH, G. F. Design and natural science research on information
technology. Decision Support Systems, [S.l.], v.15, n.4, p.251 – 266, 1995.

MARTINS, J. M.; MIRANDA, E. R. A Connectionist Architecture for the Evolution of
Rhythms. In: EVOWORKSHOPS, 2006. Anais. . . Springer, 2006. p.696–706. (Lecture
Notes in Computer Science, v.3907).
MARTINS, J. M. et al. Enhancing Sound Design with Conceptual Blending of Sound
Descriptors. In: Workshop on Computational Creativity (CC'04) - European Conference
on Case-Based Reasoning (ECCBR), 2004, Madrid. Anais. . . Madrid: Universidad
Complutense de Madrid, 2004. p.243-255.
MCCULLOCH, W. S.; PITTS, W. A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics, [S.l.], n. 5, p.115-133, 1943.
MENEGUZZI, F. R.; LUCK, M. Leveraging New Plans in AgentSpeak(PL). In: DALT,
2008. Anais. . . [S.l.: s.n.], 2008. p.111–127.
MENEGUZZI, F.; LUCK, M. Norm-based behaviour modification in BDI agents.
In: AAMAS’09, 2009, Richland, SC-USA. Anais... International Foundation for
Autonomous Agents and Multiagent Systems, 2009. p.177–184.

87

MINSKY, M. A Framework for Representing Knowledge. Relatório Técnico, MIT-
AI Laboratory, AIM-306. Cambridge, MA, USA, 1974.
MINSKY, M. The society of mind. New York, NY, USA: Simon & Schuster, Inc.,
1986.
MORAES, M. C. Agentes Improvisacionais como Agentes Deliberativos. 2004. Tese
(Doutorado em Ciência da Computação) – Instituto de Informática, UFRGS, Porto
Alegre.

MORLEY, D.; MYERS, K. The SPARK Agent Framework. In: AAMAS ’04, 2004,
Washington, DC, USA. Anais. . . IEEE Computer Society, 2004. p.714–721.

MOTIK, B. et al.. Modeling ontologies using OWL, Description Graphs, and Rules. In:
OWLED 2008. Anais. . . [S.l.: s.n.].

MURPHY, G. L. The Big Book of Concepts. [S.l.]: The MIT Press, 2002.
NILSSON, N. J. The Physical Symbol System Hypothesis: Status and Prospects. In:
LUNGARELLA, M. et. al. (Org.). 50 Years of Artificial Intelligence. Berlin:Springer-
Verlag, v.4850, p.9-17, 2007.

PEARCE, M.; MÜLLENSIEFEN, D.; WIGGINS, G. A. A Comparison of Statisti- cal
and Rule-Based Models of Melodic Segmentation. In: ISMIR, 2008. Anais... [S.l.: s.n.],
2008. p.89–94.
PEARL, J. Bayesian networks: a model of self-activated memory for evidential reaso-
ning. In: Conference Of The Cognitive Science Society, California, Irvine, 1985.
Proceedings. . . California: [s.n.], 1985. p.329–334.

PEREIRA, F. C. Creativity and AI: a conceptual blending approach. [S.l.]: Mouton de
Gruyter, Berlin, 2007. (Applications of Cognitive Linguistics (ACL)).

PEREIRA, F. C.; CARDOSO, A. Experiments with free concept generation in Divago.
Knowl.-Based Syst., [S.l.], v.19, n.7, p.459–470, 2006.

PILICHOWSKI, M.; DUCH, W. Neurocognitive Approach to Creativity in the Do-
main of Word-Invention. In: ICONIP (2), 2008. Anais. . . [S.l.: s.n.], 2008. p.88–96.

PLOTKIN, G. D. A Structural Approach to Operational Semantics. [S.l.]: Computer
Science Department, Aarhus University, 1981. (DAIMI FN-19).

PLOTKIN, G. D. A structural approach to operational semantics. Journal of Logic and
Algebraic Programming, [S.l.], v.60-61, p.17–139, 2004.

PONZETTO, S. P.; STRUBE, M. Knowledge Derived from Wikipedia for Computing
Semantic Relatedness. Journal of Artificial Intelligence Research, [S.l.], v.30, p.181–
212, 2007.
QUILLIAN, M. Semantic Memory. In: MINSKY, M. (Ed.). Semantic Information
Processing. [S.l.]: MIT Press, 1968. p.227–270.
RAO, A. S. AgentSpeak(L): bdi agents speak out in a logical computable language. In:
MAAMAW ’96, 1996, Secaucus, NJ, USA. Anais... Springer-Verlag New York:[S.n.],
1996. p.42–55.

RAO, A. S.; GEORGEFF, M. P. Modeling Rational Agents within a BDI-Architecture.
In: KR, 1991. Anais. . . [S.l.: s.n.], 1991. p.473–484.

88

RESNICK, P. et al. GroupLens: an open architecture for collaborative filtering of
netnews. In: ACM Conference on Computer Supported Cooperative Work, 1994,
Chapel Hill, North Carolina. Anais. . . ACM, 1994. p.175–186.

RESNICK, P.; VARIAN, H. R. Recommender systems. Commun. Communications
of the ACM, [S.l.], v.40, n.3, p.56–58, 1997.

RITCHIE, G. Some Empirical Criteria for Attributing Creativity to a Computer
Program. Minds Mach., Hingham, MA, USA, v.17, n.1, p.67–99, 2007.

SAUNDERS, M.; THORNHILL, A.; LEWIS, P. Research Methods for Business Stu-
dents. 4.ed. [S.l.]: FT Prentice Hall, 2006.
SAUNDERS, R. Supporting Creativity Using Curious Agents. In: COMPUTATI-
ONAL CREATIVITY SUPPORT - WORKSHOP CCS 2009, 2009. Proceedings...
[S.l.: s.n.], 2009.
SAUNDERS, R. Towards a Computational Model of Creative Societies Using Curi- ous
Design Agents. In: ESAW, 2006. Anais. . . [S.l.: s.n.], 2006. p.340–353.
SAUNDERS, R.; GERO, J. S. How to study artificial creativity. In: Creativity &
Cognition, 2002. Anais. . . [S.l.: s.n.], 2002. p.80–87.
SEN, S.; AIRIAU, S. Emergence of Norms through Social Learning. In: IJCAI, 2007.
Anais. . . [S.l.: s.n.], 2007. p.1507–1512.
SHARDANAND, U.; MAES, P. Social Information Filtering: algorithms for automa-
ting “word of mouth”. In: ACM CHI’95 Conference On Human Factors In Computing
Systems, 1995. Proceedings. . . [S.l.: s.n.], 1995. v.1, p.210–217.

SHOHAM, Y.; POWERS, R.; GRENAGER, T. If multi-agent learning is the answer,
what is the question? Artificial Intelligence, [S.l.], v.171, n.7, p.365 – 377, 2007.
(Foundations of Multi-Agent Learning).
SIRIN, E. et al. Pellet: a practical owl-dl reasoner. J. Web Sem., [S.l.], v.5, n.2, p.51–
53, 2007.
SPEER, R.; HAVASI, C.; LIEBERMAN, H. AnalogySpace: reducing the
dimensionality of common-sense knowledge. In: AAAI, 2008. Anais. . . [S.l.: s.n.],
2008. p.548–553.

STEUNEBRINK, B. R.; DASTANI, M.; MEYER, J.-J. C. A Logic of Emotions for
Intelligent Agents. In: AAAI, 2007. Anais. . . [S.l.: s.n.], 2007. p.142–147.

STONE, P. Learning and Multiagent Reasoning for Autonomous Agents. In: IJCAI,
2007. Anais. . . [S.l.: s.n.], 2007. p.12–30.

SUBAGDJA, B.; SONENBERG, L.; RAHWAN, I. Intentional learning agent archi-
tecture. Autonomous Agents and Multi-Agent Systems, [S.l.], v.18, n.3, p.417–470,
06 2009.
VAISHNAVI, V.; KUECHLER, W. 2004. Design Research in Information Systems.
Available at: <http://desrist.org/design-research-in-information-systems> Accessed on
december, 2009.

VEALE, T.; HAO, Y. A Fluid Knowledge Representation for Understanding and
Generating Creative Metaphors. In: COLING 2008, 2008. Anais. . . [S.l.: s.n.], 2008.

89

WEI, K.; HUANG, J.; FU, S. A Survey of E-Commerce Recommender Systems. In:
International Conference on Service Systems and Service Management, 2007. Anais. . .
[S.l.], p.1– 5, 2007.

WIGGINS, G. A. A preliminary framework for description, analysis and comparison of
creative systems. Knowledge-Based Systems, [S.l.], v.19, n.7, p., 2006.

WILLIAMS, M.-A. Representation = Grounded Information. In: PRICAI, 2008.
Anais. . . [S.l.], v.5331, p.437–484, 2007. (Lecture Notes in Computer Science).

WOOLDRIDGE, M. Reasoning about Rational Agents. [S.l.]: The MIT Press, 2000.
WOOLDRIDGE, M.; JENNINGS, N. R. Intelligent agents: theory and practice.
Knowledge Engineering Review, [S.l.], v.10, p.115–152, 1995.
ZHU, J.; HARRELL, D. F. Daydreaming with Intention: scalable blending-based
imagining and agency in generative interactive narrative. In: AAAI Spring Symp. On
Creative Intelligent Systems, 2008. Anais. . . [S.l.: s.n.], 2008. p. 156-163.

90

APPENDIX 1 <AGENT MODEL WITH INTEGRATED
ADAPTATION MECHANISM>

package agent;

import java.util.*;

import org.semanticweb.owlapi.model.OWLOntology;

import reason.Blender;
import reason.IterationPhi;
import reason.Modification;
import reason.OWLBlender;
import reason.RBeliefModfication;
import reason.RandomAlpha;
import reason.RandomSop;
import reason.SEBModification;

import edu.uci.ics.jung.graph.Hypergraph;
import edu.uci.ics.jung.graph.SetHypergraph;

import asSemantics.CBEventsGoalListener;
import asSemantics.CBTransitionSystem;

import jason.JasonException;
import jason.RevisionFailedException;
import jason.architecture.AgArch;
import jason.asSemantics.ActionExec;
import jason.asSemantics.Agent;
import jason.asSemantics.Circumstance;
import jason.asSemantics.Event;
import jason.asSemantics.IntendedMeans;
import jason.asSemantics.Intention;
import jason.asSemantics.TransitionSystem;
import jason.asSemantics.Unifier;
import jason.asSemantics.GoalListener.GoalStates;
import jason.asSyntax.ASSyntax;
import jason.asSyntax.Atom;
import jason.asSyntax.Literal;
import jason.asSyntax.LiteralImpl;
import jason.asSyntax.LogicalFormula;
import jason.asSyntax.Plan;
import jason.asSyntax.PlanLibrary;
import jason.asSyntax.Pred;
import jason.asSyntax.StringTermImpl;
import jason.asSyntax.Trigger;
import jason.asSyntax.Trigger.TEOperator;
import jason.asSyntax.Trigger.TEType;
import jason.asSyntax.parser.ParseException;
import jason.bb.BeliefBase;
import jason.runtime.Settings;
import kr.*;

public class CBAgent extends Agent {

 //Mind mind;
 HyperMind mind;

91

 private RelatorFactory rf;

 public CBAgent() {
 // TODO Auto-generated constructor stub
 super();
 rf = new RelatorFactory();
 //mind = new Mind();
 mind = new HyperMind();
 }

 public void initAg() {
 super.initAg();
 }

 public void initAg(String asSrc) throws JasonException {
 super.initAg(asSrc);
 //inicializar a imaginacao do agente com base nas crencas e etc, agora que sabemos
 //que o agente foi iniciado corretamente.
 CBTransitionSystem cbt = new CBTransitionSystem(this, ts.getC(), ts.getSettings(),

ts.getUserAgArch());
 ts = cbt;
 CBEventsGoalListener cbe = new CBEventsGoalListener(this);
 cbt.addGoalListener(cbe);
 bbToImagination();
 plToImagination();
 //mind.printGraph();
 mind.showImagination();
 }

