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ABSTRACT 

This PhD thesis describes an interdisciplinary research on computational creativity 
and cognitive agents. Our motivation to integrate these two areas is to study the human 
skill that uses previous experiences and knowledge to solve unpredicted problems and 
situations. Imbued by that motivation, our purpose is to improve the applicability of the 
agent’s knowledge, inspired in the way that we humans understand and experience the 
world. 

Our approach towards that research view is to adopt theories and results from 
cognitive and neural sciences as the grounding to a computational model of agents 
capable of acting creatively. Thus, we adopt the concept blending theory 
(FAUCONNIER; TURNER, 1998) – that originated from cognitive linguistics and 
theory of the mind – as the grounding of our model. Therefore, our proposal of creative 
agents integrates an implementation of concept blending into a BDI structure. In 
concrete terms, we use Jason’s implementation of AgentSpeak to manipulate the agent’s 
theoretical (beliefs) and practical (desires and intentions) reasoning. 

Hence, the main topic of study of this research is the utilization of concept blending 
in a structure of intelligent agents. Consequently, we observe our contributions under 
two perspectives. Regarding computational creativity, we specify a model for concept 
blending that explicitly defines rules to represent a blending typology. Furthermore, 
integrating a BDI structure to the model allows the automated construction of inputs and 
domain information to feed the blending process.  

Focusing on agents, our contribution is on the process of creative reasoning applied 
to supply alternative ways to use practical and theoretical knowledge. Given the 
blending specification defined here, it is possible to integrate different adaptation 
strategies to handle intention failure or other adaptation scenarios. Another feature is the 
possibility to work with different knowledge representations given its descriptive logics 
(using the OWL language) definition. The blending specification is also applied to 
model the reasoning of an educational recommender system. 

Finally, the defined model represents an initial work towards a cognition model 
where blending, agency and other cognitive operations (e.g. learning) interact together 
to simulate different features of the human thinking. 

 
 
 
 

Keywords: Computational creativity, intelligent agents, concept blending. 



 
 

Agência Criativa 

RESUMO 

A presente tese de doutorado descreve uma pesquisa interdisciplinar nas áreas de 
criatividade computacional e agentes cognitivos. A motivação para a integração dessas 
áreas é o estudo da habilidade humana de utilizar suas experiências prévias e 
conhecimento geral para resolver problemas e lidar com situações a partir do momento 
em que as mesmas são apresentadas. Imbuídos dessa motivação, nosso propósito é 
ampliar a utilização do conhecimento de agentes, inspirado na forma como, nós, 
humanos entendemos e vivenciamos o mundo. 

Nossa abordagem para concretizar essa visão de pesquisa é adotar teorias e 
resultados das ciências cognitivas e neurociências como fundamentação para um 
modelo computacional de agentes capazes de atuar criativamente. Assim sendo, 
adotamos a teoria do concept blending (fusão conceitual – tradução do autor) 
(FAUCONNIER; TURNER, 1998), advinda da lingüística cognitiva e teoria da mente 
como a fundação de nosso modelo. O modelo de agentes criativos proposto integra uma 
implementação da fusão conceitual em uma estrutura BDI. Concretamente, utilizamos a 
implementação da linguagem  AgentSpeak  fornecida pelo framework Jason, para 
manipular o raciocínio teórico (crenças) e prático (desejos, planos e intenções) do 
agente. 

Logo, o objeto principal de estudo desta tese é a utilização da fusão conceitual em 
uma estrutura de agentes inteligentes visando contribuições em criatividade 
computacional e agentes. Considerando a área da criatividade computacional, 
especificamos um modelo da fusão conceitual que define explicitamente as regras 
necessárias para representar uma tipologia da fusão. Ademais, a integração de uma 
estrutura de agentes BDI ao modelo possibilita a construção automatizada das entradas 
e de informações de domínio para utilizar o processo de fusão. 

Focando na área de agentes, nossa contribuição é caracterizada pela aplicação do 
processo de raciocínio criativo para fornecer alternativas de uso do conhecimento 
prático e teórico. Dada a especificação da fusão aqui apresentada, é possível integrar 
diferentes estratégias de adaptação para lidar com a falha de intenções ou outras 
situações que requerem adaptação. Outra funcionalidade é a capacidade de utilizar 
diferentes representações de conhecimento, assumindo a disponibilidade  de uma 
definição descritiva (na linguagem OWL) da representação. O modelo de fusão 
conceitual também é aplicado na modelagem do raciocínio de um sistema de 
recomendação educacional. 

Finalmente, nosso modelo de fusão representa um trabalho inicial em direção a um 
modelo cognitivo no qual fusão, agência e outras funções cognitivas (e.g. 
aprendizagem) interagem para simular diferentes funcionalidades do pensamento 
humano. 

Palavras-Chave: Criatividade computacional, agentes inteligentes, fusão conceitual. 
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1 INTRODUCTION 

Creative agency. As our title suggests, we are interested in applying creativity to an 
agent structure. However, our title can also be read backwards (agent-based creativity) 
and will still make sense, since the utilization of an agent structure to creative reasoning 
is important on its own. Agency, a conceptualization from philosophy that generally 
captures the human ability to decide and act autonomously, is adopted in social 
sciences, psychology, cognitive sciences, biology, economy and computer sciences. 
Inside Computer Science, agency is a research field that belongs to Artificial 
Intelligence (AI). Under a computational perspective, agency challenges researchers to 
provide theories and models of autonomy that can be executed by computers. 

Creativity is related to the process undertaken by humans to generate new concepts 
and artifacts – in the broadest spectrum of applicability. As a process, it is mostly 
studied by neurosciences, cognitive sciences, psychology and philosophy. As a property 
(attributed to a certain thing, concrete or abstract), it is typically considered by social 
sciences and art appreciation. Both the process and the property views are subject of 
study by computational creativity researchers. 

As most AI sub-fields, computational agency and computational creativity 
concentrate substantial research effort on the multidisciplinary links with different 
areas, often resulting in simulation models and insights useful for all the areas involved. 
Our research agenda is motivated by the idea that AI models should serve as means to 
aid on the challenge of understanding how the human mind works. We are especially 
interested on the human ability to use previous experiences and knowledge to respond 
to novel situations, creating new possibilities and solutions as a problem is presented.  

Our approach to study this behavior is by modeling creativity as reasoning 
integrated to an agent structure. Considering creativity as a process modeled by 
computational reasoning, we are able to position it inside a traditional AI perspective of 
knowledge representation and reasoning (HARMELEN; LIFSCHITZ; PORTER, 2007). 
Most works from AI can be categorized in terms of how they represent and reason over 
their knowledge (also seen as static and dynamic aspects). Furthermore, each one of 
those categories is usually the result of studies on how we use knowledge in our minds.  

For instance, early works on AI were mostly based on philosophy and mathematics, 
yielding one of the most successful approaches of the field: logic-based reasoning 
(HOFWEBER, 2009; COLMERAUER, 1985; KOWALSKI, 1986). Today, works on 
logic and its applications still provide important results for the field and computation in 
general. Recent works on logic attempt to improve the performance of reasoners while 
keeping or enhancing expressiveness. Beyond that, there are the works that use logic-
based formalisms to represent modal, temporal, ontological, probabilistic and spatial 
knowledge (to name a few).  
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Understanding that not everything can be modeled with logic, or that logic is not 
adequate for every kind of knowledge, hybrid or totally different paradigms for 
knowledge representation were developed. For example, frames (MINSKY, 1974) and 
semantic networks (QUILIAN, 1968) were grounded on psychology discoveries and 
developed to naturally accommodate hierarchical and classification inferences. On the 
other hand, Bayesian networks (PEARL, 1985), which originated from statistics, 
received computational models that represent cause-effect and propagation of evidences 
in large chains of knowledge. In direct opposition to all symbolic approaches, neural 
networks (MCCULLOCH; PITTS, 1943) are the most prominent of sub-symbolic 
(connectionist) representations. Following inspiration from biology (brain studies) 
neural networks provide several ways to implement automated and semi-automated 
learning. 

In this project, we follow developments from cognitive sciences on Concept 
Blending (CB) (FAUCONNIER; TURNER, 1998), considered to be an innate sub-
conscious human skill that integrates knowledge creating novel conceptualizations. 
Inside computational creativity, the utilization of CB theory to specify the creative 
reasoning places our work under general creativity models. Specific models are 
developed to simulate creative activities such as composing music (MARTINS, 2004; 
MARTINS; MIRANDA, 2006; PEARCE; MÜLLENSIEFEN; WIGGINS, 2008), 
painting (COLTON, 2008), writing poetry (VEALE; HAO, 2008; HERVÁS, R. et al. 
2007) and jokes (BINSTEAD, K. et al. 2006). Under general creative models, the 
knowledge gap we study is the consideration of practical knowledge, along with 
theoretical during creative reasoning. Thus, in more theoretical terms, we are trying to 
integrate creative reasoning inside a broader cognitive structure, allowing creativity to 
work with intentionality. To achieve this in a computational model, we propose the use 
of constructs supplied by agent theories and languages. This is what we meant by 
reading the title of this project backwards: agent-based creativity. 

We limit our agency scope to cognitive agents implementing intentional systems. 
Thus, in a theoretical perspective, we consider autonomy as a property resulting from 
several cognitive processes and, here, we focus on the aspect of intentionality. 
Specifically, we adopt Bratman’s Belief Desire and Intention (BDI) approach as an 
intentional theory to ground this work. Bratman (1987) can be considered as one of the 
most influential works on autonomous agents. His BDI theory has its roots on 
philosophy of the mind and folk psychology. BDI theory represents the agent’s 
knowledge about the world as beliefs, desires represent how the agent wants the world 
to be, and intentions are desires that the agent is committed to achieve. This paradigm to 
specify autonomy inspired the development of several agent architectures (KUMAR; 
SHAPIRO, 1994; MORLEY; MYERS, 2004; D'INVERNO, M. et al. 2004), languages 
(DASTANI, M. et al.. 2003; RAO; GEORGEFF 1991; RAO, 1996) and also variations 
of the theory itself (GOVERNATORI; ROTOLO, 2008; CHOLVY, 2004; 
BROERSEN, J. et al. 2001). Most of these works also consider resource bounding 
agency, which was introduced by Bratman (1988). The philosophical and psychological 
grounding of the theory, together with a compatible practical (but restrictive) 
architecture are the main reasons for the success of the approach. 

The main approach for the design of resource bounded BDI agents – Procedural 
Reasoning Systems (PRS) (GEORGEFF; LANSKY, 1987; RAO; GEORGEFF, 1991) 
use the abstraction of plans, which allow the expression of procedural knowledge inside 
agents (usually programmed with declarative languages). Plans specify pre-defined 
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recipes to handle particular world configurations (defined by the plan’s pre-conditions). 
In this case, plans work as heuristics to reduce the search for a viable option, allowing 
the agent to perform practical reasoning, the reasoning towards action 
(WOOLDRIDGE, 1995), in a timely fashion. However, at the same time that resource-
bounding action allows the agent to promptly interact with its environment, it also 
constrains the possibilities of action. Wooldridge (1995, 2000) argues that achieving a 
balance between reasoning and acting is one the main challenges of agent development 
and research.  

Current approaches to deal with that issue follow different perspectives, such as use 
of emotions (JIANG; VIDAL; HUHNS, 2007; STEUNEBRINK; DASTANI; MEYER, 
2007), norms (DASTANI; TINNEMEIER; MEYER, 2009; GANGEMI, 2008; CONTE; 
ANDRIGHETTO; CAMPENNÍ, 2009) and learning (SUBAGDJA; SONENBERG; 
RAHWAN, 2009; FUJITA, 2009; SEN; AIRIAU, 2007; SHOHAM; POWERS; 
GRENAGER, 2007; STONE, 2007). We limit our scope to approaches that increase the 
utilization of an agent’s knowledge, without specifying an application context. 
Specifically, we are focused on approaches that allow the agent to adapt to situations 
that were not pre-programmed in the plan library. Thus, we refer to works on planning 
and agent learning. 

Finally, our consideration of creative agency regards the use of creative reasoning to 
improve the applicability of the agent’s knowledge (adaptation), inspired in the way that 
humans understand and experience the world. 

1.1 Research Problem 
Summarizing our introductory argument, the motivation for this work lies on the 

impact of computational models to better understand human intelligence, specifically 
our ability to use our experience to handle new situations. Our research is located on the 
intersection between computational creativity and cognitive agency. Inside 
computational creativity, this research is positioned on computational models of human 
creativity, following the CB theory. On the agent side, we place our work under BDI 
architectures and languages. Imbued by our motivation and context, we characterize our 
research question as follows: 

Q1. How can creativity support intentionality? 
This main research question is unfolded into two intermediary questions: 

Q1.1. How can creativity be computationally modeled in order to produce 
theoretical and practical knowledge? 

Q1.2 How can creativity support the utilization of knowledge as a means to adapt to 
unforeseen situations? 

1.2 Research Goals 
From our research questions we propose the following goal for our project: 
G1. Propose a computational model for creativity. 
G2. Apply the model from G1 as a means to support an intentionality model. 
Given the intermediary questions we establish the following specific goals: 
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G1.1. Specify a representation of the blending theory considering both theoretical 
and practical knowledge. 

G2.1. Propose the utilization of the creative representation defined in G1.1 as an 
adaptation mechanism to support agent-based intentionality. 

1.3 Research Strategy 
In this research project we are following the design research (also known as 

constructive research) strategy. According to Lukka (2003), design research is a 
research procedure for producing innovative constructions, intended to solve problems 
in the real world, and, thus, making a contribution to the field in which it is applied. 
Kasanen, Kari and Arto (1993) cite mathematical algorithms and theorems, artificial 
languages (Braille’s alphabet, Morse alphabet, computer languages) and new 
pharmaceuticals as examples of the output of a design research approach. 

Hence, the new construction – central notion of the approach – is an abstract notion 
that can be concretized in many different ways. All human artifacts (e.g. models, 
diagrams, plans, commercial products and information systems) are considered to be 
constructions. Such constructions are characterized by the fact that they were 
developed, not discovered (LUKKA, 2003).  

March and Smith (1995) propose four kinds of outputs for the constructive 
approach: consctructs, models, methods and instantiations. In this context, constructs 
are the conceptual vocabulary of problem domain. They arise during the 
conceptualization of the problem and are refined throughout the design cycle. Related to 
constructs, a model specifies the relationships among them. Methods provide a way to 
manipulate the constructs aiming at realizing a solution model. Finally, an instantiation 
concretizes constructs, models and methods in an environment.  

Vaishnavi and Kuechler (2004) present another output called better theories. Also 
perceived as theory building, better theories relates to the output that improve a method 
or instantiation already established, such as software engineering communities devoted 
to improve software maintenance and reuse. An additional way to view the better 
theories conceptualization is through the research artifact that, when being evaluated, 
brings new understanding to previously established relations among constructs. Carrol 
and Kellog (1989) exemplify this situation on the Human-Computer Interface (HCI) 
where artifacts themselves constitute the most effective medium for theory development 
in the field. Figure 1 illustrates the relation among different levels of abstraction in 
research artifacts and the design research output terminology. 
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Figure 1 Outputs of design research (adapted from Vaishnavi and Kuechler, 2004) 

In terms of process, Kazanen, Kari and Arto (1993) summarize the main phases of 
the design research approach: 

1. Find a practically relevant problem which also has research potential.  
2. Obtain a general and comprehensive understanding of the topic.  

3. Innovate, i.e., construct a solution idea.  
4. Demonstrate that the solution works. 

5. Show the theoretical connections and the research contribution of the solution 
concept.  

6. Examine the scope of applicability of the solution. 
Those authors also argue that these phases may be applied in different orders, 

varying from case to case. Lukka (2003) goes further on the process of design research, 
describing the phases identified in (KAZANEN, KARI; ARTO, 1993). In addition, 
Lukka (2003) presents a diagram (illustrated by Figure 2) summarizing the central 
aspects of the constructive research approach. 

 
Figure 2 The central elements of the constructive research approach (LUKKA, 2003) 

Positioning design research in a broad scope of research, it can be viewed as a 
research strategy, since it provides a structure for the research work, guiding the way 
that empirical evidence is collected and analyzed. Furthermore, design research is more 
aligned to pragmatic research since the quality of the constructed knowledge is 
evaluated in terms of its utility. Figure 3 presents the research onion, proposed by 
Saunders, Thornhill and Lewis (2006), with slight modifications to add design research 
and a few extra philosophies. 
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Figure 3 Research onion (adapted from (SAUNDERS; THORNHILL;LEWIS, 2006)) 

1.4 Research Process Outline 
Following the constructive research strategy, we organize our work into four phases, 

as illustrated by Figure 4. Each phase is constituted by specific research processes 
(stages) and by resulting products. We also associate each phase to its respective 
constructive research stages (numbered bellow each phase).  

 
Figure 4 Research process outline following the constructive research. 

Next, we describe each phase in terms of their stages and products, contextualizing 
its importance for the research as a whole. In addition, we briefly describe the results of 
each phase, describing the development of the work against the proposed stages. During 
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the following description we will label the stages with S.Px, where S regards to stage, P 
represents the phase and x a numerical ordering of P stages.  
1.4.1 Phase A 

The first phase regards the two initial constructive research stages (KASANEN; 
KARI; ARTO, 1993): identification of a problem with practical and scientifical 
relevance, and understanding of the investigating theme. These stages were developed 
mostly by bibliography research. Our main focuses of investigation through literature 
revision are computational creativity (S.A1), concept blending (S.A2), knowledge 
representation and reasoning (S.A4) and agency (S.A5). Based on the studies on CC and 
CB, we are able to specify a set of the requirements summarizing CB in terms of its 
constructs and processes (S.A3). Given an understanding of KR&R and agency we 
describe a mapping between the CB requirements previously established and possible 
ways to represent them computationally (S.A6). Such mapping was the main outcome 
of phase A, serving as a guide for the development of the next phase. 
1.4.2 Phase B 

This phase encompasses the third stage from constructive research: “Innovate, i.e. 
construct a solution idea” (KAZANEN; KARI; ARTO, 1993). In our research, this was 
the most important stage since it is here that our model is defined. The development 
began by limiting the scope of the model (S.B1). We specify some limitations due to the 
broad scope of CB applicability. As stated by Fauconnier and Turner (1998), CB theory 
aims to explain how we humans integrate known concepts to construct new ones. But, 
this integration can be applied to virtually anything that we are able to conceive.  

As a result, a full computational account of CB would require multi-dimensional 
representations (e.g. symbolic conceptualization, associated emotional and sensorial 
perceptions, contextualization and episodic associations) and connections of a single 
concept. Even when considered alone, each one of those dimensions constitutes 
research themes on their own. Therefore we limit the design scope of our model in 
terms of which constructs and processes will be considered and also to which extent 
when relating to the original conceptualization. 

Closely related to our scope limitations is the definition of the representation 
paradigms (S.B2) that will be used to specify the model. This stage is based on the 
mapping provided by S.A4, further specifying the role of the representation in the whole 
model.  

Next, we specified our model – given our limitations and knowledge paradigm – to 
represent conceptual blending integrated to an intentionality structure (S.B3). In this 
level, the model define how blending is represented and how the blending process will 
handle BDI-based intentionality structures (also represented). Given our focus on 
adaptation, our specification provides additional structures (specific frames and 
template networks) and triggers to allow adaptation. The specification is written in 
traditional Structural Operational Semantics (SOS) (PLOTKIN, 1981, 2004).  

Finally, we implemented the specification (S.B4) using the Jason (BORDINI; 
WOOLDRIDGE; HüBNER, 2007) framework and the OWL language as syntax for the 
blending engine. This stage was partially developed since we applied more time on the 
development of the specification and only descriptive representations (OWL) are 
considered in the implementation. Specific KR&R necessary for CB is integrated 
through Application Programming Interfaces (API) – when available – and, if not, we 
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adopt alternatives such as the Java Native Interface (JNI) or Java Simplified Object 
Notation (JSON). 

In consequence of all phase B stages, the outcome is an agent architecture with an 
integrated concept blending mechanism. Regarding this outcome, we consider that the 
developed specification (S.B3) together with the models from phase C partially results 
in an agent architecture. The remaining part would be technical details from the 
implementation that could be applied to further specify the model (e.g. specific 
language details).  

By specifying how intentional structures can be used during blending (S.B5), even 
in the specification level, we give an important step toward goals G1, G1.1 and G2. The 
foundations to achieve Goal G2.2 are also supplied by the model and partial architecture 
from phase B.  
1.4.3 Phase C 

Here, we cover the remaining aspects to achieve the proposed goals. This phase 
develops the fourth stage of constructive research, which is to demonstrate that the 
solution works. Although the partial implementation from S.B5 and the specification 
from S.B3 already demonstrate that at least parts of the solution work, we view that 
both implementation and model as structures that need to be filled with content in order 
to make sense. Therefore, our initial idea for phase C was to implement two case studies 
to consider the practical aspects of the architecture. In practice, we did not developed 
two case studies, rather we developed two studies with the goal to test the constructs 
specified on phase B. Still, we will present our original idea of the case studies and the 
respective limitation to test studies. 

Our first case study aimed at studying how our architecture would behave during 
adaptation tasks (S.C1). Since the blending mechanism is implemented on the 
architectural level of Jason, we are able to test it with already developed agents, with 
minimum configuration effort. The integration of blending into an agent architecture 
were developed using the Jason API. Our stage S.C1 focused on the specification with 
operational semantics of a blend-based adaptation, its implementation, and on 
functionality tests with one example agent. Upon completion of this study, goal G2.1 is 
achieved, since we specify how blending can be applied to adaptation tasks.  

Next, we applied the developed model to specify an agent that recommends 
educational resources based on the student’s history and on the meta-data specification 
of the resources (S.C2). A complete study over recommendation systems require at least 
a statistical analysis of recommendations’ success and a comparison to algorithms 
implementing the same kind of recommendation. Such study is not part of our research 
project. Here, we are interested in verifying the utilization of the creative mechanism as 
language primitives (implemented as internal actions in Jason by our architecture). In 
the context of the application, which is a research project to provide learning content on 
Digital TV (DTV), mobile and web platforms, creative reasoning is applied to surprise 
the user or to establish relations among content following a an association pattern 
different from the traditional approaches (based on deduction and generalization).  

Both studies represent a proof of concept (S.C3) for the architecture and model, 
providing content so that the creative reasoning mechanism can be tested. Thus, the 
product of phase C concludes the developmental part of our research as goals G1, G1.1 
and G2 are studied through the cases. 
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1.4.4 Phase D 
On the last phase of the research project the link between the model and the 

theoretical reference is presented. In addition, the applicability scope of the solution is 
examined (KAZANEN; KARI; ARTO, 1993). Hence, the two first stages of phase D 
propose an analysis of our model (S.B6) and proofs (S.C3) given a background of 
computational creativity, agency and lastly, an integrative perspective of the fields. The 
first stage focuses on the model (S.D1) while the second studies aspects shown by the 
tests (S.D2). One of the products of this phase is the observations and discussion to CB 
theory triggered by the development of the model (S.D3). We believe that our model 
can contribute especially on regard to the representation and utilization of intentionality 
– considered as a vital relation inside blending theory (Section 2.3). The last product of 
our research positions our results as the initial steps towards a theory of creative agency 
(S.D4). 

1.5 Research Chronogram 
Next we present our research chronogram describing the development of this work 

from the beginning to its conclusion. Besides the stages defined in Section 1.4, the 
chronogram illustrated by Table 1 contains activities that were part of the PhD but do 
not provide a direct contribution to the research itself. 

Table 1 Research Chronogram 

Stages Year / Semester 

R Obtaining credits in disciplines 
R P1. Paper publishing (AAMAS, PROMAS) 
R S.A5 Understanding agency – BDI approaches 

2 0 0 7  / 1  

R Obtaining credits in disciplines  
R S.A5 Understanding agency – AI and Education  
R P2. Paper publishing (ITS, ICALT, CAEPIA, PRIMA) 

2 0 0 7  / 2  

R Qualification Exam – KR&R, specific theme: Ontologies 
R S.A4 Understanding KR&R – Survey 
R French Proficiency Test 

2 0 0 8  / 1  

R S.A5 Understanding KR&R – Concept Phil., Symbol Grounding 
R S.A5 Understanding Agency – AgentSpeak (L, DL), Jason 
R OBAA project (proposal and devlopment) 

2 0 0 8  / 2  

R P3. Paper publishing (WCCE – 2 papers) 
R S.A2 Understanding Concept Blending 
R S.A3 CB Requirements 
R S.A6 Mapping of CB and KR&R approaches 

2 0 0 9  / 1  

R S. A2 Understanding Concept Blending 
R S.A3 CB Requirements 
R S.A6 Mapping of CB and KR&R approaches 
R P4. Paper publishing (EPIA) 
R S.A1 Understanding Conceptual Creativity 
R S.B1 Define Model Scope 
R S.B2 Define KR&R paradigms 
R S.B3 Specify the Model 
R S.C2 Recommendation Case Study 

2 0 0 9  / 2  
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R P5. Paper publishing (WEBMEDIA, not accepted) 
R S.B3 Specify the Model 
R Thesis writing 
R S.B4 Implement the Specification 
R S.B5 CB Agent Architecture 
R Thesis writing 
ü  S.C1 Adaptation Case Study 
ü  P5. Paper publishing (Int. J. K-Based Systems) 

2 0 1 0  / 1  

ü  S.D1 Analysis of the Architecture 
R S.D2 Analysis of the Conceptual Proofs 
R S.D3 Observations to CB Theory 
R S.D4 Theory of Creative Agency 
ü  P6. Paper publishing (Int. J. AAMAS) 
R P7. Paper publishing (RENOTE) 
ü  P8. Paper publishing (ICCC 2011) 
R PhD Thesis conclusion and defense 

2 0 1 0  / 2  

Caption: 

R Completed. 
ü  Partially developed 
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2 RELATED WORK 

In this section we describe the works that most affect our goals. As a result, this 
section does not illustrate a complete survey of the fields, instead, it presents sufficient 
works to contextualize our contributions. Each section begins with a brief 
contextualization on how the described area affects our work. Our presentation of 
related work also focuses more on creativity than agency. This decision was made 
because, for us, creativity and its computational counterpart were a less explored topic 
than agency. The remaining part of the section is organized as follows: section 2.1 
presents a theoretical perspective on creativity, while section 2.2 presents a 
computational perspective, introducing computational creativity; next, section 2.3 
describes the theory of concept blending; in section 2.4 we present Divago (a 
computational implementation of CB); section 2.5 describes algebraic semiotics (a 
partial formalization of CB); finally, section 2.6 presents works on agent adaptation. 

2.1 Creativity 
This section introduces the topic of creativity from a theoretical perspective. The 

concepts and views given here are fundamental for a discussion about the applicability 
of our model in general studies of creativity (research stages S.D3 and S.D4). Our 
ambitious view is that we may contribute on the research about how humans are able to 
create new ideas and also use this ability on our daily lives. Furthermore, based on the 
concepts presented here we also position our research in terms of general perspective on 
creative behavior (research goal G1). 

As with any conceptualization representing something that humans do, but cannot 
explain how, creativity does not have its precise definition – no news for the AI 
researcher here. For the purposes of this work, we consider creativity as a process that 
generates new ideas or concepts. This line of thought follows the theoretical stand by 
Boden (2004), which goes further on the definition: 

Creativity is the ability to come up with ideas or artefacts that are new, 
surprising and valuable. (BODEN, 2004, p.1) 

Boden begins her definition by relating creativity to the ability to generate ideas. Her 
intuition is to view creativity as a generic act of creation, so, considering ideas, it might 
be a new thought, concept, poem, music, mathematical theorem, cooking recipe, joke, 
and so on. She also mentions structures and artifacts which positions creativity in the 
realm of concrete things, like paintings, sculptures, origami and vacuum cleaners. In 
summary, Boden views creativity as the ability to generate ideas and artifacts, in the 
broadest context possible (BODEN, 2004). 

To describe novelty, Boden (1998, 2004) introduces two kinds of creativity: 
Psychological and Historical – (P and H creativity, respectably). P-creativity 
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contextualizes novelty inside the individual or system itself (e.g. children often come up 
with ideas that are new to them, but that have been on textbooks for years). If someone 
comes up with an idea that no one else has had it before, then the idea is considered H-
creative. Boden (2004) argues that H-creativity is a special case of P-creativity and, 
hence, the study of how creativity happens is in the realm of P-creativity. Dorin and 
Korb (2009) and Saunders and Gero (2002) present the application of creativity to 
artificial life.  Both works define creativity in similar ways, based on Boden’s H-
Creativity approach. 

Still looking at Boden’s definition, she also characterizes a creative idea as being 
surprising – with regard to three interpretations. The first specifies surprise as its 
unfamiliarity or the improbability of its occurrence (e.g. winning the lottery). An 
alternative interpretation of a surprising idea is the one that unexpectedly fits into a 
paradigm (style of thinking) that you already have. Here, the surprise is to realize that 
this new idea is part of an already established paradigm – e.g. “how did I not think of 
that first?” In addition, an idea might surprise because of its apparent impossibility, it 
breaks paradigms and even evokes more ideas considered impossible and that, now, on 
the shed of this new idea, might become reality. 

Finally, the last term in the definition of creativity refers to the value of the new 
idea. Defining value, or what is valuable – or interesting, useful, beautiful, … – is, to 
say the least, subjective and dependent on the situation where value is being assessed. 
As stated by Boden (2004) herself, her notion of new has two meanings and her notion 
of surprising, three; but the notion of valuable, no one is able to tell how many 
meanings it has, and might have. Although context-dependent and potentially 
controversial, having value inside the definition of creativity actually reflects our 
general perception of creativity. I might hear a Beatles’ song and consider it highly 
creative but at same time, you might hear the same song and consider it a mere 
evolution of British rock and roll with influences from the hippie culture. While value 
remains a subjective perception, we will not be able to settle on a scientific theory for 
creativity. However it does not restrain research on the processes that generate creative 
ideas (BODEN, 1998, 2004).  

Focusing on how creativity occurs, Boden (2004) distinguishes three main kinds of 
creativity: combinatorial, exploratory and transformational. Combinatorial creativity 
combines familiar ideas with unfamiliar connections (e.g. poetic imagery, collage in 
painting or textile art, and analogies). Exploratory and transformational creativities are 
properly explained under the perspective of conceptual spaces, which Boden consider to 
be structured styles of thought. These styles are part of a culture or a group and are not 
originated by one individual mind (e.g. ways of writing poetry, styles of painting or 
music and culinary schools).  

