
Christian-Albrechts-University of Kiel

Faculty of Engineering

Superposition Mapping

&

Related Coding Techniques

Tianbin Wo

+

v

+ +

+

+ +

+

+

+
+

+

+
+

+

+

++

+

++

+

+

+
+

+
+

+

+

1st
level

2nd
level

b

Kiel 2011

II

Superposition Mapping

&

Related Coding Techniques

Dissertation

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

der Technischen Fakultät

der Christian-Albrechts-Universität zu Kiel

vorgelegt von

Tianbin Wo

Kiel 2011

Tag der Einreichung: 21.01.2011

Tag der Disputation: 20.05.2011

Berichterstatter: Prof. Dr.-Ing. Peter Adam Höher
Prof. Dr.-Ing. Martin Bossert
Prof. Li Ping

Preface

This thesis was developed during my time as a research and teaching assistant at the

Information and Coding Theory Lab (ICT), Faculty of Engineering, University of Kiel,

Germany.

At the time of publishing this thesis, I would first like to thank my advisor Prof. Dr.-Ing.

Peter Adam Höher for his inspiring guidance throughout my work in Kiel. The research

environment at the ICT is enjoyable and the research team of the ICT is excellent. Addi-

tionally, I would like to thank Prof. Höher for enabling me to frequently visit international

conferences, which was surely a great help for enriching my academic experience.

I would like to thank Prof. Dr.-Ing. Martin Bossert from Ulm University and Prof.

Li Ping from City University of Hong Kong for evaluating this work. Their pertinent

suggestions are more than helpful for improving the quality of the thesis and their in-time

review is important for setting up a prompt date for the thesis defense.

I would also like to thank my former colleagues of the ICT and the Institute for Circuit

and System Theory for many interesting discussions and pleasant activities. I am pretty

sure that I will continuously miss my time in Kiel.

Last but not least, I would like to thank my wife Lin Lin, who has accompanied and

encouraged me throughout my study in Kiel, and my parents for their enduring support.

Without their encouragement and support, this thesis would has been impossible.

Hangzhou, December 2011

VI

Abstract

Since Shannon’s landmark paper in 1948, it has been known that the capacity of a Gaus-

sian channel can be achieved if and only if the channel outputs are Gaussian. In the low

signal-to-noise ratio (SNR) regime, conventional mapping schemes suffice for approaching

the Shannon limit, while in the high SNR regime, these mapping schemes, which pro-

duce uniformly distributed symbols, are insufficient to achieve the capacity. To solve this

problem, researchers commonly resort to the technique of signal shaping that mends the

symbol distribution, which is originally uniform, into a Gaussian-like one.

Superposition mapping (SM) refers to a class of mapping techniques which use linear

superposition to load binary digits onto finite-alphabet symbols that are suitable for

waveform transmission. Different from conventional mapping schemes, the output symbols

of a superposition mapper can easily be made Gaussian-like, which effectively eliminates

the necessity of active signal shaping. For this reason, superposition mapping is of great

interest for theoretical research as well as for practical implementations. It is an attractive

alternative to signal shaping for approaching the channel capacity in the high SNR regime.

This thesis aims to provide a deep insight into the principles of superposition mapping and

to derive guidelines for systems adopting it. Particularly, the influence of power allocation

to the system performance, both w.r.t. the achievable power efficiency and supportable

bandwidth efficiency, is made clear. Considerable effort is spent on finding code structures

that are matched to SM. It is shown that currently prevalent code design concepts, which

are mostly derived for coded transmission with bijective uniform mapping, do not really

fit with superposition mapping, which is often non-bijective and nonuniform. As the main

contribution, a novel coding strategy called low-density hybrid-check (LDHC) coding is

proposed. LDHC codes are optimal and universally applicable for SM with arbitrary type

of power allocation.

Keywords: Digital modulation, signal shaping, Gaussian channel, bit-interleaved coded

modulation (BICM), soft-input soft-output (SISO) demapping, channel coding, low-density

parity-check (LDPC) code, low-density summation-check (LDSC) code, low-density hybrid-

check (LDHC) code, sparse matrix, iterative message passing, belief propagation.

VIII

Contents

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 3

1.3 Scope and Aim . 5

1.4 Thesis Outline . 6

2 Gaussian Channel 7

2.1 Channel Model . 7

2.2 Mutual Information . 8

2.3 Capacity for Zero Error Probability . 9

2.4 Capacity for Finite Error Probability . 11

3 Superposition Mapping (SM) 13

3.1 General Description . 14

3.2 An Information Theoretical View . 16

3.3 Equal Power Allocation (EPA) . 17

3.3.1 Overview . 17

3.3.2 Symbol Distribution . 19

3.3.3 Symbol Entropy . 22

3.3.4 Mutual Information . 24

IX

3.4 Unequal Power Allocation (UPA) . 26

3.4.1 The Exponential Law . 26

3.4.2 Mapping and Labeling . 28

3.5 Grouped Power Allocation (GPA) . 30

3.5.1 Basic Idea . 30

3.5.2 Symbol Distribution & Mutual Information 31

3.5.3 Symbol Cardinality & Symbol Entropy 34

3.5.4 Mapping & Labeling . 36

4 Uncoded SM Transmission 37

4.1 Maximum-A-Posteriori Demapping . 37

4.2 Bit Error Probability of SM-EPA . 38

4.3 Bit Error Probability of SM-UPA . 42

4.4 Bit Error Probability of SM-GPA . 43

5 Coded SM Transmission 45

5.1 System Structure . 46

5.2 Soft-Input Soft-Output Demapping . 47

5.2.1 Standard APP Approach . 47

5.2.2 Tree-Based APP Approach . 50

5.2.3 Gaussian-Approximation Approach 56

5.3 Repetition-Coded SM . 58

5.3.1 Factor Graph Representation . 59

5.3.2 Performance Overview . 60

5.4 Parity-Check-Coded SM . 65

5.4.1 Factor Graph Representation . 65

5.4.2 Performance Overview . 66

X

6 Spreading, Scrambling, and Interleaving 69

6.1 Effects of Spreading . 70

6.1.1 Regular Repetition . 70

6.1.2 Irregular Repetition . 71

6.1.3 Information Aggregation and Information Distribution 72

6.2 Effects of Scrambling . 76

6.2.1 The Trap of Message Oscillation . 77

6.2.2 Distinguishability of Overlapped Repetition Code Words 85

6.3 Effects of Interleaving . 87

6.3.1 A First Impression . 87

6.3.2 A Heuristic Example for Interleaver Design 88

6.3.3 Summation Check Extrinsic Message Degree 91

6.4 Low-Density Summation-Check Code . 93

6.4.1 Basic Principle . 94

6.4.2 Computer-Based Interleaver Design 96

6.4.3 Computer-Based Scrambler Design 110

6.4.4 Supportable Rate with Regular Repetition 116

6.4.5 Supportable Rate with Irregular Repetition 119

7 Channel Coding for Superposition Mapping 127

7.1 Some Theoretical Aspects . 128

7.1.1 Duality to Binary Adder Channel 128

7.1.2 Finite-Error Capacity for Coded SM Transmission 132

7.1.3 Typicality of Finite-Length Symbol Sequences 134

7.1.4 Maximum-Likelihood Decoding vs. Iterative Decoding 137

XI

7.2 Some Practical Aspects . 138

7.2.1 Information-to-Complexity Ratio 138

7.2.2 Compression Gain and Irregularity Loss 140

7.3 Suitable Redundancy for Superposition Mapping 143

7.3.1 Repetitions vs. Parity Bits . 143

7.3.2 Repetitions plus Parity Bits . 147

7.4 Low-Density Hybrid-Check Code . 152

7.4.1 Basic Principle . 152

7.4.2 Compatible Code Structures . 154

7.4.3 Degree Distribution & Degree Combination 157

7.4.4 Possible Ways for Interleaver Design 172

7.4.5 Is Scrambling Still Necessary? . 181

7.5 Code Design Examples for the Noiseless BAC 182

7.5.1 The Case of N = 2 . 182

7.5.2 The Case of N = 4 . 185

7.5.3 The Case of N = 8 . 188

7.5.4 The Case of N = 16 . 189

7.6 Code Design Examples for the AWGN Channel 192

7.6.1 Preliminary Remarks . 192

7.6.2 The Case of 1 bit/symbol . 193

7.6.3 The Case of 2 bits/symbol . 195

7.6.4 The Case of 4 bits/symbol . 197

8 Summary and Outlook 199

Bibliography 201

XII

A Acronyms and Abbreviations 211

A.1 Acronyms . 211

A.2 Abbreviations . 213

B Mathematical Notations 215

C Mathematical Definitions & Derivations 217

C.1 Definition of LLRs . 217

C.2 Entropy of Gaussian Variable . 218

C.3 Quantization of Gaussian Variable . 219

D Own Publications Related to the Thesis 221

XIII

XIV

Chapter 1

Introduction

When considering data transmission over physical channels, a modulator is the inter-

face which maps data sequences onto analog signals that match the characteristics of the

channel [1]. By convention, digital modulation consists of three separate steps: mapping

binary digits (bits) onto continuous valued symbols, mapping discrete-time symbols onto

continuous-time pulses, and loading pulses onto carrier waves. All three steps have signifi-

cant influence on the system power and bandwidth efficiency. Nevertheless, a discrete-time

baseband channel model already comprises the second and third steps, as well as matched

filtering and sampling. Therefore, the focus of this thesis will be merely on the first stage,

i.e., the mapping from bits to symbols, and the related channel coding techniques. As a

matter of fact, channel coding and mapping are the kernel parts of digital communication,

from an information theoretical point of view.

1.1 Background

According to information theory, the capacity of a Gaussian channel corresponds to the

maximum mutual information between channel inputs and outputs [2]. Given a power

constraint, this maximum can be achieved if and only if the channel outputs are Gaussian

distributed. Strictly speaking, this is only possible if the channel inputs are Gaussian

as well. This issue has been puzzling engineers and researchers for several decades, as it

is practically difficult to map bits onto a Gaussian symbol and to separate a Gaussian

symbol from Gaussian noise. Nevertheless, at low signal-to-noise ratios (SNRs), binary

antipodal symbols often suffice, due to the strong impact of the additive noise on the

channel output distribution. This explains why early works focus on the power-limited

regime and the proposed coding techniques are exclusively binary.

1

2 CHAPTER 1. INTRODUCTION

In the first 50 years since Shannon’s landmark paper [3], tremendous effort has been spent

on finding good codes for data transmission with binary symbols. As a result, the field of

binary coding has already become rather mature, especially after the invention of turbo

codes [4] and the rediscovery of low-density parity check (LDPC) codes [5, 6]. Given

binary antipodal signalling and sufficiently long block lengths, researchers have been able

to approach the Shannon limit of the Gaussian channel as close as just a few thousandths

of decibels [7]. Hence, the problem of approaching the Gaussian channel capacity in the

power-limited regime has mostly been solved. In contrast, the field of modulation as well

as coding for the high-SNR bandwidth-limited regime is still under development. Until

the 1970’s, the common practical solution for high-rate transmission was nothing more

than uncoded higher-order modulation, e.g., phase-shift keying (PSK) and quadrature

amplitude modulation (QAM). The success of trellis-coded modulation [8], which is based

on the concept of set partitioning, unveiled the importance of channel coding for non-

binary data transmission. Also based on set partitioning, multilevel coding [9,10] showed

to be an alternative way to improve the performance of higher-order modulation. A

breakthrough was finally achieved in the late 1990’s when the concept of bit-interleaved

coded modulation (BICM) [11,12] was formalized. Placing a bit-level interleaver between

the encoder and the mapper and performing iterative demapping and decoding at the

receiver, a superior performance was achieved for binary-encoded higher-order modulation

systems. Upon this point, it was recognized that available capacity-achieving binary codes

are also suitable for non-binary modulation formats, if the structure of BICM is adopted.

Hence, there seems to be only one remaining issue for approaching the channel capacity

in the high-SNR regime. That is to generate Gaussian-distributed symbols and devise

corresponding receiver algorithms.

Mainly due to the desire of easy transmission and detection, most of the traditional

mapping schemes produce uniformly distributed symbols. This in the end caused an im-

passable gap between the Shannon limit and the practically achievable performance, as

the capacity of high-SNR Gaussian channels can only be achieved if the inputs are suf-

ficiently Gaussian. To solve this problem, the concept of signal shaping came into being

in the late 1980’s [13, 14]. Signal shaping is sometimes also called constellation shaping.

The basic idea is to construct a high-dimensional uniform constellation which results in

low-dimensional nonuniform constituent constellations. Since the high-dimensional con-

stellation is uniform, a one-to-one mapping can be established between a block of bits and

a block of symbols. Meanwhile, as the constituent constellation is now nonuniform, often

Gaussian-like, a shaping gain can be obtained without any additional effort w.r.t. channel

coding. It was shown that signal shaping yields an essential contribution to approach the

capacity at high SNRs [13]. In the 1990’s, many practical schemes were introduced for an

efficient implementation of signal shaping. Among these schemes, the most well-known

1.2. MOTIVATION 3

and successful two are trellis shaping [15] and shell mapping [16–19], both of which are

capable of delivering shaping gains about 1 dB. Particularly, shell mapping later became a

part of the international telephone-line modem standard ITU recommendation V.34 [20].

With capacity-achieving binary codes, bit-interleaved coded modulation, and signal shap-

ing, it is nowadays a common assumption for researchers that the problems in approaching

the Shannon limit of linear Gaussian channels for the high SNR regime have essentially

been solved [21]. Nevertheless, this is not completely true.

1.2 Motivation

It is true that available capacity-achieving binary codes can easily be incorporated into a

BICM system. However, there will be some tricky issues when one applies signal shaping

techniques in a BICM system. Both trellis shaping and shell mapping are block-wise

uniform signaling methods, which can attain the ultimate shaping gain [13] only in the

limit of infinite dimension, i.e., only in the case of infinite symbol block lengths. Hence,

to obtain desirable shaping gain, one needs to take a sufficiently large block length. How-

ever, a large block length means a high addressing complexity [22], which also makes the

calculation of bit-level soft decisions more difficult. As a matter of fact, given a practical

symbol block length, e.g., 16 in ITU V.34, bit-level soft decisions can only be calculated

in an approximate way. This certainly incurs performance losses when applying signal

shaping in a BICM system, since available high-performance channel codes all demand

soft decoding. As an alternative approach, Kschischang et al. proposed in [23] a nonuni-

form signaling scheme that maps simple variable-length prefix codes, particularly Huffman

codes, onto a constellation that has been designed according to a Maxwell-Boltzmann dis-

tribution [24,25]. This approach can achieve the ultimate shaping gain in any dimension,

i.e., can be performed in a symbol-wise manner, but is unfortunately a data-dependent

variable-rate mapping scheme, which brings even more problems for a practical receiver.

To facilitate easy implementation, one needs a fixed-rate symbol-wise mapping scheme

that produces Gaussian-like symbols. As mentioned above, trellis shaping, shell mapping,

and Huffman decoding all violates this requirement. Nonetheless, a recently evolving

technique seems to fulfill this requirement very well. The main idea is to load multiple

bits onto a symbol simply via linear superposition. Without loss of generality, we may call

the corresponding technique as superposition mapping (SM). For SM, the amount of bits

loaded on a symbol is fixed and data-independent, subject to the concrete system design.

Besides, superposition mapping generally operates in a symbol-wise manner. According

to the central limit theorem, the summation of many i.i.d. variables tends to be Gaussian

4 CHAPTER 1. INTRODUCTION

distributed. Hence, it is very easy to let a superposition mapper to produce Gaussian-like

symbols. Given these properties, superposition mapping provides an attractive solution

for the applications that demand high bandwidth and power efficiency.

In 1997, Duan et al. proposed in [26] a modulation scheme which resembles very much

a multiple access system. In this scheme, multi-level coded symbol streams are linearly

superimposed before being sent via the channel, and are sequentially separated at the

receiver side via successive interference cancellation (SIC). Due to linear superposition,

the channel symbols have Gaussian-like nonuniform distributions regardless the fact that

the parallel constituent symbol streams are all binary antipodal. For this reason, the

authors claimed that large signal constellation and active signal shaping are no longer

necessary in such a system. This is the first time that researchers explicitly use linear

superposition as a mapping scheme. Although no detailed discussion was presented in [26],

this work initiated the research on the topic of superposition mapping.

Ma and Li Ping provided a comprehensive analysis of superposition mapping in [27]. It

was shown that single-level coded superposition mapping can achieve similar performance.

It was also shown that, with a capacity-achieving binary code, e.g., a Turbo code, super-

position mapping is indeed capacity-achieving for linear Gaussian channels. Nevertheless,

the bandwidth efficiency of the reported results is limited to 2 bits/symbol per signal di-

mension. Almost at the same time, Schoeneich and Hoeher proposed in [28] a multi-layer

interleave-division multiple access (ML-IDMA) scheme where interleave-division multi-

plexing (IDM) is done for each user. The kernel part of IDM is in fact a phase-shifted

superposition mapper (PSM), which is different from the scheme proposed in [27] by

adding a unique phase shift to each antipodal signal before superposition. However, the

reported results were limited to 2 bits/symbol per signal dimension as well. It was pre-

sumed by the authors of both [27] and [28] that higher bandwidth efficiency can only be

supported by means of performance tradeoff via unequal power allocation. Although this

presumption is later found to be unprecise [29, 30], it does give an important message

about the special property of superposition mapping, that is it is very challenging to sup-

port high bandwidth efficiency in case of equal power allocation. Similar issues are also

encountered in SM-related modulation techniques, which are non-unique mapping [31],

generalized modulation [32], modulation doping [33], etc..

Because of its fixed-rate symbol-wise working style, superposition mapping is undoubt-

edly an attractive solution for generating near-optimum nonuniform symbols. However,

without breaking the tight limit on supportable bandwidth efficiency, the applicable sce-

narios will be constrained. Certainly, breaking the bandwidth efficiency limit should not

be done at the price of degraded power efficiency, or in other words it should not be done

at the price of damaging the Gaussian-like symbol distribution. Both [27] and [28] did

1.3. SCOPE AND AIM 5

not provide sufficient theoretical analysis in the concern of the reason of the bandwidth

efficiency limit of superposition mapped data transmission. Nevertheless, one thing is

clear, that is the commonly applied coding approaches for superposition mapping are not

optimal. Since superposition mapping resembles very much a multiple-access system, one

may wonder if we can use the techniques available therein to accomplish this task. As a

matter of fact, the coding theory for multiple-access systems, or equivalently linear super-

position channels, is still far from being mature. Up to the time of writing this thesis, there

are indeed no capacity-achieving practical codes for general multiple-access channels with

Gaussian noise. Besides, when researchers are designing codes for multiple-access systems,

the issue of keeping Gaussian-like symbol distribution is usually not taken into account, as

this is rarely an issue in that scenario. For example, the so-called near-optimum uniquely

decodable codes [34–36] for multiple-access channels are capacity-achieving only in the

case of noiseless channels, as these codes all lead to non-Gaussian-like symbol distribu-

tions. Therefore, in order to fully exploit the capacity-achieving potential of SM, suitable

channel codes need to be found. This gives the motivation for this thesis work.

1.3 Scope and Aim

This thesis aims to provide a deep insight into the principles of superposition mapping

and to develop channel codes that well fit with this type of mapping schemes. It does not

try to solve all the open problems, but it does try to solve the most important issues that

are critical for practical applications.

The first attempt is to examine the effect of power allocation on the power/bandwidth

efficiency of superposition mapping. In many previous works [27, 37–40], it is observed

that unequal power allocation can efficiently enhance the supportable bandwidth efficiency

of coded superposition mapping, but also causes the symbol distribution non-Gaussian-

like. Certainly, this is undesirable from an information theoretical point of view, as this

undermines the capacity-achieving potential of superposition mapping. Hence, to find an

unequal power allocation strategy that improves the supportable bandwidth efficiency of

SM but does not degrade the achievable power efficiency is of particular importance.

Due to linear superposition, superposition mapping is often non-bijective, which raises a

problem that ambiguity-free detection is even not possible for a noiseless channel. This

fact brings a fundamental challenge for the design of channel codes, as currently available

code design techniques are all targeted at bijective mapping schemes. A non-bijective

superposition mapper might be treated as a lossy source encoder, or in other words lossy

compression happens during the mapping process. To enable ambiguity-free decoding at

6 CHAPTER 1. INTRODUCTION

the receiver side, the channel code has to be designed in a way that the lossy compression

(superposition mapping) on the code bits does not incur any information loss on the info

bits. This special requirement opens an interesting new research area for channel coding.

For clearness and compactness, the additive white Gaussian noise (AWGN) channel is as-

sumed throughout this thesis, i.e., topics related to fading, intersymbol interference (ISI),

and transmission with imperfect channel knowledge are excluded. However, the coding

techniques proposed in this thesis can easily be extended to more general applications,

such as multi-antenna transmission, multi-carrier transmission, etc..

1.4 Thesis Outline

The contents in the remainder of this thesis develop as follows.

Chapter 2 introduces the discrete-time additive white Gaussian noise channel model and

related information theoretical concepts.

Chapter 3 provides a systematic view on superposition mapping. The main attention is

given to the effects of power allocation. Given different types of power allocation strate-

gies, the signal properties of superposition mapping are carefully studied, particularly

the achievable power efficiency and supportable bandwidth efficiency. A grouped power

allocation strategy is proposed to boost the performance potential of SM.

Chapter 4 examines the performance of uncoded SM transmission over the Gaussian

channel, given maximum-a-posteriori bit-by-bit detection. Some interesting issues related

to source coding are inspected.

Chapter 5 provides a preliminary discussion for coded SM transmission over the Gaus-

sian channel. Several low-complexity SISO demapping algorithms are introduced. The

performance of repetition-coded SM and parity-check-coded SM are briefly surveyed.

Chapter 6 makes a thorough investigation for the influence of spreading, scrambling,

and interleaving on the performance of repetition-coded SM. A novel concept, called low-

density summation-check (LDSC) coding, is proposed to facilitate system optimization.

Chapter 7 discusses the topic of channel coding for superposition mapping in a more

general framework. Various theoretical as well as practical issues are investigated. To

enable a clever combination of repetition coding and parity check coding for SM, a unified

coding concept called low-density hybrid-check (LDHC) coding is proposed.

Chapter 8 summarizes the work and enumerates interesting topics for future research.