 Hypergraph<Concept, HyperConceptRelation> adaptationInput1(Trigger goal){
 Hypergraph<Concept, HyperConceptRelation> ret = new
 SetHypergraph<Concept, HyperConceptRelation>();
 //O trigger eh representado no grafo como um conceito, tendo em vista que nao

necessariamente ele
 //reflete uma crenca. Esse eh conceito eh assoaciado a um Conceito Plano como

"triggers"
 Concept trigger = new Concept(goal, true);

 Intention currentIntention = getTS().getC().getSelectedIntention();
 IntendedMeans im = currentIntention.getIM(goal, new Unifier());
 //plano que falhou
 Concept failPlan = new Concept(im.getPlan(), true);
 ret.addVertex(failPlan);

 /*Concept intention = new Concept(currentIntention, true);
 ret.addVertex(intention);*/
 //im.getCurrentStep();

 for (Literal b : getBB()){
 ret.addVertex(new Concept(b, true));
 }

 return ret;
 }

 private Set<Modification> agentMods(){
 SEBModification seb = new SEBModification(this);
 RBeliefModfication rb = new RBeliefModfication(0.2f);
 Set<Modification> ret = new HashSet<Modification>();
 ret.add(seb);
 ret.add(rb);
 return ret;
 }

 private Set<SimpleConceptRelator> agentFcs(){
 PlanTriggerEnabler pc = new PlanTriggerEnabler();
 BeliefStringSimilarity bc = new BeliefStringSimilarity();
 Set<SimpleConceptRelator> ret = new HashSet<SimpleConceptRelator>();
 return ret;
 }

 public void intentionFailure(Trigger goal){

92

 Intention currentIntention = getTS().getC().getSelectedIntention();
 IntendedMeans im = currentIntention.getIM(goal, new Unifier());
 //plano que falhou
 Plan fp = im.getPlan();

 OWLHelper o = new OWLHelper();
 OWLOntology i1 = o.adaptationInput1(goal, fp, bbToSet(getBB()));
 OWLOntology i2 = o.adaptationInput2(plToSet(getPL()), bbToSet(getBB()));
 //FALTAM AS FUNCOES DE COMPARACAO E MODIFICACAO
 Set<Modification> mods = agentMods();
 Set<SimpleConceptRelator> fcs = agentFcs();
 OWLBlender blender = new OWLBlender(i1, i2, mods, fcs, Blender.K.DOUBLE_SCOPE, new

RandomAlpha(), new IterationPhi(10), new RandomSop());
 OWLOntology ret = blender.blend();
 AgtBlendResult agresult = o.blendToAgent(ret);

 System.out.println("IMPRIMINDO AGT RESULT");
 Plan teste = null;
 for (Plan p : agresult.getPlans()){
 System.out.println("P: " + p.getFunctor() + " " + p.getBody());
 teste = p;
 }
 for (Literal l : agresult.getBeliefs()){
 System.out.println("B: " + l.toString());
 try {
 brf(l, null, currentIntention);
 } catch (RevisionFailedException e) {
 e.printStackTrace();
 }
 }
 System.out.println(" ADICIONANDO PLANO p/ META-EVENT");

 if (teste!=null){
 System.out.println("CRIANDO FAIL LITERAL");
 //Literal failLiteral = new

LiteralImpl(fp.getTrigger().getLiteral().getFunctor());
 Literal failLiteral = new LiteralImpl(fp.getTrigger().getLiteral());

 try {
 failLiteral.addAnnot((ASSyntax.parseTerm("state(failed)")));
 } catch (ParseException e1) {
 e1.printStackTrace();
 //gerar o evento de falha e seguir com o ciclo
 }
 System.out.println("CRIANDO FAIL TRIGGER");
 Trigger failstate= new Trigger(TEOperator.goalState, TEType.achieve,

failLiteral);
 //FAILSTATE=^!g1(verde)[state(finished)]
 Plan adaptPlan;
 try {
 System.out.println("literal: "+ failLiteral + " failstate: " +

failstate);
 adaptPlan = new Plan(null, failstate, Literal.LTrue,

teste.getBody());
 System.out.println("adapt paln: " + adaptPlan);
 System.out.println("ADICIONADNO PLANO");
 getPL().add(adaptPlan);
 Trigger failevent = new Trigger(TEOperator.add, TEType.achieve,

goal.getLiteral());

 Trigger fail2 = new Trigger(TEOperator.add, TEType.achieve, goal);

 generateGoalStateEvent(goal.getLiteral(), goal.getType(),

GoalStates.failed, null);
 }catch (JasonException e) {
 e.printStackTrace();
 //gerar evento de falha mesmo assim, ignorando que o plano nao foi

adicionado
 }
 }
 }

 //copy from jason1.3.3 library

93

 private void generateGoalStateEvent(Literal goal, TEType type, GoalStates state, String
reason) {

 goal = goal.forceFullLiteralImpl().copy();
 Literal stateAnnot = ASSyntax.createLiteral("state", new Atom(state.toString()));
 if (reason != null)
 stateAnnot.addAnnot(ASSyntax.createStructure("reason", new

StringTermImpl(reason)));
 goal.addAnnot(stateAnnot);
 Trigger eEnd = new Trigger(TEOperator.goalState, type, goal);
 if (ts.getAg().getPL().hasCandidatePlan(eEnd)) {
 System.out.println("evento sendo gerado");
 ts.getC().addEvent(new Event(eEnd, null));
 }
 }

 private Set<Plan> plToSet(PlanLibrary pl){
 HashSet<Plan> ret = new HashSet<Plan>();
 for (Iterator<Plan> iterator = pl.iterator(); iterator.hasNext();) {
 Plan p = iterator.next();
 ret.add(p);
 }
 return ret;
 }

 private Set<Literal> bbToSet(BeliefBase bb){
 HashSet<Literal> ret = new HashSet<Literal>();
 for (Iterator<Literal> iterator = bb.iterator(); iterator.hasNext();) {
 Literal literal = iterator.next();
 ret.add(literal);
 }
 return ret;
 }

 public void intentionFailureTESTE(Trigger goal){
 System.out.println("ˆˆˆˆˆˆˆˆˆˆˆˆˆˆfailed goalˆˆˆˆˆˆˆˆˆˆˆ : L: " + goal.getLiteral()

+ " O: "
 + goal.getOperator() +" T: " + goal.getType() + " E: " +

goal.getErrorMsg());
 System.out.println("ˆˆˆˆˆˆˆˆ terms do failed goal: " + goal.getTerms() + " ");
 //System.out.println("+++++ acao atual em TS: " + ts.getC().getAction().toString());
 System.out.println("+++++ SI: id: " + ts.getC().getSelectedIntention().getId() + "

term: " +
 ts.getC().getSelectedIntention().getAsTerm() + " ");
 //ts.getC().get
 System.out.println("+++++ SO: " + ts.getC().getSelectedOption());

 //lista de planos capazes de lidar com o trigger que falhou
 List<Plan> lp = getPL().getCandidatePlans(goal);

 Intention currentIntention = getTS().getC().getSelectedIntention();
 System.out.println("CI To string: "+ currentIntention.toString());
 System.out.println("-----");
 System.out.println(getTS().getC().toString());
 IntendedMeans im = currentIntention.getIM(goal, new Unifier());
 //nome do plano que falhou
 im.getPlan();
 im.getCurrentStep();

 //System.out.println("+++++ SI. hasTrigger goal: " +

currentIntention.hasTrigger(goal, new Unifier()));
 System.out.println("+++++ SI.IM.getPlan: " + im.getPlan().toString() + " cstep: " +

im.getCurrentStep().toString());

 //falhou, vamos mostrar isso no grafo, jah linkado com os respectivos conceitos na

mente do agnte
 Collection<Concept> cc = new HashSet<Concept>();
 cc.add(new Concept(im.getPlan(), true));

 //trigger da intencao que falhou
 cc.add(new Concept(goal, true));

 //planos aplicaveis dif plano q falhou.
 for (Plan p : lp){

94

 if (!p.equals(im.getPlan()))
 cc.add(new Concept(p, true));
 }
 }

 private void circumstanceHandle(Circumstance c){
 //intencao escolhida, focar o blend para o que estah sendo realizado
 Intention si = c.getSelectedIntention();
 //si.isFinished();
 //si.isSuspended();
 //si.getAsTerm();
 Stack<IntendedMeans> sim = si.getIMs();
 HashSet<Plan> plans = new HashSet<Plan>();
 HashSet<Trigger> triggers = new HashSet<Trigger>();
 for (IntendedMeans im : sim){
 //im.getCurrentStep();
 plans.add(im.getPlan());
 triggers.add(im.getTrigger());
 }
 c.getApplicablePlans(); //if null, no avaliable options... blend away baby, blend

away
 }

 /**Nesse metodo posso acrescentar a natureza dinamica do agente √† rede.
 * Ou seja, aqui, a Circumstance atual pode ser inserida na rede.
 * A alternativa √© nao incluir explicitamente essa parte na rede, porem
 * utiliza-la durante a fusao apenas.
 * Intencao como uma hyperAresta
 *
 */
 public void reasoningCycleEnd(){

 Intention si = getTS().getC().getSelectedIntention();
 if (si != null){
 si.isFinished();
 si.isSuspended();
 si.getAsTerm();

 System.out.println("@@@ SI: " + si.getAsTerm() + " is fini: " + si.isFinished() +
 " is susp: " + si.isSuspended());
 }
 /*
 Stack<IntendedMeans> sim = si.getIMs();
 for (IntendedMeans im : sim){
 im.getCurrentStep();
 im.getPlan();
 im.getTrigger();
 }

 ActionExec ac = getTS().getC().getAction();
 ac.getActionTerm();
 ac.getIntention();
 ac.getResult();

 Queue<Event> qe = getTS().getC().getEvents();
 for(Event e : qe){
 e.getIntention();
 e.getTrigger();
 e.isExternal();
 e.isInternal();
 }

 getTS().getC().getApplicablePlans();

 getTS().getC().getPendingActions();

 getTS().getC().getPendingIntentions();

 getTS().getC().getRelevantPlans();*/

 }

95

 private void addLiteralToImagination(Literal bel){
 Concept f = new Concept(bel, true);
 if (mind.getNetwork().containsVertex(f)){
 //setar o estado para true
 mind.updateConceptStatus(f, true);
 //System.out.println("*****************ADD BEL SET STATUS " + bel);
 }else{
 //adicionar e verificar as relacoes :-)
 mind.addConcept(f);
 everyRelation(bel);
 //System.out.println("*****************ADD BEL FULL " + bel);
 }
 }

 private void delLiteralFromImagination(Literal bel){
 Concept f = new Concept(bel, false);
 //modificou a mente, entao atualizar a imaginacao
 mind.updateConceptStatus(f, false);
 //System.out.println("*****************DEL BEL " + bel);
 }

 @SuppressWarnings("unchecked")
 @Override
 public List<Literal>[] brf(Literal beliefToAdd, Literal beliefToDel, Intention i) throws

RevisionFailedException {
 List<Literal>[] temp = super.brf(beliefToAdd, beliefToDel, i);
 if (temp != null){
 List<Literal> ll = temp[0];//additions to the belief base
 if (ll != null){
 for (Literal l : ll){
 addLiteralToImagination(l);
 }
 }
 ll = temp[1];//additions to the belief base
 if (ll != null){
 for (Literal l : ll){
 delLiteralFromImagination(l);
 }
 }
 }
 return temp;
 }

 private void everyRelation(Literal l){
 beliefToImagination(l);//crencas x crencas
 for (Plan p : getPL()){
 planRelations(l, p); //crencas x planos : geral: trigger
 contextRelations(l, p); //crencas x contexto de planos : string
 }
 }

 void beliefToImagination(Literal literal){
 Set<SimpleConceptRelator> crs = rf.compatibleSimpleRelator(Literal.class,