Boden’s view of conceptual spaces is not definitive, works influenced by neural and 
cognitive sciences (FAUCONNIER; TURNER, 2002, 2008) tend to consider spaces as 
packages of concepts dynamically constructed by our brains as we interact with the 
world (making coffe, writing a thesis, driving a car, trees, cars, among others). Still, 
Boden’s exploratory and transformational creativities make sense in either view of 
conceptual spaces. Exploratory creativity generates new ideas by exploring hidden 
possibilities inside a previously established conceptual space, for example, the “thinking 
outside the box” idea that makes perfect sense – it fits in the space – but was not explicit 
in the current paradigm. 
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Moving to a more surprising kind of creativity, the transformational process result in 
impossible, unthinkable ideas, relative to an established conceptual space. It is that kind 
of idea that breaks, or at least changes current paradigms, welcoming new thoughts that 
were previously inconceivable.  

To balance Boden’s theoretical (philosophy) discussion on creativity, we present the 
view proposed by Duch and Pilichowski (2007), where the authors follow discoveries 
on neurosciences to contextualize creativity. Hence, according to Duch and Pilichowski, 
the process of creativity is defined as follows: 

Creativity involves neural processes that are realized in the space of neural 
activities reflecting relations in some domain (in the case of words, 
knowledge about morphological structures), with two essential components: 
1) distributed chaotic (fluctuating) neural activity constrained by the strength 
of associations between subnetworks coding different words or concepts, 
responsible for imagination, and 2) filtering of interesting results, amplifying 
certain associations, discovering partial solutions that may be useful in view 
of the set goals. (DUCH; PILICHOWSKI, 2007, p.126) 

In that definition, filtering is viewed as a process that relies on several features, like 
previous expectations, current associations and arousing emotions. Duch and 
Pilichowski discuss that creativity requires prior knowledge, imagination and filtering 
of the results. According to his view, imagination is constrained by the possible 
compositions of elementary operations (activations of neurons and neural-networks). 
Duch and Pilichowski propose that filtering imagination by domain, forming conceptual 
spaces (reflecting different neural configurations) is also an important aspect for 
creativity. 

2.2 Computational Creativity 
Shifting the focus to computer science, this section presents an overview on 

computational creativity. Far from a survey, our aim here is to describe the main 
approaches of the field, allowing us to characterize our contribution on computational 
approaches to creativity (research stages S.A1, S.D3, S.D4). 

We present a few conceptualizations of the field, its main perspectives and a 
categorization scheme. All the concepts discussed so far regard (represent) Boden’s 
theoretical creativity approach – although a bias towards computational models can be 
noted on the descriptions of creative processes. When considering computational 
creativity, Boden (2004) notes that computational approaches can help on investigating 
new hypotheses of how the mind works, but she does not commit to a definition for it. 
Wiggins (2006), proposes a set-theory-based formalization of Boden’s 
conceptualizations, in an attempt to further specify her theory. Along with the 
formalization, Wiggins also constrains Boden’s definition of creativity, seeing it 
through the perceptive perspective:  

The performance of tasks which, if performed by a human, would be deemed 
creative. (WIGGINS, 2006, p.451) 

Wiggins assumes that creativity is too subjective to define, thus he proposes a 
definition grounded on the perception of creativity, in the sense that, although we are 
not able to precisely define it, we know it when we see it. Since Wiggin’s purpose is to 
further specify Boden’s view, after his definition of creativity, he conceptualizes 
computational creativity as follows: 
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The study and support, through computational means and methods, of 
behavior exhibited by natural and artificial systems, which would be deemed 
creative if exhibited by humans. (WIGGINS, 2006, p.451) 

Moreover, Wiggins also characterizes a creative system as a collection of processes, 
natural or automatic, which is capable of achieving or simulating behavior that would 
be considered creative in humans. A similar definition of computational creativity is 
presented by Franová and Kodratoff (2009) where it is considered to be the whole set of 
methods by which a computer may simulate creativity. We consider computational 
creativity as a field of study that has the potential to help us understand how creativity 
occurs in humans. Thus, we define computational creativity as the study of creativity 
through (based on) computational methods.  The ways that the study can be conducted 
actually represent the main streams of work under computational creativity.  

One stream researches ways to model the process of creativity generically, 
formalizing specific properties of creative reasoning and then contextualizing them into 
a broader framework of cognition (CARDOSO, A. et al.. 2001; PEREIRA; CARDOSO, 
2006; PEREIRA, 2007; BLAIN, 2007; SAUNDERS, 2006; WIGGINS 2006; 
COLTON, 2008). A second line is represented by more specific works that attempt to 
mimic human creativity in specific domains, like music composition and improvisation 
(MÁNTARAS, 2006; PEARCE; MÜLLENSIEFEN; WIGGINS, 2008), joke 
(BINSTED, K. et al.. 2006), poetry (PILICHOWSKI; DUCH, 2008), story (ZHU; 
HARREL, 2008), painting generation (COLTON; MÁNTARAS; STOCK, 2008), and 
theater interpretation (MORAES, 2004). These works not necessarily commit to a 
formal creative model, rather, they use specific techniques (e.g. neural networks, 
Bayesian networks and genetic algorithms) leading to context-specific creative 
behavior.  

Most of these works also consider, implicitly, the output of a creative system as an 
action contextualized by the environment and also by other actors (an audience, other 
musicians, other actors, etc.). According to our perspective, this line differs from the 
one followed in this research in terms of the abstraction of action. In our context, we 
observe action and practical knowledge in a higher abstraction level, considering a 
model of practical reasoning itself. The specific creative systems in general have 
outputs that can be perceived as actions, but are not modeled into an explicit practical 
reasoning framework. Thus, we do not position our work on this line of computational 
creativity. Finally, a third line groups systems and techniques to support creative work 
(SAUNDERS, 2009; HÉLIE; SUN, 2008). Regarding this division of computational 
creativity, we position our work on the first stream (computational models of 
creativity). 

Recalling Boden’s theory, she proposes a distinction between Psychological and 
Historical creativities. This division actually represents the main stands (positions) on 
creativity, P represents a focus on the phenomenon of creation while H represents a 
focus on the result of the phenomena, a view that positions the creation inside a context 
(societal, cultural, historical, …). 

Our view focuses on the P side, since we want to empower the agents with a kind of 
reasoning that allow them to further use what they know or what they can do. Moving to 
a multi-agent perspective, H-creativity also present opportunities for research, given 
that a societal and normative context is present and influentiates the agent behavior. A 
general account of the H view is presented by Csikszentmihalyi (1988). Figure 5 
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illustrates that view, examining creativity from systemic perspective (boxes represent 
systems and ellipses, actors). 

 
Figure 5 Systemic view of creativity (CSIKSZENTMIHALYI, 1988) 

Csikszentmihalyi considers that the individual, its societal (interactive) field and its 
cultural (symbolic) domain are the basis (boxes plus ellipses) of a creative system. In 
this system, creativity is fostered by the interactions (arrows) among the individual, the 
domain and the field. Saunders and Gero (2002) note that in such perspectives, 
creativity is as much the result of the appreciation of a work as it is the product of the 
creator. 

Following the line of H-creativity, Ritchie (2007) proposes a framework for the 
assessment of computational creativity by specifying a set of criteria to be applied on a 
generated artefact. A key assumption on Ritchie’s framework is that all the criteria must 
be based solely on empirically observable factors, ignoring the process behind the 
production. Focusing on what is observed, Ritchie aims at mimicking how humans 
judge art works, usually without awareness of the artist’s mental or emotional processes 
that lead to the production. Hence, the proposed framework puts a computer program on 
the same level of a human creator, since the assessment relies on a human to judge the 
output of a creative program. Ritchie establishes the set of criteria around the properties 
of quality and novelty. These properties are specified in terms of class membership and 
an inspiring set, which is applied during the assessment for comparison purposes. A 
total of eighteen criteria are defined (e.g. average typicality, average quality, good 
result, good typical and atypical results) composing an evaluation table. 

On the opposite side, Colton (2008) defines guidelines for the assessment of 
computational creativity following a P-creativity perspective. Colton assumes that the 
process of generating an artefact does matter, and that humans consider it when judging 
a creative product. Basing his argumentation on artwork appreciation, especially on the 
impact that knowing how an art piece was produced has on the enjoyment of a work, 
Colton defines his framework around three properties: skill, appreciation and 
imagination. These properties constitute what Colton calls the creative tripod, 
representing the behaviors that a creative system must exhibit in order to be considered 
creative. Colton proposes the use of the tripod when developing the creative software – 
as a guide to the developer – and also as an intuitive way to present computer-generated 
art to non-technical consumers. 
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2.3 Concept Blending 
Since the beginning of this research, our main motivation was how could agents 

make better use of their knowledge? How can agents go beyond traditional logical 
reasoning towards other kinds of human-like reasoning? These questions lead us to 
study how our brains represent and reason over symbols and concepts. Studying 
philosophical and cognitive studies on how our brain uses and represent concepts 
(MURPHY, 2002), we came along a hybrid theory that originated from cognitive 
linguistics that follows developments from neurosciences and philosophy of the mind 
called concept blending.  

This section describes the CB theory and is the basis for our model of creativity 
(goal G1, G1.1; stages S.A2, S.A3 and S.A5). Although blending is not seen as a theory 
for creativity, it can be used to explain the production of creative artifacts, since 
essentially, it explains how our mind produces new conceptualizations. 

 Concept blending, also known as Conceptual Integration (CI), is considered to be a 
general cognitive operation related to analogy, categorization, framing and mental 
modeling (FAUCONNIER; TURNER, 1998). The theory is based on empirical 
observation of meaning construction in different domains, including mathematics, social 
sciences, human-computer interaction, literature, music and mainly linguistics. It 
originated in the field of cognitive linguistics with the goal of explaining how we 
understand creative phenomena such as metaphors and counterfactuals.  

According to Fauconnier and Turner (FAUCONNIER; TURNER, 2002; 
FAUCONNIER, 2008) conceptual integration follows the developments from embodied 
cognition and describes a mental capacity that leads to new meaning, global insight, and 
conceptual compressions useful for memory and manipulation of otherwise diffuse 
ranges of meaning. Although creative and insightful constructions can be explained in 
terms of CB products, CB itself does not hold to fully explain creativity since some 
important points are not defined, such as the selection of inputs for the process. 

Despite its importance, especially to provide computational models for the theory, 
detailed aspects of the operation are not defined and perhaps are not part of the original 
research agenda of the authors. In (FAUCONNIER; TURNER, 2002) conceptual 
integration is characterized as a non-algorithmic and non-deterministic operation. These 
characteristics lead to a mind model where operations are executed in parallel and the 
innumerous possible lines of thought are seen as a source of variety and creativity. 
Reasoning operations such as analogy and categorization are also examples of aspects 
of the theory that are important but not defined.  

In a nutshell, conceptual integration takes as input two mental spaces, constructs a 
partial match between them and then projects selectively to a new space, the blend, 
which leads to new emergent structure. This structure arises through composition, 
completion and elaboration. Integration takes place in networks of mental spaces that 
represent our neurological structure. As blends are created they expand the network and 
might modify previously established mental spaces. Figure 6 illustrates this structure: 
the big circles represent the spaces, small black circles inside the spaces are the 
concepts, dotted lines represent projections while the regular lines represent the cross-
space matching between the inputs. Both kinds of lines are seen as connections among 
spaces. 
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Figure 6 Blending basic diagram (FAUCONNIER; TURNER, 2002) 

Input spaces for the integration process are set up according to the perceived 
stimulus and its context (specific, generic, counterfactual, among others). The 
perception evokes concepts and related information that will shape the mental spaces at 
hand. After a network of spaces is established, a partial cross-space mapping connects 
counterparts in the input spaces. Establishing counterpart connections can be performed 
with several kinds of relations: analogical, metaphoric, role, frame-based and vital 
relations mappings. 

Along with connecting counterparts, a generic space is built-up from the inputs. This 
space captures the common structure between the inputs mapping its paired 
counterparts. The resulting generic space and the cross-space mapping are used during 
the selective projection operation. Selective projection takes elements from the inputs, 
mappings and generalizations and projects some of them to a new space, the blend.  

Although important, selective projection is not defined in the theory. Nonetheless, 
the blending theory describes restrictions and principles that can be applied to selective 
projection, but are not explicitly linked to this operation (mainly composition and 
completion). We consider that this gap exists because the theory is still in its early days 
and evidence from neurosciences is necessary before formalizing that kind of process. A 
formalization of selective projection is one aspect for a complete account of the creative 
process. 

In our interpretation of the blending process, selective projection is performed 
through composition and completion of the inputs and related spaces. Elements from the 
inputs can be composed providing relations that do not exist in either input. 
Composition considers mostly counterpart relations, which can be included separately 
in the blend (each part is projected onto the same blend, but as separate elements) or as 
the same element in the blend (a fusion of the elements).  

Completion brings background knowledge to the integration process. It uses 
previously established frames to provide pattern completion. The definition of frame 
used in blending is broader than the classical one known to AI (MINSKY, 1974). In this 
case, frames specify general organizational aspects, for any kind of purpose and with 
any granularity. It is possible to have a “soccer game” frame as well as a “meaning of a 
PhD” frame. How frames are established is an issue not discussed in the theory. 
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When the blend space is ready, a process called elaboration can simulate its 
execution according to the principles defined for the blend (usually obtained from 
completion). Elaboration attempts to capture our capacity to imagine the impact of an 
element inside a hypothetical scenario (how it would turn out if it existed in the concrete 
reality). From the principles (time scale, physics dynamics, space, and so on) 
innumerous possibilities for elaboration arise. This operation can also execute 
repeatedly and as long as desired.  

A question that comes to mind is when will the process stop? According to the 
theory, blending is an unconscious process that runs practically all the time. The general 
goal is to support human-scale interaction and understanding of the world. Human-scale 
is a property difficult to define and in our opinion can be seen like intelligence is seen 
by the strong AI community. Bringing human-scale to blending gives us purpose under 
the form of vital relations, which impose restrictions to the process. 

Fauconnier and Turner (2002), characterize the operations that we have presented so 
far as the constitutive principles of the blending process. Since they contextualize the 
blending theory under a greater scheme of cognition, the constitutive principles are seen 
as a first level of constraints to the process. We do not share this view, we consider that 
the constitutive principles are the basic operations of the process, allowing a network of 
concepts to be modified, expanded and understood accordingly. Still, we will maintain 
the original terminology through the text. To summarize, the constitutive principles of 
blending are: input definition, cross-space connections, generic space definition, 
selective projection, composition, completion and elaboration. 
2.3.1 Governing Principles 

Along with the constitutive principles, governing principles are also defined as a 
stronger source of constraints to the process. Constitutive principles are related to the 
structure and dynamics of the blends while governing principles characterize strategies 
for optimizing the emerging blend. Governing principles have a higher abstraction level 
and guide the blending process towards the generic goal of achieving human-scale. 
Thus, the intuition is to constrain and prioritize operations that will bring about 
understanding, sensing and acting to blends in a human-like fashion.  

Our repetition of what is human-scale is on purpose, since we would like to clarify 
that it is closer to a general research goal for concept blending – and cognitive sciences 
– than a conceptualization of a clear goal to be achieved by blending. Nonetheless, 
achieving human-scale is the purpose behind governing principles, to restrain the 
operation towards human-scale acting. To conclude, our presentation of these principles 
assumes that achieving human-scale is implicitly defined in every governing principle, 
instead of a clearly qualified goal to be achieved. The exceptions to our simplifying 
assumption are the vital relations.  

Although Fauconnier and Turner do not specify a formal connection between vital 
relations and human-scale, we consider that these kinds of relations characterize some 
aspects of what they mean by human-scale. Fauconnier and Turner (2002) characterize 
vital relations as “Vital relations are what we live by, but they are much less static and 
unitary than we imagine” (FAUCONNIER; TURNER, 2002). Specifically under 
blending, vital relations are conceptual relations that tend to show up many times, 
representing relations like cause-effect or change. In our interpretation of the blending 
theory, vital relations can be applied as filters for the links established during cross and 
inner space connecting, generic space definition and selective projection.  
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Fauconnier and Turner (2002) present the following list of vital relations: change, 
identity, time, space, cause-effect, part-whole, representation, role, analogy, disanalogy, 
property, similarity, category, intentionality and uniqueness. Having a general idea of 
vital relations and their role in blending is fundamental to understand the governing 
principles. Most of them establish operations and unique utilizations of vital relations. 
The main categories of governing principles are compression, topology, pattern 
completion, integration, maximization and intensification of vital relations, web, 
unpacking and relevance.  

Although compression can be seen as a general method, in the sense that anything 
can be compressed into something else (e.g. a carrot can be compressed to a vegetable 
and a collection of states can be compressed into a country), in blending compression is 
mostly applied to vital relations. Therefore, the governing principles of compression 
present some guidelines on how vital relations can be compressed into others, guiding 
compression towards human scale. 

The simplest case of compressing vital relations is when only one relation is 
compressed into itself. Fauconnier (2008) describes that it can be achieved by scaling 
and by syncopation. When a vital relation has a scale of some sort, like time that may be 
represented by a time interval, the scale – and everything it represents – can be 
compressed into a single point. For instance, a time scale representing how long a 
student took to complete his graduation course can be compressed into a single moment, 
his graduation ceremony. A chain of causes and effects can also be compressed to few 
or only one cause and one effect.  

In addition, the range of effects, its kinds, its causalities and the respective kinds 
may be similarly compressed (e.g. a diffuse or fuzzy causation can be compressed into a 
precise one).  Likewise, multiple roles can be compressed into a single composite role 
(e.g. mother, father and son become family). Also, patterns with little or fuzzy 
intentionality and long arrays of intentions can be compressed similarly to the cause-
effect compression. Similarly, the vital relation of change also falls into this kind of 
compression, several changes into an object or concept are intuitively compressed into 
the final object. 

Another way to compress a single relation into itself is through syncopation. 
Syncopation refers to the process of dropping scalar events, like a moment in a time 
scale, but keeping a few key events. Like most of the concepts from the blending 
theory, details of what characterizes a “key event” are left for the reader to consider. An 
example of syncopation is keeping only being born, first kiss, getting married, having 
children, having great-children, passing away from a time scale representing an 
individual’s lifetime. 

Increasing complexity, there are patterns for compressing one or more vital relations 
into another. Fauconnier and Turner (2002) proposes hierarchies of compression in 
order to compress multiple relations into a single one. For instance, consider the vital 
relation of representation connecting a representation to the thing itself. Inside a blend, 
representation can be compressed to uniqueness. A concrete example is our direct 
understanding that a photo represents a person. Contextualizing this example inside 
blending, between the photo and the person, we have the relations of representation and 
part-whole yielding a uniqueness relation in the blend. As presented by Fauconnier and 
Turner (2002), this is what happens – in blending terms – when a police officer points at 
and ID photo and asks: “Do you know this man?” 
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The relation among representation, part-whole and uniqueness is an example of the 
possible interplay among vital relations. Fauconnier and Turner (2002) establishes two 
hierarchies describing connections among vital relations. Far from being an exhaustive 
and final list of vital relations hierarchies, they represent what the authors have already 
researched. Figure 7 illustrates a hierarchical view of the relations among 
analogy/disanalogy and other relations, while Figure 8 illustrates the hierarchy for the 
cause-effect vital relation.  

 
Figure 7 Compression Hierarchy for Analogy/Disanalogy (FAUCONNIER; TURNER, 

2002) 

 
Figure 8 Compression Hierarchy for Cause/Effect (FAUCONNIER; TURNER, 2002) 

Another compression principle is achieving inner-space scalability. To understand 
scalability it is necessary to have in mind the general goal of achieving human scale. In 
this context, inner-space scalability pushes the network construction towards having all 
the necessary connections of vital relations available in a timely fashion. Going to the 
network perspective, this means that even originally outer-space relations, such as 
representation, analogy, disanalogy and identity must be scalable to a single blend, 
providing readily available meaning and understanding to different situations – 
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achieving human-scale. Fauconnier and Turner (2002) exemplify this kind of situation 
illustrating that the outer-space relation of representation between a person and his 
label, for example, his name, is available in a single blend, where the name becomes a 
part and a property of the person. 

Next, there is the principle of creating a new relation through compression. This 
principle relates to the idea that inherent to a new blend there is a possibility to create 
new connections – thus new meaning – that were not part of the inputs. What this 
principle states is that creating new relations inside blends constitute an important part 
of the blending theory, specially regarding emergent meaning. 

Highlights compression is another one of the compression principles and regards the 
property of highlighting in terms of vital relations a whole network of concepts. Once 
more the importance of compression in connecting different networks and providing all 
the necessary information at once is prioritized. Finally, borrowed compression is a 
principle that applies an opposing force to creating new compressions. This principle 
guides the network construction towards borrowing compressions from networks that 
already have a tightly integrated scenario projecting a coherent compression to a blend.   

The remaining governing principles provide optimization pressures beyond 
compression. The topology principle states the following: “set up the blend and the 
inputs so that useful topology in the inputs and their outer-space relations is reflected by 
inner-space relations in the blend”. Considering the topology principle, Fauconnier and 
Turner (2002) describe five possibilities to align current topologies from the inputs to 
the blend while optimizing compression. 

First, simply not providing a counterpart of the relation on the blend. Although some 
information might be lost, the remaining relations might be emphasized and bring a 
better understanding of its importance. Second, it is possible to project the relation 
while scaling it in the blend. Third, syncopation may be applied during the projection. 
Fourth, the relation may be compressed into another relation. Fifth, a mutual inner-
relation from the input spaces may be projected to the blend taking the relation from one 
space, but the compression from the other. 

In opposition to topology, is the web principle – although in few situations the 
former aligns with the latter. While topology pushes blend construction towards keeping 
the overall topologies from the inputs, web pushes the maintenance of connections 
among spaces, sometimes limiting topological connections. Correspondingly, the web 
principle is defined as: “manipulating the blend as a unit must maintain the web of 
appropriate connections to the input spaces easily and without additional surveillance or 
computation”. In result of this principle, during blend development we should not 
disconnect valuable web connections to and from the inputs.  

Another governing principle is pattern completion, which states that existing 
integrated patterns should be used as inputs to complete elements in the blend. 
Additionally, use an already developed frame whose relations reflect compressed 
versions of the outer-space relations between the inputs. Related to pattern completion 
is the integration principle that simply states: “achieve an integrated blend”. Integration 
in the blended space allows it to be manipulated as a single unit, allowing the blend to 
be directly utilized without constantly referencing other spaces. Consequently, 
integration is seen as sub-goal of creating human-scale blends.  
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Allied to this view are the principles for promoting vital relations through their 
intensification and maximization. Maximizing vital relations directs projections and 
creation of new relations towards an integration network with many supplementary vital 
relations in the blend and in the outer-space connections. Hence, the principle of 
maximizing vital relations is to maximize them in the whole network and specifically 
inside and outside the blended spaces (inner and outer space vital-relations). Although 
maximization can be seen as intensification (and vice-versa), the last reflects the idea to 
intensify the vital relations already available instead of any one possible. 

Since blending has the compression principle, it is expected to have another for 
decompression. Such principle is called unpacking and regards the possibility that the 
blend all by itself should prompt for the reconstruction of the entire network. Following 
this principle, the blend works like a mnemonic or triggering device, presenting 
compressions that allow us to unpack them into full networks. 

Finally, the relevance principle asserts that an element in the blend should have 
relevance – in a broad sense – including relevance for linking to other spaces and for 
running the blend. Relevance also pressures networks to have relations in the blend that 
are compressions of important outer-space relations between the inputs. Fauconnier and 
Turner (2002) relate relevance to unpacking: “network relevance can be satisfied for an 
element in the blend if it can be successfully taken as a prompt for unpacking”. 

In the earlier works on blending theory, the governing principles were called 
optimization principles (FAUCONNIER; TURNER, 1998). But, since they serve more 
as guidelines than optimization per se, the name governing principles fits better. In 
addition, these principles should be seen as competing pressures guiding the blends 
towards human-scale. 
2.3.2 Network Typology 

By means of constitutive and governing principles the general operation of blending 
gets described. But still, even considering that all the optimization pressures are applied, 
and that contextualizing (valuing appropriateness and important relations) is easily 
available, blending is capable of generating many possibilities of networks. It is argued 
that this capacity to generate novel conceptualizations – despite its complexity – is 
where lies the greatest contribution of the blending theory. In the middle of a world of 
possibilities, Fauconnier and Turner (2002) identified four types of network that have 
specific interpretations for human cognitive functions.  

The first identified type is the simplex network, which is based on frames and roles. 
One of the input spaces is a frame and the other has possible values to be mapped 
through roles. In this case, blending is straightforward integrating the frame and the 
values in the simplest way. Simplex networks do not have competing frames or 
incompatible counterpart elements, neither organizing frames for the inputs. 

Still considering the importance of frames, Fauconnier and Turner (2002) define 
mirror networks, where all spaces (inputs, generic and blend) share the same organizing 
frame. An organizing frame specifies the nature of the activity, events, participants, 
scales, relevance and any other important aspect for the understanding of the scenario. 
In addition, the organizing frame provides a topology for the space, organizing relations 
among elements of the space. Since the inputs and generic space share the same 
organizing frame, cross-space mapping becomes straightforward and clashes may occur 
only on more specific levels. Considering compressions, mirror networks perform them 
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over time, space, identity, role, cause-effect, change, intentionality and representation, 
both for inner and outer space connections. 

Now, dealing with different organizing frames are the single-scope networks. In this 
kind of network, only one of the organizing frames is projected to the resulting blend. 
The input that supplies the organizing frame is called source and the other, which 
focuses on the understanding, is called the target. Having these source and target 
blending can be used to generate and explain “source-target” metaphors. Figure 9 
illustrates a single-scope network with the “boxing CEOs” example (FAUCONNIER; 
TURNER, 2002). 

 
Figure 9 Single-scope network (FAUCONNIER; TURNER, 2002) 

Moving to a more cognitive explanation, Fauconnier and Turner (2002) argue that 
single-scope networks give the feeling that “one thing” is providing insight into 
“another thing”, independently of the distance between the things (spaces). Inferences, 
compressions and emotions from the source, which already is well known to us, will be 
applied to the target, thus applying the same general feeling of knowing to the target.  

Besides different organizing frames for the inputs, blends generated by double-scope 
networks have an organizing frame with parts from each of the sources and with an 
emergent structure of its own. Both organizing frames contribute to the result and the 
differences between the inputs provide clashes and contradictions offering challenges to 
the imagination, resulting in potentially creative blends (FAUCONNIER; TURNER, 
2002). 

An example provided by Fauconnier and Turner (2002) is the computer desktop 
interface – actually, Imaz and Benyon (2007) provide a rich study on human-computer 
interfaces and concept blending. In the desktop example, the inputs have different 
organizing frames: the first is the frame of office work, with files, folders and trashcans; 
the second, computer commands to create, delete and organize files. The resulting blend 
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allows finding files, moving things to the trash, printing, and so on. Thus, the blend’s 
frame has structure from both input’s frames with a meaning of its own.  

Fauconnier and Turner (2002) uses double-scope blending to explain several parts 
and results of human cognition, like culture, form and meaning, language and 
grammatical constructions. An unpublished paper by Brandt (BRANDT, 2002), who 
wrote a PhD thesis on literary analysis using concept blending (BRANDT, 2000) 
describes a more specified typology of integration networks considering their purpose 
and cognitive aspects. Figure 10 illustrates Brant’s typology. 
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Figure 10 Blending Typology (BRANDT, 2002) 

Brandt’s typology begins by distinguishing conceptual integration from other kinds 
of integration, like nature’s evolutionary structures and low-level sensorial-only 
integration. Since the focus of her work is on cognitive semiotics, she goes further on 
conceptual integration leaving other kinds of integration for future work. Conceptual 
integration is divided on three groups according to how spaces are considered during 
integration. Brandt proposes clear distinctions among integrations that may occur inside 
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one space (intraspace), integrations between two spaces (interspace) and integrations 
among domains of spaces (fusion). 

Intraspace integration has five specific types: semiotic, schematic, figurative, 
scenarial, and syntactic. Intraspace semiotic integration regards the integration of signs, 
like an angry facial expression, gestures and greetings. Schematic integrations regard 
only structural integrations of the space, such as table leg, head of state and more is up, 
which integrates a quantity schema with a directional one. On the other side, figurative 
integrations consider aspects like shape and motion leading to purely figurative 
interpretations (e.g. an hour glass waist and head of lettuce). Scenarial integration 
considers compositions of space elements to work as single scenario, like the 
availability of language and utterances in a communication scenario. Ultimately, 
syntactic integration connects grammatical structures to their meaning in a single space. 

Fusion integrations can have more than two spaces as inputs, but here, the spaces are 
considered to be fusions of categories or entire realms of knowledge. Brandt considers 
these spaces as domains and not as mental spaces. She characterizes fusion blending as 
task-oriented and functional, being more applied in problem-solving activities. Dividing 
fusion blends by their quantitative aspects, Brandt defines domain and concept blends.  

Domain blends bring together two or more domains of knowledge blending structure 
from each input. This kind of blending goes beyond the local task of the individual, 
considering a broader temporal scope, such as the history of ideas from a whole field. 
Examples of domain blends are the fields of AI, neuroscience, psychology and literary 
studies. Reducing the scope of fusion blends, Brandt defines the concept blends 
category, essentially applying the same process of domain blending to a smaller scale. 
Recalling Fauconnier’s and Turner’s terminology, fusion blends would be represented 
by single and double scope networks. 

Ultimately, conceptual integration is sub-divided in order to categorize interspace 
blends, which are also called semiotic blends. These blends have only two inputs that 
are not fused (a single-scope network). Thus, semiotic blends organize the inputs as 
vertical layers; the top one gives meaning to the bottom one, as conceptual metaphor. In 
this case, the source input works as a predicate of the target (e.g. love is a journey). 
Mental space blends generalizes the idea considering double-layer integration of any 
kind – not only source/target. That category is divided into expressive and functional 
blends.  