Chapter 2

Gaussian Channel

The additive white Gaussian noise (AWGN) channel is probably the most important

continuous alphabet channel, and is the prime for algorithm prototyping and system

design. Though very simple, it models the fundamental effects of communication in a noisy

environment. The AWGN channel is a building block for most practical channel models.

Since the channel gain of the AWGN channel is constant, it provides a performance upper

bound for many communication channels.

2.1 Channel Model

For modern digital communication systems, the most popular channel model is the discrete-

time AWGN channel model described by

y = x+ z , z ∼ N (0, σ2
z) , (2.1)

where y is the channel output, x is the channel input, and z is a noise sample drawn i.i.d.

from a zero-mean Gaussian distribution with variance σ2
z and is assumed to be independent

of the channel input. Fig. 2.1 depicts this channel model. In reality, the additive noise

may be caused by many different things, such as the circuit noise, the ambient noise,

and the quantization noise, etc. However, according to the central limit theorem, the

x y

z

Figure 2.1: Discrete-time additive white Gaussian noise channel.

7

8 CHAPTER 2. GAUSSIAN CHANNEL

cumulative effect of a large number of small random effects will be approximately normal

distributed. Therefore, the Gaussian assumption of the additive noise is valid in a large

number of situations.

To keep consistence with the convention and avoid possible notation confusion, throughout

this thesis, we use Es to represent the average symbol power/energy:

Es
.
= E

{
x2
}
, (2.2)

and N0 to represent the single-sided noise spectral density in the passband:

N0
.
= 2E

{
z2
}

= 2σ2
z . (2.3)

The technical background of this notation convention can be found in [1].

2.2 Mutual Information

Mutual information is a measure of the amount of information that one random variable

contains about another variable [2]. For a communication channel, the mutual information

between its input and output is the reduction in the uncertainty of the input due to

the knowledge of the output. If the channel input distribution is certain, this mutual

information indeed gives the maximum rate at which information can pass through this

channel with an arbitrarily low error probability.

Given the channel model in (2.1), the mutual information between the channel input and

output is

I(x; y) = h(y)− h(y|x) = h(y)− h(z) , (2.4)

where h(·) denotes the differential entropy of a continuous random variable. By definition,

the entropy of the channel output can be calculated as

h(y) = −
∫
p(y) log p(y) dy . (2.5)

p(y) is the probability density function (PDF) of y, which is determined by the distribution

of the channel input and the additive noise. For practical systems, the channel input will

usually be a finite-alphabet discrete random variable, which leads to

p(y) =
∑

x∈X
P (x)p(z = y − x) =

∑

x∈X
P (x)

1√
2πσ2

z

e
− (y−x)2

2σ2
z , (2.6)

where X is the finite alphabet of x, and P (x) is the probability mass function (PMF) of

x. In this scenario, the PDF p(y) is a so-called mixed Gaussian function, which can be

evaluated numerically via a computer.

2.3. CAPACITY FOR ZERO ERROR PROBABILITY 9

I(x; y)H(x)

H(x|y)

H(x)−H(x|y)

Figure 2.2: Liquid (information) flowing through a pipe (channel).

For Gaussian distributed noise samples z, we have

h(z) =
1

2
log 2πeσ2

z . (2.7)

A detailed mathematical derivation of (2.7) is given in Appendix C.2.

Using (2.4) to (2.7), the mutual information given any input distribution can be computed.

In general we have

I(x; y) 6 H(x) , (2.8)

where H(·) denotes the entropy of a discrete random variable. Hence, some information

carried in x can not pass through the channel due to the disturbance from the noise. This

phenomenon resembles a pipe with one input port, one narrower output port, and one

leaking port, as illustrated in Fig. 2.2. The amount of information that is leaked out is

given by H(x|y), and the amount of information that finally passes the channel is given

by I(x; y) = H(x) − H(x|y). A communication system engineer needs to optimize the

distribution of x (without changing the average power) to widen the pipe output port as

much as possible so that information can pass through it easily. A natural question would

be what is the maximum channel throughput and what is the corresponding distribution

for x. This motivates the concept of channel capacity.

2.3 Capacity for Zero Error Probability

The channel capacity is the highest rate in bits per channel use at which information can

be transfered with an arbitrarily low error probability [2]. Without any constraint on the

channel input, the capacity of an AWGN channel is infinite. This is easy to understand,

as one may choose an infinite set of inputs which are arbitrarily far apart from each other,

so that they are distinguishable at the output with an arbitrarily small error probability.

In practice, however, there will be always certain type of constraints on the channel input,

among which the most common limitation is the power/energy constraint. Usually, the

average power/energy that can be used to transmit a symbol is limited by physical reasons.

10 CHAPTER 2. GAUSSIAN CHANNEL

−20 −10 0 10 20 30 40
0

1

2

3

4

5

6

7

8

E
s
/N

0
 in dB

bi
ts

/s
ym

bo
l

(a) Capacity vs. SNR per symbol.

−10 0 10 20 30 40
0

2

4

6

8

10

E
b
/N

0
 in dB

bi
ts

/s
ym

bo
l

(b) Capacity vs. SNR per info bit.

Figure 2.3: AWGN channel capacity for a zero error probability.

The channel capacity under input power constraint is given by

C = max
p(x):E{x2}=Es

I(x; y) = max
p(x):E{x2}=Es

{h(y)− h(z)} . (2.9)

Since h(z) is constant as long as the noise power is certain, the only concern is to maximize

h(y) given the power constraint. Noting that the noise z is zero-mean and independent

of x, we have

E{y2} = E{(x+ z)2} = E{x2}+ E{z2} = Es +N0/2 . (2.10)

It is known that the Gaussian distribution maximizes the entropy over all distributions

with the same variance [2], which brings the following inequality:

h(y) 6
1

2
log 2πe(Es +N0/2) . (2.11)

Hence, the capacity of the AWGN channel is

C =
1

2
log 2πe(Es +N0/2)− 1

2
log 2πe(N0/2) =

1

2
log2

(
1 + 2

Es
N0

)
bits/symbol , (2.12)

which is attained if and only if y is Gaussian, which in turn requires x to be Gaussian.

Therefore, to maximize the mutual information for a Gaussian channel, one needs to

make the channel input as Gaussian as possible, which gives the motivation for studying

superposition mapping.

Fig. 2.3(a) plots the channel capacity versus SNR per symbol. It is often useful to have

a plot of channel capacity vs. SNR per info bit. This can be obtained by treating the

relationship between channel capacity and SNR in a different way. With a little bit of

manipulation on (2.12), we get

Es
N0

=
1

2
(22C − 1) , (2.13)

2.4. CAPACITY FOR FINITE ERROR PROBABILITY 11

AWGN

AWGN

k bits n symbols

Channel encoder

kR(D) bits
Source

Source
Gaussianbinary

binary Gaussian

Source

lossy

encoder
Channel
encoder

overloaded

ideal

Figure 2.4: A transmission system with a finite error probability.

which states the minimum SNR per symbol required to achieve capacity C in bits/symbol.

Noting that Eb = Es/C, we attain the minimum SNR per info bit to achieve the capacity:

Eb
N0

=
Es
N0

/
C =

1

2
(22C − 1)/C . (2.14)

Fig. 2.3(b) gives the plot of channel capacity vs. SNR per info bit.

2.4 Capacity for Finite Error Probability

Fig. 2.3 gives a fundamental guideline for the design of practical communication systems,

as it clearly states the maximum achievable information rate for error-free transmission.

Equivalently, it states that the channel capacity must be larger than or equal to the

transmission rate in order to guarantee a perfect reconstruction of the transmitted info

bits. In the AWGN channel scenario, it tells the minimum required SNR for perfect

transmission, given a certain transmission rate.

What happens if errors are allowed? In practical applications, the bit error probability

is usually required to be lower than a certain threshold but not necessarily to be zero,

particularly in voice and video communication. In such cases, one may want to know the

minimum required SNR for a finite error probability instead of a zero error probability,

which is however not explicitly stated in the theorem of channel capacity. To provide the

answer for this question, it is necessary to incorporate the rate distortion theory.

Consider a communication system with a binary source, a channel encoder with Gaussian

outputs, and an AWGN channel, as depicted in the upper part of Fig. 2.4. The binary

source generates a sequence of k i.i.d. bits with Bernoulli(1
2
) distribution. After channel

encoding, n Gaussian symbols are sent over the AWGN channel. Hence, the transmission

rate of this system is given by Rt = k/n bits/symbol. The maximum allowed bit error

probability is assumed to be Pe. To calculate the minimum required SNR, it is necessary

12 CHAPTER 2. GAUSSIAN CHANNEL

−10 −5 0 5 10

10
−4

10
−3

10
−2

10
−1

10
0

E
s
/N

0
 in dB

B
it

E
rr

or
 P

ro
ba

bi
lit

y

R
t
 = 1/2

R
t
 = 1

R
t
 = 2

(a) Capacity vs. SNR per symbol.

−4 −2 0 2 4 6

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 in dB

B
it

E
rr

or
 P

ro
ba

bi
lit

y

R
t
 = 1/2

R
t
 = 1

R
t
 = 2

(b) Capacity vs. SNR per info bit.

Figure 2.5: AWGN channel capacity for finite error probabilities.

to introduce an equivalent transmission system as depicted in the lower part of Fig. 2.4. In

this equivalent system, lossy source encoding with Hamming distortion D is applied. The

following channel encoder is assumed to be ideal, so that errors are now only introduced

by the source encoder. According to the rate distortion theory, the minimum rate of the

source code is given by the rate distortion function R(D). Consequently, the minimum

information load of each code symbol is given by kR(D)/n bits. To have error-free channel

decoding at the receiver side, the following inequality must be fulfilled:

C > kR(D)/n = R(D)Rt , (2.15)

i.e., the channel capacity must be larger than or equal to the information rate at the

channel encoder output. For a Bernoulli(1
2
) source, the rate distortion function with

Hamming distortion D is given by

R(D) =





1− h(D) , 0 6 D 6 1
2
,

0 , D > 1
2
,

(2.16)

and the bit error probability is exactly the same as the Hamming distortion. The above

statements give the following inequality:

1

2
log2(1 + 2

Es
N0

) > k(1− h(Pe))/n =⇒ Es
N0

>
1

2

(
22(1−h(Pe))Rt − 1

)
, (2.17)

which tells the minimum required SNR, given a certain bit error probability and a certain

transmission rate. If the equality in (2.17) is attained, the system is said to be optimal.

Fig. 2.5 gives an example for several transmission rates. These curves serve as tight

bounds for the achievable power efficiency of practical systems, i.e., the BER curve of a

practical system will always be on the right side of the corresponding bound.

Chapter 3

Superposition Mapping (SM)

According to Shannon’s information theory, the capacity of a Gaussian channel can be

achieved if and only if the channel outputs are Gaussian distributed. In the low SNR

regime, the strong impact from the additive Gaussian noise makes the channel outputs

Gaussian even if the inputs are far from Gaussian. For this reason, conventional uniform

mapping schemes are already capacity-achieving at low SNRs. Nonetheless, low SNR

means low capacity, and low capacity means low bandwidth efficiency. To attain high

bandwidth efficiency, one needs to operate in the high SNR regime. For high SNRs, the

channel outputs can only be Gaussian if the channel inputs have a distribution with a

Gaussian-like envelope. In this scenario, conventional uniform mapping schemes are no

longer suitable. Superposition mapping (SM), as a newly evolving modulation technique,

seems to fulfill this requirement very well. The characteristic feature of this technique

is that the conversion from binary digits to symbols is done by a certain form of linear

superposition instead of bijective (one-to-one) mapping. Due to linear superposition, the

symbol distribution can be as Gaussian as desired. On the other hand, superimposed com-

ponents interfere with each other, and the resulting relationship between bit tuples and

symbols is often non-bijective. As a result, SM shows many different features w.r.t. con-

ventional uniform mapping schemes. In this chapter, we perform a systematic study on

SM and try to understand SM from an information theoretical point of view. Particular

focus is on the effects of power allocation. It will be shown that equal power allocation

(EPA) provides an excellent power efficiency but comes with a limited bandwidth effi-

ciency for a reasonable superposition order. In contrast, unequal power allocation (UPA)

provides a high bandwidth efficiency but a degraded power efficiency. To overcome the

drawbacks of EPA and UPA, a novel scheme called grouped power allocation (GPA) is

proposed. SM-GPA delivers a significantly improved bandwidth efficiency w.r.t. SM-EPA

but does not degrade the achievable power efficiency like SM-UPA does.

13

14 CHAPTER 3. SUPERPOSITION MAPPING (SM)

S/P

BPSK

BPSK

BPSK

b1

bn

bN

×

×

×

d1

dn

dN

α1

αn

αN

∑

c1

cn

cN

x

b

Figure 3.1: General structure of superposition mapping.

3.1 General Description

Linear superposition is a natural phenomenon in the real world, which partly explains the

prevalence of the normal distribution, as the cumulative effect of many random effects will

be approximately normal distributed. According to the central limit theorem, the mean

of a sufficiently large number of i.i.d. random variables will be approximately Gaussian

distributed. Equivalently, if one superimpose many i.i.d. variables and fix the total power

of these variables, the resulting summation will be approximately Gaussian. Hence, it is

a natural idea to use linear superposition to create Gaussian-like symbols.

Fig. 3.1 shows a general structure of superposition mapping (SM) with binary antipodal

component symbols. After serial-to-parallel conversion, N code bits are first converted

into binary antipodal symbols via binary phase shift keying (BPSK). Then, a certain

amplitude is allocated to each of these symbols. Afterwards, these component symbols

are linearly superimposed to create a finite-alphabet output symbol. This procedure might

be described by the following equation:

x =
N∑

n=1

cn =
N∑

n=1

αndn =
N∑

n=1

αn(1− 2bn) , αn ∈ R , bn ∈ {0, 1} . (3.1)

In the terminology of mapping, the SM mapping rule can be defined as

φSM(b) =
N∑

n=1

αn(1− 2bn) , b ∈ FN2 , (3.2)

i.e., a binary N -tuple is mapped onto a symbol with a finite alphabet. The amplitude

coefficients αn, 1 6 n 6 N , should be chosen in a way that EφSM
= Es is fulfilled. That is

E
{
x2
}

=
N∑

n=1

E
{
d2
nα

2
n

}
=

N∑

n=1

α2
n

!
= Es , (3.3)

assuming that all chips are mutually independent. To fairly compare with other mapping

schemes, one should normally take Es = 1.

3.1. GENERAL DESCRIPTION 15

Certainly, instead of taking αn ∈ R, one may also take αn ∈ C. By using complex-

valued coefficients αn, one can control not only the power of each chip but also the

phase. This brings another degree of freedom for the design of superposition mapping.

In [29], it is shown that allocating unique phases to superimposed chips increases the

symbol cardinality and consequently improves the supportable bandwidth efficiency of

SM given conventional channel coding schemes, e.g., convolutional codes. Nevertheless,

allocating unique phases to superimposed chips also makes the SM constellation points

non-equispaced and geometrically irregular in the complex signal space. This degrades

the quality of SM symbol distribution and consequently deteriorates the performance of

SM transmission over the Gaussian channels. Furthermore, unequispaced constellation

points may cause a troublesome issue for the frontend circuit of a transmission system. As

a matter of fact, the preference of phase-shifted superposition mapping (PSM) in many

previous works [29, 38, 41–43] is mainly for the reason that the supportable bandwidth

efficiency of SM without phase allocation is very limited, which is actually due to the

unavailability of suitable channel codes. However, with the coding approaches provided in

Chapter 6 and Chapter 7, this issue will be no longer existing. Given these considerations,

we exclude the topic of phase allocation in this thesis and focus our discussion on real-

valued superposition mapping, which might be considered as one signal dimension (either

in-phase or quadrature) of complex-valued superposition mapping.

Hereafter, N will be called the bit load of the superposition mapper, and the binary

antipodal component symbols cn will be called chips. Obeying the convention of BPSK,

the following correspondence holds:

bn = 0 ↔ dn = +1 ↔ cn = +αn

bn = 1 ↔ dn = −1 ↔ cn = −αn
. (3.4)

Note that using binary antipodal chips does not cause any limit on the overall bandwidth

efficiency. To support different data rates, it is only necessary to adjust the bit load N

of SM. Certainly, one may use higher-order modulation formats for the chips, but this

merely increases the mapping and demapping complexity without bringing any practical or

theoretical benefits. Hence, throughout this thesis, chips will be always binary antipodal.

Different from conventional mapping schemes, the cardinality of an SM symbol is not

necessarily 2N . Let X denote the alphabet of x. In general, the situation is

|X | 6 2N , (3.5)

i.e., the mapping rule is often non-bijective and subsequently the symbol distribution is

often nonuniform. A nonuniform symbol distribution is desirable from an information

theoretical point of view. However, a non-bijective mapping rule brings a fundamental

challenge for the design of suitable channel codes, as discussed in later chapters.

16 CHAPTER 3. SUPERPOSITION MAPPING (SM)

ENC

R

SM

N

AWGN
x y

Figure 3.2: Coded SM transmission over Gaussian channel.

H(x) I(x; y)
RN

b

Figure 3.3: A “pipe” interpretation of the information path.

3.2 An Information Theoretical View

Since a superposition mapper is often non-bijective, it takes some special carefulness

when using it. In this section, superposition mapping is reexamined from an information

theoretic point of view. The discussion herein serves as a guideline for the usage of SM.

When a superposition mapper is non-bijective, one has

H(x) < N bits , (3.6)

where H(·) denotes discrete entropy. By the definition of entropy, H(x) is the average

amount of information that an SM symbol can carry. In case of uncoded transmission,

the total amount of information carried by N input bits is exactly N bit, assuming an

ideal source encoder. If (3.6) holds, one is eventually loading more information than an

SM symbol can carry. Consequently, error-free detection will not be possible. Hence,

non-bijective superposition mapping is not suitable for uncoded transmission. To enable

error-free detection, channel coding is necessary to reduce the information rate of the

input bits of a superposition mapper.

Consider coded SM transmission over the AWGN channel, depicted in Fig. 3.2. The

channel coding rate is given by R and the bit load of the superposition mapper is given

by N . Without loss of generality, one may interpret the above system as a “pipe” with two

sections, and the information passing through as certain type of “liquid”, as illustrated

in Fig. 3.3. The diameter of the first pipe section is given by the information-carrying

capability of SM symbols, i.e., the symbol entropy H(x). The diameter of the second pipe

section is given by the mutual information between the channel input and output, which is

denoted by I(x; y). Due to the disturbance from the additive noise, I(x; y) 6 H(x) holds

in general. As commonly known, the maximum throughput of a pipe is determined by the

diameter of the narrowest section. Similarly, the maximum information rate of the above

system is given by I(x; y), which is frequently called channel capacity with constrained

3.3. EQUAL POWER ALLOCATION (EPA) 17

input. To enhance the effective system throughput, one should try to maximize I(x; y)

instead of H(x).

Each SM symbol carries N code bits, while each code bit carries R bits information.

Therefore, the amount of information that one loads onto an SM symbol is RN bits. To

have error-free detection in case of noiseless transmission, the following condition has to

be fulfilled:

RN 6 H(x) ⇒ R 6 H(x)/N . (3.7)

This gives a tight constraint for systems employing superposition mapping. Note that for

a non-bijective superposition mapper, one has H(x) < N . In this concern, SM is inferior

to conventional uniform mapping schemes for which H(x) = N holds. Nevertheless, if the

channel is noisy, an even tighter condition applies:

RN 6 I(x; y) . (3.8)

In this scenario, SM with a properly designed power allocation strategy outperforms

uniform mapping schemes in the sense of higher mutual information given a certain power

constraint, which is the main topic of discussion in the following sections.

3.3 Equal Power Allocation (EPA)

In principle, one can take infinite possibilities in choosing the power allocation scheme for

superposition mapping. Nevertheless, the simplest yet the most essential scheme is the

equal power allocation (EPA) scheme, which assigns all chips with the same amplitude.

This simple mechanism leads to an elegant mathematical description and a well-structured

symbol distribution. As a matter of fact, the EPA scheme lies in the heart of the capacity-

achieving potential as well as the working philosophy of superposition mapping. This

section gives an extensive and in-depth study on SM-EPA and try to reveal its strength

as well as its limits.

3.3.1 Overview

For equal power allocation, the chip amplitudes are all identical. That is

αi = αj ∀ 1 6 i, j 6 N . (3.9)

Consequently, one may use a single α ∈ R to denote the chip amplitudes. The mapping

rule of SM-EPA can be written as

φSM-EPA(b) = α
N∑

n=1

(1− 2bn) , b ∈ FN2 , (3.10)

18 CHAPTER 3. SUPERPOSITION MAPPING (SM)

where α is chosen to satisfy EφSM-EPA
= Es, or equivalently α2N = Es. Hence, to have

Es = 1, the amplitude coefficient should be chosen as α =
√

1/N . Nevertheless, in order

to achieve simple expressions, we often take α = 1, i.e., E {x2} = N , for the purpose of

illustration, while α =
√

1/N for the purpose of performance assessment.

In the simplest case, N = 1, SM-EPA is merely a BPSK mapper, with a symbol alphabet

consisting of two distinct values, depicted in Fig. 3.4(a). In this scenario, SM-EPA is

bijective and all constellation points are equiprobable. Increasing the bit load from 1 to

2, the property of the mapper shows a significant change. Depicted in Fig. 3.4(b), the

cardinality of the symbol alphabet at N = 2 is 3 instead of 2N = 4, and the probability

of x = 0 is twice that of x = ±2. The constellation points are equispaced but no longer

equiprobable, which gives a big difference to conventional mapping schemes.

As a matter of fact, for N > 2, SM-EPA will be always non-bijective, i.e., having a many-

to-one correspondence between the bit tuples and output symbols. For example, given

N = 4, the mapping rule will be given by Tab. 3.1, which is indeed very interesting. It can

be seen that bit tuples with the same amount of 0’s or 1’s are always mapped onto the same

symbol value, or in other words the permutation of 0’s and 1’s does not make any difference

in the mapping result. Particularly, the bit tuples corresponding to x = 0 are typical

sequences of Bernoulli(1
2
) distribution. Given independently and uniformly distributed

(i.u.d.) input bits, this mapping mechanism resembles very much source coding. In source

coding, the most frequently occurring message is encoded with the shortest code word,

such that the average code word length is minimized, while in superposition mapping,

the most frequently occurring set of bit tuples is mapped onto the least-energy symbol

value, which minimizes the average energy of symbol transmission. Nevertheless, due to

a many-to-one correspondence between bit tuples and symbols, information loss happens

during this mapping procedure. Hence, SM-EPA works as if a lossy source encoder.