Literal.class);
 Iterator<Literal> i2 = getBB().iterator();
 while (i2.hasNext()) {
 Literal literal2 = (Literal) i2.next();
 Iterator<SimpleConceptRelator> ci = crs.iterator();
 while (ci.hasNext()) {
 SimpleConceptRelator conceptRelator = ci.next();
 System.out.println("--> " + conceptRelator.getClass().toString());
 //ConceptRelator<Literal, Literal, ?> notElegantCast =

conceptRelator;
 try {
 //ConceptRelation crl = new ConceptRelation();
 HyperConceptRelation crl = new HyperConceptRelation();
 crl.setResult(conceptRelator.relateO(literal, literal2));
 crl.setLabel("b");
 crl.setSimpleRelator(conceptRelator);
 if (crl.getResult() != null)
 {
 System.out.println(mind.addRelation(new

Concept(literal, true), new Concept(literal2, true), crl));

96

 }
 } catch (NotRelationalException e) {
 e.printStackTrace();
 }
 }
 }
 }

 private void bbToImagination(){
 for (Literal literal : getBB())
 beliefToImagination(literal);
 }

 private void contextRelations(Literal l, Plan p){
 StringContains cf = new StringContains();
 try {
 if (p.getContext() != null){
 String teste = (String) cf.relateO(l.getFunctor(),

p.getContext().toString());
 if (teste != null){
 Concept c = new Concept(p, true);
 c.setGraphLabel(p.getTrigger().toString());
 HyperConceptRelation crl = new HyperConceptRelation();
 crl.setResult(teste);
 crl.setLabel("pc");
 crl.setSimpleRelator(cf);
 System.out.println(mind.addRelation(new Concept(l, true),

c, crl));
 }
 }
 } catch (NotRelationalException e) {
 e.printStackTrace();
 }
 }

 private void planRelations(Literal l, Plan p){
 Set<SimpleConceptRelator> scr = rf.compatibleSimpleRelator(Literal.class,

Plan.class);
 if (p.getSrcInfo().getSrcFile() == this.getASLSrc()){
 Concept c = new Concept(p, true);
 c.setGraphLabel(p.getTrigger().toString());
 mind.addConcept(c);
 for (SimpleConceptRelator sc : scr){
 try {
 HyperConceptRelation crl = new HyperConceptRelation();
 crl.setResult(sc.relateO(l, p));
 crl.setLabel("p");
 crl.setSimpleRelator(sc);
 if (crl.getResult() != null && (Boolean)crl.getResult())
 {
 System.out.println(mind.addRelation(new

Concept(l, true), c, crl));
 }
 } catch (NotRelationalException e) {
 e.printStackTrace();
 }
 }
 }
 }

 private void plToImagination(){
 for (Plan p : pl){
 for(Literal l : bb){
 planRelations(l, p);
 contextRelations(l,p);
 }
 }
 }

}

97

APPENDIX 2 <EVENT LISTENER FOR CB AGENT>

package asSemantics;

import agent.CBAgent;
import jason.asSemantics.Event;
import jason.asSemantics.GoalListener;
import jason.asSemantics.TransitionSystem;
import jason.asSyntax.Trigger;

public class CBEventsGoalListener implements GoalListener {

 private TransitionSystem ts;
 private CBAgent ag;

 public CBEventsGoalListener(CBAgent ag){
 this.ag = ag;
 this.ts = ag.getTS();
 }

 public void goalFailed(Trigger goal) {
 ag.intentionFailure(goal);
 }

 public void goalFinished(Trigger goal) {
 // TODO Auto-generated method stub

 }

 public void goalResumed(Trigger goal) {
 // TODO Auto-generated method stub

 }

 public void goalStarted(Event goal) {
 // TODO Auto-generated method stub

 }

 public void goalSuspended(Trigger goal, String reason) {
 // TODO Auto-generated method stub

 }

}

98

APPENDIX 3 <EXAMPLE AGENT>

// Agent Chef in project JCBAgent

/* Initial beliefs and rules */
ing(funghi).
ing(porcini).
ing(brie).
ing(parmesao).
ing(padano).
ing(vbr).
ing(vtinto).
ing(vinag_arroz).
ing(vinag_maca).
ing(manteiga).
ing(nori).
ing(tomate_seco).
ing(arroz_canoli).
ing(arroz_arb).
ing(arroz_jap_curto).
ing(arroz_jap_longo).
ing(rucula).
ing(agriao).
ing(alface).
ing(acucar).
ing(sal).

panelaFogao(pan_ferro).

/* Initial goals */

!start.

/* Plans */

+!start : true <-
 +casa(laranja);
 +casa(verde);
 !g1(yada).

+!elaborarSushiTomSeco(A, V, S, AC, N): arrozJap(A) & nori(N) <-
 !elaborarSushizu(V,S,AC);
 !cozinharArrozSushi(A);
 ?tomateSeco(T);
 ?queijoCremoso(Q);
 ?rucula(R);
 ?cozido(A);
 ?suhizu(SZ);
 !prepararArrozSuhi(A,SZ);
 ?arrozSPronto(AS);
 .montarRolo(N,AS);
 .print("fim sushi").

+!elaborarSushizu(V,S,AC): vinagreArroz(V) & sal(S) & acucar(AC) <-
 .colPanela(V, 100);
 .colPanela(S, 20);
 .colPanela(AC, 20);
 ?panelaFogao(P);
 .mexer(P);
 .ferver(P);

99

 +sushizu(szArroz).

+!cozinharArrozSushi(A) : true <-
 .colPanela(A, 200);
 .colPanela(agua, 500);
 ?panelaFogao(P);
 .ferver(P,2);
 .fogoBaixo(P,18);
 .wait(20);
 +cozido(A).

+!prepararArrozSuhi(A,SZ) : cozido(A) & sushizu(SZ) <-
 .colApoio(A);
 .espalhar(apoio, SZ);
 .ventilar(apoio);
 .mexer(apoio);
 +arrozPronto(apoio).

+!cozinharRisoto(X, Y) : arroz(X) & caldo(Y) <-
 .colPanela(X);
 .colPanela(Y);
 ?panelaFogao(P);
 .ligarFogoMedio(P);
 .adicionarCaldo(P, Y, 50);
 +cozinhando(P);
 .wait(1);
 !adicionarIngredienteseMexer(P);
 .print("fim cozinhar rizo").

+!adicionarIngredientesMexer(P): cozinhando(P) <-
 ?ing(funghi);
 ?ing(brie);
 ?ing(vbr);
 ?ing(manteiga);
 .adicionaIng(P, vbr);
 .mexer(10);
 .adicionaIng(P, fungui);
 .mexer(2);
 .adicionaIng(P, brie);
 .mexer(2);
 .adicionaIng(P, manteiga);
 .print("fim do plano addIngMexer").

100

APPENDIX 4 <MOFICATION FUNCTION FOR
SEMANTICALY ENHANCED BELIEFS>

package reason;

import java.util.Random;
import java.util.Set;

import jasdl.bridge.JASDLOntologyManager;
import jasdl.bridge.factory.SELiteralFactory;
import jasdl.bridge.seliteral.SELiteral;
import jasdl.bridge.seliteral.SELiteralClassAssertion;
import jasdl.bridge.seliteral.SELiteralObjectPropertyAssertion;
import jasdl.util.exception.JASDLException;
import jasdl.util.exception.JASDLInvalidSELiteralException;
import jason.asSemantics.Agent;
import jason.asSyntax.ASSyntax;
import jason.asSyntax.Literal;
import jason.asSyntax.Term;
import jason.asSyntax.parser.ParseException;

import org.semanticweb.owlapi.model.OWLClass;
import org.semanticweb.owlapi.model.OWLClassExpression;
import org.semanticweb.owlapi.model.OWLDataFactory;
import org.semanticweb.owlapi.model.OWLNamedIndividual;
import org.semanticweb.owlapi.model.OWLOntology;
import org.semanticweb.owlapi.model.OWLOntologyCreationException;
import org.semanticweb.owlapi.model.PrefixManager;

import agent.OWLHelper;

import com.clarkparsia.pellet.owlapiv3.PelletReasoner;
import com.clarkparsia.pellet.owlapiv3.PelletReasonerFactory;

public class SEBModification implements Modification {

 private JASDLOntologyManager jom;
 SELiteralFactory selFactory;
 private OWLHelper ohelper;
 //private JASDLAgentConfigurator config;

 public SEBModification(Agent owner){
 jom = new JASDLOntologyManager(owner.getLogger());
 selFactory = new SELiteralFactory(jom);
 ohelper = new OWLHelper();
 //config = new JASDLAgentConfigurator(owner);
 }

 public Class getType(){
 return Literal.class;
 }

 public Object modify(Object con) throws NotModificableException{
 if (!(con instanceof Literal)){
 throw new NotModificableException();
 }
 Literal concept = (Literal)con;
 try {
 SELiteral se = selFactory.construct(concept);

101

 OWLOntology seOnto = ohelper.loadOntoFromFile(
 OWLHelper.ONTO_DIR + se.getOntologyAnnotation() + ".owl");

 PelletReasoner reasoner =

PelletReasonerFactory.getInstance().createReasoner(seOnto);
 reasoner.getKB().realize();

 PrefixManager pm = ohelper.getPM();
 OWLDataFactory df = ohelper.getDataFactory();
 Random r = new Random();

 if (se instanceof SELiteralClassAssertion){
 SELiteralClassAssertion sec = se.asClassAssertion();
 String classname = sec.getLiteral().getFunctor();
 OWLClass oc = df.getOWLClass(":"+classname, pm);
 //agora pegar as instancias de oc
 Set<OWLNamedIndividual> si = reasoner.getInstances(oc,

false).getFlattened();
 //sortear uma, substituir e retornar
 if (!si.isEmpty()){
 OWLNamedIndividual ch = (OWLNamedIndividual)

si.toArray()[r.nextInt(si.size())];
 int i = ch.getIRI().toString().indexOf(":");
 String iname = ch.getIRI().toString().substring(i+1);
 Term t = ASSyntax.parseTerm(iname);
 Literal ret =

ASSyntax.createLiteral(se.getLiteral().getFunctor(), t);
 ret.addAnnot(se.getOntologyAnnotation());
 return ret;
 }
 throw new NotModificableException();
 }else if (se instanceof SELiteralObjectPropertyAssertion){
 SELiteralObjectPropertyAssertion seo =

se.asObjectPropertyAssertion();
 //verifica se possui range definition
 String functor = seo.getLiteral().getFunctor();
 org.semanticweb.owlapi.model.OWLObjectProperty oa =
 df.getOWLObjectProperty(":"+functor, pm);
 Set<OWLClassExpression> ranges = oa.getRanges(seOnto);
 if (!ranges.isEmpty()){
 //possui range, obter algum individuo que se adeque a def.
 //escolhe uma def. aleatoreamente
 int i = r.nextInt(ranges.size());
 OWLClassExpression c = (OWLClassExpression)

ranges.toArray()[i];
 Set<OWLNamedIndividual> si = reasoner.getInstances(c,

false).getFlattened();
 //escolhe um individuo
 i = r.nextInt(si.size());
 OWLNamedIndividual ind = (OWLNamedIndividual)

si.toArray()[i];
 Term t1 = seo.getLiteral().getTerm(0).clone();
 i = ind.getIRI().toString().indexOf(":");
 String iname = ind.getIRI().toString().substring(i+1);
 Term t = ASSyntax.parseTerm(iname);
 Literal ret =

ASSyntax.createLiteral(se.getLiteral().getFunctor(), t1, t);
 ret.addAnnot(se.getOntologyAnnotation());
 return ret;
 }else{
 //nao possui range, entao inferir o tipo
 String uri = seo.getSubject().getURI().toString();
 int i = uri.indexOf("#");
 String iname = uri.substring(i+1);
 OWLNamedIndividual subject =

ohelper.getDataFactory().getOWLNamedIndividual(":"+iname, pm);
 org.semanticweb.owlapi.model.OWLObjectProperty pa =

 ohelper.getDataFactory().getOWLObjectProperty(":"+seo.getLiteral().getFunctor(), pm);
 Set<OWLNamedIndividual> objs =

reasoner.getObjectPropertyValues(subject, pa).getFlattened();
 //escolher um individuo aleatoriamente
 i = r.nextInt(objs.size());

102

 OWLNamedIndividual object =
(OWLNamedIndividual)objs.toArray()[i];

 Set<OWLClass> classes = reasoner.getTypes(object,
false).getFlattened();