Expressive blends are related to communication and expressive acts. The first sub-
category is virtual co-existence where time is compressed to a single moment, allowing 
a simultaneous experience of two spaces in the resulting blend (e.g. imagine yourself 
discussing with Alan Turing the future of computer sciences). Instead of simultaneity, 
the next sub-category, called virtual being, considers the blend as a superposition 
between the inputs – in this context regarded as reference and the presentation. During 
elaboration, the blend oscillates the inputs, giving more attention to the reference at 
some times and to presentation on the others. For instance, counterfactual, pretense and 
generalizations – using Garfield to represent the whole category of cats). 

Remaining on superposition, virtual contrast blends puts one space in the foreground 
(presentation) and the other in the background (reference). The difference to virtual 
being blends is that here the distance between the layers is bigger and, hence, the blend 
does not oscillate much during elaboration (e.g. negation and irony). Finally, expressive 
analogy considers analogies produced to explain relations to the individual or someone 
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else. Such communicative analogies occur, for example, when comparing one situation 
to another in order to facilitate the listener comprehension.  

The second sub-category of mental space blends are functional blends. In opposition 
to expressive blends, functional blends describe functionalities achieved through 
blending. On the typology, Brandt (2002) divides functional blends by the way that the 
functionality is developed. For example, she proposes the functional analogical blends 
category, where blends are characterized by an iconic connection between the inputs, 
providing a functionality (e.g. solving something) using analogies. Brandt exemplifies 
analogical blends referring to a group of people trying to make a coffee machine to 
work. One person might suggest turning it off and then on again, like on a computer. 
Another suggests jiggling the handle, like on a water closet. In this example problem 
and solution are on the same domain, the machinery one, which is another characteristic 
of analogical blends. 

Another way to provide functionality is applying causal links to the inputs. Causal 
informative blends adopt some kind of measure system to compute a specific state of 
affairs, which will be represented by the blend. An alternative causal blend is the 
performative kind, where cause-effect relations serve the purpose to influence a state of 
affairs, like in cultural rites. 

Finally, symbolic connections between inputs from different domains are the last 
way to develop a functional blend (BRANDT, 2002). Such symbolic connections lead 
to metaphoric behavior (as if scenarios) and to non-expressive pretense. In metaphoric 
behavior, the individual (also called cognizer) interacts with something as if it were 
something else from a different domain (e.g. someone talking to his computer, or 
threatening it because the printer does not work). The non-expressive variation of that 
behavior happens when the individual is not aware of his own pretense, it is like he is 
living in the blend – this point is also discussed by Fauconnier and Turner (2002). 

2.4 Divago 
Under computational creativity, Divago (from the portuguese expression “eu 

divago”) is the work that most relates to ours. Following the early works of Fauconnier 
and Turner (1998, 2000), Pereira (2007) developed one of the most complete 
computational creativity model based on concept blending, the Divago system. Thus, 
the relation to our model is straightforward, providing a comparison basis and also 
insights to the design of our model (goal G1 and stages S.A.2) 

Pereira (2007) proposes a creative general problem solver – an analogy to the 
classical problem solver by Ernst and Newell – resulting from the establishment of a set 
of principles for creative systems. Furthermore, the Divago system, which implements 
most of the creative problem solver, is presented and analyzed using Ritchie’s 
framework (RITCHIE, 2007).  

According to a top-down approach, we first present Pereira’s principles and then a 
summary of Divago. After a discussion of creativity and creative systems, Pereira 
describes a set of guiding principles that represent what he considers as fundamental for 
computational creativity. First, he describes the knowledge principle, which is the basis 
for the creative act. Accordingly, Pereira argues that both quality and quantity of 
knowledge must be available and treated with equal importance. In respect to quantity, 
heterogeneity of knowledge must also be present, representing not only the problem 
domain, but also different perspectives and different domains. Related to knowledge is 
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re-representation, stating that a body of knowledge should be understood according to 
different viewpoints.  

Associated to knowledge reasoning, the bisociation principle represents the ability to 
find unprecedented associations, usually through cross-domain exploration of structures 
and concepts apparently distant and unrelated. Still on reasoning, being able to reason 
about reasoning is also considered as a principle for creative systems – meta-reasoning. 
Pereira also brings the notion of evaluation, as presented by Csikszentmihalyi (1988) 
and Boden (1998), in terms of self and society as a principle. Another one is interaction 
with the environment, which contextualizes creativity inside historical, cultural and 
societal aspects.  

Returning to internal aspects of creativity, the purpose principle asserts that there is 
always a purpose in any creation, even in the cases where it is very subtle. Such view 
proposes a goal-oriented perspective for creative systems. In addition, the 
divergence/convergence principle assumes the existence and importance of different 
modes of thinking to creativity. Divergent thinking is related to free associations, allows 
inconsistencies and relaxation of constraints, while convergent thinking is rational and 
methodic. The last principle presented by Pereira (2007) is ordinary processes. This 
principle reflects Pereira’s theoretical position in terms of how creativity occurs, in 
cognitive terms. His stand is that, not necessarily, the process behind creativity is 
cognitively different from the process of rational reasoning – they might share the same 
grounding of any other cognitive phenomenon. 

All those principles are put together in the creative general problem solver that is 
illustrated in Figure 11. The boxes represent the principles and the arrows interactions 
and dependencies among them. 

 
Figure 11 The creative general problem solver (PEREIRA, 2007) 

Pereira discusses the implementability of his creative problem solver concluding 
that, to some extent, any of the components can be computationally implemented, 
perhaps even reduced to a search problem. Although, meta-level reasoning is considered 
to be one of the most challenging components, since it requires assessment and self-
organization. In terms of applicability, it is argued that the model can be relevant where 
the generation of concepts is the goal, such as in design, architecture and arts. Another 
point raised – that actually reflects our position – is that it can help domain-specific 
implementations when no solution is found or to find novel ways to improve the system.  
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The creative general problem solver is implemented using logic programming in the 
Divago system. An overview of the system is illustrated by Figure 12, where it is 
notable the similarity with the generic model. 

 
Figure 12 Divago’s architecture (PEREIRA, 2007) 

As described by Pereira, the process of concept invention begins by feeding the 
mapper with two concepts. In Divago, the choice of what concepts to use is either given 
by the user or by a random process. Every concept is kept in the knowledge base and 
each one is defined through different kinds of representations, namely concept maps, 
rules, frames, integrity constraints and instances. Although based on the symbolic 
paradigm (Prolog language), Pereira argues that the same mechanisms could be applied 
to other paradigms, like neural networks. Pereira’s formalization considers concept 
maps as semantic networks describing concepts or domains. More specifically, each 
concept map is a graph representing concepts, and the arcs represent the relations 
among concepts. 

Divago itself does not distinguish concepts from domains, meaning that every 
domain is by itself a concept and every concept can be seen as a domain. Hence, the 
distinction between concept and domain depends on granularity and is subjective – 
dependent on the user’s input.  

Summarizing, concept maps are viewed as the factual part of a concept’s 
representation. Considering reasoning, rules, frames and integrity constraints constitutes 
the inferential part of the representation. In this context, rules are defined to explain a 
concept’s inherent causality or specific heuristics. Rules are defined by their domain, 
name, positive and negative conditions and conclusions to be added and removed, if the 
conditions hold. Considering the whole process, rules can be applied to the inputs, 
before the process or to the blend, after its construction. 

Frames share the same syntax of rules, but they have a different semantics in the 
system. Usually they describe meta-level concepts integrated to a specific situation, 
structure or relation (such as cause-effect), tying a set of elements into a single one – 
intuitively broader and more abstract. Syntactically, frames represent conditions that the 
associated concept must satisfy. When it does, it is considered that the concept 
integrates the frame. Semantically, they can be specified as goals and, thus, help 
structuring the blend towards meaningful results. Inside Divago’s process, in a similar 
way than the utilization of rules, frames are also applied during elaboration. 
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Accordingly to the frame’s functionality, it is classified as organizing, pattern 
identifying or transforming. A frame is considered as organizing if it determines the 
whole structure of a concept’s concept map. It is considered as pattern identifying if it 
matches a pattern within a larger concept map. Finally, transforming frames specify 
specific transformations that may occur during blending.  

Our study of Divago indicates that the system itself does not note those distinctions 
among kinds of frames, they are mostly used by the developer, in order to properly 
control the process and to analyze the results. In the experiments described in 
(PEREIRA, 2007), the author specified generic frames representing relations such as 
analogy, day compression and role projection. 

Another kind of representation part of Divago’s knowledge base is integrity 
constraints. This serve to specify logical impossibilities, such as defining that something 
cannot be dead and alive at the same time. Each constraint consists of the 
domain/concept where it applies plus logical expressions to be satisfied and unsatisfied 
(positive and negative sets). 

Finally, Divago allows the definition of instances, which allows the user to assign 
concrete values to parts of the concept’s specification (elements of the concept map). 
Considering all those representations allowed in Divago, a concept is defined by its 
theory and instances. A concept theory regards concept maps, frames, rules and 
integrity constraints related to the concept. Intuitively, instances represent the set of 
concept’s instances. Besides different concept theories and instances, the knowledge 
base also maintains a generic domain, in which generic frames and special kinds of 
map’s relations are specified. 

Having the concepts, the mapper provides a structural alignment between them. The 
general idea of this component is to implement the cross-space matching of concept 
blending. Recalling that, inside Divago, each concept is associated to a concept map, 
given two concepts, the mapper finds a set of mappings between their concept maps, 
each pair having one element from each map. In this implementation, a spread 
activation (QUILLIAN, 1968) algorithm (using the flood-fill technique) looks for the 
largest isomorphic pair of sub-graphs inside the concept maps. Two graphs are 
considered to be isomorphic if they have the same relational structure (arcs), without 
considering the elements (nodes). Another aspect of Pereira’s algorithm is that it begins 
with a random pair of elements, so, the perfect mapping (largest isomorphous sub-
graphs) is not guaranteed. 

Given a pair of concepts and a mapping between them (either generated by the 
mapper or by any other source), the blender module generates the set of all possible 
blends (represented by a set of projections). Each projection is a non-deterministic 
operation that maps an element x from a concept map CM, and the respective 
counterpart y, when available by the mapping, to a new element in the blend, which is 
either x, 0, x|y or y. The compound x|y can be read as both x and y at the same time 
(PEREIRA, 2007). Thus, a blending projection defines for each element of CM, what its 
correspondent will be in the blend. When element x has a counterpart (y), it can be 
projected as a copy of itself (x), as a compound (x|y), as a counterpart (y) or not be 
projected at all (0). Figure 13 illustrates these projections, with the horse element and its 
counterpart bird, mapped by the relation M. In this case, the projections are horse, 
horse|bird, bird or nothing. 
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Figure 13 Blending projection applied to two concept maps (PEREIRA, 2007) 

Pereira (2007) specifies an algorithm that transfers the knowledge from the inputs to 
a temporary space, called blendoid, which have all the possible projections associated 
with the respective knowledge elements. According to the blending theory, this stage 
would be the composition of the blend. 

Continuing the data flow of Divago, the blender will provide a blendoid 
(representing the search space of all possible blends) to the factory that will search this 
space trying to find the best blend. A new concept, represented by the selected blend, is 
the output of the factory module. Relating to the blending theory, the factory provides 
an implementation of the selective projection, choosing which elements from the input 
will be projected to the blend, and how. Going to a more detailed level, Divago’s 
factory implements selective projection through a genetic algorithm that performs 
search over strings representing the possible projections (the blendoid). Pereira (2007) 
presents an overview of the complexity of the search, which is, for an input of two 
concept maps and a mapping of size s, 42s x 2l-2s where l represents the elements from 
the inputs. 

Each sequence of projections is represented by the individuals and the fitness 
function – phenotype – is based on blending’s governing principles (provided by the 
constraints module) and on integrity verification by the elaboration module. The 
algorithm uses roulette-wheel selection, prioritizing individuals with high fitness. In 
consequence of the genetic algorithm, the best solution is not guaranteed. 

When the factory receives the blendoids, they have already been pre-processed by 
the constraints module, which evaluates each possibility according to the governing 
principles. Each principle supplies an evaluation value that will be part of a weighted 
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sum, resulting in the fitness value of each individual (set of projections). The user gives 
the weight of each principle. Pereira makes clear that his concretization of the 
governing principles regard solely his model, it is not generic and was not based on 
measurements from cognitive experiments. Under Divago, each governing principle is 
formalized as a function applying some sort of comparison. In the case of integration, 
pattern completion, unpacking and relevance the formalization uses frame comparisons. 
Topology considers the amount of relations from the input maps that were projected 
without modifications. Maximization of vital relations uses the amount of vital relations 
present in the blend (compression is not considered and the modeling of VR is like any 
other relation, with the difference that a set of labels is defined for them). Web depends 
on values for topology and unpacking. 

Another input to the factory component is made by the elaboration module, 
responsible for providing blending elaboration and completion. In theory, elaboration 
and completion occurs after the blend is ready, but Divago considers those stages during 
blend selection. Thus, elaboration and completion have equal importance relating to the 
other considerations of the selection. The elaboration module runs the respective rules 
and frame conclusions and also attempts to complete frames using pattern completion. 
First, rule-based elaboration takes place, executing the rules from the generic domain 
and then specific rules applicable to the blend’s domain. If a rule’s conditions hold, the 
engine executes the respective consequences, already present in the rule’s definition. 
Frame-based elaboration verifies which frames are integrated by the blend and then 
executes their consequences, just like the rules. 

Considering the divergent and convergent strategies described by Pereira (2007), 
Divago actually implements these strategies at the same time, through the factory and 
elaboration modules. 

2.5 GRIOT and Algebraic Semiotics 
Zhu and Harrel (2008) describe GRIOT, an interactive narrative system that uses 

concept blending and an intentionality scale to control the system. An algorithm called 
Alloy, which implements the algebraic semiotics formalization (GOGUEN, 1999; 
GOGUEN; HARREL, 2004), provides the creative and imaginative part of the system. 
The algebraic semiotics approach was one of the first formalizations of the blending 
theory and represents another important related work (research stage S.A2). Although a 
partial formalization, the approach of using semiotics is unique and has its 
computational counterpart, providing us with another system to compare with. 

Applied to narrative generation, imagination (provided by Alloy) is used to integrate 
memory from dreams with the current situation. Thus, providing what the authors call 
daydreaming narratives. Intentionality plays a secondary role on the described system. It 
is characterized by a numeric scale defining how interactive the system will be. Such 
intentionality scale also defines the proportion of daydreams relative to the main 
narrative, the proportion of automatically selected actions against user-selected actions 
and the proportion subjective output (generated through blending) relative to previously 
defined structures of descriptive exposition. 

Goguen’s algebraic semiotics approach formalizes blending by adopting algebraic 
semantics to describe the structure of complex signs and the blends from these 
structures. The basic notion of algebraic semantics is a theory, consisting of type and 
operations and the respective subtype declarations and axioms (ZHU; HARREL, 2008). 
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Related to the basic notion of theory, is the conceptualization of a semiotic system (also 
known as semiotic theory or sign system), which adds level ordering to the types and 
priority ordering on the elements of each level (establishing a hierarchy among the 
signs). The priority is defined by a sign’s constructor, which represents the rules for 
combining signs resulting in a new sign of a different kind. In Goguen’s (1999) 
formalization, constructors are further specified by a set of parameters (e.g. a “cat” sign 
on a computer screen can have parameters for defining its size and location on the 
screen, but do not change the cat’s identity). Given these basic structure of algebraic 
semantics, it is possible to define semiotic theories such as a book theory: book can be 
the top sort (type), chapter the secondary sort, head and content tertiary sorts, and title 
and page number fourth level sorts. In this example, one book’s constructor may build 
chapters from their heading and content, while another builds page heads from a title 
and page number. Among the constituents of head, title has priority over page number, 
and among those for chapter, head has priority over content (GOGUEN, 1999; ZHU; 
HARREL, 2008).  

In addition, Goguen (1999) uses sign systems to represent blending’s conceptual 
maps. Next, Goguen specifies semiotic morphisms, which provide a way to describe the 
dynamics (mappings, translations, interpretations and representations) of signs in one 
system to signs into another system. Ideally, a semiotic morphism preserves as much of 
the structure of the source system as possible. But, since the ideal is not always 
practical, Goguen defines the notion of partial morphisms.  

Hence, morphisms are defined as functions or predicates that provide mappings 
from sorts to sorts, sub-sorts to sub-sorts, data sorts to data sorts, constructors to 
constructors, and so on. These morphisms are specified by rules, defining also their 
properties (identity, association, isomorphism and inversion) and how to compose them. 
Given the level of preserving the source’s definition, another formalization is of the 
notion of morphism’s quality. Considering all the constructs of a semiotic theory, 
concept blending is formalized as semiotic morphisms between inputs, among inputs 
and generic space and, among generic space, input and blend. 

Zhu’s implementation of concept blending based on algebraic semiotics produces 
blends based solely on the structure of the spaces, without considering the meaning of 
the signs. The algorithm was implemented in LISP, using depth first strategy over two 
binary trees representing the possible relations among inputs and generic space. Since 
the algorithm considers only structure, data sorts and constants are not identified 
(GOGUEN; HARREL, 2004). Zhu and Harrel (2008) state that only governing 
principles related to structure were implemented on the algorithm. In conclusion, Zhu 
and Harrel argue that the main contribution of his model of blending is as an 
“experimental  formal tool for precisely representing and testing structural aspects of 
concept blending”, rather than a cognitive model. 

2.6 Agent Adaption 
In this section we present approaches based on planning to provide agent adaptation. 

Such works are directly related to goals G2 and G2.1, and also to research stages S.A4 
and S.C1. The approaches described here follow a traditional planning perspective to 
adaptation. Thus, they provide an important source for comparison, since our work 
suplies adaptations through concept blending, instead of planning. 
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Considering adaptation to unforeseen situations through further applicability of 
agent’s knowledge, Meneguzzi and Luck, (2008, 2009) describes an approach based on 
the manipulation of plans. In (MENEGUZZI; LUCK, 2008), an extension to 
AgentSpeak is defined in order to allow dynamic plan generation and declarative goal 
representation. Declarative goals are constituted by a conjunction of beliefs desired to 
be true simultaneously. They also establish triggers to activate the planning mechanism. 
Essentially, the planning module translates relevant plans to the Stanford Research 
Institute Problem Solver (STRIPS) (FIKES; NILSSON, 1990) language, allowing the 
construction of new plans according to the translated operators. If the STRIPS planning 
find a way to achieve the goal, the resulting plan is added to agent’s library. 
Furthermore, Meneguzzi and Luck (2008) also specify an algorithm to generate the 
plan’s context so that it can be executed with less chance of failing – only the necessary 
conditions will be part of the context.  

Going in a similar direction, but with different goal, Meneguzzi and Luck (2009) 
specify template plans to deal with norms and also primitives for meta-reasoning over 
plans. With these two constructs, the idea is to be able to modify the agent’s behavior 
according to the norms it has chosen to follow. The primitives were implemented as 
internal actions, under Jason’s framework (BORDINI; WOOLDRIDGE; HÜBNER, 
2007). Therefore, those primitives are used inside the plans definition, allowing the 
specification of plans that interfere with the practical reasoning. For instance, a plan to 
prohibit certain actions to be performed. 

Subagdja, Sonenberg and Rahwan (2009) describe an architecture for an intentional 
learning agent. This approach positions learning as any other task to be performed by 
the agent, allowing learning to be controlled by the deliberation process. Hence, 
computational resources can be controlled in the usual fashion. According to Subagdja, 
Sonenberg and Rahwan (2009), intentional learning refers to the cognitive processes 
that explicitly have learning as a goal instead of learning as an incidental outcome. A 
requirement of this kind of learning is the awareness of one’s own knowledge. In 
addition, it requires strategies or know-how about how to accomplish a learning goal. 
Subagdja argues that agent learning is triggered when the agent’s reasoner needs to 
improve its performance in some task. Thus, in this case, the learning framework was 
not developed to deal with novel situations or problems.  

Subagdja implements intentional learning for BDI agents using meta-level plans 
allowing an introspective operation over the agent’s internal state (beliefs, desires and 
intentions). Such approach is not new and was present on the original PRS 
implementation (GEORGEFF; LANSKY, 1987; RAO; GEORGEFF, 1991). A meta-
level plan contains actions to monitor intentions, control deliberations and manage 
commitment (modifying current intentions) (SUBAGDJA; SONENBERG; RAHWAN, 
2009). Consequently, the representation of learning through meta-level plans begins by 
defining the conditions that will trigger the learning process. For instance, such 
conditions can be based on changes in performance, amount of failures and time 
constraints. These conditions also represent the general learning goal of the plan. In 
addition to the learning goal, the developer also defines the learning context and 
applicability, specifying preconditions and/or utility. Finally, the meta-level plan’s body 
specifies the learning activities, such as belief updates, plan modification and intention 
monitoring. 

Considering reasoning, Subagdja’s approach implements manipulative abduction. 
Classical abduction infers plausible causes to explain certain effects – in opposition to 
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deduction where effects are inferred from a set of clauses. In manipulative abduction, 
the lack of knowledge is compensated by the execution of actions. It is as if the agent is 
thinking through doing and not only about doing. Subagdja illustrates the difference 
between abduction and manipulative abduction with Figure 14. The top most part of the 
figure illustrates classical abduction, where the agent first constructs a series of actions 
and then, if reasonable, he executes them. Next, on the bottom of Figure 14, the agent 
uses the actions themselves to construct the plan. It does not have the complete plan at 
the beginning, the plan is built while the actions are executed.  

 
Figure 14 Classical abduction (i) compared to manipulative abduction (ii) 

(SUBAGDJA; SONENBERG; RAHWAN, 2009) 

Moving to a lower-level of abstraction, Subagdja, Sonenberg and Rahwan (2009) 
specifY two sets of primitives to be used to describe a learning plan. Those sets are 
defined in general terms, no concretization in an agent language is provided. Although, 
the authors argue that most PRS-based implementations have the necessary constructs 
to implement the primitives. The first set of primitives relates to monitoring and 
managing intentions and overall execution (e.g. achieve, wait, perform, monitor, 
history, current plan, applicable plans, current goals). Second, a set of primitives to 
manipulate plans is defined (e.g. create plan, update plan, remove plan, append plan 
acts, set plan conditions and include utility). 

Given this framework, Subagdja, Sonenberg and Rahwan (2009) describe 
experiments developed using the JAM agent architecture (HUBER, 1999). The 
experiments illustrate how the learning framework can be used to implement domain-
specific learning strategies. It is clear that the developer is left with the task to define the 
learning plans based on the primitives and the general intuition of manipulative 
abduction. As future work, Subagdja, Sonenberg and Rahwan point in the direction of 
the specification of learning design patterns. 

Brenner and Nebel (2009), propose the continual planning approach, which 
implements manipulative abduction in a different way. Differently from (SUBAGDJA; 
SONENBERG; RAHWAN, 2009), Brenner’s focus is on planning itself, rather than 
learning. This approach to continual planning specifies a balance between planning and 
action in the form of a planning algorithm that manipulates constructs defined in MAPL 



 
 

46 

(BRENNER, 2003). Thus, agents are capable of deliberately postpone parts of their 
planning process in order to prioritize information gathering, relevant for the later 
refinement of the plan. 

The research presented by Leite and Soares (2006) specify an agent architecture that 
allows the modeling of the agent evolution. In this context, evolution regards the 
changes on the agent’s knowledge representation and reasoning in response to 
environments where change occurs in several levels (e.g. not only the facts, but also the 
rules that govern an environment may change). Although not explicitly characterized as 
a work on agent adaptation, we observe that the framework can be applied to this end. 

2.7 Summary 
Concluding our related work presentation, the works that are directly related to ours 

are the ones that propose computational models of blending. Under computational 
creativity, such models can be positioned under general creative models. Inside Figure 
15, the contextualization on computational creativity is depicted by the ellipsis on the 
left side of the Figure. On the left side of Figure 15 we also summarize the main streams 
and works on computational creativity. Another stream of related works consider 
agency and, more specifically, approaches to agent adaptation. Our presentation of that 
field focused on rational – or traditional – strategies to allow the agent alternatives of 
action to unpredicted situations. Under adaptation, our work proposes a creative 
approach, differing from the state-of-the-art on the possible applications of the model 
and, mainly, on the kind of reasoning applied to generate the alternative options. On 
Figure 15, the ellipsis on its rightmost side depicts our context under agency. 

 
Figure 15 Relationship between our work and the state-of-the-art 

Going further on the relations between this work and computational models of 
concept blending, we compare the models considering which elements of the blending 
theory are specified, which applications are described and which knowledge 
representations paradigms were adopted. Table 2 presents a summarized comparison of 
the blending models according to those criteria. 

 Table 2 Summary of computational models for concept blending 

Model Elements of Blending Applications KR&R 

Divago Constitutive principles 
governing principles (partial) 

Concept 
generation 

Logic programming 
(PROLOG) and 
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Vital relations (partial) conceptual maps 

Griot Constitutive principles (partial) 
Governing principles (partial) 

Narrative 
generation 

Sign system, 
LISP 
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3 CONCEPT BLENDING MODEL 

In this section we present a computational specification of the blending process 
using operational semantics. This model focuses on the constitutive principles and on 
the general operation of blending. Therefore, vital relations and governing principles are 
not present in our model. We impose these limitations to the model since those elements 
require a broader view of cognition that cannot be achieved considering only autonomy. 
For instance, the governing principles of pattern completion and relevance are directly 
related to the evaluation of the decisions on the environment and on the performer as 
well.  

Thus, without considering learning, we could model those principles only 
superficially. However, considering blending as a part of a broader cognitive structure 
and modeling the remaining elements from blending, constitute the main future work of 
this research. With regard to our scope limitations, first we specify a computational 
model of blending (Section 3.1). Then, we describe how adaptation can be specified 
with regard to the blending model (Section 3.2). In a similar fashion, a recommendation 
system based on blending is defined on Section 3.3.  

3.1 Specification in operational semantics 
Concept blending is defined as a set of constitutive and governing principles applied 

to two conceptual spaces (input spaces) resulting in a new conceptual space, called 
blend. Theoretically, blending produces new knowledge, gives new meaning and 
constitutes the fabric of our imaginations.  

Our computational model of blending begins with the definition of a mind M, which 
represents an agent’s available knowledge. Under blending, knowledge is represented 
by concepts and their relations (set of concepts C). Besides that, there might also be 
available organizational knowledge that can be applied to group concepts into 
conceptual spaces with specific meaning, called organizational frames. In order to avoid 
misinterpretations regarding Minsky’s frame representation (MINSKY, 1974), we will 
call those blend-related frames as organizational schemes, denoted by O. Thus, a mind 
is defined by: 

 
And an organizing scheme is defined by its terminology that specifies the concept’s 

hierarchy (TE), the respective classes (CA) and properties (PA) assertions: 

 

In concept blending, a concept can be anything – incorporating all kinds of 
perceptions and elaborations from our imagination. Our approach to model this very 

! 

M = C,O

! 

O = TE,  CA,  PA
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broad conceptualization is to consider a concept as any computational resource 
annotated (described) with terminological information. Therefore, a concept is 
symbolically defined as an individual from a description logics (DL) representation 
(BAADER; HORROCKS; SATTLER, 2007). Specifically, we adopted the OWL1 
language (MOTIK, B. et al.. 2008) to provide the descriptive syntax for the concepts.  

Essentially, an individual is defined by assertions representing either object or data 
properties. Object properties allow the association of individuals, while data properties 
associate direct values (e.g. string, integer, bytecode) to an individual. Consequently, a 
concept c is constituted by sets of data and object properties (DP and ObP, 
respectively). Besides, an individual may also have class assertions specifying its 
membership to a set of classes (CA). 

 
Given this configuration, a conceptual space CS, can be defined as any sub-set of M, 

. Granularity, in this case, depends on the current situation and, consequently 
on the purpose of the blend. The blending theory does not elaborate on how conceptual 
spaces are produced.  

According to the blending theory, the resulting blend B, may contain concepts that 
were not part of the input spaces nor of the whole set of concepts, M. Thus, although B 
is a conceptual space, it does not adhere to the rule that a conceptual space is a sub-set 
of M. In fact, concepts from B might be added to M. Consequently, we loosely define a 
blend as a set of concepts (C) and an organizing scheme (o).  

 

The blending process is defined by a set of operations that can be performed on two 
input spaces – conceptual spaces named I1 and I2 ( ) resulting in a blend B. 
Actually, it can be viewed as an operator, that, when applied to two conceptual spaces, 
will generate a new one according to the blending theory.  

The operations performed (denoted by the set OP) are the constitutive principles of 
the theory: modification, completion and composition – which may be applied during 
the selective projection – and elaboration, which is executed after the blend is ready. 
Selective projection itself is considered as an operation under our model. Not officially 
part of the constitutive principles is the establishment of counterpart relations between 
the input spaces. Counterpart relations are established given the set of defined 
comparison functions, CF. Finally, BC refers to configuration parameters (blend 
typology – , element selection function – α, a stopping condition – , and an 
operation selection function Sop). Hence, the blending process is initially specified as 
follows: 

 

 
 

From the theory, it is unclear when and how to apply each constitutive principle 
given a particular configuration in terms of input concepts and their relations to the 

                                                
1 Web Ontology Language: www.w3.org/TR/owl-features/ 

! 

c = DP,  ObP,  CA

! 

CS " M

! 

B = C,o

! 

I1,I2 " M

! 

"

! 

"

! 

BP = I1,  I2,  OP,  CF,  BC

! 

BC = ",#,$,Sop

! 

" #{simplex, mirror, single $ scope, double $ scope}
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other input. Hence, we focus more on the definition of the operations rather than their 
order of execution. Nonetheless, some ordering must be provided, thus, we define a 
selection function , which given the inputs, their counterpart relations and a set of 
possible operations, chooses a specific action to be performed. Pereira (2007), uses a 
different approach, generating all the possible blends and then searching this space for a 
blend that better satisfies a given criteria. In a certain way, our selection function plays 
the role of Pereira’s criteria. But, at this point, we have no evidence to support a full 
account of when each operation must be performed given a certain situation. The set OP 
of available operations is specified by the set of modification functions , a completion 
function co and a composition function cm. Elaboration is left out since it is executed 
after the blend is ready. 

 
The modification operation is applied to a single concept performing changes on it. 