Back for 20 years, researchers might consider such a mapper as catastrophic, as ambiguity-

free detection is not possible even over a noiseless channel. Nevertheless, with modern

results on coded modulation, one will find that this is a mapper that Shannon would

applaud, since it fulfills the requirement for approaching Gaussian channel capacity.

-1 +1

x

(a) N = 1.

0-2 +2

x

(b) N = 2.

Figure 3.4: Symbol alphabets of SM-EPA, α = 1.

3.3. EQUAL POWER ALLOCATION (EPA) 19

b1, b2, b3, b4 c1, c2, c3, c4 x =
∑4

n=1 cn

1 1 1 1 −1 −1 −1 −1 −4

0 1 1 1 +1 −1 −1 −1

−2
1 0 1 1 −1 +1 −1 −1

1 1 0 1 −1 −1 +1 −1

1 1 1 0 −1 −1 −1 +1

0 0 1 1 +1 +1 −1 −1

0

0 1 0 1 +1 −1 +1 −1

0 1 1 0 +1 −1 −1 +1

1 0 0 1 −1 +1 +1 −1

1 0 1 0 −1 +1 −1 +1

1 1 0 0 −1 −1 +1 +1

0 0 0 1 +1 +1 +1 −1

+2
0 0 1 0 +1 +1 −1 +1

0 1 0 0 +1 −1 +1 +1

1 0 0 0 −1 +1 +1 +1

0 0 0 0 +1 +1 +1 +1 +4

Table 3.1: Mapping rule of SM-EPA, N = 4, α = 1.

3.3.2 Symbol Distribution

Given equal power allocation (EPA), superimposed chips all have identical distribution.

Consequently, an SM-EPA symbol, which is the summation of N i.i.d. chips, will have a

Gaussian-like distribution as long as N is sufficiently large. To offer a solid understanding,

this section provides a detailed survey of the symbol distribution of SM-EPA.

Revisiting (3.1), it is easy to find that an SM-EPA symbol is formed as

x = α
N∑

n=1

dn , dn ∈ {±1} . (3.11)

As a matter of fact, the resulting symbol alphabet X grows (w.r.t. N) in an interesting

way, demonstrated in Tab. 3.2. There is a simple relationship between the bit load and

the symbol cardinality:

|X | = N + 1 . (3.12)

Hence, the symbol cardinality increases linearly with the bit load, instead of exponentially.

This property is very helpful in reducing the demapping complexity, as explained in

Sec. 5.2.2. Besides, it can be seen from Tab. 3.2 that the symbol alphabet of SM-EPA

20 CHAPTER 3. SUPERPOSITION MAPPING (SM)

N X |X |
1 −1,+1 2

2 −2, 0,+2 3

3 −3,−1,+1,+3 4

4 −4,−2, 0,+2,+4 5

5 −5,−3,−1,+1,+3,+5 6

Table 3.2: Symbol alphabets of SM-EPA, α = 1.

can be written as

X = {−αN,−α(N − 2), . . . , α(N − 2), αN} . (3.13)

Let χi denote these possible symbol values in an ascending order, one attains

χi = −α(N − 2i) , 0 6 i 6 N , (3.14)

where the subscript i actually also gives the number of 0’s in the corresponding bit tuples,

cf. Tab. 3.1. Given that the input bits are i.i.d., an SM-EPA symbol conforms to a

binomial distribution B(N, p):

P (x = χi) = (Ni)(1− p)ipN−i , (3.15)

where p is the probability of each bit to be 1 and

(Ni) =
N !

i!(N − i)! (3.16)

is the binomial coefficient. In the field of digital communication, it is a common practice

to make code bits uniformly distributed, e.g., via scrambling. Whenever this is the case,

one has p = 1/2 and

P (x = χi) = (Ni)(1/2)i(1/2)N−i = (Ni)/2
N . (3.17)

In this case, the skew of the distribution is zero, i.e., the distribution is symmetric w.r.t. the

mean of x. If N is large enough, an excellent approximation to P (x) is given by a normal

distribution with a suitable continuity correction [44].

Fig. 3.5 plots the symbol distribution of SM-EPA for various bit loads. As N increases,

the envelope of P (x) first becomes triangular-like and then Gaussian-like. Note that, all

constellation points are equispaced, and the gap between neighboring points is given by

2α. For a fixed energy per symbol, the chip amplitude α is inversely proportional to the

square root of the bit load:

α ∝ 1√
N
, (3.18)

3.3. EQUAL POWER ALLOCATION (EPA) 21

-2 -1 0 1 2
x

0.20

0.25

0.30

0.35

0.40

0.45

0.50

P(
x)

(a) N = 2.

-3 -2 -1 0 1 2 3
x

0.00

0.10

0.20

0.30

0.40

P(
x)

(b) N = 4.

-3 -2 -1 0 1 2 3
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

P(
x)

(c) N = 8.

-4 -3 -2 -1 0 1 2 3 4
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30
P(

x)

(d) N = 12.

-5 -4 -3 -2 -1 0 1 2 3 4 5
x

0.00

0.05

0.10

0.15

0.20

P(
x)

(e) N = 24.

-6 -4 -2 0 2 4 6
x

0.00

0.05

0.10

0.15

P(
x)

(f) N = 32.

Figure 3.5: Symbol distributions of SM-EPA, Es = 1, α =
√

1/N .

22 CHAPTER 3. SUPERPOSITION MAPPING (SM)

N |X | H(x) H(x)/N

1 2 1.0000 bits 1.0000

2 3 1.5000 bits 0.7500

4 5 2.0306 bits 0.5077

8 9 2.5442 bits 0.3180

12 13 2.8385 bits 0.2365

16 17 3.0465 bits 0.1904

24 25 3.3393 bits 0.1391

32 33 3.5470 bits 0.1108

64 65 4.0471 bits 0.0632

Table 3.3: Symbol entropies and compression rates of SM-EPA.

which leads to

α→ 0 for N →∞ . (3.19)

Hence, as N tends to be infinity, P (x) asymptotically approaches a continuous Gaussian

distribution, which is very desirable from an information theoretical point of view.

3.3.3 Symbol Entropy

Due to the nonuniform distribution, the symbol entropy of SM-EPA will generally be less

than the bit load. Without loss of generality, one may call H(x)/N the compression rate

of a superposition mapper, as N independent code bits are compressed into a symbol

carrying H(x) bits of information. As introduced in Section 3.2, this compression rate

tightly upper bounds the coding rate for error-free transmission over noiseless channels.

Follow the definition of entropy [2] and revisit (3.17), we obtain

H(x) = −
∑

x∈X
P (x) logP (x) = −

N∑

i=0

(Ni)

2N
log2

(Ni)

2N
bits . (3.20)

Tab. 3.3 lists the symbol entropies as well as the compression rates for some N . It can

be seen that the symbol entropy grows slower and slower as the bit load increases. As a

consequence, the compression rate decreases with N , which also means that the maximum

permissible coding rate decreases with N (since R 6 H(x)/N according to (3.7)). The

reason of this phenomenon is that when N goes up the size of the typical sequence set for

each symbol value gets larger, which in turn introduces more information loss or in other

words more compression.

3.3. EQUAL POWER ALLOCATION (EPA) 23

0 5 10 15 20 25 30 35
1.5

2

2.5

3

3.5

4

N

E
nt

ro
py

 (
bi

ts
/s

ym
bo

l)

H(x)
Approx.

Figure 3.6: Symbol entropy of SM-EPA vs. bit load N .

Equation (3.20) is mathematically strict but does not give any intuition on the relationship

between H(x) and N . According to probability theory [45, 46], a binomial distribution

B(N, 1
2
) can be well approximated by a Gaussian distribution p(u) with the same mean

and variance for N > 5, given that a proper continuity correction [47] is done. It is clear

that x is zero-mean and its variance is given by

E
{
x2
}

=
N∑

n=1

α2E
{
d2
n

}
=

N∑

n=1

α2 = α2N . (3.21)

Note that the distance between neighboring constellation points is always 2α. Then for

large N we have the following approximation

P (x) ≈
∫ x+α

x−α
p(u) du =

∫ x+α

x−α

1√
2πσ2

u

e−u
2/(2σ2

u) du (3.22)

with

σ2
u = α2N . (3.23)

Without loss of generality, x might be considered as a linear quantization of a Gaussian

variable u. Correspondingly, the quantization bin size is given by ∆ = 2α. Using formula

(C.10) provided in Appendix C.3, we have

H(x) ≈ 1

2
log(2πeσ2

u/∆
2) =

1

2
log(2πeα2N/(4α2)) =

1

2
log(

π

2
eN) , (3.24)

i.e., H(x) ≈ h(N (0, N/4)). As a matter of fact, 1
2

log(π
2
eN) already gives a very good

approximation for H(x) even when N is not so large, depicted in Fig. 3.6, where “Approx.”

stands for the approximation under concern1.

1This topic already attracts interest in the 1970’s [35]. Later on, Hughes et al. proposed in [36]

a simplified mathematical derivation by utilizing the relationship between the entropy of a continuous

variable and the discrete entropy of its quantization [2]. An interesting study on a precise asymptotic

approximation of the entropy of binomial distribution can be found in [48].

24 CHAPTER 3. SUPERPOSITION MAPPING (SM)

0 3 6 9 12 15 18 21 24 27 30
E

s
/N

0
 in dB

0

1

2

3

4

5

6

M
ut

ua
l I

nf
or

m
at

io
n

(b
its

/s
ym

bo
l) Capacity

N = 1
N = 2
N = 3
N = 4

Ultimate shaping gain
1.53 dB

(a) Uniform ASK mapping.

0 3 6 9 12 15 18 21 24 27 30
E

s
/N

0
 in dB

0

1

2

3

4

5

6

M
ut

ua
l I

nf
or

m
at

io
n

(b
its

/s
ym

bo
l) Capacity

N = 1
N = 2
N = 4
N = 8
N = 16
N = 32
N = 64

(b) SM-EPA.

Figure 3.7: Mutual information over the AWGN channel.

Given the above derivation, it is now clear that the symbol entropy H(x) of SM-EPA is

approximately logarithmic w.r.t. the bit load N . This explains the decrease of compression

rate H(x)/N when increasing N . As listed in Tab. 3.3, by choosing N = 32 the amount

of information that one SM-EPA symbol can carry is merely 3.5470 bits, which indicates

that SM-EPA is inefficient in supporting very high bandwidth efficiencies.

3.3.4 Mutual Information

The maximum throughput of a channel is given by the mutual information (MI) between

its input and output. For the AWGN channel we have

I(x; y) = h(y)− h(y|x) = h(y)− h(z) .

Given a power constraint, h(y) is maximized when y conforms to a Gaussian distribution.

Hence, whether a mapping scheme is capacity-achieving or not is determined by whether

the corresponding channel output distribution is Gaussian or not.

It is well-known that conventional uniform ASK mapping is not capacity-achieving at high

SNRs. As illustrated in Fig. 3.7(a), there is a gap of about 1.53 dB between the MI curves

of ASK and the channel capacity curve. In the terminology of signal shaping, this gap is

often referred to as the ultimate shaping gain, as this is the maximum possible gain that

signal shaping can yield w.r.t. uniform ASK mapping. Fig. 3.8 gives a good explanation

for the MI performance of ASK. One sees that the channel output distribution does not

become Gaussian for uniform ASK with large bit loads.

As introduced in Section 3.3.2, the symbol distribution of SM-EPA tends to have a

Gaussian-like envelope as the bit load increases. Naturally, one expects a better per-

formance from SM-EPA than that from uniform ASK. Demonstrated by Fig. 3.7(b),

3.3. EQUAL POWER ALLOCATION (EPA) 25

-3 -2 -1 0 1 2 3
y

0.0

0.2

0.4

0.6

0.8

1.0

1.2

p(
y)

(a) N = 1.

-4 -2 0 2 4
y

0.0

0.1

0.2

0.3

0.4

0.5

p(
y)

(b) N = 2.

-4 -2 0 2 4
y

0.00

0.05

0.10

0.15

0.20

p(
y)

(c) N = 3.

-6 -4 -2 0 2 4 6
y

0.00

0.05

0.10

0.15

0.20

p(
y)

(d) N = 4.

Figure 3.8: AWGN channel output distribution for uniform ASK, Es/N0 = 12 dB.

-3 -2 -1 0 1 2 3
y

0.0

0.2

0.4

0.6

0.8

1.0

1.2

p(
y)

(a) N = 1.

-4 -3 -2 -1 0 1 2 3 4
y

0.0

0.2

0.4

0.6

0.8

1.0

p(
y)

(b) N = 4.

-6 -4 -2 0 2 4 6
y

0.0

0.1

0.2

0.3

0.4

0.5

p(
y)

(c) N = 16.

-6 -4 -2 0 2 4 6
y

0.0

0.1

0.2

0.3

0.4

p(
y)

(d) N = 64.

Figure 3.9: AWGN channel output distribution for SM-EPA, Es/N0 = 12 dB.

26 CHAPTER 3. SUPERPOSITION MAPPING (SM)

SM-EPA is indeed capacity-achieving. For example, given N = 64, the MI curve of SM-

EPA sticks with the capacity curve till Es/N0 ≈ 18 dB. It is not difficult to imagine that

SM-EPA can be capacity-achieving at arbitrarily large SNRs as long as the bit load is

large enough. Fig. 3.9 illustrates the channel output distribution for SM-EPA. What we

see is that for SM-EPA with large bit loads the distribution of the continuous additive

noise smoothes out the gaps between the discrete symbol values of SM-EPA.

3.4 Unequal Power Allocation (UPA)

In the previous section, superposition mapping with equal power allocation has been thor-

oughly studied. It has been shown that the symbol distribution of SM-EPA is Gaussian-

like and consequently is capacity-achieving for Gaussian channels. In this section, another

important class of power allocation strategy will be investigated, namely unequal power

allocation (UPA). This type of power allocation strategy can not really demonstrate the

main merits of superposition mapping but deserves interest for academic study. It will

be shown that SM-UPA shows a significantly different behaviour compared to SM-EPA,

both w.r.t. the symbol property and the achievable power/bandwidth efficiency.

3.4.1 The Exponential Law

Though there are virtually unlimited possibilities for unequal power allocation, the most

meaningful choice is the exponential law both for practice and theoretical study. Mathe-

matically, an exponential power allocation strategy can be described as

x =
N∑

n=1

cn =
N∑

n=1

αndn , dn ∈ {±1} , (3.25)

with

αn = a · ρn−1 , 0 < ρ < 1 , (3.26)

where ρ is the exponential base, and the value of a should be such that E {x2} = Es is

fulfilled. Note that the power of the (n+ 1)-th chip is always ρ2 of that of the n-th chip.

Let us first consider the case that ρ = 0.5. Given this exponential base, the power of the

(n + 1)-th chip will be exactly a quarter of the n-th chip. The corresponding SM-UPA

is actually bijective and uniform, regardless of the bit load. Shown in Fig. 3.10(a), the

symbol cardinality is exactly given by 2N , and the symbol distribution is uniform. As a

result, the respective mutual information (MI) curves are apart from the capacity curve for

3.4. UNEQUAL POWER ALLOCATION (UPA) 27

-2 -1 0 1 2
x

0.00

0.02

0.04

0.06

0.08

P(
x)

(a) Symbol distribution, ρ = 0.5, N = 4.

0 4 8 12 16 20 24 28 32 36 40
E

s
/N

0
 in dB

0

1

2

3

4

5

6

7

M
ut

ua
l I

nf
or

m
at

io
n

(b
its

/s
ym

bo
l) Capacity

N = 1
N = 2
N = 3
N = 4
N = 5
N = 6

(b) Mutual information, ρ = 0.5.

-2 -1 0 1 2
x

0.00

0.02

0.04

0.06

0.08

P(
x)

(c) Symbol distribution, ρ = 0.75, N = 4.

0 6 12 18 24 30 36 42 48 54 60
E

s
/N

0
 in dB

0

1

2

3

4

5

6

7
M

ut
ua

l I
nf

or
m

at
io

n
(b

its
/s

ym
bo

l) Capacity
N = 1
N = 2
N = 3
N = 4
N = 5
N = 6

(d) Mutual information, ρ = 0.75.

-2 -1 0 1 2
x

0.00

0.02

0.04

0.06

0.08

P(
x)

(e) Symbol distribution, ρ = 0.25, N = 4.

0 8 16 24 32 40 48 56 64 72 80
E

s
/N

0
 in dB

0

1

2

3

4

5

6

7

M
ut

ua
l I

nf
or

m
at

io
n

(b
its

/s
ym

bo
l) Capacity

N = 1
N = 2
N = 3
N = 4
N = 5
N = 6

(f) Mutual information, ρ = 0.25.

Figure 3.10: Symbol distribution and mutual information of SM-UPA.

28 CHAPTER 3. SUPERPOSITION MAPPING (SM)

about 1.53 dB in the linear section, depicted in Fig. 3.10(b). Comparing Fig. 3.10(b) with

Fig. 3.7(a), one recognizes that the MI performance of SM-UPA in this case is identical

to that of uniform ASK. A nice feature is that the supportable bandwidth efficiency,

given by the top position of the MI curves, is linear in the bit load, while an obvious

drawback is that the mapping scheme is not capacity-achieving, just like the case of

uniform ASK mapping. Hence, the SM scheme under consideration does not show any

advantage over conventional uniform ASK mapping but also no disadvantage, from an

information theoretical point of view. To be elaborated in Section 3.4.2, SM-UPA with

ρ = 0.5 exactly emulates a uniform ASK with natural labeling.

For most bases ρ 6= 0.5, the symbol distribution of SM-UPA is still probabilistically

uniform but the constellation points will no longer be equispaced. For 0.5 < ρ < 1,

the density of constellation points in the region close to zero is higher than that in the

region far from zero, depicted in Fig. 3.10(c). Consequently, the capacity-achieving SNR

range is wider than that of ρ = 0.5, cf. Fig. 3.10(d). However, for N > 4 the MI

curves shows a strange shape in the middle section. Note that in Fig. 3.10(c) there

are two pairs of constellation points being very close to each other around ±0.5, which

explains the transition behaviour of the MI curves from low SNR to high SNR. When one

chooses 0 < ρ < 0.5, the symbol property of SM-UPA becomes rather undesirable. As

demonstrated by Fig. 3.10(e), the constellation points are level-wise polarized by relatively

strong chips, and the minimum distance between constellation points is rather small for

high bit loads. This feature is clearly unfavorable for the receiver algorithm. Besides, the

symbol distribution is geometrically nonuniform, however, developing in a trend that being

more and more non-Gaussian, which is adverse for the MI performance, cf. Fig. 3.10(f).

In general, non-equispaced constellation presents a troublesome issue for the front-end

circuits which likely introduce certain nonlinear distortion. To improve the MI property

of SM in the linear section, one should choose equal power allocation instead of UPA with

0.5 < ρ < 1, from a practical point of view. Therefore, among all the possibilities for ρ,

0.5 is a distinguished choice for SM-UPA. In the rest of this thesis, an exponential law

with ρ = 0.5 will always be assumed for SM-UPA, if not explicitly stated otherwise.

3.4.2 Mapping and Labeling

Given the exponential law with ρ = 0.5, the mapping rule of SM-UPA

φSM-UPA(b) = a

N∑

n=1

ρn−1(1− 2bn) , b ∈ FN2 , (3.27)

will always be bijective. Hence, no information loss will occur during the mapping proce-

3.4. UNEQUAL POWER ALLOCATION (UPA) 29

N |X | H(x) H(x)/N

1 2 1.0 bits 1.0

2 4 2.0 bits 1.0

3 8 3.0 bits 1.0

4 16 4.0 bits 1.0

5 32 5.0 bits 1.0

6 64 6.0 bits 1.0

Table 3.4: Symbol entropies and compression rates of SM-UPA, ρ = 0.5.

b0, b1, b2, b3 c0, c1, c2, c3 x =
∑4

n=1 cn

0 0 0 0 +1 +0.5 +0.25 +0.125 +1.875

0 0 0 1 +1 +0.5 +0.25 −0.125 +1.625

0 0 1 0 +1 +0.5 −0.25 +0.125 +1.375

0 0 1 1 +1 +0.5 −0.25 −0.125 +1.125

0 1 0 0 +1 −0.5 +0.25 +0.125 +0.875

0 1 0 1 +1 −0.5 +0.25 −0.125 +0.625

0 1 1 0 +1 −0.5 −0.25 +0.125 +0.375

0 1 1 1 +1 −0.5 −0.25 −0.125 +0.125

1 0 0 0 −1 +0.5 +0.25 +0.125 −0.125

1 0 0 1 −1 +0.5 +0.25 −0.125 −0.375

1 0 1 0 −1 +0.5 −0.25 +0.125 −0.625

1 0 1 1 −1 +0.5 −0.25 −0.125 −0.875

1 1 0 0 −1 −0.5 +0.25 +0.125 −1.125

1 1 0 1 −1 −0.5 +0.25 −0.125 −1.375

1 1 1 0 −1 −0.5 −0.25 +0.125 −1.625

1 1 1 1 −1 −0.5 −0.25 −0.125 −1.875

Table 3.5: Mapping rule of SM-UPA, N = 4, a = 1, ρ = 0.5.

dure, and sequentially the compression rate of SM-UPA will always be equal to 1, as listed

in Tab. 3.4. For this reason, error-free transmission is also possible for uncoded SM-UPA,

which gives a big difference w.r.t. SM-EPA. Tab. 3.5 elaborates the mapping rule of SM-

UPA with N = 4. One may recognize that this mapping rule is exactly the same as that

of uniform 16-ASK mapping with natural labeling. Certainly, the resulting performance

will also be identical to that of 16-ASK with natural labeling. Therefore, conventional

uniform ASK mapping can easily be emulated by SM-UPA, as long as natural labeling

is desired, which brings a practical benefit that one may use a tree-based BCJR [49]

algorithm to reduce the detection complexity, as introduced in the next chapter.