 //escolhe uma classe e entao um individuo dessa classe
 i = r.nextInt(classes.size());
 OWLClass c = (OWLClass) classes.toArray()[i];
 objs = reasoner.getInstances(c, false).getFlattened();
 i = r.nextInt(objs.size());
 OWLNamedIndividual change =

(OWLNamedIndividual)objs.toArray()[i];

 Term t1 = seo.getLiteral().getTerm(0).clone();
 i = change.getIRI().toString().indexOf(":");
 iname = change.getIRI().toString().substring(i+1);
 Term t = ASSyntax.parseTerm(iname);
 Literal ret =

ASSyntax.createLiteral(se.getLiteral().getFunctor(), t1, t);
 ret.addAnnot(se.getOntologyAnnotation());
 return ret;
 }
 }
 else throw new NotModificableException();
 } catch (JASDLInvalidSELiteralException e) {
 // provavelmente nao eh um SELit entao nao pode ser modificado
 throw new NotModificableException(e);
 }catch (OWLOntologyCreationException e) {
 throw new NotModificableException(e);
 } catch (ParseException e) {
 throw new NotModificableException(e);
 } catch (JASDLException e) {
 throw new NotModificableException(e);
 }
 }

}

103

APPENDIX 5 <RANDOM MOFICATION FUNCTION FOR
BELIEFS>

package reason;

import java.util.Random;

import jason.asSyntax.ASSyntax;
import jason.asSyntax.Literal;
import jason.asSyntax.Term;
import jason.asSyntax.parser.ParseException;

public class RBeliefModfication implements Modification {

 Float chance;
 Random r;

 public RBeliefModfication(Float chance){
 this.chance = chance;
 r = new Random();
 }

 public Class getType(){
 return Literal.class;
 }

 public Object modify(Object c) throws NotModificableException{
 //selecao aleatoria do termo, uma vez,
 //tamanho do termo
 if (!(c instanceof Literal)){
 throw new NotModificableException();
 }
 Literal concept = (Literal)c;
 Literal ret = (Literal) concept.clone();
 if (r.nextFloat() < chance){
 int termo = r.nextInt(ret.getArity());
 Term t = concept.getTerm(termo);
 try{
 Term mod = null;
 if (t.isString()){
 mod = ASSyntax.parseTerm(stringMod(t.toString()));
 }else if (t.isNumeric()){
 Integer imod = integerMod(Integer.valueOf(t.toString()));
 mod = ASSyntax.parseTerm(imod.toString());
 }
 ret.setTerm(termo, mod);
 return ret;
 }catch(ParseException pe){
 throw new NotModificableException(pe);
 }catch(NumberFormatException e){
 throw new NotModificableException(e);
 }
 }
 return concept;
 }

 String stringMod(String c){
 //A-Z: 65-90
 //a-z: 97-122

104

 //quantos caracteres?
 char[] ret = c.toCharArray();
 int cs = r.nextInt(c.length());
 for (int i = 0; i < cs; i++) {
 //qual caracter?
 int ca = r.nextInt(c.length());
 //numero ou caracter?
 if (r.nextBoolean())
 ret[ca] = (char)((char)r.nextInt(26) + 65);
 else
 ret[ca] = (char)r.nextInt(9);
 }
 return String.copyValueOf(ret);
 }

 Integer integerMod(Integer c){
 return r.nextInt();
 }
}

105

APPENDIX 6 <FUNCTOR COMPARISON FUNCTION>

package kr;

import jason.asSyntax.Literal;

public class EqualsFunctor extends BeliefStringSimilarity implements SimpleConceptRelator {

 @Override
 public Object relateO(Object t1, Object t2) throws NotRelationalException {
 if (t1 instanceof Literal && t2 instanceof Literal){
 String f1 = ((Literal) t1).getFunctor();
 String f2 = ((Literal) t2).getFunctor();
 if (f2.equals(f1))
 return f1;
 }
 throw new NotRelationalException();
 }

 @Override
 public boolean equals(Object obj) {
 if (obj == null)
 return false;
 if (this == obj)
 return true;
 if (!(obj instanceof EqualsFunctor))
 return false;
 return obj.getClass().getName().equals(this.getClass().getName());

 }
}

106

APPENDIX 7 <LITERAL INTERSECTION
COMPARISON FUNCTION>

package kr;

import jason.asSyntax.Literal;

public class BeliefStringSimilarity implements ConceptRelator<Literal, Literal, String>,

SimpleConceptRelator {

 public Class<?> getConcept1Type() {
 // TODO Auto-generated method stub
 return Literal.class;
 }

 public Class<?> getConcept2Type() {
 // TODO Auto-generated method stub
 return Literal.class;
 }

 public Class<?> getReturnType() {
 // TODO Auto-generated method stub
 return String.class;
 }

 public String relate(Literal t1, Literal t2) throws NotRelationalException {
 if (t1.equals(t2))
 return null;
 return LiteralHelper.literalRelation(t1, t2);
 }

 public Class<?> getKRType(){
 return Literal.class;
 }

 public static void main(String[] args) {
 // TODO Auto-generated method stub
 BeliefStringSimilarity teste = new BeliefStringSimilarity();
 System.out.print(teste.getClass());

 }

 public Object relateO(Object t1, Object t2) throws NotRelationalException {
 if (!(t1 instanceof Literal) || !(t2 instanceof Literal))
 throw new NotRelationalException();
 return LiteralHelper.literalRelation((Literal)t1, (Literal)t2);
 }

 @Override
 public boolean equals(Object obj) {
 if (obj == null)
 return false;
 if (this == obj)
 return true;

107

 if (!(obj instanceof BeliefStringSimilarity))
 return false;
 return obj.getClass().getName().equals(this.getClass().getName());
 }

 @Override
 public int hashCode() {
 // TODO Auto-generated method stub
 return this.getClass().getName().toString().hashCode();
 }

 @Override
 public String toString() {
 return this.getClass().getName();
 }

 }

package kr;

import jason.asSyntax.Literal;
import jason.asSyntax.Term;

import java.util.*;

public class LiteralHelper {

 public static boolean functorComparisson(String functor, String comp){
 return functor.contains(comp);
 }

 public static boolean termComparisson(Term t, Term tcomp){
 return t.equals(tcomp);
 }

 public static boolean listTermComparisson(List<Term> lt, Term tcomp){
 return lt.contains(tcomp);
 }

 public static Term listTermComparisson(List<Term> lt1, List<Term> lt2){
 Iterator<Term> it = lt1.iterator();
 while (it.hasNext()) {
 Term t = it.next();
 if (listTermComparisson(lt2, t))
 return t;
 }
 return null;
 }

 public static String literalRelation(Literal l1, Literal l2){
 //se os literais forem iguais esse metodo retorna falso
 if (l1.toString().equals(l2.toString()))
 return null;
 //comparacao de functor com functor
 String lf1 = l1.getFunctor();
 String lf2 = l2.getFunctor();
 if (lf1.equalsIgnoreCase(lf2) || lf1.contains(lf2) || lf2.contains(lf1)){
 return lf1;
 }
 //comparacao do functor com o restante do literal
 String lf = l1.getFunctor();
 System.out.println("FUNCTOR LITERAL 1: " + lf);
 if (functorComparisson(lf, l2.toString())){
 return lf;
 }

 lf = l2.getFunctor();

 if (functorComparisson(lf, l1.toString())){
 return lf;
 }

108

 //comparacao da lista de termos com o restante do literal
 List<Term> lt1 = l1.getTerms();
 List<Term> lt2 = l2.getTerms();
 Term r = listTermComparisson(lt1, lt2);
 if (r != null){
 return r.toString();
 }
 r = listTermComparisson(lt2, lt1);
 if (r != null){
 return r.toString();
 }
 return null;
 }

}

109

APPENDIX 8 <EVENT SIMULATION COMPARISON
FUNCTION>

package kr;

import jason.asSyntax.*;

public class PlanTriggerEnabler implements ConceptRelator<Literal, Plan, Boolean>,

SimpleConceptRelator {

 public Object relateO(Object t1, Object t2) throws NotRelationalException {
 if (t1 instanceof Literal && t2 instanceof Plan){
 return PlanHelper.triggersPlan((Literal)t1, (Plan)t2);
 }
 throw new NotRelationalException();
 //return null;
 }

 public Class<?> getConcept1Type() {
 return Literal.class;
 }

 public Class<?> getConcept2Type() {
 return Plan.class;
 }

 public Class<?> getReturnType() {
 return Boolean.class;
 }

 public Boolean relate(Literal t1, Plan t2) throws NotRelationalException {
 // TODO Auto-generated method stub
 return PlanHelper.triggersPlan(t1, t2);
 }

 public int hashCode() {
 // TODO Auto-generated method stub
 return this.getClass().getName().toString().hashCode();
 }

 public String toString() {
 return this.getClass().getName();
 }

 public boolean equals(Object obj) {
 if (obj == null)
 return false;
 if (this == obj)
 return true;
 if (!(obj instanceof PlanTriggerEnabler))
 return false;

110

 return obj.getClass().getName().equals(this.getClass().getName());

 }

}

package kr;

import jason.JasonException;
import jason.asSyntax.Literal;
import jason.asSyntax.Plan;
import jason.asSyntax.PlanLibrary;
import jason.asSyntax.Trigger;

import java.util.HashMap;
import java.util.List;
import java.util.Map;

public class PlanHelper extends LiteralHelper {

 protected static Map<Trigger, List<Plan>> relatedByTrigger(Literal search, PlanLibrary

plans) throws Exception{

 Map<Trigger, List<Plan>> relatedByTrigger = new HashMap<Trigger, List<Plan>>();

 Trigger test1 = new Trigger(Trigger.TEOperator.add, Trigger.TEType.belief, search);
 Trigger test2 = new Trigger(Trigger.TEOperator.add, Trigger.TEType.achieve, search);
 Trigger test3 = new Trigger(Trigger.TEOperator.add, Trigger.TEType.test, search);
 Trigger test4 = new Trigger(Trigger.TEOperator.del, Trigger.TEType.belief, search);
 Trigger test5 = new Trigger(Trigger.TEOperator.del, Trigger.TEType.achieve, search);
 Trigger test6 = new Trigger(Trigger.TEOperator.del, Trigger.TEType.test, search);

 /*Use Trigger class to simulate possible uses / applications of the belief.
 * Achievable, testeable, from a belief, when added, when deleted
 */
 relatedByTrigger.put(test1, plans.getCandidatePlans(test1));
 relatedByTrigger.put(test2, plans.getCandidatePlans(test2));
 relatedByTrigger.put(test3, plans.getCandidatePlans(test3));
 relatedByTrigger.put(test4, plans.getCandidatePlans(test4));
 relatedByTrigger.put(test5, plans.getCandidatePlans(test5));
 relatedByTrigger.put(test6, plans.getCandidatePlans(test6));

 return relatedByTrigger;
 }

 protected static boolean triggersPlan(Literal search, Plan p) {

 Trigger test1 = new Trigger(Trigger.TEOperator.add, Trigger.TEType.belief, search);
 Trigger test2 = new Trigger(Trigger.TEOperator.add, Trigger.TEType.achieve, search);
 Trigger test3 = new Trigger(Trigger.TEOperator.add, Trigger.TEType.test, search);
 Trigger test4 = new Trigger(Trigger.TEOperator.del, Trigger.TEType.belief, search);
 Trigger test5 = new Trigger(Trigger.TEOperator.del, Trigger.TEType.achieve, search);
 Trigger test6 = new Trigger(Trigger.TEOperator.del, Trigger.TEType.test, search);

 if (p.isRelevant(test1)!=null)
 return true;
 if (p.isRelevant(test2)!=null)
 return true;
 if (p.isRelevant(test3)!=null)
 return true;
 if (p.isRelevant(test4)!=null)
 return true;
 if (p.isRelevant(test5)!=null)
 return true;
 if (p.isRelevant(test6)!=null)
 return true;
 return false;
 }

}

111

APPENDIX 9<LEXICAL SIMILARITY COMPARISON
FUNCTION>

package kr;

public class StringContains extends BeliefStringSimilarity implements SimpleConceptRelator {

 @Override
 public Class<?> getConcept1Type() {
 // TODO Auto-generated method stub
 return String.class;
 }