Ideally, for each type of concept representation, we would have available a modifier 
function  that changes the concept in some way while keeping its membership to its 
original type. The set  represents all the available modification functions, . Thus, 
given the selection to execute a modification function to a concept c, and the availability 
of the respective type specific function, rule Mod1 is applied. If there is no type specific 
modification function available, rule Mod2 is applied. This rule attempts to apply a 
function directly with on raw representation, given that there is one available. 

Modification rule Mod1: 

 

Modification rule Mod2: 

 

Another possible operation is completion (co) where the intuition is to bring 
information from sources related to the space to complete a given concept. Whether a 
concept is incomplete or not is always in respect to other representations of the same 
type. Thus, we ground our completion operation on the possible organizing schemes of 
the considered space (rule Comp1). In the case that the organizing scheme does not 
contain such type, we look into the concept’s declaration verifying if there is a type 
assertion and, that this assertion holds for rest of the concept’s declaration. 

Completion Rule Comp1 

! 

Sop

! 

"

! 

OP = ",co,cm

! 

µ

! 

"

! 

µ

! 

Sop (OP) = µ " type c( )( ) # {}
c $c'

where
c'= µ c( )

! 

Sop (OP) = µ " type c( )( ) = {}
c #c'

where

c'= µ rawType c( )( )
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Completion Rule Comp2 

 

Composition (cm) is a constitutive principle that aims at joining two concepts into a 
single one. Although Fauconnier and Turner, 2003 shows only examples of composition 
between two, they never state that it cannot be executed with several concepts. Here, we 
consider only composition between two concepts. A composition may hold certain 
properties from one concept while bringing the remaining from the other. According to 
the blending theory, composition may occur with any two concepts from the input 
spaces, related or not.  

Essentially, we define the composition in terms of the concepts’ asserted properties. 
We also consider the relation between the concepts – if assertive – into the composition. 
This principle makes use of the element selection (α) function that here takes the form 
of a random function. Our idea is that given more knowledge about the current domain, 
the α function might be customized to represent some of heuristic or tendency.  

Composition rule 

 

One thing that comes to mind when we consider applying this kind of operations 
into a symbolic representation is: will the result be useful, or, will it make sense? In our 
opinion, if the resulting concept from a composition actually is useful at a given 
situation is not for the blending process to decide. We consider that such evaluations 
should be made inside a broader cognitive context, possibly integrating learning, 
embodiment and other cognitive properties into a single structure.  

Returning to the blending process, the establishment of counterpart relations 
between the inputs can be seen as the first step of the process. Thus, the initial step is 
triggered by the rule defCPR to define the inputs’ counterpart relations Briefly, the 
intuition is to make explicit the relations between the concepts from I1 and I2. As most 
of the elements in the blending theory, any kind of relation can be considered. 

! 

Sop (OP) = co isMember c,O( ) " {}
c #c'

where
c'= c$ assertionsFrom(T)
T = membership(c,O)

! 

Sop (OP) = co declaredType c( ) " {}
c #c'

where
c'= c$ assertionsFrom(D)
D = declaredType(c)

! 

Sop (OP) = cm assertionsFrom c1,c2,relations c1,c2( )( ) " {}
c1,c2 #c '

where

c'= newConcept $ A( )( )
A = assertionsFrom c1,c2,relations c1,c2( )( )
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Fauconnier and Turner (2002) point out to the role of vital relations as potential concept 
comparators. Given such broad scope of potential relations between concepts, we define 
concept comparison as a function  that returns a relation between the concepts. 
We consider that a blending engine has several comparison functions available, each 
one defined in terms of the types of concepts it is able to handle and also a 
terminological description of the relation.  

Given our descriptive logics usage, we consider that fc(c1, c2) applies when to 
concepts c1 and c2 (represented as individuals in DL) are members of the class specified 
in the function definition (denoted as t1 and t2, respectively). An individual’s 
membership to a certain class can be directly asserted in the A-Box or it can be inferred 
based on the individual’s properties and the representation’s T-Box. Class membership 
is a descriptive logic inference and the reader is referred to Baader, 2007 for a full 
account of this inference mechanism. 

Definition of counterpart relations rule – defCPR 

 

Following the establishment of the counterpart relations (denoted by CPR), he rule 
to configure the generic space (defGen) is applied. Here, the generic space contains 
common aspects between the inputs. Thus, it is constituted by the intersections between 
the inputs’ concepts and organizing schemes.  

Generic space definition rule – defGen  

 

Now that the counterpart relations and the generic space are specified, the process 
continues by applying the constitutive principles and selectively projecting the elements 
to the blend. These operations are performed according the desired typology of the 
blend, specified by the blending configuration ( ). In general, the typology determines 
the conceptual space where the constitutive principles are applied. Therefore, before 
presenting the blending rules we define the function for applying the constitutive 
principles, represented by the set of operations OP. The function is applied to a 
conceptual space . Another important parameter received by the function is the 
current blending configuration BC. Considering the stopping condition , the 
constitutive principles are applied to cs, introducing changes (defined by Sop) on the 
space until  is satisfied. 

! 

fc(c1,c2)

! 

appComp " {} I1# I2 " {}
I1,I2,OP,CF,BC,defCPR $ I1,I2,OP,CPR,BC,defGen
where
appComp =%c1& I1,%c2 & I2 $CF(t1 = type(c1), t2 = type(c2))
CPR =%c1& I1,%c2 & I2,%fc& appComp$ fc(c1,c2)
type(c) = membership(c)

! 

O1 " {}#O2 " {}
I1,I2,OP,CPR,BC,defGen $ I1,I2,OP,CPR,GEN,BC,Blend
where
I1 $ C1,O1
I2 $ C2,O2

GEN = O1%O2( )& assertions(C1)% assertions(C2)( )

! 

"

! 

cs"M

! 

"

! 

"
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Application of constitutive principles – applyCP 

 

Following the blending typology defined by Fauconnier, 2002 we specify four 
possibilities for blending. A simplex blend considers a simple frame and role 
integration. In this case, the first input space is regarded as the frame and, thus supplies 
O1 as the blend’s organizing scheme while I2 supplies the values to fill O1’s roles 
(property assertions denoted by p). 

Simplex blend rule 

 

Next, Fauconnier and Turner (2002) specify the mirror blend where all the spaces 
(inputs, generic and blend) have the same organizing scheme. Thus, the blend will 
maintain the organizing space but will selectively project the result of applying the 
constitutive principles against all spaces. 

Mirror blend rule 

 

Considering different organizing frames for the inputs, single-scope blends choose 
only one of the organizing schemes to be projected to blend (the source). The other 
input (called target) is used to fill the source’s properties.  

! 

applyCP(cs,BC) =

while "
  # c1 $cs( ),# c2 $cs% c2 & c1( ),Sop (OP)  if Sop (OP) = cm 

  # c1 $cs( ),Sop (OP)                                 otherwise

' 

( 
) 

* 
) 

! 

" = simplex O1 # {}
I1,I2,OP,CPR,GEN,BC,Blend $B
where
I1 $ C1,O1
I2 $ C2,O2

BC$"

B = terminology(O1)% roles
roles =&p'O1 $((simplex% applyCP(simplex))
simplex = c 'C2 ) p

! 

" = mirror O1 =O2 =Ogen( )#O1 $ {}
I1,I2,OP,CPR,GEN,BC,Blend %B

where :
I1 % C1,O1
I2 % C2,O2

GEN % Cgen,Ogen

BC%"

B = terminology(O1)& assertions
assertions ='p(O1 %)(mirror& applyCP(mirror))

mirror = c ( C1&C2 &Cgen( )* p
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Single-scope blend rule 

 
Finally, double-scope blends use both organizing schemes to form a new one. Thus, 

this kind of is, potentially, the one that might generate the most surprising blends. 

Double-scope blending rule 

 

Considering the blending semantics defined in section, its utilization requires the 
specification of terminological and assertive knowledge from the domain. Besides, 
specific comparison and modification functions might be defined for a proper operation 
of the blend. We do not state that such functions are mandatory because we can always 
reduce a representation to simple data types (e.g. char, real and bytecode). Clearly, this 
comes with a price. When performing generic operations directly in original 
representation, we ignore the concept’s structure and any other semantics and rules that 
might be attached to it. Moreover we risk corrupting the concept’s representation.   

Despite its importance to generate working blends, concept-specific functions and 
operations also have their price. The issue with this design is that we add more tasks to 
the developer, difficulting even more the development of AI systems. Fortunately, the 
result of hard work pays well. Having specific functions and the respective terminology 
and assertions regarding a representation actually allows our system to work with 

! 

" = single # scope O1 $ {}%O2 $ {}
I1,I2,OP,CPR,GEN,BC,Blend &B
where :
I1 & C1,O1
I2 & C2,O2

BC&"

B = terminology Osource( )' assertions

source = ( I1,I2( )
target = I1' I2( )) source

assertions =*p+ source&( Ctarget ' applyCP Ctarget( )( )

! 

" = double # scope
I1,I2,OP,CPR,GEN,BC,Blend $B
where :
I1 $ C1,O1
I2 $ C2,O2

GEN $ Cgen,Ogen

BC$"

B = organization% concepts

organization = & O1%O2 %Ogen % appCP O1%O2 %Ogen( )( )
concepts = & C1%C2 %Cgen % appCP C1%C2 %Cgen( )( )
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heterogeneous knowledge representation. Hence, we go a little further on the blending 
model making it closer to the theory itself. According to our theoretical model, it is 
possible to integrate symbols, images and other representation paradigms in a single 
blend. Another feature of our model is the specification of blending typology allowing 
the utilization of different kinds of blends. Actually, none of the studied computational 
models of blending specify Fauconnier’s and Turner’s typology. 

3.2 Blend-based Adaptation  
Here we describe an integration of the blending model (Section 3.1) with an 

AgentSpeak agent architecture, provided by the Jason framework. The purpose of this 
study is to describe how blending can be applied as a mechanism for agent adaptation 
(Goal 1.1). By integrating blending to a BDI agent architecture we also want to study 
how inputs for the blending process can be composed (Goal 2.1). 

Such integration was achieved by specializing Jason’s agent model (Appendix 1), in 
a way that every intention failure or lack of applicable plans triggers the adaptation 
mechanism. Using Jason 1.3.3 we also implemented an event listener to provide 
callbacks to the agent on the event of intention failure (Appendix 2). Another part of the 
integration is the definition of a descriptive representation of the agent’s knowledge. In 
this case, we did not develop an OWL specification of all the BDI components. Rather, 
we defined a shallow terminology for our domain of BDI agent adaptation.  

Our intuition is that specific agent configurations, both static (beliefs and plans) and 
dynamic (desires and intentions), are modeled as individuals of that terminology. 
Therefore, descriptive logics work as a bridge between a specific representation – in this 
case the agent components – and the blending engine. We consider the agent 
terminology as a shallow one since we focused more on the vocabulary and basic terms 
to differentiate concepts than on a big hierarchy and a set of rules and axioms to restrict 
it. Another reason to follow this line is that the rules associated to the concepts – in the 
case of BDI – are modeled and used by the Jason reasoning engine.  

Observing the terminology, it is clear that we did not consider the full Jason’s syntax 
to represent beliefs and plans in OWL. For instance, according to the Jason 
implementation of AgentSpeak-L, a belief is constituted by a literal that can be negated 
and can also represent variables, constants and terms. We did not go into such detail in 
the OWL representation since in the blending process itself, this information is not used. 
A more specific terminology facilitates the associations between concepts, and can be 
further used when the reasoning is also specified on the same abstraction level. In this 
study the reasoning is separated, it is not manipulated during blending. 

Although it is possible to model reasoning in more abstract terms, we realized that 
such modeling would be too ambitious to cover on this thesis, since it would be 
necessary an in-depth study on meta-level reasoning (future work). Thus, most of 
classes’ definitions are used directly to specify the properties, making little use of class-
specific axioms. An overview of the adaptation terminology is depicted by Figure 16, 
where each ellipsis represent a class. When an adaptation situation is configured, the 
OWL terminology is used to create the inputs for the blending engine. Hence, each 
conceptual space is represented by one individual and, the concepts are represented by 
the property assertions of each individual (e.g. hasBelief, hasPlan, hasFailedPlan, 
hasTrigger). 
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Figure 16 Adaptation Terminology 

Although not specified by the blending theory, it is clear that the definition of the 
input spaces consider, at least, the current situation and the purpose of the blend. 
Regarding our blending model, we need to specify two inputs in terms of their concepts 
and organizing schemes. Given that a terminology about the situation and purpose is 
available, any concept definition can be used as an organizing scheme for an input. 
Similarly, all the available individuals representing the concepts may be used to 
compose the space given the chosen organization. So far, we have not envisioned a way 
to automatically compose the input spaces without some kind of representation 
(declarative or imperative) regarding a situation or purpose. 

Therefore, this study has adaptation as the purpose and failed intention or lack of 
options as situations. Sometimes, these situations should simply fail and the agent 
should directly move on with its reasoning. Nonetheless, given those situations, our 
agent will always attempt an adaptation. Since those situations are detected directly on 
the agent’s reasoning cycle, we do not explicitly define them in a terminology.  

However, a class defines adaptation specifying the kinds of concepts that should be 
available in order to achieve an adaptation. This definition does not specify an output 
since it would not be coherent to the blending theory, where the desired output is not 
established. The initial direction is given by the purpose but the output is not explicit. 
Hence, the following class defines adaptation: 

Class: Adaptation 
    EquivalentTo:  
        and (hasFailedPlan exactly 1 Plan) 
        and (hasTriggerEvt exactly 1 string) 
Throughout this section we will use a simple agent program to exemplify the 

blending functions and rules. We developed a single reactive agent that takes his 
decisions based solely on its current knowledge, with no other kind of decision 
reasoning. This agent program has knowledge related to ingredients available in his 
kitchen (beliefs) and also knowledge on how to cook a risotto and sushi rolls (plans) 
(the full code is presented on Appendix 3). Our example agent uses the modified agent 
class in order to init the adaptation mechanism. Since we separated the agent model 
from the agent program the configuration of which class to use is defined on system’s 
configuration file, which can be easily modified. 

When the practical reasoning has no available options for a given world 
configuration or when an intention has failed, we automatically create an individual of 
the adaptation class. In the case of no options, the property hasFailedPlan is not added 
to the individual. Consequently, this individual and the definition of the class adaptation 
constitute a conceptual space and is the input I1 for the blending process, 

. Returning to our agent example, the failure of the intention 

! 

BP = I1,  I2,  OP,  CF,  BC
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to cook a risotto – with the plan to add the ingredients being the plan that failed – 
generates the following adaptation individual: 
Individual: adaptation1 
    Types: 
        Adaptation  
    Facts:  
        hasFailedPlan  p2, 
        hasTriggerEvt  "+!cozinharRisoto(X, Y)"^^xsd:string 
Individual: p2 
    Types:  
        Plan 
    Facts:  
        hasTriggerEvt  "+!adicionarIngredientesMexer(P)"^^xsd:string, 
        hasContext  "cozinhando(P)"^^xsd:string, 
        hasPlanBody   "?ing(funghi); 
           ?ing(brie); 

?ing(vbr); 
?ing(manteiga); 
.adicionaIng(P, vbr); 
.mexer(10); 
.adicionaIng(P, fungui); 
.mexer(2); 
.adicionaIng(P, brie); 
.mexer(2); 
.adicionaIng(P, manteiga); 
.print("fim do plano addIngMexer")."^^xsd:string 

Making an analogy with the blending theory, the whole individual adaptation1 
represents a conceptual space to be used as the first input. The explicit type declaration 
stating that the individual belongs to the Adaptation class also represents an assertion of 
the space’s organizing scheme. Finally, the definition of the individual also contains 
two property assertions, which refer to the concepts that constitute the conceptual space. 

As for the second input space, it is possible to also define it as an individual member 
of an already defined class (an organizing scheme), in the same way that we defined the 
adaptation one. However, for this scenario we chose not to use an organizing scheme 
for the second input. We followed this line because, in this context, the relevant 
organizational information is already modeled in the AgentSpeak semantics. 
Consequently, the second input, I2 is an individual representing the agent’s plan library 
plus its current beliefs. In fact, the second input could be composed either only by the 
agent’s plans or only by its beliefs. It could also contain more information from 
annotated beliefs and knowledge from external sources (e.g. the semantic web). Thus, 
according to our agent example, the second one would be represented by the following 
individual (we suppressed the plan individuals and listed only part of the beliefs): 

Individual: cs 
    Facts:  
        hasPlan  pcs1, 
        hasPlan  pcs2, 
   … 

  hasLiteral  "ing(agriao)."^^xsd:string, 
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        hasLiteral  "ing(arroz_jap_curto)."^^xsd:string, 
        hasLiteral  "ing(nori)."^^xsd:string, 

  hasLiteral  "panelaFogao(pan_ferro)."^^xsd:string 
        … 
Figure 17 illustrates both inputs in an analogy to the way that Fauconnier 

graphically represents the blends. In this case, the ellipses represent conceptual spaces 
and, thus both I1 and I2. Each underlined element characterizes a concept specified by a 
property assertion. 

 
Figure 17 Adaptation inputs 

Recalling the components of the blend process , OP 
represents the set of constitutive principles to be applied on the input spaces. The 
constitutive principle of modification actually requires domain-specific information in 
order to modify the concept without corrupting it. Thus, we developed modification 
functions to deal with beliefs and plans.  

Concept modification might modify the concept in a way that brings great insight 
into a situation or it might make no sense at all. In our opinion it is not on blending that 
evaluation plays an important role. Rather, evaluating if a modification is useful or not, 
besides dependency on the situation, is executed by other cognitive processes, like 
learning or perceiving.  

Hence, we modeled one annotation-based modification function that is used only if a 
belief is annotated with terminological information – semantically enhanced belief – 
(using Jason’s DL extension defined by Klapiscak and Bordini (2008)). In this case, the 
function attempts to substitute an individual with another one from the same type 
(modification by substitution). We consider this function to be annotation-based 

! 
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because it can be applied to any kind of annotated representations – such as resources 
from the semantic web.  

Modification function for semantically enhanced beliefs (Appendix 4) 

 
For instance, the belief “ingredient(short_sushi_rice)[o(kitchen)]” indicates that this 

sushi rice is member of the class ingredient from the restaurant ontology. Thus, this 
belief would fall into the first possibility of the modification function. Consequently, the 
aforementioned belief is modified by maintaining its functor (ingredient) and by 
substituting short sushi rice for another member of the class ingredient. One possible 
outcome would be “ingredient(apple)” or “ingredient(pasta)”. If the hierarchy is more 
specialized, the modifications will be closer to the original concpet. For example, if 
instead of ingredient we considered a hierarchy for food with rice being one subclass, 
then, the belief “rice(short_sushi)” could be modified to “rice(long_risotto)”. A further 
specified ontology also allows the utilization of upper-classes in the cases where there 
are no other members of the class being considered. 

When the belief represent a property (e.g. hasIngredient(norimakisushi, nori) or 
hasExpirationDate(nori, 11-2012)), the second option of the modification rule is to use 
the property’s range definition, if available. Considering that the property hasIngredient 
is defined with a range assertion of classes Ingredient or Food, the specified 
modification function will change the attributive part of the assertion. Again, we use the 
members of the classes from the range definition to substitute the attribute. For 
example, hasIngredient(norimakisushi, nori) may be modified to 
hasIngredient(norimakisushi, lasagna_pasta). Finally, if the property does not have a 
range assertion, the function attempts to infer the membership of the attribute and, if 
inferred, the attribute is modified with another member of the inferred class. 

Relying on randomness we also developed one function to deal with beliefs and 
another to deal with plans. The main issue with this kind of function is that the 
modifications might result in non-executable plans and in non-grounded beliefs. This 
issue is related to the symbol grounding problem (HARNAD, 1990; WILLIAMS, 2008; 
NILSSON, 2007; CREGAN, 2007) where, essentially, symbolic representations are 
detached from a real observation of the world. Usually, grounding approaches study 
how to model the link between perception and symbolic representations. Without this 
kind of information, which is readily available for us humans and, thus, is assumed as 
given in the blending theory, the modification of a symbol does not yield its imaginative 
counterpart (based on the perception). In awareness of this limitation, we defined the 
random modification functions as follows: 

! 

µ(b[o]) =

fb"# c $membersOf fb,o( )( ) if b$CA
fb"# c $membersOf ra( )( )  if b$PA% if b has range def.

fb"# c $membersOf oldTerm( )( ) if b$PA

& 

' 
( 

) 
( 

where
fb = functor(b)
CA = classAssertions
PA = propertyAssertions
ra = rangeAssertions(b)
oldTerm = type(#(terms(b)))
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Modification function for beliefs (random modification, Appendix 5) 

 
Considering the belief ingredient(dried tomato), the application of this function 

might result the belief ingredient(tomato) but it might result on the belief 
ingredient(tofehan_sqc), which possibly can not be used during the execution of plans. 

Modification function for plans  

 

The next component of the blend process is the set of comparison functions (CF). 
This component is responsible for establishing the counterpart relations between the 
inputs. Recalling the theory, these relations between concepts from the inputs may be 
constructed from any kind of connection. According to our interpretation, the 
counterpart relations are the result of applying certain types of associations over the 
inputs. For example, it is possible to apply similarity measures, deduction, subsumption 
and part-of relations to two given concepts from the inputs. Thus, we consider that the 
associations are realized by applying certain kinds of reasoning on the concepts.  

Taking adaptation into account, the role of the comparison functions is to reveal 
associations between the problem situation and the available knowledge, potentially 
contributing to a solution. Therefore, the adaptation comparison functions (CF) 
represent an adaptation strategy to generalize a plan’s context, easing its applicability 
and also the straightforward strategy to look for alternatives given the intention trigger.  

Relying on the set of programming interfaces and implementations provided by 
Jason, the comparison functions were developed with more focus on testing our engine 
than on providing an in-depth concept analysis. We developed two sets of comparison 
functions, one focused only on beliefs and the other on plans. 

Our first belief-based comparison (Appendix 6) verifies if two beliefs share the same 
functor. In this function it is assumed the availability of a functor function (represented 
by func) able to retrieve the functor of a belief. Figure 18 illustrates this function by 
establishing associations between the belief ing(agriao) and other beliefs that share the 
same functor from the other space. Those associations are depicted by the lines bellow 
the (a) marking. For illustrative purposes we did not depict the functor relations from 
the belief ing(arroz_jap). 

 
Another belief comparison verifies if one belief contains the other, as a simple 

metric of lexical similarity (Appendix 7). In this case, we assume that the intersection is 

! 

µ(b) = fb" rm # terms b( )( )( )
where
fb = functor(b)
rm = randomModification(term)

! 

µ(p) = rm(te) : rm(ct)" rm # actions body( )( )( )
where
rm = randomModification()
p = te : ct" body

! 

fc(b1,b2) =
func(b1) if func(b1) = func(b2)

{}           otherwise
" 
# 
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computed regarding each term or list of terms that compose the beliefs. Figure 18 shows 
an example of the belief comparison considering the literal’s terms. The association 
depicted by a line marked with (b) shows the relation between two beliefs that share a 
common term (“arroz_jap”).  

 

 
Figure 18 Belief comparison functions 

Comparing literals (beliefs and goals) to plans, we check if a plan is triggered by the 
literal, considering all the possible events (addition or deletion of beliefs, achievement 
and test goals). This comparison is based on the unification operator  (unification) as 
defined by Bordini, Wooldridge and Hübner (2007). By simulating events on a given 
literal, this function verifies if an already defined trigger is able to handle the simulated 
event. In the opposite way, the function analyses if the simulated event would have a 
candidate plan (Appendix 8). Figure 19 illustrates three associations (denoted by the 
lines) realized by the trigger comparison. The topmost line illustrates the relation 
between ing(nori) and the trigger +ing(X), meaning that the addition of that belief 
would be handled by the +ing event. Similarly, simulating a test goal addition with the 
belief, would generate an event to be handled by ?ing(X) – illustrated by the middle 
line. The last relation illustrate the applicability of the function on events generated 
inside plans, in this case, the event is already constructed and only the unification is 
performed. 
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fc(b1,b2) = b1"b2
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Figure 19 Trigger comparison function 

Finally we compare a belief against the plan’s context. This comparison can go in 
several ways, one way is to check if the belief alone satisfies the context (1) Appendix 8 
– PlanHelper class. In Figure 20 the association through context satisfiability is depicted 
by the line marked with (a). The relation is established since the belief 
cozinhando(arroz_jap_c) is sufficient to satisfy the context cozinhando(P). Another 
comparison based on a plan’s context is to verify if a belief constitutes it, ignoring the 
remaining of the context’s logical expression (2). Hence, this last function analyses only 
if there is a lexical relation between the given literal and the context Appendix 9. An 
example of this function is presented on Figure 20 by the relations (depicted by lines) 
marked with (b). In this case there is a partial relation between the context and the 
beliefs. 

(1)  

 

(2) 
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Figure 20 Context comparison function 

Following our description of blending components for the adaptation study, the last 
one is the blending configuration given by the set . α specifies a 
decision function applied to choose one concept given a collection of them. Actually, 
this function represent blending’s selective projection, which chooses certain concepts 
from the spaces and their relations and projects them (after the application of the 
constitutive principles) to the resulting blend. However, the theory does not elaborate on 
the criteria for the element selection. In our opinion, this aspect is related to other 
cognitive functions such as learning from experience, emotions, current paradigm and 
sensorial feedback. Since, in this work we are focusing on the blending model itself, we 
specify α as a random selection function: 

static Object alpha( Collection<?> c ){ 
  Random r = new Random(); 
  int i = r.nextInt(c.size()); 
  return c.toArray()[i]; 
} 

One stream of future work on the model actually is to use blending and learning in a 
single model. Thus, we will be able to study different ways to implement selective 
projection given the agent’s experience. Closely related to α is the function to select a 
constitutive principle to be applied during the selective projection (Sop). Hence, in our 
model the selective projection is modeled by α (selection of concepts) plus Sop 
(selection of constitutive principles). We consider that this function also represents an 
input from other cognitive functions, and so, it is left undefined by the blending theory. 
In conjunction with α, Sop can be applied to denote domain-specific heuristics or 
restrictions. For instance, given a domain where modification cannot occur, Sop can be 
modeled to never allow this operation over concepts. On the subject of agent adaptation, 
Sop does not represent any kind of heuristic, rather, like α, it is implemented as a random 
decision function with the same probability for each operation (Appendix 10): 
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Another part of the blend configuration is given by φ, which specifies a stopping 
condition for the process. In the blending theory, there is no condition to suspend the 
process. Instead, it is assumed that blending occurs all the time in a subconscious level 
directly integrated with the other cognitive functions. Since our blending specification is 
not yet part of a broader model for cognition we added a stopping condition to the 
process. Therefore, this condition can be specified in terms of a domain-specific 
evaluation function to be applied to current blend or an iteration threshold. Considering 
our adaptation scenario, it is possible to define an evaluation in terms of option 
availability, but it does not ensure the quality of the option – which is closely related to 
the agent’s domain. For that reason, we chose to specify the stopping condition as an 
iteration limit (Appendix 11). 

Finally, the last element of the blend configuration is the kind of blend, according to 
Fauconnier’s typology. Although we modeled the blend process following the typology, 
the specified types do not restrict the process itself. In the theory, a typology is defined 
to exemplify the most common blend and how they come about in our daily life. 
Nonetheless, for the purposes of our model the typology allowed us to specify a process 
that, as the authors themselves state, is non-algorithmic and non-deterministic. 

Although it is theoretically possible that blending occurs without the definition of its 
type, in our adaptation study we restricted ourselves to blending as a process governed 
by a given type. Considering both the amount of possibilities and the utilization of 
blending components – which provides a richer example – we applied double-scope 
blending to the adaptation study (κ=double-scope). Hence, examining the double-scope 
rule, it is noticeable that it does not have any requirement for its application and the 
initial configuration of the process follows the same approach as the other kinds of 
blend.  

Thus, the elements described so far constitute the initial configuration for the blend 
process, . Looking into the configuration of the blending rules 
the transition to the blend parts from a slightly different configuration: 

. Thus, from the initial configuration we first 
establish the generic space, given the two input spaces. As defined by the rule defGen, 
(presented on Section 3.1), in essence, the generic space contains the elements that are 
common to both inputs.  

Recalling our example agent and its inputs – illustrated in Figure 17 – the only 
common aspect between the inputs is the fact that both of them contain at least one plan. 
Although the referred plan and the property assertion are different, the common aspect 
is that both inputs point to a plan. Since the inputs have different organizing schemes, 
this aspect is not projected to the generic space. In the blending theory the generic space 
may contain the blend’s purpose, but in a very subjective and abstract way. The purpose 
sometimes is beyond the organizing scheme. This aspect is not present in our current 
model and constitutes another part of our future research. Figure 21 illustrates the 
generic space constructed given the adaptation inputs. Like the input spaces, the generic 
is depicted by an ellipsis that represents a conceptual space. The dashed lines illustrate 
the common concepts that originated the generic space.  
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Figure 21 Inputs and generic space for the adaptation example 

After the establishment of the generic space, the rule defCPR is applied to retrieve the 
counterpart relations between the concepts. Given the set CF of comparison functions, 

the rule attempts to apply, for each pair of concepts, the respective function. If no 
compatible function is available, it is verified if a more generic function – using the 

primitive types – may be applied. Hence, in 

 
Figure 22 we illustrate the counterpart relations established from the comparison 
functions defined in this Section. A numbered straight line depicts each counterpart 
relation.  
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The first relation (1) shows a contextual relation between a plan’s context and a 
literal that satisfies it. Next, the relations marked with a (2) denote both a literal relation 
– considering the test goal as a literal instead of a goal – and also a trigger/literal 
relation since simulating the addition of a test goal with the literals will trigger the test 
goal. During the establishment of the counterpart relations the descriptive representation 
is considered only to tell which are the concepts of the space. After that, our 
implementation of the BDI comparison functions uses the original representation since 
most of the methods use the Jason API to compute the similarity. This technical detail 
depends on each implementation, but we believe that more specialized knowledge 
representations, like multimedia, will also compute the associations using the original 
reasoner instead of implementing it on top of OWL. Another reason is that, for the 
blending, OWL has the role of describing the knowledge and thus, does not represent all 
the dimensions of the knowledge.  