30 CHAPTER 3. SUPERPOSITION MAPPING (SM)

3.5 Grouped Power Allocation (GPA)

In Section 3.3, we have seen that superposition mapping with equal power allocation

delivers a Gaussian-like symbol distribution, which brings a capacity-achieving power ef-

ficiency, but suffers from a logarithmically growing symbol entropy w.r.t. the bit load,

which significantly limits the supportable bandwidth efficiency for a reasonable compu-

tational complexity. On the other hand, superposition mapping with unequal power

allocation offers a linearly growing symbol entropy w.r.t. the bit load, which brings a vir-

tually unlimited supportable bandwidth efficiency, but suffers from a geometrically and

probabilistically uniform symbol distribution, which eliminates the possibility to achieve

the Gaussian channel capacity, as described in Section 3.4. Therefore, both equal power

allocation and unequal power allocation have their pros and cons. In short, equal power

allocation is beneficial for power efficiency, while unequal power allocation is beneficial

for bandwidth efficiency.

Today’s communication systems demand high power efficiency and high bandwidth effi-

ciency simultaneously. Meanwhile, the computational complexity is still a critical concern

for the reason of hardware cost and electricity consumption. Therefore, it is of great prac-

tical interest to design a power allocation strategy for superposition mapping, such that

high power and bandwidth efficiency can be achieved simultaneously at an affordable

computational complexity. In this section, a grouped power allocation (GPA) scheme is

proposed, which is a hybrid of equal and unequal power allocation strategy. GPA shows

the merits of EPA and UPA, while considerably eliminates the problems from both.

3.5.1 Basic Idea

From Fig. 3.5 one observes that equal power allocation helps to build up a Gaussian-like

symbol distribution, while from Fig. 3.10 one sees that unequal power allocation helps to

increase the symbol cardinality. Following this observation, we may construct a hybrid

power allocation strategy such that superimposed chips are divided into several groups

with each group assigned a different power level and chips within each group assigned

an identical power level. Given a sufficiently large group size, the summation of chips

within each individual group will have a Gaussian-like distribution, and consequently the

summation of multiple groups will also have a Gaussian-like distribution. Meanwhile, due

to the existence of multiple power levels, the symbol cardinality will be enlarged and thus

the supportable bandwidth efficiency will be improved, comparing to the case of SM-EPA.

3.5. GROUPED POWER ALLOCATION (GPA) 31

The above idea can be formulated as follows:

x =
L∑

l=1

αl

G∑

g=1

dl,g , dl,g ∈ {±1} , (3.28)

where L gives the number of power levels and G gives the group size. Clearly, N = L ·G
defines the total amount of chips per symbol, i.e., the bit load. αl is the amplitude

coefficient of the l-th power level, which is defined as

αl
.
= a 2−(l−1) (3.29)

with the value of a chosen to fulfill E {x2} = Es. Note that the base of exponential has

been carefully chosen to be 2. The reason of this choice is obvious when one observes the

elegant symbol distribution resulting from this power allocation strategy.

3.5.2 Symbol Distribution & Mutual Information

Shown in Section 3.3, as long as the symbol distribution has a Gaussian-like envelope, the

potential to achieve the Gaussian channel capacity will be guaranteed. Here we investigate

the situation of superposition mapping with grouped power allocation. Fig. 3.11 together

with Fig. 3.12 provides an overview on the symbol distribution and mutual information

of SM-GPA with various setups. When one chooses G = 1, the symbol distribution will

be uniform, cf. Fig. 3.11(a). This is easy to understand since SM-GPA with such a

setup is equivalent to SM-UPA. Therefore, the resulting mutual information (MI) curves

are not capacity-achieving in the linear section, cf. Fig. 3.11(b). Increasing the group

size G from 1 to 2, a fundamental change occurs. Now, the symbol distribution has a

triangular envelope, demonstrated by Fig. 3.11(c). A triangular distribution envelope is

not optimal but much more Gaussian-like than a uniform one. From Fig. 3.11(d), one

sees that the corresponding MI curves are almost capacity-achieving in the linear section.

If one further increases the group size to G = 3, the resulting symbol distribution of

SM-GPA exhibits an elegant bell shape and the respective MI curves are indeed capacity

achieving in the linear section, cf Fig. 3.11(e) and Fig. 3.11(f). This gives a message that

the concept of grouped power allocation is very effective in improving the achievable power

efficiency of superposition mapping. One may notice that the shape of the distribution

envelope is solely determined by the group size G and in fact a moderate value as G = 3 is

already sufficient for an optimal power efficiency. By choosing an even larger group size,

the symbol distribution becomes more Gaussian, illustrated in Fig. 3.12, but brings no

noticeable improvement for the MI performance. Note that the performance improvement

is considerable by increasing G = 1 to G = 2, but is marginal from G = 2 to G = 3. From

an engineering standpoint, G = 2 deserves to be a good choice. Later on, in Chapter 7

we will show that G = 2 leads to a lower receiver complexity w.r.t. G = 1 and G > 3.

32 CHAPTER 3. SUPERPOSITION MAPPING (SM)

-2 -1 0 1 2
x

0.00

0.02

0.04

0.06

0.08

P(
x)

(a) Symbol distribution, G = 1, L = 4.

0 5 10 15 20 25 30 35 40 45 50
E

s
/N

0
 in dB

0

1

2

3

4

5

6

7

8

M
ut

ua
l I

nf
or

m
at

io
n

(b
its

/s
ym

bo
l) Gaussian input

G = 1, L = 1
G = 1, L = 2
G = 1, L = 3
G = 1, L = 4
G = 1, L = 5
G = 1, L = 6

(b) Mutual information vs. SNR, G = 1.

-3 -2 -1 0 1 2 3
x

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

P(
x)

(c) Symbol distribution, G = 2, L = 4.

0 5 10 15 20 25 30 35 40 45 50
E

s
/N

0
 in dB

0

1

2

3

4

5

6

7

8

M
ut

ua
l I

nf
or

m
at

io
n

(b
its

/s
ym

bo
l) Gaussian input

G = 2, L = 1
G = 2, L = 2
G = 2, L = 3
G = 2, L = 4
G = 2, L = 5
G = 2, L = 6

(d) Mutual information vs. SNR, G = 2.

-3 -2 -1 0 1 2 3
x

0.00

0.01

0.02

0.03

0.04

0.05

P(
x)

(e) Symbol distribution, G = 3, L = 4.

0 5 10 15 20 25 30 35 40 45 50
E

s
/N

0
 in dB

0

1

2

3

4

5

6

7

8

M
ut

ua
l I

nf
or

m
at

io
n

(b
its

/s
ym

bo
l) Gaussian input

G = 3, L = 1
G = 3, L = 2
G = 3, L = 3
G = 3, L = 4
G = 3, L = 5
G = 3, L = 6

(f) Mutual information vs. SNR, G = 3.

Figure 3.11: Symbol distribution and mutual information of SM-GPA, Es = 1.

3.5. GROUPED POWER ALLOCATION (GPA) 33

-4 -2 0 2 4
x

0.00

0.02

0.04

0.06

0.08

0.10

P(
x)

(a) Symbol distribution, G = 4, L = 3.

0 5 10 15 20 25 30 35 40 45 50
E

s
/N

0
 in dB

0

1

2

3

4

5

6

7

8

M
ut

ua
l I

nf
or

m
at

io
n

(b
its

/s
ym

bo
l) Gaussian input

G = 4, L = 1
G = 4, L = 2
G = 4, L = 3
G = 4, L = 4
G = 4, L = 5
G = 4, L = 6

(b) Mutual information vs. SNR, G = 4.

-4 -2 0 2 4
x

0.00

0.02

0.04

0.06

0.08

P(
x)

(c) Symbol distribution, G = 5, L = 3.

0 5 10 15 20 25 30 35 40 45 50
E

s
/N

0
 in dB

0

1

2

3

4

5

6

7

8
M

ut
ua

l I
nf

or
m

at
io

n
(b

its
/s

ym
bo

l) Gaussian input
G = 5, L = 1
G = 5, L = 2
G = 5, L = 3
G = 5, L = 4
G = 5, L = 5
G = 5, L = 6

(d) Mutual information vs. SNR, G = 5.

-4 -2 0 2 4
x

0.00

0.02

0.04

0.06

0.08

P(
x)

(e) Symbol distribution, G = 6, L = 3.

0 5 10 15 20 25 30 35 40 45 50
E

s
/N

0
 in dB

0

1

2

3

4

5

6

7

8

M
ut

ua
l I

nf
or

m
at

io
n

(b
its

/s
ym

bo
l) Gaussian input

G = 6, L = 1
G = 6, L = 2
G = 6, L = 3
G = 6, L = 4
G = 6, L = 5
G = 6, L = 6

(f) Mutual information vs. SNR, G = 6.

Figure 3.12: Symbol distribution and mutual information of SM-GPA, Es = 1.

34 CHAPTER 3. SUPERPOSITION MAPPING (SM)

1 2 3 4 5 6 7 8
L

10
0

10
1

10
2

10
3

10
4

Sy
m

bo
l C

ar
di

na
lit

y

G = 2
G = 4
G = 8

(a) Symbol cardinality vs. L.

1 2 3 4 5 6 7 8
L

0

2

4

6

8

10

Sy
m

bo
l E

nt
ro

py

G = 2, H(x)
G = 2, Approx.
G = 4, H(x)
G = 4, Approx.
G = 8, H(x)
G = 8, Approx.

(b) Symbol entropy vs. L.

Figure 3.13: Symbol cardinality and symbol entropy of SM-GPA.

3.5.3 Symbol Cardinality & Symbol Entropy

For SM-GPA, the relationship between the symbol cardinality and the bit load is not so

easy to be seen, due to the existence of multiple power levels. Therefore, some additional

effort is taken below to reveal the connection between SM-GPA symbol cardinality and

the respective parameters.

In general, the value span of SM-GPA symbols is given by

max(x)−min(x) = 2
L∑

l=1

G∑

g=1

a2−(l−1) = 2G
a(1− 2−L)

1− 2−1
= 4Ga(1− 2−L) ,

where the second equality follows from the property of geometric series [50]. From Fig. 3.11

and Fig. 3.12 one observes that the constellation points of SM-GPA are always equispaced,

which is easy to understand by concerning the specifically chosen exponential base. The

distance between two neighboring constellation points is always given by two times the

chip magnitude of the weakest power level:

∆ = 2 · a2−(L−1) = 4a2−L .

Given the above statements, the symbol cardinality of SM-GPA can be determined as

|X | = max(x)−min(x)

∆
+ 1 = G(2L − 1) + 1 . (3.30)

Equation (3.30) might be interpreted in two ways. Fixing the number of power levels, the

symbol cardinality is approximately linear w.r.t. the group size, similar to the case of SM-

EPA. However, for a fixed group size, the symbol cardinality is approximately exponential

in the number of power levels, cf. Fig. 3.13(a). Correspondingly one sees in Fig. 3.13(b)

an almost linear relationship between symbol entropy and L for a given group size, which

is to be explained in next step.

3.5. GROUPED POWER ALLOCATION (GPA) 35

G L N = GL |X | H(x) H(x)/N

1 1 1 2 1.0000 bits 1.0000

1 2 2 4 2.0000 bits 1.0000

1 3 3 8 3.0000 bits 1.0000

1 4 4 16 4.0000 bits 1.0000

2 1 2 3 1.5000 bits 0.7500

2 2 4 7 2.6556 bits 0.6639

2 3 6 15 3.7023 bits 0.6171

2 4 8 31 4.7159 bits 0.5895

3 1 3 4 1.8113 bits 0.6038

3 2 6 10 2.9843 bits 0.4974

3 3 9 22 4.0247 bits 0.4472

3 4 12 46 5.0345 bits 0.4195

4 1 4 5 2.0306 bits 0.5077

4 2 8 13 3.2014 bits 0.4002

4 3 12 29 4.2386 bits 0.3532

4 4 16 61 5.2475 bits 0.3280

Table 3.6: Symbol cardinalities, symbol entropies, and compression rates of SM-GPA.

Following (3.28), the average symbol energy of SM-GPA comes straightforward:

E
{
x2
}

=
L∑

l=1

G∑

g=1

a22−2(l−1)E
{
d2
l,g

}
= Ga2

L∑

l=1

2−2(l−1) = Ga2 1− 4−L

1− 4−1
. (3.31)

As long as G is not too small, i.e., the symbol distribution is Gaussian-like, one may

utilize formula (C.10) provided in Appendix C.3 and sequentially obtain

H(x) ≈ 1

2
log(2πeσ2

x/∆
2) =

1

2
log(2πeGa2 1− 4−L

1− 4−1

/
(16a22−2L))

=
1

2
log
(π

6
eG(22L − 1)

)
. (3.32)

Fig. 3.13(b) compares the measured symbol entropy of SM-GPA with the above approx-

imation. Clearly, for G > 2 this approximation is rather good. For large L, one may

further simplify the expression as

H(x) ≈ 1

2
log
(π

6
eG · 22L

)
=

1

2
log2

(π
6
eG
)

+ L bits , (3.33)

which tells that by using one more power level we obtain about 1 bit of entropy increase

for SM-GPA. This can also be seen from Tab. 3.6. Comparing Tab. 3.6 with Tab. 3.3, we

will find that SM-GPA is much more efficient than SM-EPA in the sense of supportable

bandwidth efficiency, given identical bit loads.

36 CHAPTER 3. SUPERPOSITION MAPPING (SM)

b1, b2, b3, b4
0, 0, 0, 0

0, 0, 0, 1

0, 0, 1, 0

0, 0, 1, 1

0, 1, 0, 0

1, 0, 0, 0

0, 1, 0, 1

0, 1, 1, 0

1, 0, 0, 1

1, 0, 1, 0

0, 1, 1, 1

1, 0, 1, 1

1, 1, 0, 0

1, 1, 0, 1

1, 1, 1, 0

1, 1, 1, 1

c1, c2, c3, c4
+1,+1,+1

2,+
1
2

+1,+1,+1
2,−1

2

+1,+1,−1
2
,+1

2

+1,+1,−1
2,−1

2

+1,−1,+1
2,+

1
2

−1,+1,+1
2,+

1
2

+1,−1,+1
2
,−1

2

+1,−1,−1
2,+

1
2

−1,+1,+1
2,−1

2

−1,+1,−1
2
,+1

2

+1,−1,−1
2,−1

2

−1,+1,−1
2,−1

2

−1,−1,+1
2
,+1

2

−1,−1,+1
2
,−1

2

−1,−1,−1
2,+

1
2

−1,−1,−1
2,−1

2

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

+3

+2

+1

0

−1

−2

−3

x P (x)

1/16

2/16

3/16

4/16

3/16

2/16

1/16

b

Figure 3.14: Mapping rule of SM-GPA with G = 2, L = 2, and a = 1.

3.5.4 Mapping & Labeling

From Tab. 3.1 we see that SM-EPA is a non-bijective mapping scheme for N > 2 and it

employs a certain type of typical-sequence labeling. Tab. 3.5 shows that SM-UPA is a

bijective mapping scheme with natural labeling. As GPA is a mixture of EPA and UPA,

one may wonder the resulting labeling mechanism of SM-GPA. Fig. 3.14 provides an

example of the mapping rule of SM-GPA. In general, SM-GPA is non-bijective for G > 2.

As for the case of G = L = 2, the symbol distribution exhibits a triangular envelope.

The corresponding labeling mechanism is neither natural labeling nor typical-sequence

labeling. Instead, it is a mixture of natural labeling and typical-sequence labeling, due

to the interaction between chips from multiple power levels. Checking Fig. 3.14 carefully

one will find that the combination of the first two bits changes the symbol value in a large

scale while the combination of the last two bits changes the symbol value in a small scale.

Inside each power level, typical-sequence labeling still takes place. As a result, we may

term this as a partial-typical-sequence labeling. In the case of G = L = 2, for x = ±1,

the corresponding bit combinations are not ε-typical with ε = 0, but for all x 6= ±1, the

bit combinations are always 0-typical w.r.t. a certain Bernoulli distribution.

Chapter 4

Uncoded SM Transmission

In the previous chapter, three different power allocation strategies were introduced for su-

perposition mapping: equal power allocation (EPA), unequal power allocation (UPA), and

grouped power allocation (GPA). Among these three strategies, EPA and GPA provide a

Gaussian-like symbol distribution and meanwhile make the mapping scheme non-bijective.

In contrast, SM-UPA is uniform and bijective and is eventually equivalent to conventional

ASK with natural labeling. In this chapter, the performance of uncoded SM transmission

will be studied, given the three power allocation strategies. Easy to imagine, error-free

uncoded transmission will not be possible for SM-EPA and SM-GPA, whenever they are

non-bijective. It is also easy to imagine that the performance of uncoded SM-UPA will

be identical to that of ASK with natural labeling. Nevertheless, the corresponding inves-

tigations are very helpful for obtaining a better understanding on the working mechanism

of superposition mapping. Particular focus will be put on the performance of maximum

a posteriori demapping for non-bijective SM-EPA.

4.1 Maximum-A-Posteriori Demapping

The optimal receiver algorithm for uncoded SM transmission over the Gaussian channel is

the maximum a posteriori (MAP) demapping approach, in the sense of minimizing the bit

error rate (BER). For easy reference, let us repeat here the basic formula of superposition

mapping:

x =
N∑

n=1

cn =
N∑

n=1

αndn =
N∑

n=1

αn(1− 2bn) (4.1)

and the AWGN channel model:

y = x+ z , z ∼ N (0, σ2
z) . (4.2)

37

38 CHAPTER 4. UNCODED SM TRANSMISSION

Given the above notation and let b∼n
.
= {b1, . . . , bn−1, bn+1, . . . , bN} denote the bit set

excluding bn, an MAP demapper computes

b̂n = arg max
bn∈{0,1}

{p(bn|y)} = arg max
bn∈{0,1}

{p(y|bn)P (bn)/p(y)}
(a)
= arg max

bn∈{0,1}
{p(y|bn)}

(b)
= arg max

bn∈{0,1}

{∑

b∼n

p(y|b1, . . . , bn, . . . , bN)
N∏

i=1,i 6=n
P (bi)

}

(c)
= arg max

bn∈{0,1}

{∑

b∼n

p(y|b1, . . . , bn, . . . , bN)

}

= arg max
bn∈{0,1}




∑

b∼n

1√
2πσ2

z

exp


−

(
y −∑N

n=1 αn(1− 2bn)
)2

2σ2
z








, (4.3)

where equality (a), (b), and (c) follow from the assumption that the input bits of the

superposition mapper are uniformly distributed and mutually independent. A straight-

forward evaluation of (4.3) involves a complexity proportional to 2N . Nevertheless, as the

focus of this chapter is merely on theoretical issues, the discussion on reduced-complexity

demapping will be excluded here and treated later in Chapter 5.

4.2 Bit Error Probability of SM-EPA

Given equal power allocation, SM is non-bijective for all N > 2, or in other words it is

lossy for N > 2. Consequently, error-free reconstruction of the input bits will be only

possible at N = 1, if no channel coding is applied. The Monte Carlo simulation results in

Fig. 4.1 fully agree with this conjecture. There is an interesting phenomenon in Fig. 4.1.

The error floor level of N = 2 and N = 3 are identical, and the same is for N = 4 and

N = 5. In fact, this holds in general for N = 2n and N = 2n + 1, n ∈ Z+. To clearly

explain this phenomenon a deep insight into the MAP demapping procedure is necessary.

Since the focus is on the level of error floor, it is sufficient to investigate the case of

noiseless transmission, which largely simplifies the mathematical description. For noiseless

SM-EPA transmission, i.e., y = x, the MAP demapping formula (4.3) can be rewritten as

b̂n = arg max
bn∈{0,1}

{P (x|bn)} = arg max
bn∈{0,1}

{∑
b∼n P (x|b)

∏N
i=1,i 6=n P (bi)

}

= arg max
bn∈{0,1}

{∑
b∼n δ

(
x−∑N

i=1 α(1− 2bi)
)}

, (4.4)

4.2. BIT ERROR PROBABILITY OF SM-EPA 39

0 2 4 6 8 10 12 14 16 18 20
E

b
/N

0
 in dB

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

N = 1
N = 2
N = 3
N = 4
N = 5

Figure 4.1: BER vs. Eb/N0, SM-EPA with MAP demapping.

b1, b2
0, 0

0, 1

1, 0

1, 1

b

b

b

b

c1, c2
+1,+1

+1,−1

−1,+1

−1,−1

b

b

b

+2

0

−2

x P (x)
1/4

1/2

1/4

b

b

Figure 4.2: Mapping rule of SM-EPA with N = 2, α = 1.

with the Dirac delta function defined as δ(τ) = 1 for τ = 0 and δ(τ) = 0 for τ 6= 0. This

is basically to count the amount of bit combinations that would give a summation equal

to the received value x, with the value of bn fixed to 0 and 1 respectively. Note that the

amplitude coefficients αn has been replaced by a single α w.r.t. (4.3), due to EPA.

Let us first consider the case of N = 2 and for the sake of simplicity we take α = 1.

The corresponding mapping rule is illustrated in Fig. 4.2, which also gives the probability

distribution of the mapper output with the assumption of i.u.d. input bits. Clearly, the

mapping procedure varies with the specific value of received sample x, and so does the

demapping procedure. To see this, we define a shorthand notation for the MAP metric:

ψ(bn)
.
=
∑

b∼n δ
(
x−∑N

i=1(1− 2bi)
)
. (4.5)

Carefully checking Fig. 4.2, one obtains the following logical chain:

x = +2 → ψ(bn = 0) = 1 , ψ(bn = 1) = 0 → b̂n = 0 → Pe|x=+2 = 0

x = 0 → ψ(bn = 0) = 1 , ψ(bn = 1) = 1 → b̂n = ? → Pe|x=0 = 1
2

x = −2 → ψ(bn = 0) = 0 , ψ(bn = 1) = 1 → b̂n = 1 → Pe|x=−2 = 0

,

where the question mark “?” stands for the fact that no reliable decision can be made.

Pe|x denotes the error probability of MAP decision given a certain value of x. Due to

the symmetry of the mapping rule, the situation is identical for b1 and b2. Considering

40 CHAPTER 4. UNCODED SM TRANSMISSION

b1, b2, b3
0, 0, 0

0, 0, 1

0, 1, 0

1, 0, 0

0, 1, 1

1, 0, 1

1, 1, 0

1, 1, 1

c1, c2, c3
+1,+1,+1

+1,+1,−1

+1,−1,+1

−1,+1,+1

+1,−1,−1

−1,+1,−1

−1,−1,+1

−1,−1,−1

b

b

b

b

b

b

b

b

b

b

b

b

+3

+1

−1

−3

x P (x)
1/8

3/8

3/8

1/8

Figure 4.3: Mapping rule of SM-EPA with N = 3, α = 1.

the nonuniform distribution of the output symbol, the average error probability of MAP

decision is given by

Pe =
∑

x∈X
P (x)Pe|x =

1

4
· 0 +

1

2
· 1

2
+

1

4
· 0 = 0.25 ,

which well fits with the observation in Fig. 4.1.