 @Override
 public Class<?> getConcept2Type() {
 // TODO Auto-generated method stub
 return String.class;
 }

 @Override
 public Class<?> getReturnType() {
 // TODO Auto-generated method stub
 return String.class;
 }

 @Override
 public Object relateO(Object t1, Object t2) throws NotRelationalException {
 if (t1 instanceof String && t2 instanceof String){
 String s1 = (String) t1;
 String s2 = (String) t2;
 if (s2.contains(s1))
 return s1;
 //if (s1.contains(s2))
 // return s2;
 return null;
 }throw new NotRelationalException();
 //return null;
 }

 @Override
 public boolean equals(Object obj) {
 if (obj == null)
 return false;
 if (this == obj)
 return true;
 if (!(obj instanceof StringContains))
 return false;
 return obj.getClass().getName().equals(this.getClass().getName());

 }

}

112

APPENDIX 10<RANDOM SOP>

package reason;

import java.util.Random;

import reason.Blender.OP;

public class RandomSop implements Sop {

 public OP sop() {
 Random r = new Random();
 float f = r.nextFloat();
 if (f <= 0.33)
 return Blender.OP.MODIFICATION;
 else if (f > 0.33 && f <= 0.66)
 return Blender.OP.COMPLETION;
 else
 return Blender.OP.COMPOSITION;
 }
}

113

APPENDIX 11<ITERATION φ>

package reason;

public class IterationPhi implements Phi{

 int counter = 0;
 int lim;

 public IterationPhi(int lim){
 this.lim = lim;
 }

 public boolean phi(){

 return true;
 }

}

114

APPENDIX 12<BLENDING INTERNAL ACTION>

package agent.ia;

import java.util.HashSet;
import java.util.Set;

import org.semanticweb.owlapi.model.OWLIndividual;
import org.semanticweb.owlapi.model.OWLNamedIndividual;
import org.semanticweb.owlapi.model.OWLOntology;
import org.semanticweb.owlapi.model.OWLOntologyCreationException;

import reason.Alpha;
import reason.Blender;
import reason.IterationPhi;
import reason.Modification;
import reason.OWLBlender;
import reason.RandomSop;
import reason.Sop;

import jason.asSemantics.DefaultInternalAction;
import jason.asSemantics.TransitionSystem;
import jason.asSemantics.Unifier;
import jason.JasonException;
import jason.asSyntax.*;
import kr.SimpleConceptRelator;

@SuppressWarnings("serial")
public class RecommendationBlend extends DefaultInternalAction {

 RecOWLBridge rec;

 public RecommendationBlend(){
 rec = new RecOWLBridge();
 }

 protected void checkArguments(Term[] args) throws JasonException {
 super.checkArguments(args); // check number of arguments
 if (! (args[0] instanceof ListTerm))
 throw JasonException.createWrongArgument(this,
 "first argument must be a List of Terms representing the user model");
 if (! (args[1] instanceof VarTerm))
 throw JasonException.createWrongArgument(this,
 "second argument must be Variable to hold the reference to the blend");
 if (! (args[1] instanceof StringTerm))
 throw JasonException.createWrongArgument(this,
 "third argument must be StringTerm defining the k. See the API Doc for

options.");
 if (! (args[1] instanceof StringTerm))
 throw JasonException.createWrongArgument(this,
 "fourht argument must be StringTerm defining the alpha function. See the

API Doc for options.");
 if (! (args[1] instanceof StringTerm))
 throw JasonException.createWrongArgument(this,
 "fifth argument must be StringTerm defining if the constitutive principles

are applied or not.");
 }

115

 public Object execute(TransitionSystem ts, Unifier un, Term[] args) throws Exception {
 // execute the internal action
 ts.getAg().getLogger().info("executing internal action 'agent.ia.Blender'");

 checkArguments(args);

 ListTerm userModelB = (ListTerm) args[0];
 //1. criar o input 1 - OWL Ontology
 OWLOntology i1 = recI1(userModelB);
 //2. criar o input 2 - OWL Ontology
 OWLOntology i2 = recI2();
 //3. funcoes de comparacao
 Set<Modification> mods = recMods();
 Set<SimpleConceptRelator> fcs = recRelators();
 Alpha a = alphaByName(args[3].toString());
 if (a == null)
 throw new Exception("unknown alpha function");
 String sopt = args[4].toString();
 Sop sop = null;
 if (!sopt.equals("none"))
 sop = new RandomSop();
 OWLBlender blender = new OWLBlender(i1, i2, mods, fcs,

Blender.K.valueOf(args[2].toString()),
 a, new IterationPhi(10), sop);
 OWLOntology retb = blender.blend();

 ListTerm ret = rec.ontoToListTerm(retb);
 return un.unifies(args[1], ret);
 }

 public OWLOntology recI1(ListTerm bs){
 OWLOntology ret = rec.newOnto("r1");
 OWLIndividual cs1 = rec.newIndividual("usermodel", rec.user, ret);
 for (Term term : bs) {
 if (term.isLiteral()){
 Literal l = (Literal)term;
 String functor = l.getFunctor();
 if (functor.equals("person") && l.getArity()==1){
 OWLIndividual p =

rec.userIndividual(l.getTerm(0).toString(), ret);
 rec.obpToIndividual(rec.hasPerson, cs1, p, ret);
 }else if (functor.equals("foafinterest") && l.getArity()==2){
 OWLIndividual p =

rec.userIndividual(l.getTerm(0).toString(), ret);
 OWLIndividual i =

rec.newIndividual(l.getTerm(1).toString(), rec.interest, ret);
 rec.obpToIndividual(rec.foafInterest, p, i, ret);
 }else if (functor.equals("topicInterest") && l.getArity()==2){
 OWLIndividual p =

rec.userIndividual(l.getTerm(0).toString(), ret);
 OWLIndividual i =

rec.newIndividual(l.getTerm(1).toString(), rec.interest, ret);
 rec.obpToIndividual(rec.foafTopicInterest, p, i, ret);
 }else if (functor.equals("item") && l.getArity()==1){
 OWLIndividual p =

rec.newIndividual(l.getTerm(0).toString(), rec.item, ret);
 rec.obpToIndividual(rec.hasItem, cs1, p, ret);
 }else if (functor.equals("itemModel") && l.getArity()==1){
 OWLIndividual p =

rec.newIndividual(l.getTerm(0).toString(), rec.itemModel, ret);
 rec.obpToIndividual(rec.hasItemModel, cs1, p, ret);
 }else if (functor.equals("ldactivity") && l.getArity()==1){
 OWLIndividual p =

rec.newIndividual(l.getTerm(0).toString(), rec.ld_activity, ret);
 rec.obpToIndividual(rec.hasLearningActivity, cs1, p, ret);
 }else if (functor.equals("environment") && l.getArity()==1){
 OWLIndividual p =

rec.newIndividual(l.getTerm(0).toString(), rec.environment, ret);
 rec.obpToIndividual(rec.hasEnvironment, cs1, p, ret);
 }else if (functor.equals("learningObjective") && l.getArity()==1){
 OWLIndividual p =

rec.newIndividual(l.getTerm(0).toString(), rec.learningObjective, ret);
 rec.obpToIndividual(rec.hasLearningObjective, cs1, p,

116

ret);
 }else if (functor.equals("goal") && l.getArity()==1){
 OWLIndividual p =

rec.newIndividual(l.getTerm(0).toString(), rec.goal, ret);
 rec.obpToIndividual(rec.hasGoal, cs1, p, ret);
 }else if (functor.equals("interest") && l.getArity()==1){
 OWLIndividual p =

rec.newIndividual(l.getTerm(0).toString(), rec.interest, ret);
 rec.obpToIndividual(rec.hasInterest, cs1, p, ret);
 }else if (functor.equals("accessibility") && l.getArity()==1){
 OWLIndividual p =

rec.newIndividual(l.getTerm(0).toString(), rec.accessibility, ret);
 rec.obpToIndividual(rec.hasAccessibility, cs1, p, ret);
 }else if (functor.equals("lipactivity") && l.getArity()==1){
 OWLIndividual p =

rec.newIndividual(l.getTerm(0).toString(), rec.lip_activity, ret);
 rec.obpToIndividual(rec.hasLIP_Activity, cs1, p, ret);
 }else if (functor.equals("noattempts") && l.getArity()==1){
 rec.dpToIndividual(l.getTerm(0).toString(),

rec.hasNoOfAttempts, cs1, ret);
 }else if (functor.equals("hasScore") && l.getArity()==1){
 rec.dpToIndividual(l.getTerm(0).toString(), rec.hasScore,

cs1, ret);
 }
 }
 }
 return ret;
 }

 public OWLOntology recI2(){
 OWLOntology ret = rec.newOnto("r2");
 OWLIndividual cs2 = rec.newRecI2Individual("ri2");
 try {
 Set<OWLNamedIndividual> is = rec.obtainLO();
 for(OWLNamedIndividual i : is){
 rec.obpToIndividual(rec.hasOA, cs2, i, ret);
 }
 } catch (OWLOntologyCreationException e) {
 e.printStackTrace();
 }
 return ret;
 }

 public Alpha alphaByName(String fname){
 if (fname.equals("metaphor"))
 return new MetaphorAlpha();
 else if (fname.equals("counterpart"))
 return new CounterPartAlpha();
 else if (fname.equals("surprise"))
 return new SurpriseAlpha();
 return null;
 }

 public Set<Modification> recMods(){
 Set<Modification> ret = new HashSet<Modification>();
 OWLIModification om = new OWLIModification();
 ret.add(om);
 return ret;
 }

 public Set<SimpleConceptRelator> recRelators(){
 Set<SimpleConceptRelator> ret = new HashSet<SimpleConceptRelator>();
 WikiSim ws = new WikiSim(0.8);
 LexicSim ls = new LexicSim();
 HierarchySim hs = new HierarchySim();
 ret.add(ws);
 ret.add(ls);
 ret.add(hs);
 return ret;
 }

}

117

APPENDIX 13 <HIERARCHY-BASED COMPARISON
FUNCTION>

package agent.ia;

import java.util.Set;

import org.semanticweb.owlapi.model.OWLClass;
import org.semanticweb.owlapi.model.OWLClassExpression;
import org.semanticweb.owlapi.model.OWLNamedIndividual;
import org.semanticweb.owlapi.model.OWLOntology;
import org.semanticweb.owlapi.reasoner.NodeSet;

import com.clarkparsia.pellet.owlapiv3.PelletReasoner;
import com.clarkparsia.pellet.owlapiv3.PelletReasonerFactory;

import kr.NotRelationalException;
import kr.SimpleConceptRelator;

public class HierarchySim implements SimpleConceptRelator {

 RecOWLBridge rec;
 Set<OWLOntology> ontos;

 public HierarchySim(Set<OWLOntology> onts){
 rec = new RecOWLBridge();
 this.ontos = onts;
 }

 public Class<?> getConcept1Type() {
 return OWLNamedIndividual.class;
 }

 public Class<?> getConcept2Type() {
 return OWLNamedIndividual.class;
 }

 public Class<?> getReturnType() {
 return Boolean.class;
 }

 public Object relateO(Object t1, Object t2) throws NotRelationalException {
 if (t1 instanceof OWLNamedIndividual && t2 instanceof OWLNamedIndividual){
 OWLNamedIndividual i1 = (OWLNamedIndividual)t1;
 OWLNamedIndividual i2 = (OWLNamedIndividual)t2;
 for (OWLOntology o : ontos){
 PelletReasoner reasoner =

PelletReasonerFactory.getInstance().createReasoner(o);
 reasoner.getKB().realize();
 //NodeSet<OWLClass> cls1 = reasoner.getTypes(i1, true);
 NodeSet<OWLClass> cls2 = reasoner.getTypes(i2, true);
 Set<OWLClassExpression> cle1 = i1.getTypes(o);
 //Set<OWLClassExpression> cle2 = i2.getTypes(o);
 for (OWLClassExpression cl1 : cle1){
 NodeSet<OWLClass> ret = reasoner.getSuperClasses(cl1,

true);