 

 
Figure 22 Counterpart relations from the adaptation study 

Assuming the definition of the generic space and of the counterpart relations, the 
configuration to continue the blending is set. Figure 23 illustrates the initial 
configuration for the double-scope blending rule. Again, the conceptual spaces are 
depicted by the ellipses (I1, I2 and the generic space), the dashed lines represent the 
concepts that lead to the generic space (GEN) and the black lines illustrate the 
counterpart relations (CPR).  
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Figure 23 Initial configuration of the adaptation blend 

Now that the necessary elements are ready, the selective projection takes place. In 
the case of double-scope blending, both the organizing schemes and the concepts are 
subject to change. Although modifying the organizing scheme is present in the double-
scope rule, in this adaptation study it does not have an impact over the practical 
reasoning since only the agent performs it. In order for the modifications on the 
organizing schemes to impact the practical reasoning, it is necessary to model it with 
meta-level rules. Given a definition of the reasoning in meta-level rules, any 
modification on a meta-rule also modifies the outcome of the reasoning. Such 
specification of practical reasoning with meta-level rules and a possible generalization 
to other kinds of reasoning characterize a future work of this research. 

The selective projection of concepts, denoted by 
, chooses concepts (α) from the 

inputs, generic space, counterpart relations and from the application of the constitutive 
principles on the concepts. Given our current definition of α as a random selection 
function, any concept might be projected. Thus, it is as if we randomly chosen an 
answer from our imagination and then tested on the real world if the answer is correct. 
This is a subject where further researches from cognitive and neurological sciences 
needs to be incorporated in the blending theory in order to specify the selective 
projection. Figure 24 illustrates a possible outcome of applying double-scope blending 
to the inputs. In that figure the gray dashed lines depict the connection to generic space 
while the gray direct lines depict the associations. The black lines represent the concepts 
that were chosen by the selective projection and that constitute the blend. Inside the 
Figure 24, the blend is depicted by the ellipsis on the bottom. 

In this specific case, the intention’s trigger was projected allowing a possible plan to 
unify its trigger to the one of the intention (depicted by line marked with 1). A plan 
from the second input space (cozinharArrozSushi) is also projected to the blend and its 

! 

concepts = " C1#C2 #Cgen # appCP C1#C2 #Cgen( )( )



 
 

68 

parameter is unified with the event that generated the intention (line 2). Besides that, 
three beliefs are projected to the blend (lines that follow the mark 3). 

Given the resulting blend, the modified agent class (Appendix 1) adds a plan to 
handle failure of the intention or a plan to handle the event, in the case of lack of 
options. Then, the plan is added as defined in the blend – considering that a plan is 
defined. If there are beliefs in the blend, they are added to the library. After the 
modifications, the agent cycle continues normally, which corresponds to the elaboration 
phase of blending, where the blend is executed. 

 
Figure 24 Double-scope blend for adaptation 

In our adaptation study, the counterpart relations are established between beliefs, 
plans and beliefs and plans. Prioritizing the projection of concepts with relations avoid 
the direct copy of concepts unrelated to the situation. In a similar way, Sop can be 
customized, for instance, to use more completion and suppress modification. Due to 
those modifications on the selection of concepts, the process tend to generate blends 
that make more sense – what Pereira (2007) characterize as a convergent strategy. 
Whether or not making sense is better for adaptation depends on the agent’s domain and 
its context. As we previously stated, this kind of evaluation is not a part of the blending 
theory and should be modeled separately. Here, we describe how blending can be used 
as a way to generate alternatives for adaptation, without evaluating them. Figure 25 
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illustrates an adaptation blend where counterpart relations have more chance to be 
projected than non-related concepts. The notation is equal to the one adopted on Figure 
24, where the selective projection is depicted by black lines. Here, the plan that failed 
was projected and, due to the relations between the beliefs and the test goals, they had 
more chance to be subject to the constitutive principles. Thus, one of them was 
modified and the other two were composed with different individuals of the same type 
that were available on the second space. 

 
Figure 25 Adaptation blend with modified α and Sop 

Our approach to model adaptation is in terms of the blending constructs defined in 
Section 3.1 (terminology and comparison and modification functions). The definition of 
the comparative functions is a fundamental aspect to produce blending. In this study, we 
defined simple functions that reflect a simple kind of adaptation (similarity and 
alternative plans given a common context and/or triggering event). Despite its 
simplicity, the model indicates several possibilities for enhancements and 
experimentation on adaptation strategies. Our intuition is that with the blending model, 
we are able to integrate different adaptation mechanisms in the same structure. There is 
also the possibility to experiment with different kinds of blend and selection functions 
(α and Sop). 
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3.3 Blend-based Recommendation 
Our second study considers an educational recommender system designed as a BDI 

agent that uses blending to provide content-based recommendation (RESNICK; 
VARIAN, 1997; WEI; HUANG; FU, 2007). As presented in Sections 1.4.3 and 1.4.4, 
the purpose of this study is to test the blending model as a reasoning process. Thus, 
recommendation provides only an application context and, improving the state-of-the-
art on recommender systems is not part of this research. Each user is modeled by a 
single recommender agent which, given a certain situation, will automatically 
recommend educational content.  

We consider two main recommendation situations, one characterized by learning 
and the other by authoring. Here, we simplify the learning process and consider only 
recommendations of learning objects (CHURCHILL, 2007), given the current learning 
path being followed by the student. Considering authoring, the recommendation is 
directed for didactic materials developers, tutors and course teachers. Hence, authoring 
recommendations are constituted by parts of objects representing suggestions and 
examples about the specification of the metadata.   

Since it is the agent that controls when an user will receive a recommendation, the 
blending mechanism was implemented as a Jason internal action (Appendix 12). Thus, 
blending may be executed inside any plan. The only requirement to use that internal 
action is a mapping between the beliefs and an OWL representation – since our 
implementation of blending adopts the OWL syntax. 

Another aspect of the recommendation study is that we consider the existence of 
multiple agents, but they are unaware of each other. Hence, there is no interaction 
between the agents. In the context of recommender systems, agent interaction is more 
relevant when we consider other kinds of recommendation, such as collaborative 
filtering (RESNICK P. et al. 1994; SHARDANAND; MAES, 1995). Here, each agent 
manages a single user model that follows the terminology established by FOAF2, IMS 
(Instructional Management Systems) LIP3 and IMS-LD4. FOAF already provides an 
OWL representation compatible with our implementation. LIP and LD were modeled 
with the OWL language in the context of the OBAA research project.  

Consequently, FOAF, LIP and LD establish a vocabulary of terms and properties 
that can be used to model learning activities and preferences of the user. Thus, the 
definition of the user model does not impose any restriction in terms of minimal 
information to construct an instance of it. This requirement depends on specific 
application contexts and, in the case of the learner recommendation, the minimal 
information is a description of the current learning activities. Moreover, in the authoring 
scenario the requirement is the existence of at least one metadata about the under 
development object. Those restrictions are modeled as the context of the respective 
recommendation plans. 

Given the user-related ontologies, the agent environment supplies perceptions 
representing the user’s activities according to the concepts defined by them. 

                                                
2 Friend of a Friend - http://www.foaf-project.org/ 
3 Learner Information Package - http://www.imsglobal.org/profiles/ 
4 Learning Design - http://www.imsglobal.org/learningdesign/ 
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Consequently, the environment provides the interface between the Intelligent Tutoring 
System (ITS) and the recommender agent. Following traditional agent models, the 
actions are performed in the environment and, in this case, they reflect changes in the 
ITS, possibly being noted directly by the user through his interface. 

After processing each perception, the respective beliefs are updated accordingly. 
Thus, the set of user-related beliefs actually represents the user model. Considering our 
blending model, those beliefs constitute the first input (I1) of the process. As for the 
second input, the available learning objects constitute it. Figure 26 illustrates an 
example of I1 and I2 in the context of educational recommendation for students. Again, 
the conceptual spaces are depicted by the ellipses and each underlined element 
represents a concept. According to our implementation, each conceptual space is an 
OWL individual and the concepts are modeled as property assertions. 

Therefore, the example of I1 in Figure 26 considers an individual instead of the 
AgentSpeak representation. In practice, this conversion is performed directly by the 
internal action. Likewise, I2 is also constructed by the action. Although it is 
recommended to use declarative knowledge during agent modeling, we left the 
information about learning objects hidden from the agent. We followed this approach 
since our recommendation model is still in its early stages and, for now, the agent would 
not use that information.   

For instance, considering trust measures on repositories or previous evaluations of 
content developers imply on more elaborated decision procedures that justify the 
awareness of the resources by the agent. In fact, those decision aspects and the 
integration of more recommendation approaches constitute a subject for future research. 
Hence, in this study, the recommendation internal action gathers the available learning 
objects from the repository and assembles them into an OWL individual representing 
the second input – depicted by I2 in Figure 26. 

 
Figure 26 Inputs for the learning recommendation blending 
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Although constructed by the internal action, the second input is also based on a 
terminology for learning objects. Specifically we adopted the OBAA ontology5 that 
represents a Brazilian standard for educational resources developed in the Informatics 
Institute and the Center for Interdisciplinary Research on Education from UFRGS 
(BEZ; VICARI; SILVA; RIBEIRO; GLUZ; PASSERINO; SANTOS; PRIMO; ROSSI; 
BORDIGNON; BEHAR; FILHO; ROESLER, 2010). Assuming the availability of 
objects, the second input space constitutes possible recommendations in terms of 
learning resources. In practice, it is necessary to define a filter to reduce the amount of 
candidate objects. Such filter can be applied outside of blending or it could be 
implemented in the α function plus a more restrictive comparative function. Our test 
considered only a prototype repository of learning objects that work on the Web, Digital 
TV and mobile devices. Thus, the amount of objects was not an issue. 

Considering an authoring recommendation, the definition of the first input follows 
the same approach as described for the student recommendations. Since the user is a 
tutor or a course organizer developing an object, its model reflects this situation by 
containing only more generic information about the user (FOAF) and about the object 
being developed (i.e. a partial description of its metadata). In Figure 27 we illustrate an 
example of the inputs for the authoring recommendation. Similar to the learning 
context, in the authoring recommendation the available learning objects also constitute 
the second input. We follow the same graphical notation as the previous Figure. 

 
Figure 27 Inputs for the authoring recommendation blending 

Another element of the blending process is the set of comparison functions. In the 
case of recommendation, these functions represent the similarity measures being 
considered. Here, we consider three kinds of similarity between an user model and a 
learning object model. Since both models are represented in OWL, it is possible to 
analyze their concepts in regard to their positions in the hierarchy. Thus, we check if 

                                                
5 http://www.portalobaa.org/obaac/padrao-obaa/concretizacao-de-metadados-em-owl 
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one class is a super or sub-class in relation to the other. The implementation of this 
function is presented in the Appendix 13. In Figure 28 we show examples of hierarchy 
relations according to an ontology that describes educational categories. Following this 
ontology, the individuals “ser humano e saúde”, “tecnologia e sociedade”, “terra e 
universo” and “vida e ambiente” are members of the class “ciências naturais” which is a 
branch of the ontology. Thus, all these individuals have at least one direct membership 
in common (depicted by the lines in the Figure 28).  

 
Figure 28 Hierarchy-based comparison function example 

Disregarding the terminology, the literal content of related properties (e.g. activity 
description and category, from the user and learning object models respectively) is 
compared using a word similarity approach that uses Wikipedia as a corpus 
(PONZETTO; STRUBE, 2007). In the Figure 29 we show an example of applying this 
function on the properties foafinterest and hasActivityDescription from the user model 
and the properties keyword and category from the learning objects. Thus, when the 
similarity measure is above the defined threshold the words are regarded as similar 
(illustrated by the lines in the Figure 29). The implementation of the function (Appendix 
14) is based on the Wikipedia Similarity API6. Formally, we specify that function as 
follows: 

Word comparison function according to Wikipedia 

 

                                                
6 http://www.h-its.org/english/research/nlp/download/wikipediasimilarity.php ! 

µ(w1,w2) = boolean extAPI :wikiMeasure w1,w2( )( )
where

boolean(real) =
true   if real > 0.8
false  otherwise

" 
# 
$ 
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Figure 29 Word similarity function based on Wikipedia 

Finally, also considering the literal content of the properties, we verify if one word is 
analogous to the other with regard to the ConceptNet database (LIU; SINGH, 2004). 
ConceptNet, essentially, is a semantic network representing common sense knowledge 
built and evaluated by volunteers through the Internet. Havasí, C. et al.. (2009) describe 
an analogy-based inference mechanism to virtually reduce the size of the network – 
making it more usable by humans.  

The inference mechanism is distributed as an API but its results can also be accessed 
directly using ConceptNet’s REST (Representational State Transfer) API. Therefore, 
the results of the inference establish an analogy space inside ConceptNet (SPEER; 
HAVASÍ; LIEBERMAN, 2008). Grounded on the analogy space, ConceptNet is able to 
compute similarity among concepts. Thus, we refer to that analogy space to compute 
analogies for the recommendation conceptual spaces. Our resulting analogy comparison 
function is very similar to the Wikipedia word comparison. Actually, the difference is 
on the way that similarity is computed and on the interpretation of the measure. 

To the best of our knowledge, the integration of ConceptNet and the analogy space 
was developed and made available for the English corpus. Hence, the Portuguese 
version of ConceptNet does not use the analogy space. Since the learning objects from 
our repositories are in Portuguese, we were not able to test the comparison function 
directly with the objects. 

Function to compute analogy between words according to ConceptNet  

 

! 

µ(w1,w2) = boolean extAPI : analogyMeasure w1,w2( )( )
where

boolean(real) =
true   if real > 0.5
false  otherwise

" 
# 
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With the definition of I1, I2 and FC, the remaining blending elements to be specified 
are BC and Μ – part of the OP component. The latter is a set of modification functions 
that represent the constitutive principle of modification. Considering the constitutive 
principles, we do not define any specific function for the learning recommendation. 
Although possible to model, we would need to consider different kinds of multimedia 
and its technical specificities in order to not corrupt the object. Besides, we are not 
confident that in the case of recommending educational resources, it is interesting to 
modify the objects since they represent complete and modular learning units. In our 
perspective, this specific recommendation benefits more from the integration of the 
comparative functions than on the constitutive principles. 

However, in the context of authoring recommendation, the application of the 
constitutive principles yields on blends that can be used on practice. For instance, 
during authoring tasks, the agent may recommend suggestions on how to specify the 
metadata based on already developed objects (I2). In this scenario of developing a new 
object, certain metadata from I2 can be projected to the blend as a modification that 
reflects given properties of the under-development object. Assuming the availability of 
domain ontologies, that can be used to specify the object’s properties, it is possible to 
use modification functions like the ones defined for the adaptation study.  

Hence, we specify a modification function that, given an object property assertion – 
stating that a subject is related to a target object – it modifies the target object by 
choosing another individual from the same class or from the range definition. Thus, the 
property assertion remains the same except for the target. On the function, the definition 
of the axioms variable contains an intersection among domain, range and the suspension 
points that represent the remaining OWL property axioms, such as symmetrical and 
functional. 

Modification function for authoring recommendation 

! 

µ assertion( ) =
modTarget = " c #membersOf range( )( ) if range $ {}

modTarget = " c #membersOf class targetInd( )( )( ) otherwise

% 
& 
' 

( ' 

where
assertion = property subjectInd,targetInd( )
property = name) axioms
axioms = domain) range) ...

 

Concluding our specification of the recommendation blending, we define the 
configuration 

! 

BC = ",#,$,Sop . Together, α and Sop represent the selective projection – 
α chooses which concepts will be project and Sop which constitutive principles will be 
applied. Considering our recommendation context, we define three alpha functions that 
are chosen by the agent and applied on different situations. First, we specify a selection 
function following the same approach adopted in the adaptation study. Thus, this 
function improves the chance to project concepts that have counterparts in the other 
space.  

Our second α function aims at choosing concepts that have more chance to surprise 
the user. Clearly, there are several approaches to achieve this kind of recommendation 
(WEI; HUANG; FU, 2007; SHARDANAND; MAES, 1995). Here, we look for objects 
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that belong to different domains in relation to the ones that the user is more used to. In 
addition, it also considers objects developed for different learning strategies. Inside a 
learning context, this kind of recommendation is useful when the current strategy and its 
adopted objects are not resulting in satisfactory learning outcomes (specified by the 
grades).  

Finally, we developed an α function specific to prioritize objects that relate to at 
least one that the learner has used and evaluated well. Ideally, this function should be 
used with mirror blending, defined by the κ component. According to the blending 
theory, mirror networks are capable of modeling metaphoric reasoning. By maintaining 
the roles (represented by the properties) of one input, and projecting the values from the 
other input would result in an “as if…” interpretation. Since, in this study, the inputs do 
not share the same organizing frame but have common roles (their objects), this alpha 
simulates that common aspect and improves the chances of projecting concepts of this 
role. Another aspect considered by this function is the specific properties from the 
objects, such as the learning strategy and utilization context. 

Since mirror blending requires the same organizing schemes for both inputs, we 
applied this last α in conjunction with single-scope blending. In this type of blending 
one input serves as a source (providing the roles/properties) and the other as the target 
(supplying the values/concepts). Opposing mirror blending, in single-scope there might 
occur contradictions (called clashes in the theory) since the organizing schemes may 
differ. Currently, the organizing schemes do not have such impact in our model. We 
emphasize that the main reason for that is not considering meta-level reasoning rules 
inside the schemes.  

Thus, in Figure 30 we show an example of applying the metaphor inspired α and 
single-scope blending (defined by κ) to gather recommendations for the student. 
Recalling that, in this specific recommendation, the constitutive principles are not 
applied, the role of blending is to choose which concepts (objects) to recommend, based 
on the inputs, generic space and counterpart relations. This role can be noted in Figure 
30 by the direct projection of objects “dengue” and “educação e criatividade” since they 
relate to the category property of the already evaluated object (“viva saudável”). In the 
Figure 30 the gray lines illustrate the relations among concepts – lines with the number 
1 refer to hierarchy relations and with 2 refer to word similarity – and the dotted black 
lines represent the projection of the concepts. 
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Figure 30 Metaphor-based recommendation blend 

In the remaining situations we adopt double-scope blending allowing the projection 
of any concept from the considered spaces to the blend. Therefore, this kind of blend 
allows the projection of concepts from I1 (the user model) to the blend (the 
recommendation). Although such projection is correct in regard to the theory, for this 
specific scenario concepts projected from I1 are disregarded since they do not affect the 
recommendation.  

Considering authoring, we use only the α function that projects more concepts with 
counterpart relations and double-scope as the kind of blending. Also present in this BC 
configuration for authoring recommendation is the Sop function that chooses which 
constitutive principles to apply. In this case, we use the same Sop function defined for 
the adaptation study, where each constitutive principle has the same probability to be 
chosen. Thus, in the Figure 31 we illustrate the a possible authoring blend, where the 
topmost dotted gray lines denote the definition of the generic space, the gray lines refer 
to the relations among concepts and the dashed lines and the black dashed lines pointing 
to the blend space refer to the selective projection. 
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Figure 31 Authoring recommendation blend 

In this study we showed how the restrictions and specificities of a given domain can 
be modeled as blending elements. Our model of student recommendation imposes 
restrictions to the blending mechanism, disabling the application of constitutive 
principles. Without these principles, blending is used to consider different 
representations and reasonings into a single model. Specifically in this recommendation 
study, blending is used to choose leaning objects given the applied similarity measures 
between the user model and the objects.  

Following the blending theory, the resulting blends may serve as inputs for other 
blends, establishing a network of blends. The definition of rules to coordinate the 
chaining of blends and of the network utilization is defined by the governing principles, 
which were not modeled and are subject of future research. Given the model presented 
on Section 3.1, it is possible to specify blending in terms of a domain terminology and 
assertions and comparison and modification functions. Our applications on adaptation 
and recommendation indicates that the adoption of an agent structure complements well 
the blending model since it provides a way to automate the specification of inputs and 
the triggers of the blending mechanism.  
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Comparing to the model proposed by Pereira (2007), the main difference is on the 
integration to a BDI structure, allowing blending to be automatically applied (in terms 
of input construction and selection functions). Divago has the advantage to also model 
blending’s governing principles. Although, we observe that governing principles is not 
his main focus of research, since the author does not indicate evidence from blending or 
other cognitive theories to argument his decision on the specification.  

Still considering our related work, our approach to abstractly model the comparison 
and modification functions is similar with the morphisms specified by Griot’s algebraic 
semiotics. In terms of expressiveness, Griot further defines the semantics of a 
modification in the context of symbolic representations. Directly comparing to our 
model, Griot is more expressive for manipulating symbols but is less expressive on the 
representation of non-symbolic representations. 
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4 CONCLUSION 

Given our main research question: how can creativity support intentionality? We 
contextualize our contributions under two main perspectives (intelligent agency and 
computational creativity). Positioning our contributions on computational creativity we 
relate it to our first intermediary question: How can creativity be computationally 
modeled in order to produce theoretical and practical knowledge? Initially, the path 
taken to answer this question was to specify a blending model focused on practical 
knowledge (plans and actions). However, we noted that such path would also pass by 
theoretical knowledge and that, according to a higher abstraction level, all kinds of 
knowledge could be seen as a conceptualization. With this abstraction in mind, it is 
possible to specify the process of blending in a more generic way. Therefore, we 
specified blending as a set of rules and transitions among states representing the process 
of constructing a blend. Given the set of rules and constructs necessary for blending, we 
also defined four kinds of blend, as specified by theory’s typology developed by 
Fauconnier and Turner (2002).  

Regarding computational models of blending, one contribution of our model is an 
explicit definition of the original blending typology. Future work on this subject lead to 
the specification of other kinds of blends as proposed by Brandt (2002). Another 
contribution to computational creativity is a blending model capable of manipulating 
heterogeneous knowledge representations. This is possible due to the abstraction of a 
concept and the utilization of descriptive logics as a bridge between the blending 
operation and the knowledge representation.  

Our utilization of descriptive logics follows the same approach as the utilization of 
the OWL language to annotate resources on the semantic web. Specifically, we follow 
the OWL syntax and semantics to describe the knowledge representations. Thus, our 
model deals with heterogeneous representation by following a given terminology and 
assertions about that representation. Further exploring this aspect of our model, it is 
possible to experiment it with multimedia representations. We can benefit from already 
developed ontologies and standards for multimedia on the semantic web and apply it to 
our model. In fact, enabling blending to work with multimedia allows us to further 
develop our second proof of concept, the educational recommender system. Therefore, 
the recommendations could also consider the content of the resources.  

Pereira (2007), describes an experiment where the concept of a house has a symbolic 
representation and a geometric one for each of the house’s component. Consequently, 
any symbolic blend with the house also has its graphical counterpart. Our model differs 
in the consideration that there is only one representation annotated with information that 
the blending process will use. Another difference is our utilization of OWL providing 
compatibility with documents from the semantic web. Defining our model abstractly – 
using operational semantics – allows developers to implement blending in any 
programming language. We developed a partial implementation of the rules in Java, 
using also the OWL-API (HORRIDGE; BECHHOFER, 2009) to manipulate the OWL 
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syntax, Pellet (SIRIN, E. et al.. 2007) to reason over the OWL representations and Jason 
as the agent framework. 

Recalling our motivation on the interplay between autonomy and creativity, we 
define agent-based creativity as a subject of study of this thesis. On this matter, our 
main idea was to use the BDI constructs to model the vital relation of intentionality 
inside the blending model. However, intentionality is a property that results from the 
application of practical reasoning over a set of beliefs and desires. Therefore, a 
simplistic approach would be to map intentional relations between input spaces when, 
for instance, one belief from input one is a desire in the other. Although it could be 
possible to specify it in our model as comparison function, we concluded that it would 
not impact on the blending process itself since we are considering a very specific case 
of intentionality that does not correspond to broad view of intentionality as a vital 
relation. Thus, an additional study of intentionality – possibly modeled with meta-level 
components – is left for future work. 

Adding meta-level reasoning to our model allows different reasoning rules to be 
used inside the blending process. One way to use it would be on the definition of the 
counterpart relations, where we could infer cause and effect chains among concepts. 
Another interesting feature is the possibility to modify the reasoning rules and verify the 
behavior of a conceptual space given such modifications (specially useful for double-
scope blending). 

Following our agent-based creativity perspective, an important point that can be 
modeled using agent constructs is the definition of the inputs, context, and purpose of 
the blending. These elements are considered as given by the blending theory (there is no 
definition on how the inputs are constructed). Hence, according to an agent perspective, 
its current intentions and world configuration are applied to trigger the blending 
process. Actually, the composition of the input spaces by the agent characterizes a 
contribution for computational models of blending since none of the related works 
specified how the inputs were constructed. The inputs are always given by the 
developer who defines all the parameters for the blending. In the case of our study on 
adaptation, the blending is triggered when an intention fails or when there is no 
available option. In addition, the inputs are automatically constructed given a pre-
defined terminology on adaptation. Furthermore, our study on recommendation also 
work in a similar way, the only difference is on the blending trigger, which is declared 
in the agent code as an achievement goal. 

Shifting the perspective to creative agency, the main result of this work is the 
possibility to integrate different reasonings, strategies and representations in a single 
blend. During the development of the agent adaptation study, we realized that the 
strength of our model lies on the integration, on the blending itself, rather than on an 
adaptation measure. Considering our blending model, adaptation is defined by a 
terminology and functions for comparing and modifying belief and plans. In our study, 
we defined comparison functions representing very simple adaptation strategies. 
However, the model can also be applied to model other adaptation methods, like 
abduction and/or hierarchical planning.  

Thus, these methods are modeled as additional comparison functions fc that will 
compose the FC set, used during blending. Moreover, the developer may specify the 
random selection function α to consider a domain specific tendency or any heuristic. In 
fact, that function can also be integrated to a learning mechanism. Similarly, the 
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function to select which constitutive principle to apply Sop, may also be customized. 
Comparing to our related work on agent adaptation, our approach differs on the 
reasoning mechanism. Currently, we are not able to provide any analysis in terms of 
which adaptation method is better given a certain situation. On the field of adaptation, 
we consider that our contribution is on a model to integrate different adaptation 
mechanisms into a single one. Consequently, future work on blended adaptation may 
specify case studies to analyze the integration of strategies against the adoption of a 
single one. 

Given our two main perspectives, agent-based creativity and creative agency we 
realize that creativity and agency may also be viewed as parts of a greater cognitive 
model. Many of the elements from blending that are too abstract or too subjective to 
model computationally, could be at least partially modeled given the availability of 
other cognitive functions like learning and embodiment. With these two additional 
operations, the blending mechanism may also function as a supplier of actions to be 
performed and perceived on several levels (e.g. internal and external). As the agent 
begins to try actions and perceive its consequences the learning mechanism may infer 
new cause and effect chains predicting effects of actions not yet tested. Therefore, 
blending could be seen as playing the role of our imagination. Despite challenging, we 
believe that this work initiated an approach to the integration of different cognitive 
functions into a single model. Perhaps even towards a restricted concretization of 
Minksy’s society of the mind (MINSKY, 1986).  

Finally, returning to our main research question, we position our contribution under 
a more theoretical perspective. Our model can be used to study aspects of CB theory 
that have not been thoroughly studied. We see this work as the initial step towards a 
deeper study on the cognition of creativity using computational models. Furthermore, 
we see future works on theoretical aspects by the adoption of results from genetic and 
neurosciences. Considering more technical aspects, given the concept model defined 
here, the main future work is the specification of meta-reasoning improving the 
expressivity of the organizing schemes. Therefore, the elaboration phase of the blending 
process can also account the modifications on the reasoning rules. Still on the blending 
model, another continuity of the research is the specification of the network model – as 
envisioned by Fauconnier and Turner (1998) – which provides the foundation for the 
definition of the governing principles.  