In a similar way, one obtains for N = 3 the following logical chain:

x = +3 → ψ(bn = 0) = 1 , ψ(bn = 1) = 0 → b̂n = 0 → Pe|x=+3 = 0

x = +1 → ψ(bn = 0) = 2 , ψ(bn = 1) = 1 → b̂n = 0 → Pe|x=+1 = 1
3

x = −1 → ψ(bn = 0) = 1 , ψ(bn = 1) = 2 → b̂n = 1 → Pe|x=−1 = 1
3

x = −3 → ψ(bn = 0) = 0 , ψ(bn = 1) = 1 → b̂n = 1 → Pe|x=−3 = 0

,

by referring to Fig. 4.3. The bit error probability given x = +1 follows from the fact that

Pe|x=+1 = P (bn 6= b̂n|x = +1) = P (bn 6= 0|x = +1) = 1/3 .

Using the same approach, one obtains Pe|x=−1 = 1/3 as well. With these derivation, the

average bit error probability of MAP demapping for N = 3 comes in a straightforward

way:

Pe =
∑

x∈X
P (x)Pe|x =

1

8
· 0 +

3

8
· 1

3
+

3

8
· 1

3
+

1

8
· 0 = 0.25 ,

which is identical to the case of N = 2 and agrees with the observation in Fig. 4.1 as well.

Summarizing the above two examples, in general one has the bit error probability of MAP

demapping for noiseless SM-EPA transmission as

Pe =
N∑

i=0

(Ni)

2N
· min{i, N − i}

N
. (4.6)

4.2. BIT ERROR PROBABILITY OF SM-EPA 41

0 4 8 12 16 20 24 28 32 36 40
N

0.0

0.1

0.2

0.3

0.4

0.5
B

it
E

rr
or

 P
ro

ba
bi

lit
y

(a) Pe vs. N .

0 20 40 60 80 100
N

10
-3

10
-2

10
-1

10
0

So
ur

ce
 C

od
in

g
R

at
e

H(x)/N
R(D)

(b) Source coding rate vs. N .

Figure 4.4: SM-EPA with MAP demapping, noiseless channel.

It deserves to be a fortuitous event that N = 2n and N = 2n + 1, n ∈ Z+, will always

give the same error probability. As shown in Fig. 4.4(a), the error probability grows in

a stair-wise manner. One may also notice from Fig. 4.4(a) that the error probability

monotonically increases as N becomes larger. This tells that the information loss during

SM-EPA mapping becomes more and more severe with the rising of N . At this point, an

interesting question may arise. How good is SM-EPA as a lossy source encoder? Borrowing

the classical definition from information theory, we may call H(x)/N the source coding

rate of SM-EPA, as this rate describes the average amount of information that is preserved

from each input bit. Assuming that the input bits are from a Bernoulli(1
2
) source, the

Hamming distortion (D) will be equivalent to the bit error probability (Pe), and according

to the rate distortion theory the minimum source coding rate will be given by

R(D) = 1− h(D) = 1− h(Pe) bits/source symbol , (4.7)

where h(·) denotes the binary entropy function. A source encoder achieving the rate

limit R(D) is usually termed as an ideal source encoder. Therefore, the distance between

H(x)/N and R(D) indicates how well SM-EPA works as a lossy source encoder. To attain

a systematic comparison between these two rates, some extra thoughts are still necessary.

First, given a certain bit load N , the compression rate H(x)/N of SM-EPA can be easily

evaluated, by using the methods introduced in Section 3.3.3. Second, for a given N , the

bit error probability Pe of SM-EPA (MAP demapping, noiseless channel) can be measured

or simply computed via (4.6), and the corresponding minimum source coding rate follows

directly from (4.7). Making these computations for N = 0, 1, . . . , 100, one obtains the

pair of curves in Fig. 4.4(b), which shows that SM-EPA is far away from being optimal in

the sense of achieving the minimum source coding rate given a certain distortion. What

can also be seen is that the distance between H(x)/N and R(D) gets larger with larger

N . Hence, SM-EPA is in general not optimal in the sense of lossy source encoding.

42 CHAPTER 4. UNCODED SM TRANSMISSION

0 5 10 15 20 25 30 35 40 45 50
E

b
/N

0
 in dB

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

N = 1
N = 2
N = 3
N = 4
N = 5
N = 6
N = 7
N = 8

Figure 4.5: SM-UPA with ρ = 0.5 (solid line) vs. ASK with Gray labeling (dashed line).

0 6 12 18 24 30 36 42 48 54 60
E

b
/N

0
 in dB

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

ρ=0.25
ρ=0.50
ρ=0.75

Figure 4.6: The effects of ρ, SM-UPA with MAP demapping, N = 4.

4.3 Bit Error Probability of SM-UPA

Since SM-UPA with ρ = 0.5 and conventional uniform ASK with natural labeling are

equivalent, their BER performance should also be identical. Consequently, one expects

for SM-UPA with ρ = 0.5 a BER performance slightly worse than that of ASK with

Gray labeling. Fig. 4.5 verifies this conjecture. Because the underlying principle of this

performance difference is well-known, we do not provide a detailed discussion on it.

From an information theoretical point of view, it does not make much sense to choose

ρ 6= 0.5 for SM-UPA, as shown in Section 3.4.1. Nevertheless, it is still interesting to see

the performance of SM-UPA given ρ 6= 0.5. Demonstrated in Fig. 4.6, the performance

given ρ = 0.25 and ρ = 0.75 are both worse than that given ρ = 0.5. This is not difficult

to understand by revisiting Fig. 3.10, as the performance of MAP demapping is primarily

determined by the symbol distance, while in this concern ρ = 0.25 and ρ = 0.75 are both

inferior to ρ = 0.5. Besides, it can be seen from Fig. 3.10 that w.r.t. ρ = 0.25, ρ = 0.75

provides a larger average symbol distance but a smaller minimum symbol distance, which

explains the crossover of the BER curves in Fig. 4.6.

4.4. BIT ERROR PROBABILITY OF SM-GPA 43

0 4 8 12 16 20 24 28 32 36 40
E

b
/N

0
 in dB

0.3

0.4

0.5

B
it

E
rr

or
 R

at
e

G = 2
G = 3
G = 4
G = 5

(a) L = 4.

0 4 8 12 16 20 24 28 32 36 40
E

b
/N

0
 in dB

0.1

0.2

0.3

0.4

0.5

B
it

E
rr

or
 R

at
e

L = 1
L = 2
L = 3
L = 4

(b) G = 2.

Figure 4.7: The effects of G and L, SM-GPA with MAP demapping.

4.4 Bit Error Probability of SM-GPA

By its nature, SM-GPA is a hybrid of SM-EPA and SM-UPA. Intuitively, its performance

either coded or uncoded should be somewhere in between that of SM-EPA and SM-UPA,

depending on the group size G and the number of power levels L. For G > 2, SM-GPA will

be always non-bijective. Hence, one expects a considerable error floor from its uncoded

performance, similar to the case of SM-EPA. Of particular interest is the relationship

between the error floor level and the two parameters G and L.

From Section 4.2, one sees that the bit error probability of a non-bijective mapping scheme

in case of uncoded transmission increases when the compression rate H(x)/N becomes

smaller. Since for SM-GPA the chips within each group are assigned identical magnitudes,

their summation tends to be more and more nonuniform when one increases the group

size G. Naturally, a larger G will bring a lower compression rate and subsequently a

higher error floor, which is ascertained by the simulation results provided in Fig. 4.7(a).

While the influence of the group size G on the error floor level is more or less straight-

forward, the influence of the number of power levels L is not so explicit. To clarify the

situation, we first have a look at the simulation results provided in Fig. 4.7(b), which shows

that the increase of L given a fixed G also raises the error floor level. This observation

in turn tells that a larger L brings a lower compression rate as well. Mathematically, we

can see this from

H(x)/N ≈
(

1

2
log2

(π
6
eG
)

+ L

)/
(G · L) =

1

L
· log2(π

6
eG)

2G
+

1

G
, (4.8)

which utilizes the approximation given in (3.33). After all, the reason behind this effect

is the inter-group interference due to using base ρ = 0.5 for the exponential power decay.

44 CHAPTER 4. UNCODED SM TRANSMISSION

Chapter 5

Coded SM Transmission

For an optimal achievable power efficiency, a Gaussian-like symbol distribution is required.

In this concern, equal power allocation (EPA) or grouped power allocation (GPA) should

be chosen for superposition mapping. Nevertheless, error-free transmission is strictly not

possible for uncoded SM-EPA or SM-GPA, revealed by the discussion in Chapter 4. To

enable error-free transmission, a non-bijective superposition mapper must be preceded

by a properly designed coding/spreading module such that the compression procedure

during superposition mapping does not cause any information loss. In this chapter, we

will have some general discussion of coded SM transmission over the Gaussian channel.

The main goal is to provide a good overview and illustrate the fundamental concepts

that are necessary for later discussions. Hence, code optimization will not be a topic

within this chapter. In contrast to uncoded transmission, the superposition demapper of

a coded system needs to work in an iterative manner, and consequently needs to accept

soft input messages and be able to deliver soft output messages. For this reason, the issue

of superposition demapping needs to be re-treated in the framework of iterative process-

ing. As for practical applications, the computational complexity is always a big concern.

Therefore, the possibility of low-complexity superposition demapping will also be treated

in this chapter. It will be shown that being non-bijective and being nonuniform are both

helpful for reducing the demapping complexity. Correspondingly, a tree-based BCJR [49]

algorithm and a Gaussian demapping algorithm will be introduced. Given the elaborated

demapping algorithms, either optimal or suboptimal, the performance of superposition

mapping will be tested with typical conventional coding schemes. Particularly, the ad-

vantage of (regular) repetition coding over (regular) parity-check coding in the sense of

supportable bandwidth efficiency will be made clear. Several interesting relevant issues

are also covered, such as typical system setup with different types of coding and respective

factor graph representations.

45

46 CHAPTER 5. CODED SM TRANSMISSION

ENC π SM +

AWGN

SD π−1 DEC

π
extrinsic

b

Figure 5.1: Bit-interleaved coded modulation with superposition mapping.

5.1 System Structure

Due to linear superposition, the involved binary antipodal chips of an individual SM

symbol interfere with each other, whenever the adopted power allocation strategy leads

to a non-bijective mapping rule. Consequently, the receiver of a coded SM transmission

system often needs to apply parallel/successive interference cancellation, since a global-

level maximum-likelihood detection is computationally prohibitive. In this concern, a

coded SM transmission system resembles very much a multiple access system. As a side

effect, multi-level coding can easily be applied, if desired, e.g., to achieve unequal error

protection or simply use superposition mapping as a multiplexing scheme. In that case, the

coding rate or even the code can be different on each level, which yields a great flexibility

for system configuration. In this thesis, however, the discussion will be limited to single-

level coded SM transmission only. From a theoretical point of view, a multi-level encoding

scheme can easily be emulated by a specially designed single-level encoding scheme. The

focus of this thesis is on the fundamental properties of SM and finding suitable channel

codes to exploit the capacity-achieving potential of SM. For this purpose, a single-level

code structure provides more flexibility for code optimization as well as a more convenient

mathematical description.

Fig. 5.1 shows the system structure of single-level coded SM transmission over the Gaus-

sian channel, where SM stands for superposition mapping and SD stands for superposition

demapping. Eventually, the channel encoding module may comprise a scrambling func-

tionality, and the channel decoding module may comprise a descrambling functionality,

respectively. The interleaving module in between the channel encoder and the superpo-

sition mapper plays a very important role for the system performance. Without loss of

generality, one may call such a system bit-interleaved coded modulation (BICM) with

superposition mapping (SM). BICM [11] is known for offering excellent performance in

conjunction with conventional uniform ASK mapping. In fact, it is also true for superposi-

tion mapping. A special issue for BICM-SM is that iterations between the demapper and

the decoder are not only necessary but mandatory, whenever the superposition mapper

is non-bijective. This manifests a big difference to BICM with ASK.

5.2. SOFT-INPUT SOFT-OUTPUT DEMAPPING 47

5.2 Soft-Input Soft-Output Demapping

For non-bijective superposition mapping, ambiguity-free detection is not possible with-

out utilizing the feedback information from the channel decoder. Hence, non-iterative

hard-output demapping introduced in Chapter 4 only makes sense for theoretical anal-

ysis, while for practical applications one should always perform soft-input soft-output

(SISO) demapping. In this section we will have a systematic study on SISO superposition

demapping for the three types of power allocation strategies introduced in Chapter 3. The

main attention is paid to the possibility of reduced-complexity demapping. Whenever a

superposition mapper is non-bijective, the resulting symbol cardinality will be smaller

than that of a bijective one. Using a tree-based BCJR algorithm, a significant complexity

reduction can be achieved, without any loss of optimality. The extent of complexity re-

duction depends on how non-bijective the mapper is. Nevertheless, we will also show that

even when the superposition mapper is bijective a non-trivial complexity reduction can

still be achieved via a tree-based BCJR algorithm. Whenever a superposition mapper de-

livers a Gaussian-like symbol distribution, one attains another opportunity to reduce the

demapping complexity. Approximating the summation of multiple binary chips and an

additive noise sample by a continuous Gaussian variable, a linear-complexity demapping

algorithm can be implemented, albeit with a suboptimal performance.

5.2.1 Standard APP Approach

The most straightforward implementation of SISO superposition demapping is the stan-

dard a posteriori probability (APP) demapping algorithm. Upon the reception of the

AWGN channel output y, a SISO superposition demapper needs to calculate the extrinsic

log-likelihood ratios (LLR) of each code bit, taking into account the a priori information

feedback from the decoder. Mathematically, this is to compute

LLRe(bn)
.
= ln

p(y|bn = 0)

p(y|bn = 1)
, n = 1, 2, . . . , N . (5.1)

As done previously in Section 4.1, let b∼n
.
= {b1, . . . , bn−1, bn+1, . . . , bN} denote the bit set

excluding bn. Similar to (4.3), the likelihood function can generally be computed as

p(y|bn) =
∑

b∼n

p(y,b∼n|bn)

=
∑

b∼n

p(y|b∼n, bn) P (b∼n)

=
∑

b∼n

p(y|b∼n, bn)
N∏

i=1,i 6=n
P (bi) ,

(5.2)

48 CHAPTER 5. CODED SM TRANSMISSION

where the second and third equality come from the assumption that all bits are mutually

independent. Combining (5.1) and (5.2), one obtains the following equation:

LLRe(bn) = ln
p(y|bn = 0)

p(y|bn = 1)
= ln

∑
b∼n p(y|b∼n, bn = 0)

∏N
i=1,i 6=n P (bi)∑

b∼n p(y|b∼n, bn = 1)
∏N

i=1,i 6=n P (bi)
(5.3)

with

p(y|b∼n, bn) =
1√

2πσ2
z

exp


−

(
y −∑N

i=1 αi(1− 2bi)
)2

2σ2
z


 . (5.4)

Since b∼n has 2N−1 possible value combinations and they need to be considered for both

bn = 0 and bn = 1, a literal evaluation of (5.3) involves a complexity proportional to 2N ,

which is certainly undesirable for practice but in fact common for conventional uniform

mapping schemes. Considering the amount of bits per symbol, the overall demapping

complexity is proportional to N · 2N , while the demapping complexity per bit is ∝ 2N .

To have a more concrete perception as well as provide reference for later use, we consider

a simple example for the APP demapping of SM with equal power allocation (EPA). For

simplicity, we take parameters: N = 2, α = 1, and assume that the channel is noiseless.

Then, the channel output will directly be

x = c1 + c2 = (1− 2b1) + (1− 2b2) . (5.5)

Let us define a shorthand notation B(bn)
.
= 1 − 2bn to represent the BPSK mapping

operation. The likelihood of the channel output given the input bit pair is given by

P (x|b1, b2) = δ(x−B(b1)−B(b2)) =





1 if x = B(b1) +B(b2)

0 if x 6= B(b1) +B(b2)
. (5.6)

To compute the extrinsic LLR for the first bit, one needs the following marginalization:

P (x|b1) =
∑

b2∈{0,1}
P (x|b1, b2)P (b2) , (5.7)

and for the second bit one needs

P (x|b2) =
∑

b1∈{0,1}
P (x|b1, b2)P (b1) . (5.8)

Clearly, the results of the above marginalizations depend on the channel output x and

the a priori distribution P (b1) and P (b2), and so do the computed extrinsic LLRs. In

the following, we try to have a deeper insight into this demapping procedure. For easy

reference, we provide in Fig. 5.2 a copy of Fig. 4.2, so as to vividly illustrate the mapping

scheme under consideration.

5.2. SOFT-INPUT SOFT-OUTPUT DEMAPPING 49

b1, b2
0, 0

0, 1

1, 0

1, 1

b

b

b

b

c1, c2
+1,+1

+1,−1

−1,+1

−1,−1

b

b

b

+2

0

−2

x P (x)
1/4

1/2

1/4

b

b

Figure 5.2: Mapping rule of SM-EPA with N = 2, α = 1.

Substituting (5.6) into (5.7), one obtains the following logical chains:

x = +2 → P (x|b1 = 0) = P (b2 = 0) , P (x|b1 = 1) = 0

x = 0 → P (x|b1 = 0) = P (b2 = 1) , P (x|b1 = 1) = P (b2 = 0)

x = −2 → P (x|b1 = 0) = 0 , P (x|b1 = 1) = P (b2 = 1)

,

for the three possible values of x, cf. Fig. 5.2. Sequentially, one has

x = +2 → LLRe(b1) = ln P (b2=0)
0

= +∞, if P (b2 = 0) > 0

x = 0 → LLRe(b1) = ln P (b2=1)
P (b2=0)

= −LLRi(b2)

x = −2 → LLRe(b1) = ln 0
P (b2=1)

= −∞, if P (b2 = 1) > 0

,

where LLRi(b2)
.
= ln P (b2=0)

P (b2=1)
denotes the a priori LLR that is intrinsic w.r.t. LLRe(b2).

Note that in case of x = 0, the extrinsic LLR of b1 will be simply the negative of the

intrinsic LLR of b2. In comparison, for x = ±2, the extrinsic LLR of b1 does not have

much to do with the a priori distribution of b2. At the initial iteration, the a priori

distribution of b2 will be uniform, i.e., P (b2 = 0) = P (b2 = 1) = 1
2
. In this case, one has

for b1 the following calculation results:

x = +2 → LLRe(b1) = ln 1/2
0

= +∞

x = 0 → LLRe(b1) = ln 1/2
1/2

= 0

x = −2 → LLRe(b1) = ln 0
1/2

= −∞

.

It is easy to imagine that the situation for LLRe(b2) at the initial iteration will be exactly

the same, due to the symmetry of the mapping rule. Note that the event x = 0 has

a probability of 1
2

to occur, which means that at the initial iteration about half of the

demapper output LLRs will be zero, or close to zero in case of a noisy channel. Revisiting

Fig. 4.3, one may recognize that for SM-EPA with N > 2 the situation will be similar.

When the symbol magnitude is close to zero, the demapper outputs will be very weak,

while for symbol magnitudes close to the maximum, the demapper outputs will be very

strong, as long as the additive noise is not so strong. This deserves to be a big difference

to the demapping procedure of conventional uniform mapping schemes, for which the

demapper outputs do not have such a strong correlation with the observed symbol value.

50 CHAPTER 5. CODED SM TRANSMISSION

s2

s5

s1

s4

s3

s0

−4

−1

−3 +1 +3−1 +5−5

−1

−2

−3

0

+1

+3

+4

+2

−2 0 +2

+1

0

Figure 5.3: A tree diagram showing the growth of SM-EPA symbol alphabet, α = 1.

5.2.2 Tree-Based APP Approach

Due to the special symbol formation process of superposition mapping, the task of SISO

demapping can in fact be implemented via a tree-based BCJR algorithm. This approach

can achieve a dramatic complexity reduction but brings no performance degradation com-

pared to the standard APP approach, whenever the superposition mapper is non-bijective.

The idea of using the BCJR algorithm [49] for SISO superposition demapping has first

been proposed by Ma and Li Ping in [27], for the scenario of superposition mapping with

equal power allocation. In this section, we will generalize this idea to the case of super-

position mapping with arbitrary type of power allocation, and show that a non-trivial

complexity reduction can be achieved even when the superposition mapper is bijective.

Let us first consider the case of superposition mapping with equal power allocation. Re-

visiting Tab. 3.2, one will find that the symbol alphabet of SM-EPA grows with the bit

load N in an interesting way. The symbol cardinality |X | is always given by N + 1.

Vertically stacking the alphabets of linearly increasing bit loads, one obtains something

similar to a pyramid1. Without loss of generality, one may use a tree diagram to visualize

the growing process of the symbol alphabet, as shown in Fig. 5.3. In this tree diagram,

each node represents a possible symbol value and each level corresponds to the effect of

superimposing one more chip. Since chips are all binary antipodal, there are always two

branches emerging from a single node. A solid branch at the nth level corresponds to

cn = +1, and a dashed branch corresponds to cn = −1. Due to unified chip magnitudes,

a positive branch and a negative branch emerging from two neighboring nodes always

merge into a certain node at a new level. This phenomenon is the reason of Gaussian-like

symbol distribution, and is also the key for complexity reduction of SISO demapping.

1As a matter of fact, if one replaces these symbol values by their frequency of occurrence given

independent and uniformly distributed input bits, one obtains exactly a Pascal’s triangle.