118

 //tenho as superclasses de i1
 //agora verificar se alguma delas faz parte da definicao

de i2
 for (OWLClass oc : ret.getFlattened()){
 if (cls2.containsEntity(oc))
 return true;
 }
 }
 }
 return false;
 }
 throw new NotRelationalException();
 }

}

119

APPENDIX 14 <WORD SIMILARITY COMPARISON
FUNCTION>

package agent.ia;

import java.util.Set;

import org.semanticweb.owlapi.model.OWLClassExpression;
import org.semanticweb.owlapi.model.OWLNamedIndividual;
import org.semanticweb.owlapi.model.OWLOntology;

import ponzo.nlp.wikipedia.similarity.WikiSimilarity;
import ponzo.nlp.wikipedia.similarity.WikiSimilarityFactory;

import kr.NotRelationalException;
import kr.SimpleConceptRelator;

public class WikiSim implements SimpleConceptRelator {

 RecOWLBridge rec;
 Set<OWLOntology> ontos;
 Double limit;

 public WikiSim(Set<OWLOntology> onts, Double limit){
 rec = new RecOWLBridge();
 this.ontos = onts;
 this.limit = limit;
 }

 public Class<?> getConcept1Type() {
 return OWLNamedIndividual.class;
 }

 public Class<?> getConcept2Type() {
 return OWLNamedIndividual.class;
 }

 public Class<?> getReturnType() {
 return Boolean.class;
 }

 public Object relateO(Object t1, Object t2) throws NotRelationalException {
 if (t1 instanceof OWLNamedIndividual && t2 instanceof OWLNamedIndividual){
 OWLNamedIndividual i1 = (OWLNamedIndividual)t1;
 OWLNamedIndividual i2 = (OWLNamedIndividual)t2;
 Set<OWLClassExpression> cls1 = i1.getTypes(ontos);
 Set<OWLClassExpression> cls2 = i2.getTypes(ontos);
 WikiSimilarityFactory ws = WikiSimilarityFactory.getInstance();
 for (OWLClassExpression cl1 : cls1){
 if (!cl1.isOWLNothing() && !cl1.isOWLThing()){
 String c1 = cl1.getClassExpressionType().getName();
 for (OWLClassExpression cl2 : cls2){
 if (!cl1.isOWLNothing() && !cl1.isOWLThing()){
 String c2 =

cl2.getClassExpressionType().getName();
 WikiSimilarity result =

ws.getWikiSimilarity(c1, c2);
 if (result.getAverageResnik() > limit)
 return true;

120

 }
 }
 }
 }
 return false;
 }
 throw new NotRelationalException();
 }

}

121

APPENDIX 15 <RESUMO EM PORTUGUÊS>

O presente resumo em português apresenta os objetivos e principais resultados e
contribuições desta Tese.

Introdução
Como nosso título sugere, estamos interessados em aplicar criatividade a uma

estrutura de agentes. Entretanto, também podemos considerar a influência de uma
estrutura de intencionalidade (representada pelo agente) no raciocínio criativo. Ambas
perspectivas são estudadas neste trabalho. Neste projeto consideramos agência como
uma conceitualização advinda da filosofia que representa a habilidade humana de
decidir e atuar autonomamente. Esse conceito é adotado em ciências sociais, psicologia,
ciências cognitivas, biologia, economia e ciência da computação. No âmbito da
computação, agência é um campo de pesquisa pertencente à Inteligência Artificial o
qual desafia os pesquisadores a fornecer teorias e modelos computacionais para
autonomia.

Criatividade está relacionada ao processo realizado por seres humanos para criar
novos conceitos e artefatos – no sentindo mais amplo possível. Como um processo, a
criatividade é estudada principalmente pelas neurociências, ciências cognitivas,
psicologia e filosofia. Como uma propriedade (atribuída a algo concreto ou abstrato),
ela é tipicamente estudada pelas ciências sociais e apreciação de artes. Ambas visões (de
processo e de propriedade) são objetos de estudo da criatividade computacional.

Assim como na maioria dos sub-campos da Inteligência Artificial, agência e
criatividade computacionais concentram muitos esforços de pesquisa nas ligações multi
e inter disciplinares, geralmente resultando em modelos e observações úteis para todas
as áreas envolvidas. Nosso roteiro de pesquisa é motivado pela idéia de que modelos de
IA devem servir como meios para auxiliar no desafio do entendimento da mente
humana. Desta forma, estamos interessados no estudo da habilidade humana de utilizar
experiências e conhecimento prévio para lidar com situações novas, criando
possibilidades e soluções a partir do momento em que o problema é apresentado.

Assim, nossa abordagem para estudar esse comportamento é através de um modelo
de criatividade como um mecanismo de raciocínio integrado a uma estrutura de agentes.
Considerando a criatividade como um processo representado por inferência
computacional é possível posicionar o trabalho numa perspectiva de Representação de
Conhecimento e Raciocínio (Knowledge Representation & Reasoning) da IA
(HARMELEN; LIFSCHITZ; PORTER, 2007). Grande parte dos trabalhos em IA
podem ser categorizadas em termos de como representam seu conhecimento e realizam
inferências a partir do mesmo (também considerados como aspectos estáticos e
dinâmicos). Além disso, cada uma destas categorias é, geralmente, resultado de estudos
acerca de como nós utilizamos o conhecimento em nossas mentes.

Por exemplo, trabalhos pioneiros em IA foram fortemente influenciados por
filosofia e matemática, resultando em uma das abordagens mais bem sucedidas da área:
raciocínio baseado em lógica (HOFWEBER, 2009; COLMERAUER, 1985;
KOWALSKI, 1986). Atualmente, trabalhos em lógica computacional e suas aplicações
ainda fornecem importantes resultados para a IA e computação em geral. Os trabalhos

122

mais recentes em lógica procuram melhorar o desempenho dos motores de inferência e,
ao mesmo tempo, manter e até melhorar sua expressividade. Outra linha de pesquisa em
lógica computacional trabalha com formalismos lógicos para representar conhecimento
temporal, causal, ontológico, probabilístico, espacial, entre outros.

Entretanto, percebendo que nem tudo pode ser modelado com lógica, ou que lógica
não é adequada para todo o tipo de conhecimento, paradigmas híbridos ou totalmente
diferentes em sua concepção foram desenvolvidos. Este é o caso dos frames (MINSKY,
1974) e redes semânticas (QUILIAN, 1968) que possuem suas fundamentações em
descobertas da psicologia e foram desenvolvidos para acomodar naturalmente
inferências em hierarquias e classificação. Por outro lado, redes Bayesianas (PEARL,
1985), originárias da estatística, são modeladas computacionalmente para representar
causalidade e propagação de evidências em grandes correntes de conhecimento. Em
oposição direta às abordagens simbólicas, redes neurais (MCCULLOCH; PITTS, 1943)
constituem a abordagem mais eminente das representações sub-simbólicas
(conexionismo). Seguindo inspirações das neurociências e biologia, as redes neurais
fornecem diversas formas para implementar aprendizagem automática ou semi-
automática.

Neste projeto, seguimos desenvolvimentos das ciências cognitivas na Fusão
Conceitual – tradução do autor – (Concept Blending) (FAUCONNIER; TURNER,
1998), considerada como uma habilidade humana, inata e sub-consciente, que integra
conhecimento gerando novas conceitualizações. Segundo esta teoria a integração de
conceitos ocorre de acordo com princípios constitutivos e governantes. Os princípios
constitutivos definem as regras e operações realizadas para formar um modelo de rede
conceitual organizado de acordo com a vivência humana do mundo. Assim, diferentes
perspectivas organizacionais podem ser aplicadas a um mesmo conceito ou
agrupamento de conceitos. Por exemplo, perspectivas emocionais, sensoriais, temporais,
causais, entre outras.

Portanto, o processo de fusão pode ser visto como o processo pelo qual a rede de
conceitos é expandida, em analogia com a nossa imaginação, que gera novos conceitos
e interpretações a partir do que vivenciamos no mundo. Já os princípios governantes
restringem as operações constitutivas na rede visando enfatizar as relações vitais, as
quais representam um conjunto subjetivo de propriedades vitais para os seres humanos.
De acordo com a teoria da fusão, estas relações estão presentes em praticamente todas
nossas atividades diárias, tais como acordar, caminhar, tomar café, trabalhar, estudar,
namorar, etc. As relações vitais especificadas por Fauconnier e Turner (2002) são:
mudança, causa e efeito, identidade, intencionalidade, singularidade, tempo, espaço,
representação, parte-todo, propriedade, categoria, analogia, papel, similaridade.

Dentro da criatividade computacional, a utilização da Fusão Conceitual (FC) para
especificar o raciocínio criativo posiciona nosso trabalho em modelos gerais de
criatividade humana. Modelos específicos são desenvolvidos para simular atividades
criativas tais como composição musical (MARTINS, 2004; MARTINS; MIRANDA,
2006; PEARCE; MÜLLENSIEFEN; WIGGINS, 2008), pintura (COLTON, 2008),
escrita de poesia (VEALE; HAO, 2008; HERVÁS, R. et al. 2007) e piadas
(BINSTEAD, K. et al. 2006). Em modelos gerais de criatividade, a lacuna de
conhecimento que estudamos é a consideração de conhecimento prático, juntamente
com o teórico, durante o processo de raciocínio criativo. Desta forma, em termos mais
teóricos, procuramos integrar raciocínio criativo em uma estrutura cognitiva mais
ampla, permitindo que criatividade interaja com intencionalidade. Para alcançar esse

123

modelo computacional, propomos a utilização de constructos da teoria de agentes, indo
em direção à criatividade baseada em agência.

O escopo de agência considerado nesse trabalho é o de agentes cognitivos que
implementam sistemas intencionais. Especificamente, nós adotamos a abordagem de
crenças, desejos e intenções de Bratman (Belief, Desire and Intention – BDI) como a
teoria intencional que fundamenta o presente trabalho. Bratman (1987) pode ser
considerado como um dos trabalhos mais influentes em agentes autônomos. Sua teoria
BDI está enraizada na filosofia da mente e psicologia popular ou de senso comum (folk
psychology). Nessa teoria, o conhecimento que o agente possui sobre o mundo é
representado pelas crenças, os desejos representam como o agente quer que o mundo
seja e as intenções especificam desejos os quais o agente está comprometido em atingir.
Este paradigma para especificar intencionalidade inspirou o desenvolvimento de várias
arquiteturas de agentes (KUMAR; SHAPIRO, 1994; MORLEY; MYERS, 2004;
D'INVERNO, M. et al. 2004), linguagens (DASTANI, M. et al.. 2003; RAO;
GEORGEFF 1991; RAO, 1996) e variantes da teoria em si (GOVERNATORI;
ROTOLO, 2008; CHOLVY, 2004; BROERSEN, J. et al. 2001). A maioria destes
trabalhos observa os agentes como sistemas com recursos limitados (resource-bounding
agency), visão introduzida por Bratman (1998). A fundamentação filosófica e
psicológica da teoria, juntamente com uma arquitetura prática (porém restritiva) são as
principais razões para o sucesso da abordagem.

Considerando o desenvolvimento de agentes BDI, as principais abordagens seguem
a linha de sistemas de raciocínio procedimental (Procedural Reasoning Sytems – PRS)
(GEORGEFF; LANSKY, 1987; RAO; GEORGEFF, 1991). Tais sistemas adotam a
abstração de planos, os quais permitem a expressão de conhecimento procedimental
dentro da estrutura do agente (geralmente programado com linguagens declarativas).
Nesse contexto, os planos especificam receitas pré-definidas para lidar com
configurações de mundo particulares (definidas nas pré-condições dos planos). Assim,
planos funcionam como heurísticas para reduzir o espaço de busca por uma opção
viável, possibilitando ao agente realizar seu raciocínio prático – raciocínio para a
realização de ações (WOOLDRIDGE, 1995) – em tempo hábil. Entretanto, ao mesmo
tempo que a limitação de recursos permite ao agente interagir rapidamente com seu
ambiente, ela também restringe as possibilidades de ação. Wooldridge (1995, 2000)
argumenta que alcançar um equilíbrio entre raciocínio e atuação constitui-se como um
dos principais desafios da pesquisa e desenvolvimento de agentes.