Given a specification of the network model and of meta-level reasoning rules, it is 
possible to experiment with integration of learning. Thus, we add a cognitive operation 
that can provide evaluations and feedback over the generated conceptualizations. 
Another aspect that can be modeled similarly is the social impact of the new artifacts. 
Hence, we move on the direction of integrating H-creativity (BODEN, 2004) to 
conceptual blending. The specification of Brandt’s typology (BRANDT, 2002) also 
adds more contextual information to the blending operation. Together with the network 
model and other cognitive operations, a further specified typology allows the creation 
more fine-tuned conceptualizations. 
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APPENDIX  1 <AGENT MODEL WITH INTEGRATED 
ADAPTATION MECHANISM> 

 
package agent; 
 
import java.util.*; 
 
import org.semanticweb.owlapi.model.OWLOntology; 
 
import reason.Blender; 
import reason.IterationPhi; 
import reason.Modification; 
import reason.OWLBlender; 
import reason.RBeliefModfication; 
import reason.RandomAlpha; 
import reason.RandomSop; 
import reason.SEBModification; 
 
import edu.uci.ics.jung.graph.Hypergraph; 
import edu.uci.ics.jung.graph.SetHypergraph; 
 
 
import asSemantics.CBEventsGoalListener; 
import asSemantics.CBTransitionSystem; 
 
import jason.JasonException; 
import jason.RevisionFailedException; 
import jason.architecture.AgArch; 
import jason.asSemantics.ActionExec; 
import jason.asSemantics.Agent; 
import jason.asSemantics.Circumstance; 
import jason.asSemantics.Event; 
import jason.asSemantics.IntendedMeans; 
import jason.asSemantics.Intention; 
import jason.asSemantics.TransitionSystem; 
import jason.asSemantics.Unifier; 
import jason.asSemantics.GoalListener.GoalStates; 
import jason.asSyntax.ASSyntax; 
import jason.asSyntax.Atom; 
import jason.asSyntax.Literal; 
import jason.asSyntax.LiteralImpl; 
import jason.asSyntax.LogicalFormula; 
import jason.asSyntax.Plan; 
import jason.asSyntax.PlanLibrary; 
import jason.asSyntax.Pred; 
import jason.asSyntax.StringTermImpl; 
import jason.asSyntax.Trigger; 
import jason.asSyntax.Trigger.TEOperator; 
import jason.asSyntax.Trigger.TEType; 
import jason.asSyntax.parser.ParseException; 
import jason.bb.BeliefBase; 
import jason.runtime.Settings; 
import kr.*; 
 
public class CBAgent extends Agent { 
  
 //Mind mind; 
 HyperMind mind; 
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 private RelatorFactory rf; 
 
 public CBAgent() { 
  // TODO Auto-generated constructor stub 
  super(); 
  rf = new RelatorFactory(); 
  //mind = new Mind(); 
  mind = new HyperMind(); 
 } 
  
 public void initAg() { 
  super.initAg(); 
 } 
  
 public void initAg(String asSrc) throws JasonException { 
  super.initAg(asSrc); 
  //inicializar a imaginacao do agente com base nas crencas e etc, agora que sabemos 
  //que o agente foi iniciado corretamente. 
  CBTransitionSystem cbt = new CBTransitionSystem(this, ts.getC(), ts.getSettings(), 

ts.getUserAgArch()); 
  ts = cbt; 
  CBEventsGoalListener cbe = new CBEventsGoalListener(this); 
  cbt.addGoalListener(cbe); 
  bbToImagination(); 
  plToImagination(); 
  //mind.printGraph(); 
  mind.showImagination(); 
 } 
  
 Hypergraph<Concept, HyperConceptRelation> adaptationInput1(Trigger goal){ 
  Hypergraph<Concept, HyperConceptRelation> ret = new 
   SetHypergraph<Concept, HyperConceptRelation>(); 
  //O trigger eh representado no grafo como um conceito, tendo em vista que nao 

necessariamente ele  
  //reflete uma crenca. Esse eh conceito eh assoaciado a um Conceito Plano como 

"triggers" 
  Concept trigger = new Concept(goal, true); 
   
  Intention currentIntention = getTS().getC().getSelectedIntention(); 
  IntendedMeans im = currentIntention.getIM(goal, new Unifier()); 
  //plano que falhou 
  Concept failPlan = new Concept(im.getPlan(), true); 
  ret.addVertex(failPlan); 
   
  /*Concept intention = new Concept(currentIntention, true); 
  ret.addVertex(intention);*/ 
  //im.getCurrentStep(); 
   
  for (Literal b : getBB()){ 
   ret.addVertex(new Concept(b, true)); 
  } 
     
  return ret;   
 } 
  
 private Set<Modification> agentMods(){ 
  SEBModification seb = new SEBModification(this); 
  RBeliefModfication rb = new RBeliefModfication(0.2f); 
  Set<Modification> ret = new HashSet<Modification>(); 
  ret.add(seb); 
  ret.add(rb); 
  return ret; 
 } 
  
 private Set<SimpleConceptRelator> agentFcs(){ 
  PlanTriggerEnabler pc = new PlanTriggerEnabler(); 
  BeliefStringSimilarity bc = new BeliefStringSimilarity(); 
  Set<SimpleConceptRelator> ret = new HashSet<SimpleConceptRelator>(); 
  return ret; 
 } 
  
 public void intentionFailure(Trigger goal){ 
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  Intention currentIntention = getTS().getC().getSelectedIntention(); 
  IntendedMeans im = currentIntention.getIM(goal, new Unifier()); 
  //plano que falhou 
  Plan fp = im.getPlan(); 
   
  OWLHelper o = new OWLHelper(); 
  OWLOntology i1 = o.adaptationInput1(goal, fp, bbToSet(getBB())); 
  OWLOntology i2 = o.adaptationInput2( plToSet(getPL()), bbToSet(getBB())); 
  //FALTAM AS FUNCOES DE COMPARACAO E MODIFICACAO 
  Set<Modification> mods = agentMods(); 
  Set<SimpleConceptRelator> fcs = agentFcs(); 
  OWLBlender blender = new OWLBlender(i1, i2, mods, fcs, Blender.K.DOUBLE_SCOPE, new 

RandomAlpha(), new IterationPhi(10), new RandomSop()); 
  OWLOntology ret = blender.blend(); 
  AgtBlendResult agresult = o.blendToAgent(ret); 
   
  System.out.println("IMPRIMINDO AGT RESULT"); 
  Plan teste = null; 
  for (Plan p : agresult.getPlans()){ 
   System.out.println("P: " + p.getFunctor() + " " + p.getBody()); 
   teste = p; 
  } 
  for (Literal l : agresult.getBeliefs()){ 
   System.out.println("B: " + l.toString()); 
   try { 
    brf(l, null, currentIntention); 
   } catch (RevisionFailedException e) { 
    e.printStackTrace(); 
   } 
  } 
  System.out.println(" ADICIONANDO PLANO p/ META-EVENT"); 
 
  if (teste!=null){ 
   System.out.println("CRIANDO FAIL LITERAL"); 
   //Literal failLiteral = new 

LiteralImpl(fp.getTrigger().getLiteral().getFunctor());  
   Literal failLiteral = new LiteralImpl(fp.getTrigger().getLiteral()); 

  
   try { 
    failLiteral.addAnnot((ASSyntax.parseTerm("state(failed)"))); 
   } catch (ParseException e1) { 
    e1.printStackTrace(); 
    //gerar o evento de falha e seguir com o ciclo 
   } 
   System.out.println("CRIANDO FAIL TRIGGER"); 
   Trigger failstate= new Trigger(TEOperator.goalState, TEType.achieve, 

failLiteral); 
   //FAILSTATE=^!g1(verde)[state(finished)] 
   Plan adaptPlan; 
   try { 
    System.out.println("literal: "+ failLiteral + " failstate: " + 

failstate); 
    adaptPlan = new Plan(null, failstate, Literal.LTrue, 

teste.getBody()); 
    System.out.println("adapt paln: " + adaptPlan); 
    System.out.println("ADICIONADNO PLANO"); 
    getPL().add(adaptPlan); 
    Trigger failevent = new Trigger(TEOperator.add, TEType.achieve, 

goal.getLiteral()); 
     
    Trigger fail2 = new Trigger(TEOperator.add, TEType.achieve, goal); 
     
    generateGoalStateEvent(goal.getLiteral(), goal.getType(), 

GoalStates.failed, null); 
   }catch (JasonException e) { 
    e.printStackTrace(); 
    //gerar evento de falha mesmo assim, ignorando que o plano nao foi 

adicionado 
   }          
  } 
 } 
  
 //copy from jason1.3.3 library 
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 private void generateGoalStateEvent(Literal goal, TEType type, GoalStates state, String 
reason) { 

        goal = goal.forceFullLiteralImpl().copy(); 
        Literal stateAnnot = ASSyntax.createLiteral("state", new Atom(state.toString())); 
        if (reason != null) 
            stateAnnot.addAnnot( ASSyntax.createStructure("reason", new 

StringTermImpl(reason))); 
        goal.addAnnot( stateAnnot ); 
        Trigger eEnd = new Trigger(TEOperator.goalState, type, goal); 
        if (ts.getAg().getPL().hasCandidatePlan(eEnd)) { 
         System.out.println("evento sendo gerado"); 
            ts.getC().addEvent(new Event(eEnd, null)); 
        } 
    } 
  
 private Set<Plan> plToSet(PlanLibrary pl){ 
  HashSet<Plan> ret = new HashSet<Plan>(); 
  for (Iterator<Plan> iterator = pl.iterator(); iterator.hasNext();) { 
   Plan p = iterator.next(); 
   ret.add(p); 
  } 
  return ret; 
 } 
  
 private Set<Literal> bbToSet(BeliefBase bb){ 
  HashSet<Literal> ret = new HashSet<Literal>(); 
  for (Iterator<Literal> iterator = bb.iterator(); iterator.hasNext();) { 
   Literal literal = iterator.next(); 
   ret.add(literal); 
  } 
  return ret; 
 } 
  
 public void intentionFailureTESTE(Trigger goal){ 
  System.out.println("ˆˆˆˆˆˆˆˆˆˆˆˆˆˆfailed goalˆˆˆˆˆˆˆˆˆˆˆ : L: " + goal.getLiteral() 

+ " O: "  
    + goal.getOperator() +" T: " + goal.getType() + " E: " + 

goal.getErrorMsg()); 
  System.out.println("ˆˆˆˆˆˆˆˆ terms do failed goal: " + goal.getTerms() + " "); 
  //System.out.println("+++++ acao atual em TS: " + ts.getC().getAction().toString()); 
  System.out.println("+++++ SI: id: " + ts.getC().getSelectedIntention().getId() + " 

term: " +  
    ts.getC().getSelectedIntention().getAsTerm() + " " ); 
  //ts.getC().get 
  System.out.println("+++++ SO: " + ts.getC().getSelectedOption()); 
   
  //lista de planos capazes de lidar com o trigger que falhou 
  List<Plan> lp = getPL().getCandidatePlans(goal); 
   
  Intention currentIntention = getTS().getC().getSelectedIntention(); 
  System.out.println("CI To string: "+ currentIntention.toString()); 
  System.out.println("-----"); 
  System.out.println(getTS().getC().toString()); 
  IntendedMeans im = currentIntention.getIM(goal, new Unifier()); 
  //nome do plano que falhou 
  im.getPlan(); 
  im.getCurrentStep(); 
   
  //System.out.println("+++++ SI. hasTrigger goal: " + 

currentIntention.hasTrigger(goal, new Unifier())); 
  System.out.println("+++++ SI.IM.getPlan: " + im.getPlan().toString() + " cstep: " + 

im.getCurrentStep().toString()); 
   
  //falhou, vamos mostrar isso no grafo, jah linkado com os respectivos conceitos na 

mente do agnte 
  Collection<Concept> cc = new HashSet<Concept>(); 
  cc.add(new Concept(im.getPlan(), true)); 
   
  //trigger da intencao que falhou 
  cc.add(new Concept(goal, true)); 
   
  //planos aplicaveis dif plano q falhou. 
  for (Plan p : lp){ 
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   if (!p.equals(im.getPlan())) 
    cc.add(new Concept(p, true)); 
  } 
 } 
  
 private void circumstanceHandle(Circumstance c){ 
  //intencao escolhida, focar o blend para o que estah sendo realizado 
  Intention si = c.getSelectedIntention(); 
  //si.isFinished(); 
  //si.isSuspended(); 
  //si.getAsTerm(); 
  Stack<IntendedMeans> sim = si.getIMs(); 
  HashSet<Plan> plans = new HashSet<Plan>(); 
  HashSet<Trigger> triggers = new HashSet<Trigger>(); 
  for (IntendedMeans im : sim){ 
   //im.getCurrentStep(); 
   plans.add( im.getPlan() ); 
   triggers.add( im.getTrigger() ); 
  } 
  c.getApplicablePlans(); //if null, no avaliable options... blend away baby, blend 

away 
 } 
  
 /**Nesse metodo posso acrescentar a natureza dinamica do agente √† rede. 
  * Ou seja, aqui, a Circumstance atual pode ser inserida na rede. 
  * A alternativa √© nao incluir explicitamente essa parte na rede, porem 
  * utiliza-la durante a fusao apenas. 
  * Intencao como uma hyperAresta 
  *  
  */ 
 public void reasoningCycleEnd(){ 
   
  Intention si = getTS().getC().getSelectedIntention(); 
  if (si != null){ 
  si.isFinished(); 
  si.isSuspended(); 
  si.getAsTerm(); 
   
  System.out.println("@@@ SI: " + si.getAsTerm() + " is fini: " + si.isFinished() +  
    " is susp: " + si.isSuspended()); 
  } 
  /* 
  Stack<IntendedMeans> sim = si.getIMs(); 
  for (IntendedMeans im : sim){ 
   im.getCurrentStep(); 
   im.getPlan(); 
   im.getTrigger(); 
  } 
   
  ActionExec ac = getTS().getC().getAction(); 
  ac.getActionTerm(); 
  ac.getIntention(); 
  ac.getResult(); 
   
  Queue<Event> qe = getTS().getC().getEvents(); 
  for(Event e : qe){ 
   e.getIntention(); 
   e.getTrigger(); 
   e.isExternal(); 
   e.isInternal(); 
  } 
   
  getTS().getC().getApplicablePlans(); 
   
  getTS().getC().getPendingActions(); 
   
  getTS().getC().getPendingIntentions(); 
   
  getTS().getC().getRelevantPlans();*/ 
   
   
 } 
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 private void addLiteralToImagination(Literal bel){ 
  Concept f = new Concept(bel, true); 
  if (mind.getNetwork().containsVertex(f)){ 
   //setar o estado para true 
   mind.updateConceptStatus(f, true); 
   //System.out.println("*****************ADD BEL SET STATUS "  + bel); 
  }else{ 
   //adicionar e verificar as relacoes :-) 
   mind.addConcept(f); 
   everyRelation(bel); 
   //System.out.println("*****************ADD BEL FULL " + bel); 
  } 
 } 
  
 private void delLiteralFromImagination(Literal bel){ 
  Concept f = new Concept(bel, false); 
  //modificou a mente, entao atualizar a imaginacao 
  mind.updateConceptStatus(f, false); 
  //System.out.println("*****************DEL BEL " + bel); 
 } 
  
    @SuppressWarnings("unchecked") 
    @Override 
    public List<Literal>[] brf(Literal beliefToAdd, Literal beliefToDel,  Intention i) throws 

RevisionFailedException { 
     List<Literal>[] temp = super.brf(beliefToAdd, beliefToDel, i); 
     if (temp != null){ 
      List<Literal> ll = temp[0];//additions to the belief base 
      if (ll != null){ 
       for (Literal l : ll){ 
        addLiteralToImagination(l); 
       } 
      } 
      ll = temp[1];//additions to the belief base 
      if (ll != null){ 
       for (Literal l : ll){ 
        delLiteralFromImagination(l); 
       } 
      } 
     } 
     return temp; 
    } 
  
 private void everyRelation(Literal l){ 
  beliefToImagination(l);//crencas x crencas 
  for (Plan p : getPL()){ 
   planRelations(l, p); //crencas x planos : geral: trigger 
   contextRelations(l, p); //crencas x contexto de planos : string 
  } 
 } 
  
 void beliefToImagination(Literal literal){ 
  Set<SimpleConceptRelator> crs = rf.compatibleSimpleRelator(Literal.class, 

Literal.class); 
  Iterator<Literal> i2 = getBB().iterator(); 
  while (i2.hasNext()) { 
   Literal literal2 = (Literal) i2.next(); 
   Iterator<SimpleConceptRelator> ci = crs.iterator(); 
   while (ci.hasNext()) { 
    SimpleConceptRelator conceptRelator = ci.next(); 
    System.out.println("--> " + conceptRelator.getClass().toString()); 
    //ConceptRelator<Literal, Literal, ?> notElegantCast = 

conceptRelator; 
    try { 
     //ConceptRelation crl = new ConceptRelation(); 
     HyperConceptRelation crl = new HyperConceptRelation(); 
     crl.setResult( conceptRelator.relateO(literal, literal2)); 
     crl.setLabel("b"); 
     crl.setSimpleRelator(conceptRelator); 
     if (crl.getResult() != null) 
     { 
      System.out.println(mind.addRelation(new 

Concept(literal, true), new Concept(literal2, true), crl)); 
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     } 
    } catch (NotRelationalException e) { 
     e.printStackTrace(); 
    } 
   } 
  } 
 } 
  
 private void bbToImagination(){ 
  for (Literal literal : getBB()) 
   beliefToImagination(literal); 
 } 
  
 private void contextRelations(Literal l, Plan p){ 
  StringContains cf = new StringContains(); 
  try { 
   if (p.getContext() != null){ 
    String teste = (String) cf.relateO( l.getFunctor(), 

p.getContext().toString()); 
    if (teste != null){ 
     Concept c = new Concept(p, true); 
     c.setGraphLabel(p.getTrigger().toString()); 
     HyperConceptRelation crl = new HyperConceptRelation(); 
     crl.setResult( teste ); 
     crl.setLabel("pc"); 
     crl.setSimpleRelator(cf); 
     System.out.println(mind.addRelation(new Concept(l, true), 

c, crl)); 
    } 
   } 
  } catch (NotRelationalException e) { 
   e.printStackTrace(); 
  } 
 } 
  
 private void planRelations(Literal l, Plan p){ 
  Set<SimpleConceptRelator> scr = rf.compatibleSimpleRelator(Literal.class, 

Plan.class); 
  if (p.getSrcInfo().getSrcFile() == this.getASLSrc()){ 
   Concept c = new Concept(p, true); 
   c.setGraphLabel(p.getTrigger().toString()); 
   mind.addConcept(c); 
   for (SimpleConceptRelator sc : scr){ 
    try { 
     HyperConceptRelation crl = new HyperConceptRelation(); 
     crl.setResult( sc.relateO(l, p)); 
     crl.setLabel("p"); 
     crl.setSimpleRelator(sc); 
     if (crl.getResult() != null && (Boolean)crl.getResult()) 
     { 
      System.out.println(mind.addRelation(new 

Concept(l, true), c, crl)); 
     } 
    } catch (NotRelationalException e) { 
     e.printStackTrace(); 
    } 
   } 
  } 
 } 
  
 private void plToImagination(){ 
  for (Plan p : pl){ 
   for(Literal l : bb){ 
    planRelations(l, p); 
    contextRelations(l,p); 
   } 
  } 
 } 
 
 
} 
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APPENDIX 2 <EVENT LISTENER FOR CB AGENT> 

package asSemantics; 
 
import agent.CBAgent; 
import jason.asSemantics.Event; 
import jason.asSemantics.GoalListener; 
import jason.asSemantics.TransitionSystem; 
import jason.asSyntax.Trigger; 
 
public class CBEventsGoalListener implements GoalListener { 
 
 private TransitionSystem ts; 
 private CBAgent ag; 
  
 public CBEventsGoalListener(CBAgent ag){ 
  this.ag = ag; 
  this.ts = ag.getTS(); 
 } 
  
 public void goalFailed(Trigger goal) { 
  ag.intentionFailure(goal); 
 } 
 
 public void goalFinished(Trigger goal) { 
  // TODO Auto-generated method stub 
 
 } 
 
 public void goalResumed(Trigger goal) { 
  // TODO Auto-generated method stub 
 
 } 
 
 public void goalStarted(Event goal) { 
  // TODO Auto-generated method stub 
 
 } 
 
 public void goalSuspended(Trigger goal, String reason) { 
  // TODO Auto-generated method stub 
 
 } 
 
} 
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APPENDIX 3 <EXAMPLE AGENT> 

// Agent Chef in project JCBAgent 
 
/* Initial beliefs and rules */ 
ing(funghi). 
ing(porcini). 
ing(brie). 
ing(parmesao). 
ing(padano). 
ing(vbr). 
ing(vtinto). 
ing(vinag_arroz). 
ing(vinag_maca). 
ing(manteiga). 
ing(nori). 
ing(tomate_seco). 
ing(arroz_canoli). 
ing(arroz_arb). 
ing(arroz_jap_curto). 
ing(arroz_jap_longo). 
ing(rucula). 
ing(agriao). 
ing(alface). 
ing(acucar). 
ing(sal). 
 
panelaFogao(pan_ferro). 
 
/* Initial goals */ 
 
!start. 
 
/* Plans */ 
 
+!start : true <-  
 +casa(laranja); 
 +casa(verde); 
 !g1(yada). 
  
+!elaborarSushiTomSeco(A, V, S, AC, N): arrozJap(A) & nori(N) <- 
 !elaborarSushizu(V,S,AC); 
 !cozinharArrozSushi(A); 
 ?tomateSeco(T); 
 ?queijoCremoso(Q); 
 ?rucula(R); 
 ?cozido(A); 
 ?suhizu(SZ); 
 !prepararArrozSuhi(A,SZ); 
 ?arrozSPronto(AS); 
 .montarRolo(N,AS);  
 .print("fim sushi"). 
 
+!elaborarSushizu(V,S,AC): vinagreArroz(V) & sal(S) & acucar(AC) <- 
 .colPanela(V, 100); 
 .colPanela(S, 20); 
 .colPanela(AC, 20); 
 ?panelaFogao(P); 
 .mexer(P); 
 .ferver(P); 
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 +sushizu(szArroz). 
 
+!cozinharArrozSushi(A) : true <- 
 .colPanela(A, 200); 
 .colPanela(agua, 500); 
 ?panelaFogao(P); 
 .ferver(P,2); 
 .fogoBaixo(P,18); 
 .wait(20); 
 +cozido(A).  
 
+!prepararArrozSuhi(A,SZ) : cozido(A) & sushizu(SZ) <- 
 .colApoio(A); 
 .espalhar(apoio, SZ); 
 .ventilar(apoio); 
 .mexer(apoio); 
 +arrozPronto(apoio). 
  
+!cozinharRisoto(X, Y) : arroz(X) & caldo(Y) <- 
 .colPanela(X); 
 .colPanela(Y); 
 ?panelaFogao(P); 
 .ligarFogoMedio(P); 
 .adicionarCaldo(P, Y, 50); 
 +cozinhando(P); 
 .wait(1); 
 !adicionarIngredienteseMexer(P); 
 .print("fim cozinhar rizo"). 
 
+!adicionarIngredientesMexer(P): cozinhando(P) <- 
 ?ing(funghi); 
 ?ing(brie); 
 ?ing(vbr); 
 ?ing(manteiga); 
 .adicionaIng(P, vbr); 
 .mexer(10); 
 .adicionaIng(P, fungui); 
 .mexer(2); 
 .adicionaIng(P, brie); 
 .mexer(2); 
 .adicionaIng(P, manteiga); 
 .print("fim do plano addIngMexer"). 
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APPENDIX  4 <MOFICATION FUNCTION FOR 
SEMANTICALY ENHANCED BELIEFS> 

package reason; 
 
import java.util.Random; 
import java.util.Set; 
 
import jasdl.bridge.JASDLOntologyManager; 
import jasdl.bridge.factory.SELiteralFactory; 
import jasdl.bridge.seliteral.SELiteral; 
import jasdl.bridge.seliteral.SELiteralClassAssertion; 
import jasdl.bridge.seliteral.SELiteralObjectPropertyAssertion; 
import jasdl.util.exception.JASDLException; 
import jasdl.util.exception.JASDLInvalidSELiteralException; 
import jason.asSemantics.Agent; 
import jason.asSyntax.ASSyntax; 
import jason.asSyntax.Literal; 
import jason.asSyntax.Term; 
import jason.asSyntax.parser.ParseException; 
 
import org.semanticweb.owlapi.model.OWLClass; 
import org.semanticweb.owlapi.model.OWLClassExpression; 
import org.semanticweb.owlapi.model.OWLDataFactory; 
import org.semanticweb.owlapi.model.OWLNamedIndividual; 
import org.semanticweb.owlapi.model.OWLOntology; 
import org.semanticweb.owlapi.model.OWLOntologyCreationException; 
import org.semanticweb.owlapi.model.PrefixManager; 
 
import agent.OWLHelper; 
 
import com.clarkparsia.pellet.owlapiv3.PelletReasoner; 
import com.clarkparsia.pellet.owlapiv3.PelletReasonerFactory; 
 
public class SEBModification implements Modification { 
  
 private JASDLOntologyManager jom; 
 SELiteralFactory selFactory; 
 private OWLHelper ohelper; 
 //private JASDLAgentConfigurator config; 
  
 public SEBModification(Agent owner){ 
  jom = new JASDLOntologyManager(owner.getLogger()); 
  selFactory = new SELiteralFactory(jom); 
  ohelper = new OWLHelper(); 
  //config = new JASDLAgentConfigurator(owner); 
 } 
  
 public Class getType(){ 
  return Literal.class; 
 } 
 
 public Object modify(Object con) throws NotModificableException{ 
  if (!(con instanceof Literal)){ 
   throw new NotModificableException(); 
  } 
  Literal concept = (Literal)con; 
  try { 
   SELiteral se = selFactory.construct(concept); 
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      OWLOntology seOnto = ohelper.loadOntoFromFile( 
       OWLHelper.ONTO_DIR + se.getOntologyAnnotation() + ".owl"); 
       
   PelletReasoner reasoner = 

PelletReasonerFactory.getInstance().createReasoner( seOnto ); 
      reasoner.getKB().realize(); 
             
      PrefixManager pm = ohelper.getPM(); 
      OWLDataFactory df = ohelper.getDataFactory(); 
      Random r = new Random(); 
       
   if (se instanceof SELiteralClassAssertion){ 
    SELiteralClassAssertion sec = se.asClassAssertion(); 
    String classname = sec.getLiteral().getFunctor(); 
    OWLClass oc = df.getOWLClass(":"+classname, pm); 
    //agora pegar as instancias de oc 
    Set<OWLNamedIndividual> si = reasoner.getInstances(oc, 

false).getFlattened(); 
    //sortear uma, substituir e retornar 
    if (!si.isEmpty()){ 
     OWLNamedIndividual ch = (OWLNamedIndividual) 

si.toArray()[r.nextInt(si.size())]; 
     int i = ch.getIRI().toString().indexOf(":"); 
     String iname = ch.getIRI().toString().substring(i+1); 
     Term t = ASSyntax.parseTerm(iname); 
     Literal ret = 

ASSyntax.createLiteral(se.getLiteral().getFunctor(), t); 
     ret.addAnnot(se.getOntologyAnnotation()); 
     return ret; 
    } 
    throw new NotModificableException(); 
   }else if (se instanceof SELiteralObjectPropertyAssertion){ 
    SELiteralObjectPropertyAssertion seo = 

se.asObjectPropertyAssertion(); 
    //verifica se possui range definition 
    String functor = seo.getLiteral().getFunctor(); 
    org.semanticweb.owlapi.model.OWLObjectProperty oa =  
     df.getOWLObjectProperty(":"+functor, pm);  
    Set<OWLClassExpression> ranges = oa.getRanges(seOnto); 
    if (!ranges.isEmpty()){ 
     //possui range, obter algum individuo que se adeque a def. 
     //escolhe uma def. aleatoreamente 
     int i = r.nextInt(ranges.size()); 
     OWLClassExpression c = (OWLClassExpression) 

ranges.toArray()[i]; 
     Set<OWLNamedIndividual> si = reasoner.getInstances(c, 

false).getFlattened(); 
     //escolhe um individuo 
     i = r.nextInt(si.size()); 
     OWLNamedIndividual ind = (OWLNamedIndividual) 

si.toArray()[i]; 
     Term t1 = seo.getLiteral().getTerm(0).clone(); 
     i = ind.getIRI().toString().indexOf(":"); 
     String iname = ind.getIRI().toString().substring(i+1); 
     Term t = ASSyntax.parseTerm(iname); 
     Literal ret = 

ASSyntax.createLiteral(se.getLiteral().getFunctor(), t1, t); 
     ret.addAnnot(se.getOntologyAnnotation()); 
     return ret; 
    }else{ 
     //nao possui range, entao inferir o tipo 
     String uri = seo.getSubject().getURI().toString(); 
     int i = uri.indexOf("#"); 
     String iname = uri.substring(i+1); 
     OWLNamedIndividual subject = 

ohelper.getDataFactory().getOWLNamedIndividual(":"+iname, pm); 
     org.semanticweb.owlapi.model.OWLObjectProperty pa =  
     

 ohelper.getDataFactory().getOWLObjectProperty(":"+seo.getLiteral().getFunctor(), pm); 
     Set<OWLNamedIndividual> objs = 

reasoner.getObjectPropertyValues(subject, pa).getFlattened(); 
     //escolher um individuo aleatoriamente 
     i = r.nextInt(objs.size()); 
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     OWLNamedIndividual object = 
(OWLNamedIndividual)objs.toArray()[i]; 

     Set<OWLClass> classes = reasoner.getTypes(object, 
false).getFlattened(); 

     //escolhe uma classe e entao um individuo dessa classe 
     i = r.nextInt(classes.size()); 
     OWLClass c = (OWLClass) classes.toArray()[i]; 
     objs = reasoner.getInstances(c, false).getFlattened(); 
     i = r.nextInt(objs.size()); 
     OWLNamedIndividual change = 

(OWLNamedIndividual)objs.toArray()[i]; 
      
     Term t1 = seo.getLiteral().getTerm(0).clone(); 
     i = change.getIRI().toString().indexOf(":"); 
     iname = change.getIRI().toString().substring(i+1); 
     Term t = ASSyntax.parseTerm(iname); 
     Literal ret = 

ASSyntax.createLiteral(se.getLiteral().getFunctor(), t1, t); 
     ret.addAnnot(se.getOntologyAnnotation()); 
     return ret; 
    } 
   } 
   else throw new NotModificableException(); 
  } catch (JASDLInvalidSELiteralException e) { 
   // provavelmente nao eh um SELit entao nao pode ser modificado 
   throw new NotModificableException(e); 
  }catch (OWLOntologyCreationException e) { 
   throw new NotModificableException(e); 
  } catch (ParseException e) { 
   throw new NotModificableException(e); 
  } catch (JASDLException e) { 
   throw new NotModificableException(e); 
  }  
 } 
 
} 
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APPENDIX  5 <RANDOM MOFICATION FUNCTION FOR 
BELIEFS> 

package reason; 
 
import java.util.Random; 
 
import jason.asSyntax.ASSyntax; 
import jason.asSyntax.Literal; 
import jason.asSyntax.Term; 
import jason.asSyntax.parser.ParseException; 
 
public class RBeliefModfication implements Modification { 
  
 Float chance; 
 Random r; 
  
 public RBeliefModfication(Float chance){ 
  this.chance = chance; 
  r = new Random(); 
 } 
  
 public Class getType(){ 
  return Literal.class; 
 } 
 
 public Object modify(Object c) throws NotModificableException{ 
  //selecao aleatoria do termo, uma vez,  
  //tamanho do termo 
  if (!(c instanceof Literal)){ 
   throw new NotModificableException(); 
  } 
  Literal concept = (Literal)c; 
  Literal ret =  (Literal) concept.clone(); 
  if (r.nextFloat() < chance){ 
   int termo = r.nextInt(ret.getArity()); 
   Term t = concept.getTerm(termo); 
   try{ 
    Term mod = null; 
    if (t.isString()){ 
     mod = ASSyntax.parseTerm(stringMod(t.toString())); 
    }else if (t.isNumeric()){ 
     Integer imod = integerMod(Integer.valueOf(t.toString())); 
     mod = ASSyntax.parseTerm(imod.toString()); 
    } 
    ret.setTerm(termo, mod); 
    return ret; 
   }catch(ParseException pe){ 
    throw new NotModificableException(pe); 
   }catch(NumberFormatException e){ 
    throw new NotModificableException(e); 
   } 
  } 
  return concept; 
 } 
  
 String stringMod(String c){ 
  //A-Z: 65-90 
  //a-z: 97-122 
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  //quantos caracteres? 
  char[] ret = c.toCharArray();  
  int cs = r.nextInt(c.length()); 
  for (int i = 0; i < cs; i++) { 
   //qual caracter? 
   int ca = r.nextInt(c.length()); 
   //numero ou caracter? 
   if (r.nextBoolean()) 
    ret[ca] =  (char)((char)r.nextInt(26) + 65); 
   else 
    ret[ca] = (char)r.nextInt(9); 
  } 
  return String.copyValueOf(ret); 
 } 
  