5.2. SOFT-INPUT SOFT-OUTPUT DEMAPPING 51

Since a tree diagram, by treating the levels as the time span, describes a Markov pro-

cess, the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm can be used to implement SISO

superposition demapping. Let us define the state of the nth level as

sn
.
=

n∑

i=1

ci =
n∑

i=1

αi(1− 2bi) . (5.9)

Clearly, the relationship between two consecutive states is given by

sn = sn−1 + cn , (5.10)

which leads to the following conditional probability:

P (sn|sn−1, cn) =





1 for sn = sn−1 + cn

0 for sn 6= sn−1 + cn
. (5.11)

As for the BCJR algorithm, the state transition probability is also required for the com-

putation. Following (5.11), the state transition probability of superposition mapping is

given by

P (sn|sn−1) =
∑

cn

P (sn, sn−1, cn)/P (sn−1)

(a)
=
∑

cn

P (sn|sn−1, cn)P (sn−1)P (cn)/P (sn−1)

=
∑

cn

P (sn|sn−1, cn)P (cn)

= P (cn = sn − sn−1) ,

(5.12)

where equality (a) utilizes the fact that sn−1 and cn are independent. Note that

P (cn = sn − sn−1) = 0 for sn − sn−1 6= ±αn . (5.13)

Before one can finally calculate the log-likelihood ratio of each chip, and subsequently the

log-likelihood ratio of each bit, there will be two recursive computations necessary to be

carried out. The first computation is to obtain the a priori distribution of states, which

is determined by the a priori distribution of chips and the conditional probability given

in (5.11). Starting from the boundary condition

P (s0 = 0) = 1 , (5.14)

one evaluates the a priori distribution of states via a forward recursion through the tree:

P (sn) =
∑

sn−1

∑

cn

P (sn, sn−1, cn)

=
∑

sn−1

∑

cn

P (sn|sn−1, cn)P (sn−1)P (cn)

=
∑

cn

P (sn−1 = sn − cn)P (cn) ,

(5.15)

52 CHAPTER 5. CODED SM TRANSMISSION

where the last equality utilizes the result from (5.11). Since in general we have |Sn| >
|Sn−1|, the last expression in (5.15) might contain one or two summands, depending on

the value of sn. The second computation is to determine the likelihood of the received

value y given a state sn. Since y = x + z =
∑N

i=1 ci + z = sN + z, we have the following

boundary condition:

p(y|sN) =
1√

2πσ2
z

exp

(
−(y − sN)2

2σ2
z

)
. (5.16)

Starting from this boundary condition, one can evaluate p(y|sn) via a backward recursion

through the tree:

p(y|sn) =
∑

sn+1

p(y, sn+1, sn)/P (sn)

=
∑

sn+1

p(y|sn+1, sn)P (sn+1, sn)/P (sn)

=
∑

sn+1

p(y|sn+1)P (sn+1|sn) ,

(5.17)

where the last equality follows the fact that the likelihood of y will not be influenced by

sn if sn+1 is known. With P (sn) and p(y|sn) available for n = 1, 2, . . . , N , the likelihood

of the received value y given an arbitrary chip cn, i.e., p(y|cn), is right at the hand. Using

Bayes’ rule and the properties of Markov process, one obtains the following equation chain

in a straightforward way:

p(y|cn) =
∑

sn−1

∑

sn

p(y, sn−1, sn|cn)

=
∑

sn−1

∑

sn

p(y|sn−1, sn, cn)P (sn−1, sn|cn)

(a)
=
∑

sn−1

∑

sn

p(y|sn)P (sn|sn−1, cn)P (sn−1|cn)

(b)
=
∑

sn−1

∑

sn

p(y|sn)P (sn|sn−1, cn)P (sn−1)

(c)
=
∑

sn−1

p(y|sn = sn−1 + cn)P (sn−1) ,

(5.18)

where equality (a) utilizes the relationship sn = sn−1 + cn and the philosophy implied by

(5.17), that is the likelihood of y will have no dependence on {s0, s1, . . . , sn−1} as long as

sn is given. Equality (b) capitalizes on the mutual independence between sn−1 and cn.

Finally, equality (c) is a direct application of (5.11). Now, observing the correspondence

5.2. SOFT-INPUT SOFT-OUTPUT DEMAPPING 53

between the nth bit and the nth chip, the extrinsic LLR of the nth bit is obtained as

LLRe(bn) = ln
p(y|bn = 0)

p(y|bn = 1)

= ln
p(y|cn = +αn)

p(y|cn = −αn)

= ln

∑
sn−1

p(y|sn = sn−1 + αn)P (sn−1)
∑

sn−1
p(y|sn = sn−1 − αn)P (sn−1)

, (5.19)

which concludes the computation procedure of SISO demapping via the BCJR algorithm.

Computational Complexity for SM-EPA

It is not difficult to find that the computational complexity of the above elaborated

algorithm, excluding the calculation of p(y|sN), is proportional to the amount of branches

of the underlying tree diagram. As for the case of SM-EPA, the amount of branches of

the tree diagram is generally given by

2 · (1 + 2 + . . .+N) = 2 · N
2
· (1 +N) = N(1 +N) ≈ N2 , (5.20)

which can clearly be seen from Fig. 5.3. On the other hand, the computational load

of obtaining p(y|sN) is proportional to the number of states of the final level, which is

generally given by 1 +N . For practical systems with finite precision, the computation of

(5.16) is often accomplished via a look-up table together with linear interpolation. Hence,

we may conclude that the complexity of BCJR demapping for SM-EPA is about quadratic

w.r.t. the bit load N . Nevertheless, we should note that this is the overall demapping

complexity for the N involved bits. Therefore, we have on average for each bit

Demapping complexity of SM-EPA ∝ N2/N = N , (5.21)

which is in fact linear with the bit load. Compared to the standard APP approach, whose

complexity per bit is proportional to 2N , the achieved complexity reduction by using

the tree-based approach is significant, particularly when the bit load N is large. For

reasonable N values, such a complexity is already acceptable for practical applications,

especially when one considers its optimality in performing bit-by-bit SISO demapping.

Given an identical system setup, using the standard APP approach or using this tree-

based approach will not bring any performance difference.

At this point, a natural question will come up, that is if this tree-based approach is

applicable and useful for SM-UPA and SM-GPA as well. As a matter of fact, by checking

equations (5.9) to (5.19) once more, one will recognize that they are indeed generally valid

for SM with any type of power allocation, given a proper tree diagram. In the next step,

we will check the efficiency of this tree-based approach for SM-UPA and SM-GPA.

54 CHAPTER 5. CODED SM TRANSMISSION

Figure 5.4: A tree diagram showing the growth of SM-UPA symbol alphabet.

Computational Complexity for SM-UPA

Fig. 5.4 illustrates the tree interpretation of the symbol alphabet growth of SM-UPA.

Comparing to Fig. 5.3, one finds a big difference. For SM-UPA, the tree branches never

merge with each other, and consequently the amount of nodes grows by a factor of two

at each new level. This in another way explains the bijectivity of SM-UPA, as the node

index can always encode one more bit by adding a new level. Nevertheless, a complexity

reduction can still be achieved for SISO demapping by using the BCJR algorithm. From

Fig. 5.4, the amount of tree branches for SM-UPA is generally given by

2 · (20 + 21 + . . .+ 2N−1) = 2 · 1− 2N

1− 2
= 2 · (2N − 1) ≈ 2 · 2N . (5.22)

Since the final level will have 2N nodes, the complexity for calculating p(y|sN) will also be

proportional to 2N . Combining these two observations, we have the average demapping

complexity for each bit as

Demapping complexity of SM-UPA ∝ 2N/N , (5.23)

which is much smaller than 2N , particularly for a large N . Hence, even for a bijective

superposition mapping scheme, using the tree-based BCJR algorithm still offers a non-

trivial complexity reduction w.r.t. the standard APP approach.

Computational Complexity for SM-GPA

While the complexity expressions for SM-EPA and SM-UPA are more or less straightfor-

ward, it takes some mathematical effort in order to obtain a neat expression for SM-GPA.

Fig. 5.5 gives a possible tree diagram for SM-GPA with G = 2. This is not the only way

to draw the tree for SM-GPA, but it gives the most elegance in the resulting diagram. As

5.2. SOFT-INPUT SOFT-OUTPUT DEMAPPING 55

Figure 5.5: A tree diagram showing the growth of SM-GPA symbol alphabet, G = 2.

we can see from Fig. 5.5, the branches within each group of levels merge pair by pair as

in the case of SM-EPA, while each transition to a new power level always increases the

amount of nodes by a factor of 2 as in the case of SM-UPA. Since SM-GPA is a hybrid of

SM-EPA and SM-UPA, it is not a surprise that its tree diagram is also a hybrid of that of

SM-EPA and SM-UPA. Certainly, the corresponding BCJR demapping complexity will

still be proportional to the amount of branches. Since this tree is not as regular as the ones

in Fig. 5.3 and Fig. 5.4, its amount of branches has to be counted in a more complicated

way. Excluding the root node, the amount of nodes in the first group is given by

2 + 3 + . . .+ (G+ 1) = G(G+ 3)/2 , (5.24)

cf. Fig. 5.5. Following that, the amount of nodes in the second group will be

(2G+ 2) + (2G+ 3) + . . .+ (3G+ 1) = G(5G+ 3)/2 , (5.25)

and sequentially the amount of nodes in the third group will be

(6G+ 2) + (6G+ 3) + . . .+ (7G+ 1) = G(13G+ 3)/2 . (5.26)

If one continues this procedure for several further groups, one will recognize that in general

the amount of nodes in the lth group can be written as

G
(
(2l+1 − 3)G+ 3

) /
2 , l = 1, 2, . . . , L , (5.27)

where L is the number of power levels of the respective SM-GPA scheme. Consequently,

the total amount of nodes (excluding the root node) of an SM-GPA tree will be

L∑

l=1

G · (2l+1 − 3)G+ 3

2
=

L∑

l=1

{
2lG2 − 3

2
G(G− 1)

}

= 2G2(2L − 1)− 3

2
G(G− 1)L . (5.28)

56 CHAPTER 5. CODED SM TRANSMISSION

The correctness of the above expression can easily be verified by checking the situation of

Fig. 5.5. Checking (5.24) to (5.26) once more, we have the following general expression

for the amount of nodes at the final level of the lth group

(2l − 1)G+ 1 . (5.29)

Now, adding the root node but discarding the nodes at the final level of the Lth group,

we obtain the amount of branches as

2 ·
(

2G2(2L − 1)− 3

2
G(G− 1)L+ 1− (2L − 1)G− 1

)

= 2G(2G− 1)(2L − 1)− 3G(G− 1)L . (5.30)

It is also clear from (5.29) that the complexity of computing p(y|sN) will be about propor-

tional to (2L− 1)G. Summarizing these findings and noting that the bit load of SM-GPA

is given by N = GL, we acquire the following approximate expression for each bit:

Demapping complexity of SM-GPA ∝
(
2G(2G− 1)(2L − 1)− 3G(G− 1)L

)/
(GL)

≈ G(4 · 2L/L− 3) for large G and L , (5.31)

which tells that the complexity is approximately linear w.r.t. the group size G while

approximately exponential in the number of power levels L with a mitigation factor of

1/L. This is again a hybrid of the case of SM-EPA and SM-UPA.

So far, we have calculated the BCJR demapping complexity for SM-EPA, SM-UPA, and

SM-GPA. Obviously, this algorithm is also applicable for SM with arbitrary type of power

allocation strategies. How much complexity reduction that is achievable depends on the

extent of branch merging in the corresponding tree diagram. Last but not least, one

may combine the Max-Log APP principle [51,52] with the BCJR demapping algorithm to

achieve further complexity reduction. That is to consider only those final-level nodes that

are close enough to the channel observation for LLR computation. Doing so can largely

reduce the tree size, but will incur a certain degree of performance degradation.

5.2.3 Gaussian-Approximation Approach

When the bit load is not small and the symbol distribution is Gaussian-like, there exists

another possibility to reduce the complexity of SISO superposition demapping, but with

a non-trivial loss of optimality. Let us reorganize the equation for SM transmission over

the Gaussian channel as follows:

y = x+ z =
N∑

i=1

ci + z = cn +
N∑

i=1,i 6=n
ci + z . (5.32)

5.2. SOFT-INPUT SOFT-OUTPUT DEMAPPING 57

Define

ηn
.
=

N∑

i=1,i 6=n
ci + z (5.33)

as the effective noise in y w.r.t. cn. Now, the channel equation can be rewritten as

y = cn + ηn , (5.34)

which leads to the following expression for the likelihood function:

p(y|cn) = p(ηn = y − cn) . (5.35)

Sequentially, the extrinsic LLR of cn is now given by

LLRe(cn) = ln
p(y|cn = +αn)

p(y|cn = −αn)
= ln

p(ηn = y − αn)

p(ηn = y + αn)
. (5.36)

The complexity of the above calculation solely depends on the complexity of p(ηn), i.e., the

probability density function (PDF) of the effective noise sample, which is an interference-

plus-noise mixture. For SM with a large N and a Gaussian-like symbol distribution, one

may make the following approximation:

p(ηn) =
1√

2πσ2
ηn

exp

(
−(ηn − µηn)2

2σ2
ηn

)
(5.37)

with µηn and σ2
ηn being the mean and variance of ηn, respectively. Consequently, (5.36)

can now be simplified as

LLRe(cn) = 2αn(y − µηn)/σ2
ηn . (5.38)

By this LLR calculation, the a priori information of chips excluding cn are implicitly

considered via

µηn =
N∑

i=1,i 6=n
µci , σ2

ηn =
N∑

i=1,i 6=n
σ2
ci

+ σ2
z (5.39)

and

µci
.
= E {ci} = αi

eLLRi(ci) − 1

eLLRi(ci) + 1
, σ2

ci

.
= E

{
(ci − µci)2

}
= α2

i − µ2
ci
, (5.40)

where LLRi(ci) denotes the intrinsic (a priori) LLR of ci.

It is not difficult to find that the calculations in (5.38) and (5.40) need to be performed

only once for each chip. While for (5.39), if one computes
∑N

i=1 µci and
∑N

i=1 σ
2
ci

first and

derive µηn and σ2
ηn by subtracting µcn and σ2

cn from the two sums respectively, the overall

complexity of this computation will be linear in N too. Note that LLRe(bn) = LLRe(cn),

i.e., it is equivalent to calculate the LLR for the nth bit or for the nth chip. Therefore,

by applying the Gaussian approximation (GA), the overall demapping complexity will be

linear w.r.t. the bit load N , and the demapping complexity per bit will in fact be constant

w.r.t. the bit load N , which is very attractive for practical applications.

58 CHAPTER 5. CODED SM TRANSMISSION

REP SCR π SM
v b x

b

Figure 5.6: Transmitter structure of repetition-coded superposition mapping.

5.3 Repetition-Coded SM

In the framework of BICM, two types of channel codes, repetition codes and parity-check

codes, are most frequently adopted due to the ability of their decoders in providing bit-

level reliability information. For the case of coded SM transmission, a soft-input soft-

output channel decoder is often essential in achieving a desirable performance, particu-

larly when the superposition mapper is non-bijective. Therefore, in this thesis we will

also take these two types of codes as building blocks for coded SM systems. Repetition

coding is known for its simplicity in encoding and decoding, but is also known as an inef-

ficient coding strategy because of offering no coding gain at all over the AWGN channel.

In contrast, parity-check codes often come with a sophisticated encoding and decoding

procedure, and can offer a strong coding gain over the AWGN channel if well designed.

For this reason, researchers are typically discouraged in using repetition codes, especially

when the system under design is aiming to achieve the channel capacity. This way of

thinking is proper, however, only with the assumption of using bijective uniform mapping

schemes, such as ASK. As for the case of superposition mapping, the situation is in fact

substantially different. The simulation results in this section as well as in Section 5.4 will

show that a simple repetition code can easily outperform a strong parity-check code, in

the sense of offering higher supportable bandwidth efficiency for coded SM transmission.

Fig. 5.6 illustrates the transmitter structure of repetition-coded SM transmission. One

may note that there is a scrambler in between the repetition encoder and the interleaver,

which is indeed not so common for BICM systems. Certainly, a scrambler does not have

any influence on the system data rate, but it does have a big influence on the performance

of such a system. By its nature, coded SM transmission shares much similarity with

interleave-division multiplexing (IDM) [53] or interleave-division multiple access (IDMA)

[54]. In IDM/IDMA systems, the inner code for each data stream is often a repetition code,

and each repetition encoder is typically followed by a scrambler as well as an interleaver,

which looks very similar to that in Fig. 5.6. This type of system setup does not come

occasionally, but actually has good theoretical and practical reasons. We will later show

in Chapter 6 that scrambling and interleaving are both indispensable for repetition-coded

SM transmission, as long as the adopted power allocation strategy leads to a non-bijective

mapping rule. Here in this section our aim is to have a brief overview on the corresponding

system as well as its performance.

5.3. REPETITION-CODED SM 59

v1 v2 v3 v4

b b b b

b1 b2 b3 b4 b5 b6 b7 b8

+ + + +

x1 x2 x3 x4

b

Figure 5.7: A detailed factor graph for repetition-coded SM, SF = 2, N = 2, K = 4.

5.3.1 Factor Graph Representation

In order to illustrate a coded transmission scheme, a global-level factor graph is always

useful. A factor graph is also useful for interleaver design and iterative receiver design.

For repetition-coded SM as depicted in Fig. 5.6, a detailed factor graph representation

can be drawn as in Fig. 5.7, where vi denotes an input bit to the repetition encoder,

and bi denotes an input bit to the superposition mapper, keeping consistence with the

labels in Fig. 5.6. To make the figure easily distinguishable, the system parameters have

been chosen to be relatively small. From top to bottom, this graph vividly describes the

information flow process from info bits to SM symbols. First, each info bit is repeated

into two code bits, one of which gets flipped afterwards, denoted by a dashed edge in

the graph. Without loss of generality, we may call a node corresponding to repetition an

equality check. For example, the leftmost filled circle “•” states the following constraint:

v1 = b2 = 1− b8 ,

where the last equality comprises the effects of repetition as well as scrambling. We will

show in Chapter 6 that this simple scrambling scheme that flips every second code bit

in fact brings a big benefit for the system stability. In Fig. 5.7, each circled plus “⊕”

represents a superposition mapping operation. By the convention of factor graphs, we

may term such a node as a summation check. For example, assuming SM-EPA with

α = 1, the leftmost “⊕” would impose the relationship

x1 = B(b1) +B(b2) , (5.41)

where B(bi)
.
= 1 − 2bi marks a BPSK mapping operation. Since SM symbols will be

transmitted over the channel, each of them will come with a channel observation, which is

emphasized in Fig. 5.7 by black squares. From now on, whenever a � appears in a factor

graph, we mean by it a channel observation node.

60 CHAPTER 5. CODED SM TRANSMISSION

v1 v2 v3 v4

+ + + +

x1 x2 x3 x4
b

Figure 5.8: A simplified factor graph for repetition-coded SM, SF = 2, N = 2, K = 4.

The graph discussed so far is very detailed. While it is nice for a conceptual description,

it is in fact not so convenient for practical use. Next, we introduce a simplified but

equivalent graph representation for repetition-coded SM. Checking Fig. 5.7 once more,

one may build up a direct relationship between an SM symbol and a corresponding pair

of info bits. Still assuming SM-EPA with α = 1, we may write these relationships as

x1 = B(b1) +B(b2) = B(1− v3) +B(v1)

x2 = B(b3) +B(b4) = B(1− v2) +B(v3)

x3 = B(b5) +B(b6) = B(1− v4) +B(v2)

x4 = B(b7) +B(b8) = B(v4) +B(1− v1) .

Now, eliminating all the intermediate variable nodes and the equality checks, we obtain

a compact factor graph directly emphasizing the connections between info bits and SM

symbols, as demonstrated in Fig. 5.8. Though containing much less nodes compared to

the one given in Fig. 5.7, this graph loses no functionality for system analysis as well

as for code design. The ultimate goal of a receiver is to make correct decisions for the

info bits. As the graph in Fig. 5.8 includes all the connections between info bits and

channel observations, it covers the complete structural information of the transmission

system in an efficient way. Later on for the discussion of repetition-coded SM, we will

exclusively utilize this simplified way of graph representation. One will see in Chapter 6

and Chapter 7 that this type of graph is specifically convenient for the sake of interleaver

optimization and global-level code optimization, respectively.

5.3.2 Performance Overview

Both Chapter 3 and Chapter 4 show that the property of superposition mapping is es-

sentially determined by the adopted power allocation strategy. Naturally, for the three

introduced power allocation strategies, EPA, UPA, and GPA, one expects different coded

performance from them as well.

5.3. REPETITION-CODED SM 61

0 2 4 6 8 10 12 14 16 18 20
E

b
/N

0
 in dB

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

N = 4
N = 3
N = 2
N = 1

(a) SF = 2.

0 5 10 15 20
E

b
/N

0
 in dB

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

N = 6
N = 5
N = 4
N = 3
N = 2
N = 1

(b) SF = 3.

0 2 4 6 8 10 12 14 16 18 20
E

b
/N

0
 in dB

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

N = 8
N = 7
N = 6
N = 4
N = 2
N = 1

(c) SF = 4.

0 2 4 6 8 10 12 14 16 18 20
E

b
/N

0
 in dB

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

N = 16
N = 15
N = 14
N = 12
N = 8
N = 1

(d) SF = 8.

Figure 5.9: Repetition-coded SM-EPA, every second code bit flipped, random interleaving,

1000 symbols per block (999 for SF = 3), 20 iterations. Solid lines correspond to BCJR

demapping and dashed lines correspond to Gaussian demapping.

Equal Power Allocation

Fig. 5.9 provides four sets of Monte Carlo simulation results for repetition-coded SM-EPA

with scrambling and random interleaving. For each system setup, the performance test

has been done with BCJR demapping and Gaussian demapping, respectively. Let us first

focus on the cases with BCJR demapping. These four sets of results show a critical issue

for coded SM-EPA transmission, that is, the supportable effective bit load (EBL) N/SF

is very limited, given the current system configuration. Particularly, for SF = 2, the

supportable EBL is merely 1/2 = 0.5 bits/symbol. For SF > 3, the supportable EBL is

about 1.7 bits/symbol, up to an acceptable error floor level. Nevertheless, by comparing

these results with Tab. 3.3, one recognizes that this supportable EBL limit of less than

2 bits/symbol does not come from the mapping scheme. For example, with N = 16, the

theoretical supportable EBL is given by H(x) ≈ 3.0465 bits/symbol, which is significantly

higher than that achieved in Fig. 5.9(d). Since the BCJR demapping algorithm is optimal

62 CHAPTER 5. CODED SM TRANSMISSION

in the sense of delivering accurate extrinsic messages, the imperfectness of the current

system should come from other places, including the channel encoder, the scrambler, and

the interleaver. This conjecture gives the motivation for the work in Chapter 6.

Compared to the case of BCJR demapping, using a Gaussian demapper brings a certain

degree of performance degradation for repetition-coded SM-EPA, depending on the system

setup. Checking through Fig. 5.9(a) to Fig. 5.9(d), one may find that for N/SF 6 1.5 the

performance loss due to Gaussian demapping is mostly not significant, except for SF = 2.