As pesquisas mais recentes para lidar com esse desafio seguem diferentes
perspectivas, tais como o uso de emoções (JIANG; VIDAL; HUHNS, 2007;
STEUNEBRINK; DASTANI; MEYER, 2007), normas (DASTANI; TINNEMEIER;
MEYER, 2009; GANGEMI, 2008; CONTE; ANDRIGHETTO; CAMPENNÍ, 2009) e
aprendizagem (SUBAGDJA; SONENBERG; RAHWAN, 2009; FUJITA, 2009; SEN;
AIRIAU, 2007; SHOHAM; POWERS; GRENAGER, 2007; STONE, 2007). Nós
limitamos nosso escopo à abordagens que aumentem a utilização do conhecimento do
agente permitindo que o mesmo adapte-se a situações não previstas em sua biblioteca de
planos (planejamento e aprendizagem de agentes).

Finalmente, nossa observação de agência criativa refere-se ao uso de raciocínio
criativo para aumentar a aplicabilidade do conhecimento do agente (adaptação),
inspirado na forma como nós, humanos, entendemos e vivenciamos o mundo.

Objetivos

124

Resumindo nosso argumento introdutório, a motivação deste trabalho está no
impacto dos modelos computacionais no entendimento da inteligência humana,
especificamente, nossa habilidade de utilizar experiências prévias para lidar com novas
situações. Esta pesquisa localiza-se na intersecção entre criatividade computacional e
agência cognitiva. Dentro de criatividade computacional, posicionamos este trabalho
modelos computacionais da criatividade humana seguindo a teoria da fusão conceitual.
Na perspectiva de agentes, o trabalho posiciona-se em arquiteturas e linguagens BDI.
Imbuídos de nossa motivação e contexto, o problema de pesquisa apresentado pode ser
sintetizado em duas questões de pesquisa, norteadoras do presente trabalho:

Q1. Como a criatividade pode ser modelada computacionalmente e produzir
conhecimento prático e teórico?

Q2. Como a criatividade apóia a utilização de conhecimento e experiências prévias
como meios para a adaptação a situações imprevistas?

A partir dessas questões, definimos um objetivo principal e os respectivos objetivos
intermediários para o presente trabalho:

• Propor um modelo computacional para criatividade;
a. Especificar uma representação da fusão conceitual que considere

conhecimento prático e teórico.

b. Propor a utilização da representação de criatividade previamente
definida como um mecanismo de adaptação para apoiar uma estrutura
de agentes.

Método
A definição do método de pesquisa se dá através de decisões em diferentes níveis

hierárquicos, iniciando com a escolha da filosofia de pesquisa, estratégia de pesquisa até
o nível mais operacional que envolve técnicas de coleta e análise dos dados. Saunders,
(2006) ilustra tal idéia através do diagrama da “cebola de pesquisa”, em que os níveis
hierárquicos são representados por camadas da cebola. A seqüência de camadas,
iniciando pela mais externa é: a filosofia de pesquisa, escolhas (indutiva ou dedutiva),
estratégias, horizonte de tempo (transversal ou longitudinal) e técnicas e procedimentos.
As decisões nos níveis mais externos (filosofia de pesquisa e estratégia) orienta as
definições nos níveis subseqüentes.

Os paradigmas positivista e a fenomenológico constituem dois extremos das
filosofias de pesquisa. O primeiro considera que pesquisador é externo ao mundo, tendo
uma percepção imparcial e objetivo sobre o mesmo. O segundo considera que o mundo
é socialmente construído, a partir da percepção e interação entre os diversas partes
envolvidas. Ou seja, não é possível desassociar o pesquisador do fenômeno investigado.
Entre esses dois extremos, entretanto, é possível identificar outras filosofias de
pesquisas tais como a pragmática. Nessa filosofia, a validade é avaliada em função da
sua utilidade e funcionamento em contexto práticos (KAZANEN, KARI; ARTO, 1993).

Após o posicionamento em relação as filosofias de pesquisa, é definida a estratégia
de pesquisa, que estrutura o trabalho de pesquisa, estabelecendo a forma com que a
evidência empírica vai ser coletada e analisada. Alguns exemplos de estratégias de
pesquisas são: estudos de caso, pesquisa-ação, surveys e experimentos. Cada estratégica
possui pontos fortes em relação às virtudes de uma boa teoria , assim como fragilidades.

125

A estratégia de pesquisa adotada no presente trabalho será a pesquisa construtiva
(constructive research ou design research). Essa estratégia se caracteriza pela solução
de um problema de relevância prática e teórica através de uma solução, na forma de
modelos, artefatos físicos, diagramas, planos, etc. Ao invés de produzir conhecimento
teórico, cientistas da pesquisa construtiva produzem e aplicam conhecimento científico
de forma a criar artefatos efetivos (MARCH; SMITH, 1995).

Conforme Kazanen, Kari e Arto (1993), essa estratégia de pesquisa é utilizada em
diversas áreas tais como matemática, medicina, etc. Em matemática, a elaboração
algoritmos pode ser entendida como exemplo de construções. Da mesma forma, a
criação de linguagens de programação em Ciência da Computação e de medicamentos
ou novos tratamentos na área médica, podem ser considerados, respectivamente, como
construções ou artefatos. Essa estratégia está alinhada aos pressupostos epistemológicos
da filosofia de pesquisa pragmática, uma vez que a qualidade do conhecimento gerado é
avaliado em função de sua utilidade.

March e Smith (1995) sugerem que o processo da pesquisa construtiva constitui-se
por duas etapas fundamentais: construir (construir um artefato para um propósito
específico) e avaliar (testar o funcionamento do artefato). Kasanen, Kari e Arto (1993)
sugere um processo ampliando, integrando outras quatros etapas às anteriores. Na
primeira etapa é identificado um problema com relevância pratica e teórica. A segunda
etapa refere-se a investigação e compreensão do tema a ser trabalhado, geralmente
através da revisão de literatura e estudos empíricos. A terceira etapa compreende a
construção da solução, na forma de um artefato físico, modelo, etc. Tal etapa é
fundamental no desenvolvimento dessa estratégia.

Segundo Kasanen, Kari e Arto (1993), caso não seja possível criar uma solução, não
há sentido em prosseguir o estudo. A quarta etapa envolve a implementação e teste da
solução. Na quinta etapa são apresentadas as conexões entre a solução desenvolvida e o
referencial teórico, assim como a contribuição da teoria no desenvolvimento da solução.
Por fim, na ultima etapa é examinando o escopo de aplicabilidade da solução.

Desenvolvimento da Pesquisa
Seguindo a estratégia de pesquisa construtiva, organizamos nosso trabalho em

quatro fases. Cada fase é constituída por etapas de pesquisa específicas bem como
respectivos produtos. A seguir, cada fase é descrita em termos de suas etapas e
produtos, contextualizando sua importância para a pesquisa como um todo. Durante a
descrição a seguir as etapas são denominadas E.Fx, onde E refere-se à etapa, F
representa a fase e x uma ordenação numérica das etapas de P.
Fase A

A primeira fase refere-se às duas etapas inicias da pesquisa construtiva (KAZANEN,
KARI; ARTO, 1993): identificação de um problema de relevância prática e científica e
entendimento do tema de investigação. Tais etapas serão desenvolvidas sobretudo a
partir da revisão de literatura. Os principais focos de investigação através de revisão de
literatura são criatividade computacional (E.A1), fusão conceitual (E.A2), representação
de conhecimento e raciocínio (E.A4) e agência (E.A5). Com base nos estudos em
criatividade computacional e fusão conceitual, especificamos um conjunto de requisitos
resumindo a fusão em termos de suas características, constructos e processos (E.A3).
Dado um entendimento de representação de conhecimento e agencia, propomos um
mapeamento entre os requisitos previamente estabelecidos e possíveis formas para

126

representá-los computacionalmente (E.A6). Tal mapeamento é o principal resultado da
fase A, servindo como um guia para o desenvolvimento da próxima fase.
Fase B

A segunda fase do desenvolvimento da pesquisa compreende a terceira etapa da
pesquisa construtiva (KAZANEN, KARI; ARTO, 1993): inovar, construir uma solução
(modelo). Nesta pesquisa, esta é a fase mais importante uma vez que é nela que nosso
modelo é especificado. O desenvolvimento do modelo parte da limitação de seu escopo
(E.B1). São especificadas algumas limitações devido ao amplo escopo de aplicabilidade
da fusão conceitual. De acordo com Fauconnier (1998), a teoria da fusão visa explicar
como os humanos integram conceitos conhecidos para construir novos conceitos.
Entretanto, essa integração pode ser aplicada virtualmente a qualquer idéia que
possamos conceber.

Portanto, um modelo computacional completo da fusão requer representações
multidimensionais (e.g. conceitualização simbólica, percepções emocionais e sensoriais
associadas, contextualização e relações episódicas) e associações diversas referentes a
um único conceito. Mesmo quando consideradas sozinhas, cada uma destas dimensões
constitui um tema de pesquisa em si. Desta forma, limitamos o escopo de projeto do
modelo em termos de quais constructos e processos serão considerados e exatamente
quais características de cada um farão parte do modelo.

A definição dos paradigmas de representação (E.B2) está diretamente ligada às
limitações de escopo. Esta etapa é apoiada pelo mapeamento fornecido em E.A4,
especificando em detalhe o papel de cada representação para o modelo como um todo.
A seguir, é realizada a especificação do modelo – dadas as limitações e paradigma de
representação – que define a integração entre fusão conceitual e uma estrutura de
intencionalidade (E.B3). Nesse nível, o modelo define como a fusão é representada e
como o processo de fusão lidará com as estruturas intencionais BDI (também
representadas). Considerando o enfoque em adaptação de agentes, a especificação deve
fornecer estruturas adicionais (frames específicos e modelos de redes conceituais) e
disparadores para apoiar a adaptação. A formalização do modelo deverá ser escrita na
linguagem de semântica operacional estrutural (Structural Operational Semantics –
SOS) (PLOTKIN, 1981, 2004).

Finalmente, a especificação será implementada (E.B4) utilizando o framework de
agentes Jason (BORDINI; WOOLDRIDGE; HüBNER, 2007). Representações de
conhecimento necessárias para o processo de fusão conceitual devem ser integradas
através de interfaces de programação (Application Programming Interfaces – API) –
quando disponíveis – e, caso contrario, serão adotadas alternativas tais como a interface
nativa do Java (Java Native Interface – JNI) ou notação de objetos Java simplificada
(Java Simplified Object Notation – JSON).

Em conseqüência das etapas da fase B, o resultado é uma arquitetura de agentes com
um mecanismo de fusão conceitual integrado. Nesse ponto, a arquitetura suportará
raciocínio criativo com base na fusão conceitual. Através da especificação de como as
estruturas intencionais podem ser utilizadas durante a fusão (E.B5) damos um
importante passo em direção aos objetivos do trabalho. A fundamentação para alcançar
o segundo objetivo intermediário também é fornecida pela arquitetura resultante da fase
B.

Fase C

127

Esta fase desenvolve o quarto estágio da pesquisa construtiva: demonstrar que a
solução funciona. Apesar da implementação de E.B5 já mostrar que ao menos algumas
partes da solução funcionam, nós observamos a implementação como uma estrutura que
precisa ser preenchida com conteúdo para fazer sentido. Portanto, na fase C nós
descrevemos e implementamos dois estudos de caso para considerar os aspectos
práticos da arquitetura.

O primeiro estudo de caso visa estudar como a arquitetura se comportará durante
situações que exijam adaptação (E.C1). Uma vez que o mecanismo de fusão é
implementado no nível arquitetural do Jason, temos a possibilidade testá-lo com agentes
já desenvolvidos, com um mínimo de esforço nas configurações dos mesmos.
Considerando também os mecanismos de depuração fornecidos pelo Jason, podemos
observar como a fusão interfere no raciocínio prático em termos de disponibilidade de
opções em momentos que a adaptação faz-se necessária. Tais situações podem ser
simuladas diretamente com o depurador do Jason ou a partir do ambiente do agente,
dependendo de sua implementação. Situações que requerem adaptação são consideradas
sob duas perspectivas: falha na execução de intenções e falta de planos aplicáveis para
lidar com determinadas configurações de mundo. Ao completarmos esse caso de uso o
nosso segundo objetivo intermediário é atingido, uma vez que poderemos verificar em
quais condições o mecanismo de adaptação funcionou.