 Integer integerMod(Integer c){ 
  return r.nextInt(); 
 } 
} 
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APPENDIX  6 <FUNCTOR COMPARISON FUNCTION> 

package kr; 
 
import jason.asSyntax.Literal; 
 
public class EqualsFunctor extends BeliefStringSimilarity implements SimpleConceptRelator { 
 
 @Override 
 public Object relateO(Object t1, Object t2) throws NotRelationalException { 
  if (t1 instanceof Literal && t2 instanceof Literal){ 
   String f1 = ((Literal) t1).getFunctor(); 
   String f2 = ((Literal) t2).getFunctor(); 
   if (f2.equals(f1)) 
    return f1; 
  } 
  throw new NotRelationalException(); 
 } 
  
 @Override 
 public boolean equals(Object obj) { 
  if (obj == null) 
   return false; 
  if ( this == obj )  
   return true; 
     if ( !(obj instanceof EqualsFunctor) )  
      return false; 
     return obj.getClass().getName().equals(this.getClass().getName()); 
 
 } 
} 
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APPENDIX  7 <LITERAL INTERSECTION 
COMPARISON FUNCTION> 

 
package kr; 
 
import jason.asSyntax.Literal; 
 
public class BeliefStringSimilarity implements ConceptRelator<Literal, Literal, String>, 

SimpleConceptRelator { 
 
 public Class<?> getConcept1Type() { 
  // TODO Auto-generated method stub 
  return Literal.class; 
 } 
 
 public Class<?> getConcept2Type() { 
  // TODO Auto-generated method stub 
  return Literal.class; 
 } 
 
 public Class<?> getReturnType() { 
  // TODO Auto-generated method stub 
  return String.class; 
 } 
 
 public String relate(Literal t1, Literal t2) throws NotRelationalException { 
  if (t1.equals(t2)) 
   return null; 
  return LiteralHelper.literalRelation(t1, t2); 
 } 
  
 public Class<?> getKRType(){ 
  return Literal.class; 
 } 
  
  
  
 public static void main(String[] args) { 
  // TODO Auto-generated method stub 
  BeliefStringSimilarity teste = new BeliefStringSimilarity(); 
  System.out.print(teste.getClass()); 
 
 } 
 
 public Object relateO(Object t1, Object t2) throws NotRelationalException { 
  if (!(t1 instanceof Literal) || !(t2 instanceof Literal)) 
   throw new NotRelationalException(); 
  return LiteralHelper.literalRelation((Literal)t1, (Literal)t2); 
 } 
 
 @Override 
 public boolean equals(Object obj) { 
  if (obj == null) 
   return false; 
  if ( this == obj )  
   return true; 
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     if ( !(obj instanceof BeliefStringSimilarity) )  
      return false; 
     return obj.getClass().getName().equals(this.getClass().getName()); 
 } 
 
 @Override 
 public int hashCode() { 
  // TODO Auto-generated method stub 
  return this.getClass().getName().toString().hashCode(); 
 } 
 
 @Override 
 public String toString() { 
  return this.getClass().getName(); 
 } 
  
  
 } 
 
package kr; 
 
import jason.asSyntax.Literal; 
import jason.asSyntax.Term; 
 
import java.util.*; 
 
public class LiteralHelper { 
  
 public static boolean functorComparisson(String functor, String comp){ 
     return functor.contains(comp); 
    }  
     
 public static boolean termComparisson(Term t, Term tcomp){ 
     return t.equals(tcomp); 
    } 
     
 public static boolean listTermComparisson(List<Term> lt, Term tcomp){ 
     return lt.contains(tcomp); 
    } 
  
 public static Term listTermComparisson(List<Term> lt1, List<Term> lt2){ 
  Iterator<Term> it = lt1.iterator(); 
  while (it.hasNext()) { 
   Term t = it.next(); 
   if (listTermComparisson(lt2, t)) 
    return t; 
  } 
     return null; 
    } 
  
 public static String literalRelation(Literal l1, Literal l2){ 
  //se os literais forem iguais esse metodo retorna falso 
  if (l1.toString().equals(l2.toString())) 
   return null; 
  //comparacao de functor com functor 
  String lf1 = l1.getFunctor(); 
  String lf2 = l2.getFunctor(); 
  if (lf1.equalsIgnoreCase(lf2) || lf1.contains(lf2) || lf2.contains(lf1)){ 
   return lf1; 
  } 
     //comparacao do functor com o restante do literal 
  String lf = l1.getFunctor(); 
  System.out.println("FUNCTOR LITERAL 1: " + lf); 
  if (functorComparisson(lf, l2.toString())){  
   return lf; 
  } 
       
     lf = l2.getFunctor(); 
 
     if (functorComparisson(lf, l1.toString())){ 
  return lf; 
     } 
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     //comparacao da lista de termos com o restante do literal 
     List<Term> lt1 = l1.getTerms(); 
     List<Term> lt2 = l2.getTerms(); 
     Term r = listTermComparisson(lt1, lt2); 
     if (r != null){ 
  return r.toString(); 
     } 
     r = listTermComparisson(lt2, lt1); 
     if (r != null){ 
  return r.toString(); 
     } 
  return null; 
    } 
 
} 
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APPENDIX  8 <EVENT SIMULATION COMPARISON 
FUNCTION> 

package kr; 
 
import jason.asSyntax.*; 
 
public class PlanTriggerEnabler implements ConceptRelator<Literal, Plan, Boolean>, 

SimpleConceptRelator { 
  
 public Object relateO(Object t1, Object t2) throws NotRelationalException { 
  if (t1 instanceof Literal && t2 instanceof Plan){ 
   return PlanHelper.triggersPlan((Literal)t1, (Plan)t2); 
  } 
  throw new NotRelationalException(); 
  //return null; 
 } 
 
  
 public Class<?> getConcept1Type() { 
  return Literal.class; 
 } 
 
  
 public Class<?> getConcept2Type() { 
  return Plan.class; 
 } 
 
  
 public Class<?> getReturnType() { 
  return Boolean.class; 
 } 
 
  
 public Boolean relate(Literal t1, Plan t2) throws NotRelationalException { 
  // TODO Auto-generated method stub 
  return PlanHelper.triggersPlan(t1, t2); 
 } 
  
  
 public int hashCode() { 
  // TODO Auto-generated method stub 
  return this.getClass().getName().toString().hashCode(); 
 } 
 
  
 public String toString() { 
  return this.getClass().getName(); 
 } 
  
  
 public boolean equals(Object obj) { 
  if (obj == null) 
   return false; 
  if ( this == obj )  
   return true; 
     if ( !(obj instanceof PlanTriggerEnabler) )  
      return false; 
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     return obj.getClass().getName().equals(this.getClass().getName()); 
 
 } 
 
} 

 

package kr; 
 
import jason.JasonException; 
import jason.asSyntax.Literal; 
import jason.asSyntax.Plan; 
import jason.asSyntax.PlanLibrary; 
import jason.asSyntax.Trigger; 
 
import java.util.HashMap; 
import java.util.List; 
import java.util.Map; 
 
public class PlanHelper extends LiteralHelper { 
  
 protected static Map<Trigger, List<Plan>> relatedByTrigger(Literal search, PlanLibrary 

plans) throws Exception{ 
   
  Map<Trigger, List<Plan>> relatedByTrigger = new HashMap<Trigger, List<Plan>>();  
   
  Trigger test1 = new Trigger(Trigger.TEOperator.add, Trigger.TEType.belief, search); 
        Trigger test2 = new Trigger(Trigger.TEOperator.add, Trigger.TEType.achieve, search); 
        Trigger test3 = new Trigger(Trigger.TEOperator.add, Trigger.TEType.test, search); 
        Trigger test4 = new Trigger(Trigger.TEOperator.del, Trigger.TEType.belief, search); 
        Trigger test5 = new Trigger(Trigger.TEOperator.del, Trigger.TEType.achieve, search); 
        Trigger test6 = new Trigger(Trigger.TEOperator.del, Trigger.TEType.test, search); 
         
        /*Use Trigger class to simulate possible uses / applications of the belief. 
         * Achievable, testeable, from a belief, when added, when deleted 
         */ 
        relatedByTrigger.put(test1, plans.getCandidatePlans(test1)); 
        relatedByTrigger.put(test2, plans.getCandidatePlans(test2)); 
        relatedByTrigger.put(test3, plans.getCandidatePlans(test3)); 
        relatedByTrigger.put(test4, plans.getCandidatePlans(test4)); 
        relatedByTrigger.put(test5, plans.getCandidatePlans(test5)); 
        relatedByTrigger.put(test6, plans.getCandidatePlans(test6)); 
         
        return relatedByTrigger; 
 } 
  
 protected static boolean triggersPlan(Literal search, Plan p) {  
   
  Trigger test1 = new Trigger(Trigger.TEOperator.add, Trigger.TEType.belief, search); 
        Trigger test2 = new Trigger(Trigger.TEOperator.add, Trigger.TEType.achieve, search); 
        Trigger test3 = new Trigger(Trigger.TEOperator.add, Trigger.TEType.test, search); 
        Trigger test4 = new Trigger(Trigger.TEOperator.del, Trigger.TEType.belief, search); 
        Trigger test5 = new Trigger(Trigger.TEOperator.del, Trigger.TEType.achieve, search); 
        Trigger test6 = new Trigger(Trigger.TEOperator.del, Trigger.TEType.test, search); 
         
        if (p.isRelevant(test1)!=null) 
         return true; 
        if (p.isRelevant(test2)!=null) 
         return true; 
        if (p.isRelevant(test3)!=null) 
         return true; 
        if (p.isRelevant(test4)!=null) 
         return true; 
        if (p.isRelevant(test5)!=null) 
         return true; 
        if (p.isRelevant(test6)!=null) 
         return true; 
        return false; 
 } 

} 
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APPENDIX 9<LEXICAL SIMILARITY COMPARISON 
FUNCTION> 

package kr; 
 
public class StringContains extends BeliefStringSimilarity implements SimpleConceptRelator { 
 
 @Override 
 public Class<?> getConcept1Type() { 
  // TODO Auto-generated method stub 
  return String.class; 
 } 
 
 @Override 
 public Class<?> getConcept2Type() { 
  // TODO Auto-generated method stub 
  return String.class; 
 } 
 
 @Override 
 public Class<?> getReturnType() { 
  // TODO Auto-generated method stub 
  return String.class; 
 } 
 
 @Override 
 public Object relateO(Object t1, Object t2) throws NotRelationalException { 
  if (t1 instanceof String && t2 instanceof String){ 
   String s1 = (String) t1; 
   String s2 = (String) t2; 
   if (s2.contains(s1)) 
    return s1; 
   //if (s1.contains(s2)) 
   // return s2; 
   return null; 
  }throw new NotRelationalException(); 
  //return null; 
 } 
  
 @Override 
 public boolean equals(Object obj) { 
  if (obj == null) 
   return false; 
  if ( this == obj )  
   return true; 
     if ( !(obj instanceof StringContains) )  
      return false; 
     return obj.getClass().getName().equals(this.getClass().getName()); 
 
 } 
 
} 
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APPENDIX  10<RANDOM SOP> 

package reason; 
 
import java.util.Random; 
 
import reason.Blender.OP; 
 
public class RandomSop implements Sop { 
 
 public OP sop() { 
  Random r = new Random(); 
  float f = r.nextFloat(); 
  if (f <= 0.33 ) 
   return Blender.OP.MODIFICATION; 
  else if (f > 0.33 && f <= 0.66) 
   return Blender.OP.COMPLETION; 
  else 
   return Blender.OP.COMPOSITION; 
 } 
} 
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APPENDIX  11<ITERATION φ> 

 
package reason; 
 
public class IterationPhi implements Phi{ 
 
 int counter = 0; 
 int lim; 
  
 public IterationPhi(int lim){ 
  this.lim = lim; 
 } 
  
 public boolean phi(){ 
   
  return true; 
 } 
  
} 
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APPENDIX  12<BLENDING INTERNAL ACTION> 

package agent.ia; 
 
import java.util.HashSet; 
import java.util.Set; 
 
import org.semanticweb.owlapi.model.OWLIndividual; 
import org.semanticweb.owlapi.model.OWLNamedIndividual; 
import org.semanticweb.owlapi.model.OWLOntology; 
import org.semanticweb.owlapi.model.OWLOntologyCreationException; 
 
import reason.Alpha; 
import reason.Blender; 
import reason.IterationPhi; 
import reason.Modification; 
import reason.OWLBlender; 
import reason.RandomSop; 
import reason.Sop; 
 
import jason.asSemantics.DefaultInternalAction; 
import jason.asSemantics.TransitionSystem; 
import jason.asSemantics.Unifier; 
import jason.JasonException; 
import jason.asSyntax.*; 
import kr.SimpleConceptRelator; 
 
@SuppressWarnings("serial") 
public class RecommendationBlend extends DefaultInternalAction { 
  
 RecOWLBridge rec; 
  
 public RecommendationBlend(){ 
  rec = new RecOWLBridge(); 
 } 
  
 protected void checkArguments(Term[] args) throws JasonException { 
        super.checkArguments(args); // check number of arguments 
        if (! (args[0] instanceof ListTerm)) 
            throw JasonException.createWrongArgument(this, 
              "first argument must be a List of Terms representing the user model"); 
        if (! (args[1] instanceof VarTerm)) 
            throw JasonException.createWrongArgument(this, 
              "second argument must be Variable to hold the reference to the blend"); 
        if (! (args[1] instanceof StringTerm)) 
            throw JasonException.createWrongArgument(this, 
              "third argument must be StringTerm defining the k. See the API Doc for 

options."); 
        if (! (args[1] instanceof StringTerm)) 
            throw JasonException.createWrongArgument(this, 
              "fourht argument must be StringTerm defining the alpha function. See the 

API Doc for options."); 
        if (! (args[1] instanceof StringTerm)) 
            throw JasonException.createWrongArgument(this, 
              "fifth argument must be StringTerm defining if the constitutive principles 

are applied or not."); 
    } 
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 public Object execute(TransitionSystem ts, Unifier un, Term[] args) throws Exception { 
        // execute the internal action 
        ts.getAg().getLogger().info("executing internal action 'agent.ia.Blender'"); 
         
        checkArguments(args); 
         
        ListTerm userModelB = (ListTerm) args[0]; 
        //1. criar o input 1 - OWL Ontology 
        OWLOntology i1 = recI1(userModelB); 
        //2. criar o input 2 - OWL Ontology 
        OWLOntology i2 = recI2(); 
        //3. funcoes de comparacao 
        Set<Modification> mods = recMods(); 
  Set<SimpleConceptRelator> fcs = recRelators(); 
  Alpha a = alphaByName(args[3].toString()); 
  if (a == null)  
   throw new Exception("unknown alpha function"); 
  String sopt = args[4].toString(); 
  Sop sop = null; 
  if (!sopt.equals("none")) 
   sop = new RandomSop(); 
        OWLBlender blender = new OWLBlender(i1, i2, mods, fcs, 

Blender.K.valueOf(args[2].toString()),  
          a, new IterationPhi(10), sop); 
  OWLOntology retb = blender.blend(); 
         
        ListTerm ret = rec.ontoToListTerm(retb);         
        return un.unifies(args[1], ret); 
    } 
  
 public OWLOntology recI1(ListTerm bs){ 
  OWLOntology ret = rec.newOnto("r1"); 
  OWLIndividual cs1 = rec.newIndividual("usermodel", rec.user, ret); 
  for (Term term : bs) { 
   if (term.isLiteral()){ 
    Literal l = (Literal)term; 
    String functor = l.getFunctor(); 
    if (functor.equals("person") && l.getArity()==1){ 
     OWLIndividual p = 

rec.userIndividual(l.getTerm(0).toString(), ret); 
     rec.obpToIndividual(rec.hasPerson, cs1, p, ret); 
    }else if (functor.equals("foafinterest") && l.getArity()==2){ 
     OWLIndividual p = 

rec.userIndividual(l.getTerm(0).toString(), ret); 
     OWLIndividual i = 

rec.newIndividual(l.getTerm(1).toString(), rec.interest, ret); 
     rec.obpToIndividual(rec.foafInterest, p, i, ret); 
    }else if (functor.equals("topicInterest") && l.getArity()==2){ 
     OWLIndividual p = 

rec.userIndividual(l.getTerm(0).toString(), ret); 
     OWLIndividual i = 

rec.newIndividual(l.getTerm(1).toString(), rec.interest, ret); 
     rec.obpToIndividual(rec.foafTopicInterest, p, i, ret); 
    }else if (functor.equals("item") && l.getArity()==1){ 
     OWLIndividual p = 

rec.newIndividual(l.getTerm(0).toString(), rec.item, ret); 
     rec.obpToIndividual(rec.hasItem, cs1, p, ret); 
    }else if (functor.equals("itemModel") && l.getArity()==1){ 
     OWLIndividual p = 

rec.newIndividual(l.getTerm(0).toString(), rec.itemModel, ret); 
     rec.obpToIndividual(rec.hasItemModel, cs1, p, ret); 
    }else if (functor.equals("ldactivity") && l.getArity()==1){ 
     OWLIndividual p = 

rec.newIndividual(l.getTerm(0).toString(), rec.ld_activity, ret); 
     rec.obpToIndividual(rec.hasLearningActivity, cs1, p, ret); 
    }else if (functor.equals("environment") && l.getArity()==1){ 
     OWLIndividual p = 

rec.newIndividual(l.getTerm(0).toString(), rec.environment, ret); 
     rec.obpToIndividual(rec.hasEnvironment, cs1, p, ret); 
    }else if (functor.equals("learningObjective") && l.getArity()==1){ 
     OWLIndividual p = 

rec.newIndividual(l.getTerm(0).toString(), rec.learningObjective, ret); 
     rec.obpToIndividual(rec.hasLearningObjective, cs1, p, 
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ret); 
    }else if (functor.equals("goal") && l.getArity()==1){ 
     OWLIndividual p = 

rec.newIndividual(l.getTerm(0).toString(), rec.goal, ret); 
     rec.obpToIndividual(rec.hasGoal, cs1, p, ret); 
    }else if (functor.equals("interest") && l.getArity()==1){ 
     OWLIndividual p = 

rec.newIndividual(l.getTerm(0).toString(), rec.interest, ret); 
     rec.obpToIndividual(rec.hasInterest, cs1, p, ret); 
    }else if (functor.equals("accessibility") && l.getArity()==1){ 
     OWLIndividual p = 

rec.newIndividual(l.getTerm(0).toString(), rec.accessibility, ret); 
     rec.obpToIndividual(rec.hasAccessibility, cs1, p, ret); 
    }else if (functor.equals("lipactivity") && l.getArity()==1){ 
     OWLIndividual p = 

rec.newIndividual(l.getTerm(0).toString(), rec.lip_activity, ret); 
     rec.obpToIndividual(rec.hasLIP_Activity, cs1, p, ret); 
    }else if (functor.equals("noattempts") && l.getArity()==1){ 
     rec.dpToIndividual(l.getTerm(0).toString(), 

rec.hasNoOfAttempts, cs1, ret); 
    }else if (functor.equals("hasScore") && l.getArity()==1){ 
     rec.dpToIndividual(l.getTerm(0).toString(), rec.hasScore, 

cs1, ret); 
    } 
   } 
  } 
  return ret; 
 } 
  
 public OWLOntology recI2(){ 
  OWLOntology ret = rec.newOnto("r2"); 
  OWLIndividual cs2 = rec.newRecI2Individual("ri2"); 
  try { 
   Set<OWLNamedIndividual> is = rec.obtainLO(); 
   for(OWLNamedIndividual i : is){ 
    rec.obpToIndividual(rec.hasOA, cs2, i, ret); 
   } 
  } catch (OWLOntologyCreationException e) { 
   e.printStackTrace(); 
  } 
  return ret; 
 } 
  
 public Alpha alphaByName(String fname){ 
  if (fname.equals("metaphor")) 
   return new MetaphorAlpha(); 
  else if (fname.equals("counterpart")) 
   return new CounterPartAlpha(); 
  else if (fname.equals("surprise")) 
   return new SurpriseAlpha(); 
  return null; 
 } 
  
 public Set<Modification> recMods(){ 
  Set<Modification> ret = new HashSet<Modification>(); 
  OWLIModification om = new OWLIModification(); 
  ret.add(om); 
  return ret; 
 } 
  
 public Set<SimpleConceptRelator> recRelators(){ 
  Set<SimpleConceptRelator> ret = new HashSet<SimpleConceptRelator>(); 
  WikiSim ws = new WikiSim(0.8); 
  LexicSim ls = new LexicSim(); 
  HierarchySim hs = new HierarchySim(); 
  ret.add(ws); 
  ret.add(ls); 
  ret.add(hs); 
  return ret; 
 } 
 
} 
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APPENDIX 13 <HIERARCHY-BASED COMPARISON 
FUNCTION> 

package agent.ia; 
 
import java.util.Set; 
 
import org.semanticweb.owlapi.model.OWLClass; 
import org.semanticweb.owlapi.model.OWLClassExpression; 
import org.semanticweb.owlapi.model.OWLNamedIndividual; 
import org.semanticweb.owlapi.model.OWLOntology; 
import org.semanticweb.owlapi.reasoner.NodeSet; 
 
import com.clarkparsia.pellet.owlapiv3.PelletReasoner; 
import com.clarkparsia.pellet.owlapiv3.PelletReasonerFactory; 
 
import kr.NotRelationalException; 
import kr.SimpleConceptRelator; 
 
public class HierarchySim implements SimpleConceptRelator { 
  
 RecOWLBridge rec; 
 Set<OWLOntology> ontos; 
  
 public HierarchySim(Set<OWLOntology> onts){ 
  rec = new RecOWLBridge(); 
  this.ontos = onts; 
 } 
 
 public Class<?> getConcept1Type() { 
  return OWLNamedIndividual.class; 
 } 
 
 public Class<?> getConcept2Type() { 
  return OWLNamedIndividual.class; 
 } 
 
 public Class<?> getReturnType() { 
  return Boolean.class; 
 } 
 
 public Object relateO(Object t1, Object t2) throws NotRelationalException { 
  if (t1 instanceof OWLNamedIndividual && t2 instanceof OWLNamedIndividual){ 
   OWLNamedIndividual i1 = (OWLNamedIndividual)t1; 
   OWLNamedIndividual i2 = (OWLNamedIndividual)t2; 
   for (OWLOntology o : ontos){ 
    PelletReasoner reasoner = 

PelletReasonerFactory.getInstance().createReasoner( o ); 
    reasoner.getKB().realize(); 
    //NodeSet<OWLClass> cls1 = reasoner.getTypes(i1, true); 
    NodeSet<OWLClass> cls2 = reasoner.getTypes(i2, true); 
    Set<OWLClassExpression> cle1 = i1.getTypes(o); 
    //Set<OWLClassExpression> cle2 = i2.getTypes(o); 
    for (OWLClassExpression cl1 : cle1){ 
     NodeSet<OWLClass> ret = reasoner.getSuperClasses(cl1, 

true); 
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     //tenho as superclasses de i1 
     //agora verificar se alguma delas faz parte da definicao 

de i2 
     for (OWLClass oc : ret.getFlattened()){ 
      if (cls2.containsEntity(oc)) 
       return true; 
     } 
    } 
   } 
   return false; 
  } 
  throw new NotRelationalException(); 
 } 
 
} 
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APPENDIX 14 <WORD SIMILARITY COMPARISON 
FUNCTION> 

package agent.ia; 
 
import java.util.Set; 
 
import org.semanticweb.owlapi.model.OWLClassExpression; 
import org.semanticweb.owlapi.model.OWLNamedIndividual; 
import org.semanticweb.owlapi.model.OWLOntology; 
 
import ponzo.nlp.wikipedia.similarity.WikiSimilarity; 
import ponzo.nlp.wikipedia.similarity.WikiSimilarityFactory; 
 
import kr.NotRelationalException; 
import kr.SimpleConceptRelator; 
 
public class WikiSim implements SimpleConceptRelator { 
  
 RecOWLBridge rec; 
 Set<OWLOntology> ontos; 
 Double limit; 
  
 public WikiSim(Set<OWLOntology> onts, Double limit){ 
  rec = new RecOWLBridge(); 
  this.ontos = onts; 
  this.limit = limit; 
 } 
 
 public Class<?> getConcept1Type() { 
  return OWLNamedIndividual.class; 
 } 
 
 public Class<?> getConcept2Type() { 
  return OWLNamedIndividual.class; 
 } 
 
 public Class<?> getReturnType() { 
  return Boolean.class; 
 } 
 
 public Object relateO(Object t1, Object t2) throws NotRelationalException { 
  if (t1 instanceof OWLNamedIndividual && t2 instanceof OWLNamedIndividual){ 
   OWLNamedIndividual i1 = (OWLNamedIndividual)t1; 
   OWLNamedIndividual i2 = (OWLNamedIndividual)t2; 
   Set<OWLClassExpression> cls1 = i1.getTypes(ontos); 
   Set<OWLClassExpression> cls2 = i2.getTypes(ontos); 
   WikiSimilarityFactory ws = WikiSimilarityFactory.getInstance(); 
   for (OWLClassExpression cl1 : cls1){ 
    if (!cl1.isOWLNothing() && !cl1.isOWLThing()){ 
     String c1 = cl1.getClassExpressionType().getName(); 
     for (OWLClassExpression cl2 : cls2){ 
      if (!cl1.isOWLNothing() && !cl1.isOWLThing()){ 
       String c2 = 

cl2.getClassExpressionType().getName(); 
       WikiSimilarity result = 

ws.getWikiSimilarity(c1, c2); 
       if (result.getAverageResnik() > limit) 
        return true; 
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      } 
     } 
    } 
   } 
   return false; 
  } 
  throw new NotRelationalException(); 
 } 
 
} 
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APPENDIX 15 <RESUMO EM PORTUGUÊS> 

O presente resumo em português apresenta os objetivos e principais resultados e 
contribuições desta Tese.  

Introdução 
Como nosso título sugere, estamos interessados em aplicar criatividade a uma 

estrutura de agentes. Entretanto, também podemos considerar a influência de uma 
estrutura de intencionalidade (representada pelo agente) no raciocínio criativo. Ambas 
perspectivas são estudadas neste trabalho. Neste projeto consideramos agência como 
uma conceitualização advinda da filosofia que representa a habilidade humana de 
decidir e atuar autonomamente. Esse conceito é adotado em ciências sociais, psicologia, 
ciências cognitivas, biologia, economia e ciência da computação. No âmbito da 
computação, agência é um campo de pesquisa pertencente à Inteligência Artificial o 
qual desafia os pesquisadores a fornecer teorias e modelos computacionais para 
autonomia. 

Criatividade está relacionada ao processo realizado por seres humanos para criar 
novos conceitos e artefatos – no sentindo mais amplo possível. Como um processo, a 
criatividade é estudada principalmente pelas neurociências, ciências cognitivas, 
psicologia e filosofia. Como uma propriedade (atribuída a algo concreto ou abstrato), 
ela é tipicamente estudada pelas ciências sociais e apreciação de artes. Ambas visões (de 
processo e de propriedade) são objetos de estudo da criatividade computacional.  

Assim como na maioria dos sub-campos da Inteligência Artificial, agência e 
criatividade computacionais concentram muitos esforços de pesquisa nas ligações multi 
e inter disciplinares, geralmente resultando em modelos e observações úteis para todas 
as áreas envolvidas. Nosso roteiro de pesquisa é motivado pela idéia de que modelos de 
IA devem servir como meios para auxiliar no desafio do entendimento da mente 
humana. Desta forma, estamos interessados no estudo da habilidade humana de utilizar 
experiências e conhecimento prévio para lidar com situações novas, criando 
possibilidades e soluções a partir do momento em que o problema é apresentado. 

Assim, nossa abordagem para estudar esse comportamento é através de um modelo 
de criatividade como um mecanismo de raciocínio integrado a uma estrutura de agentes. 
Considerando a criatividade como um processo representado por inferência 
computacional é possível posicionar o trabalho numa perspectiva de Representação de 
Conhecimento e Raciocínio (Knowledge Representation & Reasoning) da IA 
(HARMELEN; LIFSCHITZ; PORTER, 2007). Grande parte dos trabalhos em IA 
podem ser categorizadas em termos de como representam seu conhecimento e realizam 
inferências a partir do mesmo (também considerados como aspectos estáticos e 
dinâmicos). Além disso, cada uma destas categorias é, geralmente, resultado de estudos 
acerca de como nós utilizamos o conhecimento em nossas mentes. 

Por exemplo, trabalhos pioneiros em IA foram fortemente influenciados por 
filosofia e matemática, resultando em uma das abordagens mais bem sucedidas da área: 
raciocínio baseado em lógica (HOFWEBER, 2009; COLMERAUER, 1985; 
KOWALSKI, 1986). Atualmente, trabalhos em lógica computacional  e suas aplicações 
ainda fornecem importantes resultados para a IA e computação em geral. Os trabalhos 
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mais recentes em lógica procuram melhorar o desempenho dos motores de inferência e, 
ao mesmo tempo, manter e até melhorar sua expressividade. Outra linha de pesquisa em 
lógica computacional trabalha com formalismos lógicos para representar conhecimento 
temporal, causal, ontológico, probabilístico, espacial, entre outros. 

Entretanto, percebendo que nem tudo pode ser modelado com lógica, ou que lógica 
não é adequada para todo o tipo de conhecimento, paradigmas híbridos ou totalmente 
diferentes em sua concepção foram desenvolvidos. Este é o caso dos frames (MINSKY, 
1974) e redes semânticas (QUILIAN, 1968) que possuem suas fundamentações em 
descobertas da psicologia e foram desenvolvidos para acomodar naturalmente 
inferências em hierarquias e classificação. Por outro lado, redes Bayesianas (PEARL, 
1985), originárias da estatística, são modeladas computacionalmente para representar 
causalidade e propagação de evidências em grandes correntes de conhecimento. Em 
oposição direta às abordagens simbólicas, redes neurais (MCCULLOCH; PITTS, 1943) 
constituem a abordagem mais eminente das representações sub-simbólicas 
(conexionismo). Seguindo inspirações das neurociências e biologia, as redes neurais 
fornecem diversas formas para implementar aprendizagem automática ou semi-
automática. 