On the other hand, whenever the EBL goes beyond 1.5 bits/symbol, the performance loss

becomes very significant, e.g., for N/SF = 7/4 and N/SF = 14/8. Hence, with Gaussian

demapping, the supportable EBL is about 1.5 bits/symbol, given the current system

configuration. Similar results are also reported in [38] in the framework of interleave-

division multiple access (IDMA). It is also shown in [38] that with a very large spreading

factor the performance loss due to Gaussian demapping becomes marginal.

Unequal Power Allocation

Since SM-UPA is equivalent to SM-GPA with group size G = 1, we do not make an indi-

vidual performance test for it. Instead we may safely utilize the results from Fig. 5.10(a),

by a simple parameter conversion: N = GL = L. Given unequal power allocation, super-

position mapping becomes uniform and bijective. Therefore, the theoretical supportable

effective bit load is always given by H(x) = N bits/symbol. Consequently, the iterative

receiver will not encounter any problem for convergence no matter how large the bit load

N is. This is the advantage of using a bijective uniform mapping scheme. However, one

should keep in mind that SM-UPA can not be capacity-achieving due to its non-Gaussian-

like symbol distribution. Besides, due to unequal power allocation, code bits are unequally

protected. With a rate 1/4 repetition code, which is the case in Fig. 5.10(a), this unequal

error protection effect can be partially mitigated if the number of power levels is smaller

than 4, as a random interleaver will not always assign the replicas from a single info bit

to chips with mutually different power levels. From Fig. 5.10(a), one sees that increasing

the bit load N by 1 the BER curve is shifted to the right by about 3 dB, when N < 4.

When N > 4, increasing the bit load by 1 will bring a performance degradation more than

3 dB, and this loss will asymptotically reach 6 dB as one increases the bit load further.

For SM-UPA, a chip of the (n + 1)th level will have a power only quarter of that of the

nth level, which corresponds to a 6 dB performace drop. After all, an interesting issue

in Fig. 5.10(a) is that the performance degradation due to Gaussian demapping is not as

large as one would have expected. Though this very-low-complexity demapping algorithm

has originally been derived for SM with a Gaussian-like symbol distribution, it actually

offers an acceptable performance for repetition-coded SM-UPA.

5.3. REPETITION-CODED SM 63

0 3 6 9 12 15 18 21 24 27 30
E

b
/N

0
 in dB

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

L = 6
L = 5
L = 4
L = 3
L = 2
L = 1

(a) G = 1.

0 3 6 9 12 15 18 21 24 27 30
E

b
/N

0
 in dB

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

L = 6
L = 5
L = 4
L = 3
L = 2
L = 1

(b) G = 2.

0 4 8 12 16 20 24 28 32 36 40
E

b
/N

0
 in dB

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

L = 6
L = 5
L = 4
L = 3
L = 2
L = 1

(c) G = 3.

0 3 6 9 12 15 18 21 24 27 30
E

b
/N

0
 in dB

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

L = 4
L = 3
L = 2
L = 1

(d) G = 4.

Figure 5.10: Repetition-coded SM-GPA, SF = 4, every second code bit flipped, ran-

dom interleaving, 1000 symbols per block, 20 iterations. Solid lines correspond to BCJR

demapping and dashed lines correspond to Gaussian demapping.

Grouped Power Allocation

Compared to equal power allocation and unequal power allocation, which are in fact two

extremes among all the possibilities, grouped power allocation has a more or less hybrid

type of property. Given a suitable group size, SM-GPA can deliver a Gaussian-like symbol

distribution as well, but its symbol entropy has a more linear relationship to the bit load,

compared to SM-EPA. According to the approximation given in (3.33), the theoretical

lower limit for the spreading factor (SF = 1/R) is given by

N

H(x)
≈ GL

1
2

log2(π
6
eG) + L

< G . (5.42)

For very large L, we have N/H(x) ≈ G. Hence, for an ideal channel code, choosing

SF = G should already enable error free detection for all L. Now, let us check the realistic

performance of repetition-coded SM-GPA, provided in Fig. 5.10. With BCJR demapping,

64 CHAPTER 5. CODED SM TRANSMISSION

one basically sees no limit on the supportable bit load for G = 1 and G = 2. While the

situation of G = 1 is more or less clear, the simulation of G = 2 is in fact very meaningful.

Given L = 6, the receiver still converges well. For this setup, the achieved throughput

is G · L/SF = 2 · 6/4 = 3 bits/symbol, which is clearly higher than that achieved with

SM-EPA (cf. Fig. 5.9). Referring to Fig. 3.11, SM-GPA with G = 2 is non-bijective and

the corresponding mutual information performance is almost capacity-achieving. Hence,

using a grouped power allocation strategy brings benefits for a practical iterative receiver,

and more importantly, doing so will not degrade the theoretical optimality of superposition

mapping for transmission over the Gaussian channel. Nevertheless, for G = 3, we do see

a limit on the supportable bit load, which is about 3 · 5/4 = 3.75 bits/symbol, and for

G = 4 the limit is even lower at 4 · 2/4 = 2 bits/symbol. This observation tells that

given a fixed spreading factor, increasing the group size G will reduce the supportable

bandwidth efficiency of (regular) repetition-coded SM-GPA. On the other hand, (5.42)

tells that such a situation should not happen if the channel code is optimal, as for all the

simulations in Fig. 5.10 the condition SF > G is fulfilled. Therefore, (regular) repetition

coding is not optimal for SM-GPA, which is of no surprise.

Last but not least, one sees from the dashed curves in Fig. 5.10 that the performance of

Gaussian demapping is rather undesirable for G > 2, in the sense of supporting much

limited bit load compared to BCJR demapping. If one checks these curves more carefully,

one will find that the problem of Gaussian demapping is in the capability of convergence.

Whenever it converges, its performance will not be far away from that of BCJR demap-

ping. However, if it does not converge, the corresponding BER curve will be more or

less flat. By taking a more suitable channel code, the convergence capability of Gaussian

demapping can be improved for SM-GPA, and so is the supportable bit load. Neverthe-

less, the performance loss w.r.t. BCJR demapping will still be non-trivial. In general, to

guarantee the convergence of an iterative receiver which utilizes a certain form of Gaussian

approximation, a large spreading factor is necessary [38, 42, 54]. This is not a problem

for large-scale systems such as IDMA systems, where a large spreading factor is typically

adopted. However, for superposition mapping, a larger spreading factor enforces a higher

bit load, if a certain bandwidth efficiency is to be achieved. This leads to a higher com-

putational complexity, which is certainly undesirable for practical applications. From an

engineering standpoint, finding a new superposition demapping algorithm that achieves

a better performance than the Gaussian demapper and a lower complexity than the tree-

based BCJR demapper deserves to be an interesting topic. Since the focus of this thesis

is on finding good channel codes that can well exploit the capacity-achieving potential of

superposition mapping, issues related to Gaussian demapping will not be covered in more

details. From now on, the tree-based BCJR demapping algorithm will always be assumed

for the discussion.

5.4. PARITY-CHECK-CODED SM 65

LDPC SM
u b x

b

Figure 5.11: Transmitter structure of LDPC-coded superposition mapping.

+ + + +

+ + + +

Figure 5.12: A factor graph for LDPC-coded SM, R = 1/2, N = 2, K = 4.

5.4 Parity-Check-Coded SM

In the past two decades, the technological advance in the field of parity-check coding

is marvelous. For a binary-input Gaussian channel, the modern random type of parity-

check codes can deliver a performance with a negligible distance to the channel capacity.

In this section, we will have a brief survey on parity-check-coded SM transmission over

the Gaussian channel. As a matter of fact, all well-known powerful parity-check codes,

including Turbo codes [4] and repeat-accumulate codes [55], can be interpreted as certain

type of low-density parity-check (LDPC) codes. Therefore, for the current discussion, we

risk no loss of generality by referring to LDPC codes only.

By means of LDPC coding, interleaving comes as a built-in operation from the channel

encoder. This makes an external interleaver no longer necessary. Hence, one may build

an LDPC-coded SM transmission system as in Fig. 5.11. Note that we have not placed

a scrambler in between the LDPC encoder and the superposition mapper. The reason

why we do so becomes clear when the effects of scrambling on repetition-coded SM are

discovered in Chapter 6.

5.4.1 Factor Graph Representation

Given the transmitter structure in Fig. 5.11, the corresponding factor graph representation

can be plotted as in Fig. 5.12, where each � stands for a parity check and each © stands

for a variable node (code bit). Summation checks and channel observations are marked

in the same way as in Fig. 5.7. Depending on the specific code design, each parity check

will be connected with a certain amount of variable nodes and each variable node will be

66 CHAPTER 5. CODED SM TRANSMISSION

connected with a certain amount of parity checks. For repetition-coded SM, each variable

node is connected with multiple summation checks, cf. Fig. 5.8. Now for LDPC-coded

SM, each variable node is connected with a single summation check but with multiple

parity checks. In Chapter 7 we will show that there are indeed many commonalities

between repetition-coded SM and LDPC coding.

5.4.2 Performance Overview

From Section 5.3.2 we have seen that a regular repetition code works well with superposi-

tion mapping, but is not optimal. In a conventional way of thinking, this is of no surprise,

because repetition coding is rarely connected to the concept of optimal channel coding.

Again in a conventional way of thinking, one expects a significant performance improve-

ment by replacing a zero-gain repetition code by a powerful LDPC code. Nevertheless,

the simulation results provided below will show that the true situation is not as simple as

one would have expected.

Equal Power Allocation

Fig. 5.13(a) demonstrates the performance of LDPC-coded SM-EPA. For the sake of

clearness, we have adopted rate 1/4 regular LDPC codes. The corresponding parity-

check matrices always have a unique column weight 3 and a unique row weight 4. The

code word length is proportional to the SM bit load, i.e., 1000 × N , so that the symbol

block length is constantly given by 1000. In order to make a fair comparison with the

tests in Section 5.3.2, the number of global receiver iterations is set to be 20. Within

each global iteration, no extra LDPC-local iterations are performed2. Clearly, given the

same number of iterations, the overall receiver computational load of LDPC-coded SM

will be higher than that of repetition-coded SM, cf. Fig. 5.12 and Fig. 5.8. Nevertheless,

the resulting performances are not necessarily better than that of repetition-coded SM.

Comparing Fig. 5.13(a) with Fig. 5.9(c), one observes the following phenomena. First, for

N = 1, which makes SM-EPA equivalent to BPSK mapping, LDPC coding significantly

gains w.r.t. repetition coding. This is because parity-check codes accomplish information

spreading in a more efficient way than repetition codes, for the binary-input AWGN

channel. Second, for N = 2, LDPC coding still gains w.r.t. repetition coding. At this

point, the superposition mapper is already non-bijective, but it seems to make no big

problem for the LDPC decoder. Third, at N = 3, a non-trivial error floor appears and

the BER performance is even worse than that of repetition-coded SM-EPA with N = 4.

2The necessity of LDPC-local iterations will be clarified by the discussion in Chapter 7.

5.4. PARITY-CHECK-CODED SM 67

0 2 4 6 8 10 12 14 16 18 20
E

b
/N

0
 in dB

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

N = 4
N = 3
N = 2
N = 1

(a) Equal power allocation.

0 2 4 6 8 10 12 14 16
E

b
/N

0
 in dB

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

N = 6
N = 5
N = 4
N = 3
N = 2
N = 1

(b) Unequal power allocation.

0 2 4 6 8 10 12 14 16 18
E

b
/N

0
 in dB

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

L = 4
L = 3
L = 2
L = 1

(c) Grouped power allocation, G = 2.

Figure 5.13: LDPC-coded SM, R = 1/4, 1000 symbols per block, 20 global iterations,

BCJR demapping. The LDPC codes are all (3, 4)-regular. Within each global iteration,

no extra LDPC-local iterations are performed.

68 CHAPTER 5. CODED SM TRANSMISSION

Finally, at N = 4, the receiver does not converge at all. Given these observations, one may

conclude that regular LDPC-coded SM-EPA only works well for very small bit loads. For

example, given R = 1/4, one should choose N 6 2, which corresponds to a bandwidth

efficiency 6 0.5 bits/symbol. For SM-EPA with N > 3, regular LDPC coding is not

superior but inferior to regular repetition coding.

Unequal Power Allocation

Given unequal power allocation, a superposition mapper will be uniform and bijective.

Consequently, a regular LDPC code works well in this case. By checking the SNR range

of Fig. 5.13(b) and Fig. 5.10(a), the advantage of LDPC coding over repetition coding is

evident for SM-UPA. When one increases the bit load, the BER curve of LDPC-coded

SM-UPA shifts rightwards, which is caused by the decreasing minimum symbol distance

together with the unequal error protection effect caused by unequal power allocation.

After all, we should keep in mind that this type of system setup does not have a potential

to approach the Gaussian channel capacity because of the uniform symbol distribution.

An interesting comparison may make this issue more clear. Checking the performance

of repetition-coded SM-EPA with SF = 4 and N = 6 in Fig. 5.9(c) and comparing it

with the performance of LDPC-coded SM-UPA with R = 1/4 and N = 6 in Fig. 5.13(b),

one may find that the latter is even worse, for BER > 10−5. Clearly, these two system

setups give exactly the same bandwidth efficiency. Though by no means the performance

under consideration is the best that LDPC-coded modulation can achieve, it does reflect

an important principle. Regardless that LDPC codes are excellent for data transmission

in the power-limited regime, its advantage over repetition codes in the bandwidth-limited

regime is not as much as one would expect from a conventional way of thinking.

Grouped Power Allocation

Given rate 1/4 regular LDPC-coded SM-GPA with G = 2, the maximum supportable

power level number is L = 2, as shown in Fig. 5.13(c). This corresponds to a bandwidth

efficiency of R · G · L = 1 bit/symbol, which is slightly improved w.r.t. to the case of

LDPC-coded SM-EPA. Nevertheless, the resulting power efficiency is in fact undesirable.

Comparing the BER curve for L = 2 in Fig. 5.13(c) to the BER curve for L = 2 in

Fig. 5.10(b), one observes that the performance of LDPC-coded SM-GPA is inferior to

that of repetition-coded SM-GPA, for BER > 10−5. Combining the observations from

Fig. 5.13(a) and Fig. 5.13(c), we may conclude that regular parity-check codes are not

suitable for non-bijective nonuniform superposition mapping, whenever the bit load is

large. The application of irregular LDPC codes for SM will be discussed in Chapter 7.

Chapter 6

Spreading, Scrambling, and

Interleaving

In Chapter 5, the performance of superposition mapping with conventional coding schemes

has been surveyed. Surprisingly, repetition coding is advantageous over parity-check

coding, particularly in the sense of supportable bandwidth efficiency. Hence, classical

capacity-achieving channel codes, which are exclusively designed for bijective uniform

mapping, do not work well for non-bijective nonuniform superposition mapping. This ob-

servation reveals that designing suitable channel codes for superposition mapping is not

as straightforward as one may have expected. Considering the superior performance of

repetition-coded SM, it is worthwhile to conduct a careful investigation on this type of sys-

tem structure. Intuitively, one expects valuable hints for a more complicated code design

from this study. This chapter tries to provide a deep insight into the working mechanism

of repetition-coded SM via a thorough survey on its three important aspects: spreading,

scrambling, and interleaving. As exhibited in Chapter 5, equal power allocation presents

the biggest challenge w.r.t. code design. Therefore, the discussion in this chapter will

exclusively be focused on SM-EPA. Code design for SM-UPA and SM-GPA will be treated

in Chapter 7. It will be shown that spreading, scrambling, and interleaving are indivisible

operations for SM-EPA, i.e., all three of them are essential for the system performance

and their effects are highly interactive. The way of spreading significantly influences the

supportable bandwidth efficiency of SM-EPA, while the quality of interleaving primarily

determines the level of error floor. In comparison, scrambling influences the performance

in a relatively indirect way, in the sense that its main effect is in improving the stability

of iterative detection. When matched to interleaving, scrambling can also help to reduce

the error floor level. To achieve the best possible performance, the spreading scheme, the

scrambling pattern, and the interleaving pattern, have to be carefully designed.

69

70 CHAPTER 6. SPREADING, SCRAMBLING, AND INTERLEAVING

0 2 4 6 8 10 12 14 16 18 20
E

b
/N

0
 in dB

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

Uncoded BPSK
SF = 1
SF = 2
SF = 4
SF = 6
SF = 8
SF = 16
SF = 32

Figure 6.1: Repetition-coded SM-EPA, every second code bit flipped, random interleaving,

N = 8, 1000 symbols per block (999 for SF = 6), 100 iterations.

6.1 Effects of Spreading

According to Chapter 5, a large spreading factor is always beneficial for repetition-coded

SM-EPA with iterative detection. Here we provide a more systematic view on this issue.

For this discussion, let us still use the simple scrambling scheme that flips every second

code bit and let us stay with random interleaving.

6.1.1 Regular Repetition

Fig. 6.1 shows the performance of repetition-coded SM-EPA with bit load N = 8 and

various spreading factors. To eliminate the influence from insufficient iterations, we always

make 100 receiver iterations, regardless of the particular value of the spreading factor. The

performance of random interleaving improves with the block length. Hence, to make the

comparison fair, we fix the number of symbols per burst, which in turn fixes the number of

code bits and consequently the interleaver length. At SF = 1, there is no spreading at all.

Therefore, a significant error floor is present. As explained by the discussion in Chapter 4,

this error floor level will raise monotonically with the bit load N , as long as no spreading

is applied before superposition mapping. Increasing the spreading factor to SF = 2, the

error floor level reduces a little bit but is still significant. This is also easy to understand

by checking Tab. 3.3. The compression rate of SM-EPA with N = 8 is about 0.3180, which

in turn requires a spreading factor larger than or equal to 1/0.3180 ≈ 3.1447. For any

spreading factor below this limit, error-free transmission is strictly prohibitive, because

one is eventually loading more information than each SM-EPA symbol can carry. By

increasing the spreading factor to SF = 4, which is already above the theoretical limit,

the error floor drops noticeably but is still at a high level. This indicates that the current

6.1. EFFECTS OF SPREADING 71

system configuration is far from being optimal. At the moment, it is not clear whether

the imperfectness comes from the spreader, the scrambler, the interleaver, or simply the

block length. There is also a chance that these four issues all contribute to the non-

optimal performance. We will clarify the situation step-by-step in later discussions. With

SF = 6, the error floor drops to a level around 10−7, and the BER performance improves

further by taking even larger spreading factors. There is an ultimate bound for the BER

performance under concern. Due to equal power allocation and regular repetition coding,

all info bits are equally protected. Together with the fact that repetition codes provide

no coding gain, one should expect no better power efficiency from such a system than

uncoded BPSK. Nevertheless, in case of SF < N the achieved bandwidth efficiency will

be higher than that of uncoded BPSK.

6.1.2 Irregular Repetition

In the field of LDPC coding, it is a common knowledge that irregular LDPC codes can

often provide a performance closer to the capacity than regular ones. By irregular LDPC

coding, the code bits are unequally protected, either virtually or truly. During iterative de-

coding, the strongly protected code bits get correctly estimated first, and then the knowl-

edge of these bits will help the estimation of those weakly protected bits. Given a properly

designed degree distribution, an irregular LDPC code can offer a significant improvement

w.r.t. the decoding threshold [56–58]. Naturally, in the scenario of repetition-coded SM

transmission, one may wonder if an irregular repetition code will also help.

For SM-EPA, using an irregular repetition code creates another type of unequal power

allocation. Different info bits are spreaded into a different amount of binary antipodal

chips, while these chips all have identical power due to EPA. Consequently, we can no

longer use the performance of uncoded BPSK as a bound for the best achievable power

efficiency. Instead, for an irregular repetition-coded SM-EPA transmission scheme, the

best achievable power efficiency is given by the performance of this scheme at N = 1,

i.e., when SM-EPA is equivalent to BPSK mapping. That is to reserve the unequal

error protection effect from irregular repetition but to eliminate the effect of inter-chip

interference due to linear superposition.

From Fig. 6.1 we observe that given the system setup therein a regular repetition code

with spreading factor SF = 4 cannot bring a good convergence for the iterative receiver.

Now, we try two irregular repetition codes both having an average spreading factor of 4.

The first code applies degree-3 repetition for 50% of the info bits and degree-5 repetition

for the remaining. The second code applies degree-3 repetition for 80% of the info bits and

degree-8 repetition for the remaining. Fig. 6.2 illustrates the performance of SM-EPA with

72 CHAPTER 6. SPREADING, SCRAMBLING, AND INTERLEAVING

0 2 4 6 8 10 12 14 16 18 20
E

b
/N

0
 in dB

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

100% D4, N = 1
50% D3 + 50% D5, N = 1
80% D3 + 20% D8, N = 1
100% D4, N = 8
50% D3 + 50% D5, N = 8
80% D3 + 20% D8, N = 8

Figure 6.2: Repetition-coded SM-EPA, every second code bit flipped, random interleaving,

N = 8, 1000 symbols per block, 100 iterations. “D” stands for the degree of repetition.

these two irregular codes as well as the regular SF = 4 repetition code. The BER curves

corresponding to N = 1 are provided as reference curves. Clearly, the irregularity in the

repetition code is helpful for the iterative receiver. By introducing degree-5 repetitions,

the error floor level is reduced from 10−2 to 10−3, and by introducing degree-8 repetitions,

the error floor level drops below 10−4. Empirically, an error floor below 10−4 is usually

caused by short cycles in the corresponding factor graph. We will address this issue later

in Section 6.4. Analogous to the mechanism of irregular LDPC coding, the info bits with a

large spreading factor get correctly estimated first, and afterwards, the knowledge of these

bits helps the estimation of remaining bits with a relatively small spreading factor. In this

way, irregular repetition helps the iterative receiver to jump out from many local optima

and consequently helps it to converge to the global optimum, if the corresponding factor

graph has a nice structure. Another important fact to be noted is the effect of irregular

repetition on the decoding threshold. As shown by Fig. 6.2, the distance from the BER

curve for N = 8 to the BER curve for N = 1 decreases as one increases the maximum

repetition degree. This means that with the current system setup, the iterative receiver

is working more and more close to the optimal level that it can achieve in principle, when

one enlarges the irregularity of the repetition code.