A etapa seguinte desta fase utiliza a arquitetura desenvolvida para implementar um
agente cognitivo para recomendação de conteúdos educacionais a partir do histórico do
usuário e da especificação dos metadados dos recursos disponíveis (E.C2). Um estudo
completo em sistemas de recomendação necessita de, no mínimo, uma análise estatística
do sucesso das recomendações e uma comparação com algoritmos que implementem o
mesmo tipo de recomendação (baseada em conteúdo). Tal estudo não faz parte deste
projeto de pesquisa. Aqui, estamos mais interessados em verificar a utilização do
mecanismo criativo como primitivas de linguagem (implementadas como ações internas
no Jason). O contexto deste estudo de caso está associado aos resultados de pesquisa do
projeto OBAA (Objetos de Aprendizagem Baseados em Agentes), financiado pela
FINEP e executado pelo Grupo de Inteligência Artificial da UFRGS e UNISINOS.
Nesse contexto de aplicação, o qual visa fornecer conteúdo educacional nas plataformas
de TV Digital, dispositivos móveis e Web, o raciocínio criativo pode ser aplicado para
surpreender o usuário ou para estabelecer relações entre conteúdos seguindo um padrão
de associações diferente das abordagens tradicionais (baseadas em dedução,
generalização).

Ambos estudos de caso representam uma prova de conceito (E.C3) da arquitetura,
fornecendo conteúdo para que o mecanismo de criatividade possa ser testado. Logo, o
produto da fase C conclui a parte de desenvolvimento deste projeto uma vez que os
objetivos são analisados através dos estudos.

Fase D
Na última fase do projeto, apresentamos as conexões entre o modelo desenvolvido e

o referencial teórico. Além disso, o escopo de aplicabilidade da solução é examinado
(KAZANEN; KARI; ARTO, 1993). Desta maneira, as duas etapas da fase D propõem
uma análise do modelo (E.B6) e das provas de conceito (E.C3) considerando um
referencial de criatividade computacional, agentes e, finalmente, uma perspectiva
integrada dos campos. A primeira etapa foca na arquitetura (E.D1), enquanto a segunda
estuda aspectos levantados a partir dos estudos de caso (E.D2). Um dos produtos desta

128

fase são observações e uma discussão da teoria da fusão conceitual estimulada pelo
desenvolvimento do modelo (E.D3). Nós acreditamos que o modelo pode contribuir
especialmente no que se refere a representação e utilização da intencionalidade –
considerada uma relação vital na teoria de fusão. O último produto desta pesquisa
posiciona nossos resultados como etapas iniciais para uma teoria de agentes criativos
(E.D4).

Resultados
De acordo com a estrutura de nossa pesquisa, o resultado central da tese é a

especificação de um modelo da fusão conceitual que define explicitamente as regras
necessárias para representar uma tipologia da fusão. A partir desse modelo, realizamos
dois estudos para verificar a utilização da especificação como um mecanismo de
raciocínio e também como parte integrante de uma arquitetura de agentes.

A especificação da fusão conceitual foi desenvolvida utilizando a notação de
semântica operacional, para definir as regras do processo, e teoria dos conjuntos, para
representar abstratamente os elementos manipulados durante a fusão. O modelo foca
nos princípios constitutivos e na operação geral da fusão. Portanto, as relações vitais e
os princípios governantes não fazem parte deste modelo uma vez que eles requerem
uma visão mais ampla de cognição, fugindo do escopo deste trabalho. Adotamos
semântica operacional e conjuntos para estabelecer um modelo abstrato da fusão,
possibilitando que o mesmo seja concretizado em diferentes arquiteturas e paradigmas
computacionais.

Os elementos fundamentais da fusão são conceitos, espaços conceituais, esquemas
organizacionais e o blend (resultado da fusão). Em nosso modelo, esses componentes
são definidos como componentes de conjuntos e suas características individuais
especificadas através de anotações em lógica descritiva estabelecendo um modelo
terminológico. Os princípios constitutivos da teoria são especificados como elementos
de um conjunto de operações e, para cada um deles (modificação, preenchimento e
composição) foram definidas regras – em semântica operacional – que representam as
respectivas manipulações conceituais realizadas.

O processo da fusão conceitual, essencialmente, ocorre através da aplicação seletiva
dos princípios constitutivos em determinados conceitos de dois espaços conceituais. A
seleção dos conceitos, das operações e de quais elementos constituirão o blend
denomina-se projeção seletiva. A teoria da fusão conceitual ainda não avançou o
suficiente para definir completamente como a projeção seletiva é realizada. Em nossa
opinião, são necessários mais estudos e uma integração maior com a área de
neurociências. Apesar disso, modelamos a projeção seletiva como duas funções de
seleção dependentes de contexto (seleção conceitual e operacional). Outro aspecto que
interfere na projeção seletiva são as associações entre os espaços de entrada e o espaço
genérico. As associações caracterizam relações de qualquer natureza entre conceitos de
diferentes espaços. Já o espaço genérico representa os itens comuns entre os espaços de
entrada.

Juntamente com a projeção seletiva, é definida uma função para a condição de
parada do processo e um conjunto de elementos representando a tipologia de fusão a ser
adotada. Esse conjunto caracteriza a configuração do processo de fusão e, somado aos
elementos previamente apresentados, estabelece uma especificação inicial para a
realização da fusão. Dada a especificação inicial, são aplicadas as regras para

129

estabelecimento das associações entre os espaços e, em seguida, do espaço genérico
(ambas definidas com semântica operacional e manipulação de elementos
terminológicos).

Uma importante funcionalidade desta modelagem da fusão é a definição do processo
com base na tipologia de blends definida pelos autores da teoria (FAUCONNIER;
TURNER, 1998). Originalmente, são definidos quatro tipos de blends, todos eles
relacionados à forma como os conceitos são manipulados. A especificação definida
nesta tese representa os quatro tipos. Todo a execução da fusão parte de uma
configuração onde é definido qual dos tipos que guiará o processo. Portanto, o processo
em si depende da tipologia adotada e, em nosso modelo, a tipologia original foi
modelada possibilitando que a fusão seja realizada segundo quatro perspectivas
diferentes.

Para fornecer contextos de utilização e testar o modelo de fusão, desenvolvemos
dois estudos. O primeiro deles visou utilizar a fusão conceitual como um mecanismo de
adaptação para agentes BDI. Sendo assim, o modelo de fusão foi implementado
computacionalmente e integrado à uma arquitetura AgentSpeak de agentes, fornecida
pelo framework Jason. A integração da fusão em nível arquitetural possibilita que
agentes já desenvolvidos utilizem adaptação através de fusão sem a necessidade de
mudanças no código original. Além da integração, desenvolvemos um agente específico
para realizar os testes e também modelamos as terminologias de domínio sob a forma de
representações descritivas em linguagem OWL (Web Ontology Language). O motor de
fusão conceitual implementado utiliza a sintaxe OWL como representação descritiva
dos conceitos.

O contexto de adaptação também propõe um domínio a ser modelado em termos dos
componentes da fusão conceitual, onde o blend resultante define uma nova linha de
ação que o agente pode seguir, dada uma situação de falta de opções ou falha. Desta
forma, especificamos um modelo para definir automaticamente as entradas e a
configuração do processo de fusão a partir da visão de mundo atual do agente,
representada por suas crenças, desejos e intenções. Essa especificação também foi
implementada no framework Jason. Outros elementos necessários para a execução da
fusão (funções associativas, princípios constitutivos, funções de seleção e de
configuração) também foram especificados e implementados. De acordo com nossa
estratégia de pesquisa, o estudo de adaptação serviu, fundamentalmente, para testar o
modelo definido como parte de uma estrutura cognitiva composta por um sistema
intencional apoiado por criatividade (representada pela fusão conceitual).

Nosso segundo estudo utiliza o mecanismo de fusão conceitual como um motor de
raciocínio utilizado para definir o conteúdo de recomendações educacionais. Assim, o
resultado concreto deste estudo é um sistema de recomendação baseado em criatividade
implementado sob o paradigma de agentes. A implementação da fusão permaneceu a
mesma do estudo de adaptação, entretanto, foi definida uma nova interface de acesso,
possibilitando a definição de todos os elementos da fusão em tempo de execução. Para
tanto, essa interface foi implementada como uma ação interna do framework Jason,
podendo ser vista também como um operador de linguagem.

De uma maneira similar à adaptação, a recomendação também fornece um domínio
de aplicação que foi modelado em termos dos elementos da fusão conceitual. Sendo
assim, foi definida uma representação OWL do domínio, as respectivas funções de
comparação e seleção. Este estudo possibilitou testar o modelo e a implementação das

130

funções de comparação como interfaces para ferramentas externas (uso da Wikipedia
para calcular a similaridade entre palavras e do ConceptSpace para a similaridade
conceitual). Ademais, testamos também o uso do mecanismo de fusão para fornecer
recomendações com base em metáforas, a partir da seleção da tipologia adequada e de
restrições nas entradas.

Com relação ao estudo de adaptação, este estudo diferenciou-se por utilizar a fusão
conceitual como uma forma de raciocínio, deixando para o desenvolvedor a decisão de
como modelar e utilizar o mecanismo. A implementação do sistema de recomendação
como um agente BDI que representa seu usuário e utiliza a fusão para construir as
recomendações segue nossa estratégia de pesquisa para verificar o uso da fusão
conceitual como um raciocínio criativo.

Contribuições
Considerando as questões de pesquisa deste projeto, contextualizamos nossas

contribuições sob três perspectivas principais: cognição, agência inteligente e
criatividade computacional. De acordo com uma abordagem bottom-up, primeiro
posicionamos as contribuições na área de agentes inteligentes. De fato, esse
posicionamento está associado à segunda questão de pesquisa deste trabalho: Como a
criatividade apóia a utilização de conhecimento e experiências prévias como meios para
a adaptação a situações imprevistas?

Como um processo, a criatividade nos possibilita criar novas idéias, úteis ou inúteis,
reais ou surreais. Assim, essa habilidade permite que sejamos capazes de inovar, criar
mais conhecimento e solucionar novos problemas. Atribuindo essa habilidade à agentes
inteligentes visamos permitir que os mesmos raciocinem criativamente a partir de seus
conhecimentos e percepções do ambiente. Desta forma, possibilita-se também que os
agentes criem soluções (em termos de ações) alternativas para novas situações.
Geralmente, abordagens para adaptação em agentes fundamentam-se em generalização
e indução. A abordagem aqui proposta propõe o estudo da criatividade como um
raciocínio para apoiar a adaptação.

Voltando nosso foco para a primeira questão de pesquisa “como a criatividade pode
ser modelada computacionalmente e produzir conhecimento prático e teórico?”,
contextualizamos as contribuições para a área de criatividade computacional. Modelos
computacionais de criatividade humana têm focado nos aspectos teóricos do
conhecimento. Portanto, tais modelos focam na geração de conceitos teóricos sem
considerar as especificidades do conhecimento prático (relacionado à ações).
Comparando este projeto com os modelos atuais, o modelo aqui proposto difere-se
justamente na consideração de conhecimento prático. Ademais, comparando-se com o
estado-da-arte em modelos genéricos de criatividade, nosso modelo de fusão diferencia-
se por especificar a tipologia da fusão definida por Fauconnier e Turner. A abordagem
de um modelo abstrato e de sua concretização computacional separadamente possibilita
também que nosso modelo seja integrado a outras arquiteturas.

Finalmente, em um nível mais teórico e abstrato, o modelo resultante deste projeto
pode ser utilizado para estudar a teoria de fusão conceitual em si. Neste aspecto, o
resultado desta pesquisa pode discute em maior detalhe a importância da
intencionalidade para a fusão e também aponta a necessidade de integração com outros
aspectos da cognição humana. Percebemos este trabalho como um passo inicial em

131

direção a um estudo mais aprofundado da cognição relacionada à criatividade através de
modelos computacionais.