Neste projeto, seguimos desenvolvimentos das ciências cognitivas na Fusão 
Conceitual – tradução do autor – (Concept Blending) (FAUCONNIER; TURNER, 
1998), considerada como uma habilidade humana, inata e sub-consciente, que integra 
conhecimento gerando novas conceitualizações. Segundo esta teoria a integração de 
conceitos ocorre de acordo com princípios constitutivos e governantes. Os princípios 
constitutivos definem as regras e operações realizadas para formar um modelo de rede 
conceitual organizado de acordo com a vivência humana do mundo. Assim, diferentes 
perspectivas organizacionais podem ser aplicadas a um mesmo conceito ou 
agrupamento de conceitos. Por exemplo, perspectivas emocionais, sensoriais, temporais, 
causais, entre outras.  

Portanto, o processo de fusão pode ser visto como o processo pelo qual a rede de 
conceitos é expandida, em analogia com a nossa imaginação, que gera novos conceitos 
e interpretações a partir do que vivenciamos no mundo. Já os princípios governantes 
restringem as operações constitutivas na rede visando enfatizar as relações vitais, as 
quais representam um conjunto subjetivo de propriedades vitais para os seres humanos. 
De acordo com a teoria da fusão, estas relações estão presentes em praticamente todas 
nossas atividades diárias, tais como acordar, caminhar, tomar café, trabalhar, estudar, 
namorar, etc. As relações vitais especificadas por Fauconnier e Turner (2002) são: 
mudança, causa e efeito, identidade, intencionalidade, singularidade, tempo, espaço, 
representação, parte-todo, propriedade, categoria, analogia, papel, similaridade. 

Dentro da criatividade computacional, a utilização da Fusão Conceitual (FC) para 
especificar o raciocínio criativo posiciona nosso trabalho em modelos gerais de 
criatividade humana. Modelos específicos são desenvolvidos para simular atividades 
criativas tais como composição musical (MARTINS, 2004; MARTINS; MIRANDA, 
2006; PEARCE; MÜLLENSIEFEN; WIGGINS, 2008), pintura (COLTON, 2008), 
escrita de poesia (VEALE; HAO, 2008; HERVÁS, R. et al. 2007) e piadas 
(BINSTEAD, K. et al. 2006). Em modelos gerais de criatividade, a lacuna de 
conhecimento que estudamos é a consideração de conhecimento prático, juntamente 
com o teórico, durante o processo de raciocínio criativo. Desta forma, em termos mais 
teóricos, procuramos integrar raciocínio criativo em uma estrutura cognitiva mais 
ampla, permitindo que criatividade interaja com intencionalidade. Para alcançar esse 



 
 

123 

modelo computacional, propomos a utilização de constructos da teoria de agentes, indo 
em direção à criatividade baseada em agência.  

O escopo de agência considerado nesse trabalho é o de agentes cognitivos que 
implementam sistemas intencionais. Especificamente, nós adotamos a abordagem de 
crenças, desejos e intenções de Bratman (Belief, Desire and Intention – BDI) como a 
teoria intencional que fundamenta o presente trabalho. Bratman (1987) pode ser 
considerado como um dos trabalhos mais influentes em agentes autônomos. Sua teoria 
BDI está enraizada na filosofia da mente e psicologia popular ou de senso comum (folk 
psychology). Nessa teoria, o conhecimento que o agente possui sobre o mundo é 
representado pelas crenças, os desejos representam como o agente quer que o mundo 
seja e as intenções especificam desejos os quais o agente está comprometido em atingir. 
Este paradigma para especificar intencionalidade inspirou o desenvolvimento de várias 
arquiteturas de agentes (KUMAR; SHAPIRO, 1994; MORLEY; MYERS, 2004; 
D'INVERNO, M. et al. 2004), linguagens (DASTANI, M. et al.. 2003; RAO; 
GEORGEFF 1991; RAO, 1996) e variantes da teoria em si (GOVERNATORI; 
ROTOLO, 2008; CHOLVY, 2004; BROERSEN, J. et al. 2001). A maioria destes 
trabalhos observa os agentes como sistemas com recursos limitados (resource-bounding 
agency), visão introduzida por Bratman (1998). A fundamentação filosófica e 
psicológica da teoria, juntamente com uma arquitetura prática (porém restritiva) são as 
principais razões para o sucesso da abordagem. 

Considerando o desenvolvimento de agentes BDI, as principais abordagens seguem 
a linha de sistemas de raciocínio procedimental (Procedural Reasoning Sytems – PRS) 
(GEORGEFF; LANSKY, 1987; RAO; GEORGEFF, 1991). Tais sistemas adotam a 
abstração de planos, os quais permitem a expressão de conhecimento procedimental 
dentro da estrutura do agente (geralmente programado com linguagens declarativas). 
Nesse contexto, os planos especificam receitas pré-definidas para lidar com 
configurações de mundo particulares (definidas nas pré-condições dos planos). Assim, 
planos funcionam como heurísticas para reduzir o espaço de busca por uma opção 
viável, possibilitando ao agente realizar seu raciocínio prático – raciocínio para a 
realização de ações (WOOLDRIDGE, 1995) – em tempo hábil. Entretanto, ao mesmo 
tempo que a limitação de recursos permite ao agente interagir rapidamente com seu 
ambiente, ela também restringe as possibilidades de ação. Wooldridge (1995, 2000) 
argumenta que alcançar um equilíbrio entre raciocínio e atuação constitui-se como um 
dos principais desafios da pesquisa e desenvolvimento de agentes. 

As pesquisas mais recentes para lidar com esse desafio seguem diferentes 
perspectivas, tais como o uso de emoções (JIANG; VIDAL; HUHNS, 2007; 
STEUNEBRINK; DASTANI; MEYER, 2007), normas (DASTANI; TINNEMEIER; 
MEYER, 2009; GANGEMI, 2008; CONTE; ANDRIGHETTO; CAMPENNÍ, 2009) e 
aprendizagem (SUBAGDJA; SONENBERG; RAHWAN, 2009; FUJITA, 2009; SEN; 
AIRIAU, 2007; SHOHAM; POWERS; GRENAGER, 2007; STONE, 2007). Nós 
limitamos nosso escopo à abordagens que aumentem a utilização do conhecimento do 
agente permitindo que o mesmo adapte-se a situações não previstas em sua biblioteca de 
planos (planejamento e aprendizagem de agentes).  

Finalmente, nossa observação de agência criativa refere-se ao uso de raciocínio 
criativo para aumentar a aplicabilidade do conhecimento do agente (adaptação), 
inspirado na forma como nós, humanos, entendemos e vivenciamos o mundo. 

Objetivos 
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Resumindo nosso argumento introdutório, a motivação deste trabalho está no 
impacto dos modelos computacionais no entendimento da inteligência humana, 
especificamente, nossa habilidade de utilizar experiências prévias para lidar com novas 
situações. Esta pesquisa localiza-se na intersecção entre criatividade computacional e 
agência cognitiva.  Dentro de criatividade computacional, posicionamos este trabalho 
modelos computacionais da criatividade humana seguindo a teoria da fusão conceitual. 
Na perspectiva de agentes, o trabalho posiciona-se em arquiteturas e linguagens BDI. 
Imbuídos de nossa motivação e contexto, o problema de pesquisa apresentado pode ser 
sintetizado em duas questões de pesquisa, norteadoras do presente trabalho:  

Q1. Como a criatividade pode ser modelada computacionalmente e produzir 
conhecimento prático e teórico? 

Q2. Como a criatividade apóia a utilização de conhecimento e experiências prévias 
como meios para a adaptação a situações imprevistas? 

A partir dessas questões, definimos um objetivo principal e os respectivos objetivos 
intermediários para o presente trabalho: 

• Propor um modelo computacional para criatividade; 
a. Especificar uma representação da fusão conceitual que considere 

conhecimento prático e teórico. 

b. Propor a utilização da representação de criatividade previamente 
definida como um mecanismo de adaptação para apoiar uma estrutura 
de agentes. 

Método 
A definição do método de pesquisa se dá através de decisões em diferentes níveis 

hierárquicos, iniciando com a escolha da filosofia de pesquisa, estratégia de pesquisa até 
o nível mais operacional que envolve técnicas de coleta e análise dos dados. Saunders, 
(2006) ilustra tal idéia através do diagrama da  “cebola de pesquisa”, em que os níveis 
hierárquicos são representados por camadas da cebola. A seqüência de camadas, 
iniciando pela mais externa é: a filosofia de pesquisa, escolhas (indutiva ou dedutiva), 
estratégias, horizonte de tempo (transversal ou longitudinal) e técnicas e procedimentos. 
As decisões nos níveis mais externos (filosofia de pesquisa e estratégia) orienta as 
definições nos níveis subseqüentes.  

Os paradigmas positivista e a fenomenológico constituem dois extremos das 
filosofias de pesquisa. O primeiro considera que pesquisador é externo ao mundo, tendo 
uma percepção imparcial e objetivo sobre o mesmo. O segundo considera que o mundo 
é socialmente construído, a partir da percepção e interação entre os diversas partes 
envolvidas. Ou seja, não é possível desassociar o pesquisador do fenômeno investigado. 
Entre esses dois extremos, entretanto, é possível identificar outras filosofias de 
pesquisas tais como a pragmática. Nessa filosofia, a validade é avaliada em função da 
sua utilidade e funcionamento em contexto práticos (KAZANEN, KARI; ARTO, 1993). 

Após o posicionamento em relação as filosofias de pesquisa, é definida a estratégia 
de pesquisa, que estrutura o trabalho de pesquisa, estabelecendo a forma com que a 
evidência empírica vai ser coletada e analisada. Alguns exemplos de estratégias de 
pesquisas são: estudos de caso, pesquisa-ação, surveys e experimentos. Cada estratégica 
possui pontos fortes em relação às virtudes de uma boa teoria , assim como fragilidades.  
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A estratégia de pesquisa adotada no presente trabalho será a pesquisa construtiva 
(constructive research ou design research). Essa  estratégia se caracteriza pela solução 
de um problema de relevância prática e teórica através de uma solução, na forma de 
modelos, artefatos físicos, diagramas, planos, etc. Ao invés de produzir conhecimento 
teórico, cientistas da pesquisa construtiva produzem e aplicam conhecimento científico 
de forma a criar artefatos efetivos (MARCH; SMITH, 1995).  

Conforme Kazanen, Kari e Arto (1993), essa estratégia de pesquisa é utilizada em 
diversas áreas tais como matemática, medicina, etc. Em matemática, a elaboração 
algoritmos pode ser entendida como exemplo de construções. Da mesma forma, a 
criação de linguagens de programação em Ciência da Computação e de medicamentos 
ou novos tratamentos na área médica, podem ser considerados, respectivamente, como 
construções ou artefatos. Essa estratégia está alinhada aos pressupostos epistemológicos 
da filosofia de pesquisa pragmática, uma vez que a qualidade do conhecimento gerado é 
avaliado em função de sua utilidade.  

March e Smith (1995) sugerem que  o processo da pesquisa construtiva constitui-se 
por duas etapas fundamentais: construir (construir um artefato para um propósito 
específico) e avaliar (testar o funcionamento do artefato). Kasanen, Kari e Arto (1993) 
sugere um processo ampliando, integrando outras quatros etapas às anteriores. Na 
primeira etapa é identificado um problema com relevância pratica e teórica. A segunda 
etapa refere-se a investigação e compreensão do tema a ser trabalhado, geralmente 
através da revisão de literatura e estudos empíricos. A terceira etapa compreende a 
construção da solução, na forma de um artefato físico, modelo, etc. Tal etapa é 
fundamental no desenvolvimento dessa estratégia.  

Segundo Kasanen, Kari e Arto (1993), caso não seja possível criar uma solução, não 
há sentido em prosseguir o estudo. A quarta etapa envolve a implementação e teste da 
solução. Na quinta etapa são apresentadas as conexões entre a solução desenvolvida e o 
referencial teórico, assim como a contribuição da teoria no desenvolvimento da solução. 
Por fim, na ultima etapa é examinando o escopo de aplicabilidade da solução. 

Desenvolvimento da Pesquisa 
Seguindo a estratégia de pesquisa construtiva, organizamos nosso trabalho em 

quatro fases. Cada fase é constituída por etapas de pesquisa específicas bem como 
respectivos produtos. A seguir, cada fase é descrita em termos de suas etapas e 
produtos, contextualizando sua importância para a pesquisa como um todo. Durante a 
descrição a seguir as etapas são denominadas E.Fx, onde E refere-se à etapa, F 
representa a fase e x uma ordenação numérica das etapas de P. 
Fase A 

A primeira fase refere-se às duas etapas inicias da pesquisa construtiva (KAZANEN, 
KARI; ARTO, 1993): identificação de um problema de relevância prática e científica e 
entendimento do tema de investigação. Tais etapas serão desenvolvidas sobretudo a 
partir da revisão de literatura. Os principais focos de investigação através de revisão de 
literatura são criatividade computacional (E.A1), fusão conceitual (E.A2), representação 
de conhecimento e raciocínio (E.A4) e agência (E.A5). Com base nos estudos em 
criatividade computacional e fusão conceitual, especificamos um conjunto de requisitos 
resumindo a fusão em termos de suas características, constructos e processos (E.A3). 
Dado um entendimento de representação de conhecimento e agencia, propomos um 
mapeamento entre os requisitos previamente estabelecidos e possíveis formas para 
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representá-los computacionalmente (E.A6). Tal mapeamento é o principal resultado da 
fase A, servindo como um guia para o desenvolvimento da próxima fase. 
Fase B 

A segunda fase do desenvolvimento da pesquisa compreende a terceira etapa da 
pesquisa construtiva (KAZANEN, KARI; ARTO, 1993): inovar, construir uma solução 
(modelo). Nesta pesquisa, esta é a fase mais importante uma vez que é nela que nosso 
modelo é especificado. O desenvolvimento do modelo parte da limitação de seu escopo 
(E.B1). São especificadas algumas limitações devido ao amplo escopo de aplicabilidade 
da fusão conceitual. De acordo com Fauconnier (1998), a teoria da fusão visa explicar 
como os humanos integram conceitos conhecidos para construir novos conceitos. 
Entretanto, essa integração pode ser aplicada virtualmente a qualquer idéia que 
possamos conceber. 

Portanto, um modelo computacional completo da fusão requer representações 
multidimensionais (e.g. conceitualização simbólica, percepções emocionais e sensoriais 
associadas, contextualização e relações episódicas) e associações diversas referentes a 
um único conceito. Mesmo quando consideradas sozinhas, cada uma destas dimensões 
constitui um tema de pesquisa em si. Desta forma, limitamos o escopo de projeto do 
modelo em termos de quais constructos e processos serão considerados e exatamente 
quais características de cada um farão parte do modelo.  

A definição dos paradigmas de representação (E.B2) está diretamente ligada às 
limitações de escopo. Esta etapa é apoiada pelo mapeamento fornecido em E.A4, 
especificando em detalhe o papel de cada representação para o modelo como um todo. 
A seguir, é realizada a especificação do modelo – dadas as limitações e paradigma de 
representação – que define a integração entre fusão conceitual e uma estrutura de 
intencionalidade (E.B3). Nesse nível, o modelo define como a fusão é representada e 
como o processo de fusão lidará com as estruturas intencionais BDI (também 
representadas). Considerando o enfoque em adaptação de agentes, a especificação deve 
fornecer estruturas adicionais (frames específicos e modelos de redes conceituais) e 
disparadores para apoiar a adaptação. A formalização do modelo deverá ser escrita na 
linguagem de semântica operacional estrutural (Structural Operational Semantics – 
SOS) (PLOTKIN, 1981, 2004). 

Finalmente, a especificação será implementada (E.B4) utilizando o framework de 
agentes Jason (BORDINI; WOOLDRIDGE; HüBNER, 2007). Representações de 
conhecimento necessárias para o processo de fusão conceitual devem ser integradas 
através de interfaces de programação (Application Programming Interfaces – API) – 
quando disponíveis – e, caso contrario, serão adotadas alternativas tais como a interface 
nativa do Java (Java Native Interface – JNI) ou notação de objetos Java simplificada 
(Java Simplified Object Notation – JSON). 

Em conseqüência das etapas da fase B, o resultado é uma arquitetura de agentes com 
um mecanismo de fusão conceitual integrado. Nesse ponto, a arquitetura suportará 
raciocínio criativo com base na fusão conceitual. Através da especificação de como as 
estruturas intencionais podem ser utilizadas durante a fusão (E.B5) damos um 
importante passo em direção aos objetivos do trabalho. A fundamentação para alcançar 
o segundo objetivo intermediário também é fornecida pela arquitetura resultante da fase 
B. 

Fase C 
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Esta fase desenvolve o quarto estágio da pesquisa construtiva: demonstrar que a 
solução funciona. Apesar da implementação de E.B5 já mostrar que ao menos algumas 
partes da solução funcionam, nós observamos a implementação como uma estrutura que 
precisa ser preenchida com conteúdo para fazer sentido. Portanto, na fase C nós 
descrevemos e implementamos dois estudos de caso para considerar os aspectos 
práticos da arquitetura. 

O primeiro estudo de caso visa estudar como a arquitetura se comportará durante 
situações que exijam adaptação (E.C1). Uma vez que o mecanismo de fusão é 
implementado no nível arquitetural do Jason, temos a possibilidade testá-lo com agentes 
já desenvolvidos, com um mínimo de esforço nas configurações dos mesmos. 
Considerando também os mecanismos de depuração fornecidos pelo Jason, podemos 
observar como a fusão interfere no raciocínio prático em termos de disponibilidade de 
opções em momentos que a adaptação faz-se necessária. Tais situações podem ser 
simuladas diretamente com o depurador do Jason ou a partir do ambiente do agente, 
dependendo de sua implementação. Situações que requerem adaptação são consideradas 
sob duas perspectivas: falha na execução de intenções e falta de planos aplicáveis para 
lidar com determinadas configurações de mundo. Ao completarmos esse caso de uso o 
nosso segundo objetivo intermediário é atingido, uma vez que poderemos verificar em 
quais condições o mecanismo de adaptação funcionou. 

A etapa seguinte desta fase utiliza a arquitetura desenvolvida para implementar um 
agente cognitivo para recomendação de conteúdos educacionais a partir do histórico do 
usuário e da especificação dos metadados dos recursos disponíveis (E.C2). Um estudo 
completo em sistemas de recomendação necessita de, no mínimo, uma análise estatística 
do sucesso das recomendações e uma comparação com algoritmos que implementem o 
mesmo tipo de recomendação (baseada em conteúdo). Tal estudo não faz parte deste 
projeto de pesquisa. Aqui, estamos mais interessados em verificar a utilização do 
mecanismo criativo como primitivas de linguagem (implementadas como ações internas 
no Jason). O contexto deste estudo de caso está associado aos resultados de pesquisa do 
projeto OBAA (Objetos de Aprendizagem Baseados em Agentes), financiado pela 
FINEP e executado pelo Grupo de Inteligência Artificial da UFRGS e UNISINOS. 
Nesse contexto de aplicação, o qual visa fornecer conteúdo educacional nas plataformas 
de TV Digital, dispositivos móveis e Web, o raciocínio criativo pode ser aplicado para 
surpreender o usuário ou para estabelecer relações entre conteúdos seguindo um padrão 
de associações diferente das abordagens tradicionais (baseadas em dedução, 
generalização). 

Ambos estudos de caso representam uma prova de conceito (E.C3) da arquitetura, 
fornecendo conteúdo para que o mecanismo de criatividade possa ser testado. Logo, o 
produto da fase C conclui a parte de desenvolvimento deste projeto uma vez que os 
objetivos são analisados através dos estudos. 

Fase D 
Na última fase do projeto, apresentamos as conexões entre o modelo desenvolvido e 

o referencial teórico. Além disso, o escopo de aplicabilidade da solução é examinado 
(KAZANEN; KARI; ARTO, 1993). Desta maneira, as duas etapas da fase D propõem 
uma análise do modelo (E.B6) e das provas de conceito (E.C3) considerando um 
referencial de criatividade computacional, agentes e, finalmente, uma perspectiva 
integrada dos campos. A primeira etapa foca na arquitetura (E.D1), enquanto a segunda 
estuda aspectos levantados a partir dos estudos de caso (E.D2). Um dos produtos desta 
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fase são observações e uma discussão da teoria da fusão conceitual estimulada pelo 
desenvolvimento do modelo (E.D3). Nós acreditamos que o modelo pode contribuir 
especialmente no que se refere a representação e utilização da intencionalidade – 
considerada uma relação vital na teoria de fusão. O último produto desta pesquisa 
posiciona nossos resultados como etapas iniciais para uma teoria de agentes criativos 
(E.D4). 

Resultados 
De acordo com a estrutura de nossa pesquisa, o resultado central da tese é a 

especificação de um modelo da fusão conceitual que define explicitamente as regras 
necessárias para representar uma tipologia da fusão. A partir desse modelo, realizamos 
dois estudos para verificar a utilização da especificação como um mecanismo de 
raciocínio e também como parte integrante de uma arquitetura de agentes. 

A especificação da fusão conceitual foi desenvolvida utilizando a notação de 
semântica operacional, para definir as regras do processo, e teoria dos conjuntos, para 
representar abstratamente os elementos manipulados durante a fusão. O modelo foca 
nos princípios constitutivos e na operação geral da fusão. Portanto, as relações vitais e 
os princípios governantes não fazem parte deste modelo uma vez que eles requerem 
uma visão mais ampla de cognição, fugindo do escopo deste trabalho. Adotamos 
semântica operacional e conjuntos para estabelecer um modelo abstrato da fusão, 
possibilitando que o mesmo seja concretizado em diferentes arquiteturas e paradigmas 
computacionais. 

Os elementos fundamentais da fusão são conceitos, espaços conceituais, esquemas 
organizacionais e o blend (resultado da fusão). Em nosso modelo, esses componentes 
são definidos como componentes de conjuntos e suas características individuais 
especificadas através de anotações em lógica descritiva estabelecendo um modelo 
terminológico. Os princípios constitutivos da teoria são especificados como elementos 
de um conjunto de operações e, para cada um deles (modificação, preenchimento e 
composição) foram definidas regras – em semântica operacional – que representam as 
respectivas manipulações conceituais realizadas.   

O processo da fusão conceitual, essencialmente, ocorre através da aplicação seletiva 
dos princípios constitutivos em determinados conceitos de dois espaços conceituais. A 
seleção dos conceitos, das operações e de quais elementos constituirão o blend 
denomina-se projeção seletiva. A teoria da fusão conceitual ainda não avançou o 
suficiente para definir completamente como a projeção seletiva é realizada. Em nossa 
opinião, são necessários mais estudos e uma integração maior com a área de 
neurociências. Apesar disso, modelamos a projeção seletiva como duas funções de 
seleção dependentes de contexto (seleção conceitual e operacional). Outro aspecto que 
interfere na projeção seletiva são as associações entre os espaços de entrada e o espaço 
genérico. As associações caracterizam relações de qualquer natureza entre conceitos de 
diferentes espaços. Já o espaço genérico representa os itens comuns entre os espaços de 
entrada. 

Juntamente com a projeção seletiva, é definida uma função para a condição de 
parada do processo e um conjunto de elementos representando a tipologia de fusão a ser 
adotada. Esse conjunto caracteriza a configuração do processo de fusão e, somado aos 
elementos previamente apresentados, estabelece uma especificação inicial para a 
realização da fusão. Dada a especificação inicial, são aplicadas as regras para 
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estabelecimento das associações entre os espaços e, em seguida, do espaço genérico 
(ambas definidas com semântica operacional e manipulação de elementos 
terminológicos). 

Uma importante funcionalidade desta modelagem da fusão é a definição do processo 
com base na tipologia de blends definida pelos autores da teoria (FAUCONNIER; 
TURNER, 1998). Originalmente, são definidos quatro tipos de blends, todos eles 
relacionados à forma como os conceitos são manipulados. A especificação definida 
nesta tese representa os quatro tipos. Todo a execução da fusão parte de uma 
configuração onde é definido qual dos tipos que guiará o processo. Portanto, o processo 
em si depende da tipologia adotada e, em nosso modelo, a tipologia original foi 
modelada possibilitando que a fusão seja realizada segundo quatro perspectivas 
diferentes. 

Para fornecer contextos de utilização e testar o modelo de fusão, desenvolvemos 
dois estudos. O primeiro deles visou utilizar a fusão conceitual como um mecanismo de 
adaptação para agentes BDI. Sendo assim, o modelo de fusão foi implementado 
computacionalmente e integrado à uma arquitetura AgentSpeak de agentes, fornecida 
pelo framework Jason. A integração da fusão em nível arquitetural possibilita que 
agentes já desenvolvidos utilizem adaptação através de fusão sem a necessidade de 
mudanças no código original. Além da integração, desenvolvemos um agente específico 
para realizar os testes e também modelamos as terminologias de domínio sob a forma de 
representações descritivas em linguagem OWL (Web Ontology Language). O motor de 
fusão conceitual implementado utiliza a sintaxe OWL como representação descritiva 
dos conceitos. 

O contexto de adaptação também propõe um domínio a ser modelado em termos dos 
componentes da fusão conceitual, onde o blend resultante define uma nova linha de 
ação que o agente pode seguir, dada uma situação de falta de opções ou falha. Desta 
forma, especificamos um modelo para definir automaticamente as entradas e a 
configuração do processo de fusão a partir da visão de mundo atual do agente, 
representada por suas crenças, desejos e intenções. Essa especificação também foi 
implementada no framework Jason. Outros elementos necessários para a execução da 
fusão (funções associativas, princípios constitutivos, funções de seleção e de 
configuração) também foram especificados e implementados. De acordo com nossa 
estratégia de pesquisa, o estudo de adaptação serviu, fundamentalmente, para testar o 
modelo definido como parte de uma estrutura cognitiva composta por um sistema 
intencional apoiado por criatividade (representada pela fusão conceitual). 

Nosso segundo estudo utiliza o mecanismo de fusão conceitual como um motor de 
raciocínio utilizado para definir o conteúdo de recomendações educacionais. Assim, o 
resultado concreto deste estudo é um sistema de recomendação baseado em criatividade 
implementado sob o paradigma de agentes. A implementação da fusão permaneceu a 
mesma do estudo de adaptação, entretanto, foi definida uma nova interface de acesso, 
possibilitando a definição de todos os elementos da fusão em tempo de execução. Para 
tanto, essa interface foi implementada como uma ação interna do framework Jason, 
podendo ser vista também como um operador de linguagem.  

De uma maneira similar à adaptação, a recomendação também fornece um domínio 
de aplicação que foi modelado em termos dos elementos da fusão conceitual. Sendo 
assim, foi definida uma representação OWL do domínio, as respectivas funções de 
comparação e seleção. Este estudo possibilitou testar o modelo e a implementação das 
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funções de comparação como interfaces para ferramentas externas (uso da Wikipedia 
para calcular a similaridade entre palavras e do ConceptSpace para a similaridade 
conceitual). Ademais, testamos também o uso do mecanismo de fusão para fornecer 
recomendações com base em metáforas, a partir da seleção da tipologia adequada e de 
restrições nas entradas. 

Com relação ao estudo de adaptação, este estudo diferenciou-se por utilizar a fusão 
conceitual como uma forma de raciocínio, deixando para o desenvolvedor a decisão de 
como modelar e utilizar o mecanismo. A implementação do sistema de recomendação 
como um agente BDI que representa seu usuário e utiliza a fusão para construir as 
recomendações segue nossa estratégia de pesquisa para verificar o uso da fusão 
conceitual como um raciocínio criativo. 

Contribuições 
Considerando as questões de pesquisa deste projeto, contextualizamos nossas 

contribuições sob três perspectivas principais: cognição, agência inteligente e 
criatividade computacional. De acordo com uma abordagem bottom-up, primeiro 
posicionamos as contribuições na área de agentes inteligentes. De fato, esse 
posicionamento está associado à segunda questão de pesquisa deste trabalho: Como a 
criatividade apóia a utilização de conhecimento e experiências prévias como meios para 
a adaptação a situações imprevistas? 

Como um processo, a criatividade nos possibilita criar novas idéias, úteis ou inúteis, 
reais ou surreais. Assim, essa habilidade permite que sejamos capazes de inovar, criar 
mais conhecimento e solucionar novos problemas. Atribuindo essa habilidade à agentes 
inteligentes visamos permitir que os mesmos raciocinem criativamente a partir de seus 
conhecimentos e percepções do ambiente. Desta forma, possibilita-se também que os 
agentes criem soluções (em termos de ações) alternativas para novas situações. 
Geralmente, abordagens para adaptação em agentes fundamentam-se em generalização 
e indução. A abordagem aqui proposta propõe o estudo da criatividade como um 
raciocínio para apoiar a adaptação.  

Voltando nosso foco para a primeira questão de pesquisa “como a criatividade pode 
ser modelada computacionalmente e produzir conhecimento prático e teórico?”, 
contextualizamos as contribuições para a área de criatividade computacional. Modelos 
computacionais de criatividade humana têm focado nos aspectos teóricos do 
conhecimento. Portanto, tais modelos focam na geração de conceitos teóricos sem 
considerar as especificidades do conhecimento prático (relacionado à ações).  
Comparando este projeto com os modelos atuais, o modelo aqui proposto difere-se 
justamente na consideração de conhecimento prático. Ademais, comparando-se com o 
estado-da-arte em modelos genéricos de criatividade, nosso modelo de fusão diferencia-
se por especificar a tipologia da fusão definida por Fauconnier e Turner. A abordagem 
de um modelo abstrato e de sua concretização computacional separadamente possibilita 
também que nosso modelo seja integrado a outras arquiteturas. 

Finalmente, em um nível mais teórico e abstrato, o modelo resultante deste projeto 
pode ser utilizado para estudar a teoria de fusão conceitual em si. Neste aspecto, o 
resultado desta pesquisa pode discute em maior detalhe a importância da 
intencionalidade para a fusão e também aponta a necessidade de integração com outros 
aspectos da cognição humana. Percebemos este trabalho como um passo inicial em 
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direção a um estudo mais aprofundado da cognição relacionada à criatividade através de 
modelos computacionais. 

 

 