6.1.3 Information Aggregation and Information Distribution

By the investigation so far, we have seen that repetition-coded SM-EPA works well and

more importantly there is clearly space for further improvements. On the other hand,

if we have a quick review on the discussions in Section 5.2.1, we will find that in the

initial iteration the LLR messages outputting from an SM-EPA demapper should mostly

be very weak, especially when the bit load N is large. As a natural question, one may

6.1. EFFECTS OF SPREADING 73

wonder how the iterative receiver of a repetition-coded SM-EPA system manages to deliver

reliable decisions at the end. To clarify this issue, we consider in the following a simple

example which visualizes the working procedure of iterative superposition demapping and

repetition decoding. This study will also serve as a technical background for the discussion

in Section 6.2 and Section 6.3.

Suppose we have a repetition-coded SM-EPA system that transmits 57 info bits per block.

The bit load of the superposition mapper is given by N = 3. The adopted repetition code

is irregular. It repeats one and only one info bit by a factor of 4. It repeats 24 info bits by

a factor of 2, and it does not repeat the remaining 32 info bits. Let us denote the info bit

with degree-4 repetition by v and focus on the information aggregation and information

distribution process on the corresponding variable node. With a good interleaver pattern,

one may obtain a graph as shown in Fig. 6.3. Note that this graph is completely cycle-free.

Hence, one may also call it a tree diagram, with the node v being the root. Not difficult

to find, the amount of summation checks that are reached from v by the 1st iteration is

given by 4. This amount increases to 4 + 4 · 2 by the 2nd iteration, and 4 + 4 · 2 + 4 · 2 · 2
by the 3rd iteration. Sequentially, if one grows the tree further in this style, by the nth

iteration the total amount of reached summation checks from v is given by

4 + 4 · 2 + 4 · 2 · 2 + . . .+ 4 · 2n−1 = 4 · (2n − 1) , (6.1)

which raises exponentially with the iteration number. Due to iterative message passing,

the information contained by these summation checks will all contribute to the estimation

of variable v via Bayesian inference. As a result, the estimation of v becomes more and

more reliable from iteration to iteration. Easy to imagine, by using a larger spreading

factor, the amount of reachable checks will increase even faster. Therefore, for a fixed

bit load, the required number of iterations for good convergence should reduce with the

spreading factor. On the other hand, a larger bit load typically imposes more iterations.

To have a deeper insight into the iterative message passing process of repetition-coded

SM-EPA, let us consider some numerical samples. In case of noiseless transmission, the

LLR messages outputting from an N = 3 SM-EPA demapper in the initial iteration will

have four possible values as shown in the table below, cf. Fig. 4.3 and Section 5.2.1. For

x −3α −α +α +3α

LLR −∞ −0.6931 +0.6931 +∞

the purpose of detection, it is clearly better to receive more symbol values of ±3α. Now,

assume that the SNR per info bit is given by Eb/N0 = 6 dB, and the channel observations

of summation checks are given by the labels with large fonts in Fig. 6.3. For the sake of

clearness, we have assumed the amplitude coefficient α to be 1. We start the iterative

74 CHAPTER 6. SPREADING, SCRAMBLING, AND INTERLEAVING

+ 0.1

v
-5.8

7
.4

6
.1

+ 3.4

7
.4

-0
.6

3.8

+1.4

6
.1

0.6

-6.4

+

-0.5

-0
.6

0.0

0
.0

+2.7

3.8

0
.0

0
.0

+ 0.6

0.6

0
.0

0
.0

+-3.2

-6.4

0
.0

0.0

+

1.2

1.0

1.4

-0
.9

+

1.11.4

-0
.7

-0.7

+

-0.8-0
.9 0.7

-0
.7

+
-1.5

-0
.7

0
.0

0.0

+

-0.7

-0.7

0.0

0.
0

+

0.9

0.7
0.0

0.
0

+

-1.3

-0
.7

0.
0

0
.0

+

-0.9

-3.8

-5
.3

4
.3

+-3.0

-5
.3

0.
7

-0.7

+

2.8

4
.3

0.8
-0.4

+

0.8

0.
7

0.0

0
.0

+

-1.2

-0.7

0
.0

0
.0

+

1.6

0.8

0
.0

0
.0

+ -0.3
-0.4

0
.0

0.0

+

-3.8

-9.6

-2.1

-4
.8

+

-2.4
-2.1

-5
.8

-8.0

+-2.9
-4

.8-1.3

-9
.6

+

-3.1

-5
.8

0
.0

0.0

+-3.5
-8.0

0.0

0.
0

+

-2.1

-1.3

0.0

0.
0

+-3.8 -9
.6

0.
0

0
.0

1st
level

2nd
level

b

Figure 6.3: A cycle-free graph that visualizes information aggregation during the iterative

message passing process of a repetition-coded SM-EPA system, N = 3, Eb/N0 = 6 dB.

message passing from the variable nodes in the outermost ring. Since these variable

nodes all have degree-1 repetition, their initial messages to the neighboring summation

checks will all be zero. Nevertheless, given these all-zero messages, relevant summation

checks will deliver messages, either weak or strong, to the variable nodes locating around

the second iteration ring. One may find from the above figure that those summation

checks with observations close to ±3 will generate very strong LLR messages, while those

checks with observations close to ±1 will generate rather weak LLR messages. Since the

variable nodes in the middle rings are all with degree-2 repetition, they function as if

lossless relays for the message propagation. After three iterations, the information from

all summation checks within this graph reaches the variable node v. We see that the

four messages entering v have substantially different magnitudes, which is in fact easy

to understand. By carefully checking Fig. 6.3, one will find that the summation checks

in the left branch are all with observations close to ±3. It is natural that this branch

delivers the strongest message to v. In contrast, the summation checks in the right branch

come with observations all close to ±1. By the table given on the previous page, this is

also natural that this branch delivers the weakest message to v. For the upper and lower

branch, the situation is somewhere in the middle, and consequently their messages to v

have middle-level magnitudes w.r.t. the other two branches. By this discussion, we get

6.1. EFFECTS OF SPREADING 75

+ 0.1

v
-12.4

0
.5

0
.5

+ 3.4

0
.5

7.
4

7.4

+1.4

0
.5

6.1

0.2

+

-0.5

7.
4

-2.7

-2
.7

+2.7

7.4

3
.7

3
.7

+ 0.6

6.1

0
.0

0
.0

+-3.2

0.2

-6
.4

-6.4

+

1.2

-19.2

6.4

6.
4

+

1.16.4

0
.7

0.7

+

-0.8
6.
4 -4.1

-4
.2

+
-1.5

0
.7

-1
.1

-1.1

+

-0.7

0.7

-1.0

-1
.0

+

0.9

-4.1
3.7

3.
7

+

-1.3

-4
.2

0.
0

0
.0

+

-0.9

-14.4

-3
.8

4
.8

+-3.0

-3
.8

-5
.3

-5.3

+

2.8

4
.8

4.3

4.3

+

0.8

-5
.3

4.0

4
.0

+

-1.2

-5.3

0
.0

0
.0

+

1.6

4.3

0
.1

0
.1

+ -0.3
4.3

-1
.7

-1.7

+

-3.8

-8.6

-9.6

-9
.6

+

-2.4
-9.6

-2
.1

-2.1

+-2.9
-9

.6-4.8

-4
.8

+

-3.1

-2
.1

-5
.8

-5.8

+-3.5
-2.1

-8.0

-8
.0

+

-2.1

-4.8

-1.1

-1
.1

+-3.8 -4
.8

-9
.6

-9
.6

1st
level

2nd
level

b

Figure 6.4: A cycle-free graph that visualizes information distribution during the iterative

message passing process of a repetition-coded SM-EPA system, N = 3, Eb/N0 = 6 dB.

an important hint. That is the quality of soft messages propagating within a factor graph

of a repetition-coded SM-EPA system is highly dependent on the amount and density

of summation checks with observations close to ±Nα. Naturally, with an insufficient

amount of strong observations, the iterative receiver is likely to fail.

Next, we check the effect of irregular repetition to message passing. For this purpose, we

need to continue the iterations from Fig. 6.3, and distribute the information aggregated

at variable node v to the rest of graph, as depicted in Fig. 6.4. Since the variable node

v has degree-4 repetition, the messages delivered by this node are very strong. Roughly

speaking, a variable node with a high repetition degree works like an amplifier for the

LLR messages. As a result, those variable nodes close to v will all benefit from the strong

messages being pumped out from it. Certainly, the extent of benefit also relies on the

particular observation value of the bridging summation checks. Nevertheless, due to the

expansion of node set, the reliable information from variable node v gets diluted from

iteration to iteration. Hence, a high-degree variable node can only provide meaningful

help for those nodes in a limited distance from it. For this reason, when one builds a

graph, those high-degree variable nodes should be evenly distributed over the graph.

76 CHAPTER 6. SPREADING, SCRAMBLING, AND INTERLEAVING

0 2 4 6 8 10 12 14 16 18 20
E

b
/N

0
 in dB

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

Without Scrambling
With Scrambling

(a) SF = 8.

0 2 4 6 8 10 12 14 16 18 20
E

b
/N

0
 in dB

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

Uncoded BPSK
SF = 6
SF = 8
SF = 16
SF = 32
SF = 64
SF = 128

(b) Without scrambling.

Figure 6.5: Repetition-coded SM-EPA, random interleaving, N = 8, 2000 symbols per

block, 20 iterations.

6.2 Effects of Scrambling

In former discussions, we often assumed a fixed-pattern scrambling scheme that flips every

second code bit. The motivation as well as the benefit of this practice will become clear

in this section.

To start the investigation, let us first have some concrete perception of the scrambling

scheme under consideration. Assume that the spreading factor is given by SF = 4, i.e.,

the repetition coding rate is R = 1/4. Flipping every second code bit, the association

between an info bit and its scrambled code word will be

0
spreading−→ [0, 0, 0, 0]

scrambling−→ [0, 1, 0, 1]

1
spreading−→ [1, 1, 1, 1]

scrambling−→ [1, 0, 1, 0]
.

In case of BPSK mapping, the code bit sequence after scrambling will be DC-free, in-

dependent of the info bit sequence. Generally speaking, scrambling is very effective in

eliminating a DC signal component for systems employing a symmetric mapping scheme.

From a physical transmission standpoint, a DC signal component consumes transmission

power but carries no information at all. This explains the wide application of scrambling

in practical communication systems. The same argument holds for repetition-coded SM

systems. Nevertheless, the importance of scrambling to repetition-coded SM is indeed far

beyond this scope. For example, given SF = 8 and N = 8, with or without scrambling

brings a huge performance difference for repetition-coded SM-EPA, cf. Fig. 6.5(a). With

scrambling, the receiver converges well, while without scrambling, the receiver does not

converge at all. More performance results can be found in Fig. 6.5(b). By comparing

Fig. 6.5(b) with Fig. 6.1, one will find that without scrambling a much larger spreading

factor is needed to achieve receiver convergence, to be explained in the following.

6.2. EFFECTS OF SCRAMBLING 77

0 1 2 3 4
Iteration Index

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

(a) With scrambling.

0 2 4 6 8 10 12 14 16 18 20
Iteration Index

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B
it

E
rr

or
 R

at
e

(b) Without scrambling.

Figure 6.6: Variation of the BER w.r.t. the number of iterations. Repetition-coded SM-

EPA, random interleaving, SF = 8, N = 8, 2000 symbols per block, Eb/N0 = 10 dB.

6.2.1 The Trap of Message Oscillation

According to the performance test in Fig. 6.5, scrambling is necessary for repetition-coded

SM-EPA and its usefulness in improving the system stability is evident. However, the

reasons behind this phenomenon are so far not explicit. Obviously, the “DC component”

argument is not convincing enough to explain such a big influence on the performance. For

systems similar to repetition-coded SM-EPA, e.g., IDM [28] and IDMA [54], the impor-

tance of scrambling is also commonly recognized. Nevertheless, the available knowledge

about the effects of scrambling is limited. A popular argument is that an APP demapper,

which assumes a uniform a priori distribution (P (bn = 0) = P (bn = 1) = 1/2) for all

code bits in the initial iteration, benefits from the scrambling operation. This argument

is true, but does not reveal the most critical effect of scrambling for this type of systems.

Note that even for conventional uniform mapping schemes, an APP demapping algorithm

will make the same assumption as well. However, a phenomenon like that in Fig. 6.5 has

never been reported for coded modulation with a bijective uniform mapping scheme.

To find the truth, we try to monitor the iteration process for repetition-coded SM-EPA.

Fig. 6.6(a) shows the change of the BER w.r.t. the number of iterations for a certain

transmission block, when scrambling is applied. One observes that the BER drops steadily

as the iterative demapping and decoding process proceeds. After a few iterations, the BER

is already below 10−4. On the other hand, the situation is catastrophic when scrambling

is not applied, as demonstrated in Fig. 6.6(b). Instead of decreasing step-by-step, in a few

iterations the BER starts to rapidly alternate between two values at a level around 0.5.

Hence, we obtain an important message that an iterative receiver for repetition-coded

SM-EPA can easily fall into a periodic oscillating state, if no scrambling is applied. Next,

we try to understand how and why such kind of receiver oscillations happen.

78 CHAPTER 6. SPREADING, SCRAMBLING, AND INTERLEAVING

+

y<0

−ζ −ζ −ζ −ζ

(a) With a negative channel observation.

+

y>0

+ζ +ζ +ζ +ζ

(b) With a positive channel observation.

Figure 6.7: The homogeneousness of summation check messages in the initial iteration.

As a matter of fact, an ensemble of summation checks and variable nodes can form a

“good” message oscillator, given a “suitable” set of channel observations. For the sake of

easy elaboration, we will first investigate the behaviour of summation checks and variable

nodes in some extreme cases and later on extend the discussion to more general scenarios.

Given equal power allocation, the initial messages from an individual summation check

are homogeneous. Assuming an SM-EPA input, the AWGN channel equation is given by

y = x+ z =
N∑

n=1

cn + z , cn ∈ {±α} . (6.2)

In case that the channel observation y is less than zero, a summation check will assume

that the input symbol x is more likely to be negative. Due to equal power allocation,

the input symbol x can only be negative if it contains more negative chips than positive

ones. For this reason, this summation check (APP demapper) will deliver all-negative

LLR messages to the variable nodes, in the initial iteration. Vice versa, if the channel

observation is larger than zero, a summation check will deliver all positive-LLR messages

to the variable nodes. Moreover, in the initial iteration, the magnitudes of LLR messages

from an individual summation check will all be identical. This is easy to understand. Due

to equal power allocation, a summation check itself cannot make any distinction between

the involved chips for the LLR calculation, when the a priori information from the decoder

is still not available. Fig. 6.7 demonstrates this phenomenon, where ζ denotes a certain

message magnitude. This often gives the starting point for periodic message oscillations.

Given all-positive message inputs, a variable node will deliver all-positive message outputs,

and vice versa. Fig. 6.8 demonstrates this phenomenon. Let L
(i)
n and L

(o)
n denote the input

and output message on the nth edge, respectively. For a degree-D variable node, we have

L(o)
n =

D∑

m=1,m 6=n
L(i)
m ∀ 1 6 n 6 D . (6.3)

Clearly, if the input messages are all-positive, their summations will also be all-positive.

Besides, if the input messages are identical, the output messages will be identical as well.

This gives an important reason for periodic message oscillations.

6.2. EFFECTS OF SCRAMBLING 79

v

+ + + +

=⇒

v

+ + + +

v

− − − −

=⇒

v

− − − −

Figure 6.8: Given uni-sign inputs, a variable node produces uni-sign outputs.

Another important reason for periodic message oscillations is the tendency of summation

checks in inverting the sign of incoming messages. The SM-EPA symbol alphabet is given

by X = {−αN,−α(N −2), . . . , α(N −2), αN}. There will be a threshold γ0 such that for

all y < +γ0 the probability P (x = +αN |y) is negligible and for all y > −γ0 the probability

P (x = −αN |y) is negligible. For a moderate SNR, we have α(N − 2) < γ0 < αN , as

depicted in Fig. 6.9. Given y < +γ0, a summation check firmly believes that x 6 α(N−2),

or in other words, it firmly believes that there must be at least one chip being negative. In

this case, given all-positive inputs, this summation check will deliver all-negative outputs,

illustrated in the upper part of Fig. 6.10. Hence, all the message signs are simply inversed.

Similarly, by observing y > −γ0 and receiving all-negative inputs, a summation check will

deliver all-positive outputs, illustrated in the lower part of Fig. 6.10. For a large bit load,

the probability to have −α(N − 2) 6 x 6 α(N − 2) is close to 1, due to the non-uniform

symbol distribution. Subsequently, the probability to have γ− 6 y 6 γ+ is also close to 1,

given a moderate SNR. That is, within a transmission block, the majority of summation

checks can show a behaviour as depicted in Fig. 6.10.

Now, let us check the effects of the above described properties for a small piece of graph.

Consider repetition-coded SM-EPA with N = 3 and α = 1. We assume that the SNR

is high such that γ0 ≈ α(N − 1) = 2. Suppose that the observations for the summation

checks are all 1, as labelled in Fig. 6.11. Clearly, the initial messages from the summation

checks will be all-positive. By receiving all-positive messages, the variable nodes will

output all-positive messages. This ends the message passing for the initial iteration. For

the second iteration, due to receiving all-positive messages and having −γ0 < y < +γ0,

the summation checks will output all-negative messages. Following that, the variable

nodes will deliver all-negative messages. This ends one cycle of message oscillation. Easy

to imagine, this type of message oscillations lead to a dead loop, and there is no chance

for the receiver to escape from such a trap. Without loss of generality, we may call such

ill-conditioned receiver iterations the trap of message oscillation.

80 CHAPTER 6. SPREADING, SCRAMBLING, AND INTERLEAVING

y

−αN −α(N − 2) +α(N − 2) +αN

Range for message sign inversion

−γ0 +γ0

Figure 6.9: The range of channel observation that may lead to message sign inversion.

+

y<+γ0

+ + + +

=⇒

+

y<+γ0

− − − −

+

y>−γ0

+ + + +

=⇒

+

y>−γ0

− − − −

Figure 6.10: The phenomenon of message sign inversion at summation checks.

+ + +

+1 +1 +1

v1 v2 v3

+
+ +

+ + +
+ +

+ =⇒
+ + +

+1 +1 +1

v1 v2 v3
+ +

+ +
+

+ +

+ +

=⇒

+ + +

+1 +1 +1

v1 v2 v3

−
− −

− − −
− −

−

=⇒

+ + +

+1 +1 +1

v1 v2 v3
− −

− −
−

− −
− −

=
⇒

Figure 6.11: A periodic message oscillation within a small piece of graph.

6.2. EFFECTS OF SCRAMBLING 81

0 1 2 3 4 5 6 7 8 9 10
Iteration Index

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Fr

ac
tio

n
of

 P
os

iti
ve

 M
es

sa
ge

s

(a) With a starting point higher than 0.5.

0 1 2 3 4 5 6 7 8 9 10
Iteration Index

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 P

os
iti

ve
 M

es
sa

ge
s

(b) With a starting point lower than 0.5.

Figure 6.12: Fraction of positive messages at each iteration. Repetition-coded SM-EPA,

no scrambling, random interleaving, SF = 8, N = 8, K = 2000, Eb/N0 = 10 dB.

The example considered in Fig. 6.11 is over-simplified, in the sense of using an extremely

small block length. Given a realistic block length, the situation is more complicated. To

attain a good understanding, we make a new test. For randomly generated data blocks,

we measure the fraction of positive messages (FPM) from summation checks as well as

variable nodes at each iteration. Note that each iteration starts from message updating at

summation checks and ends with that at variable nodes. In Fig. 6.12, the measured values

at integer indices correspond to the FPM from summation checks, and those at fractional

indices correspond to the FPM from variable nodes. Let us first focus on Fig. 6.12(a). As

the starting FPM is slightly larger than 0.5, there is a mild sign imbalance in the initial

messages from summation checks. However, this mild imbalance gets amplified in the

following message updating process at variable nodes. Illustrated in Fig. 6.13, a variable

node tends to unify the message signs whenever the inputs are considerably biased1. In

the second iteration, this sign imbalance is further amplified by the message updating

process at summation checks, albeit towards a reverse direction. Illustrated by Fig. 6.14

and Fig. 6.15, given a channel observation in the range [−γ1,+γ1] a summation check

tends to reverse and unify the message signs. Following this procedure, the FPM soon

starts to periodically alternate between a value close to 0 and a value close to 1. This

means that the messages are either almost all-positve or almost all-negative. Since a large

data block will contain roughly equal amount of 0’s and 1’s, the BER will be alternating

between two values close to 0.5, which well explains the result in Fig. 6.6(b). The FPM

cannot be really 0 or 1 because those summation checks with y � −γ0 or y � +γ0 will

insist on outputting messages with a certain sign independent of the inputting messages.

Now, the result in Fig. 6.12(b) also becomes easily understandable. The only difference

w.r.t. Fig. 6.12(a) is that the oscillation process starts from an opposite direction.

1The message updating process at variable node v in Fig. 6.3 and 6.4 gives a good numerical example.

82 CHAPTER 6. SPREADING, SCRAMBLING, AND INTERLEAVING

v

+ + − +

=⇒

v

+ + + +

v

− − + −

=⇒

v

− − − −

Figure 6.13: The phenomenon of message sign unification at variable nodes.

y

−αN −α(N − 2) −α(N − 4) +α(N − 4) +α(N − 2) +αN

Range for message sign unification

−γ1 +γ1

Figure 6.14: The range of channel observation that may lead to message sign unification.

Given y < +γ1, a summation check firmly believes that at least two chips are negative.

Given y > −γ1, a summation check firmly believes that at least two chips are positive.

+

y<+γ1

+ + − +

=⇒

+

y<+γ1

− − − −

=⇒

+

y>−γ1

− − + −

+

y>−γ1

+ + + +

Figure 6.15: The phenomenon of message sign unification at summation checks.

6.2. EFFECTS OF SCRAMBLING 83

The observations from Fig. 6.12 indicate that a superposition demapper and a repetition

decoder tend to “help” each other in entering a periodic osciallating state, which is cer-

tainly disastrous for the BER performance. Given a random interleaver, the overall factor

graph will often be a collection of quasi-isolated sub-graphs, with each sub-graph having a

limited connectivity to the rest of the graph. Assuming i.i.d. info bits, the sign of channel

observations within the whole transmission block will be more or less balanced. However,

this is likely not the case for a small sub-graph which contains only a limited amount of

channel observations. Whenever the channel observations within a certain sub-graph are

strongly biased in the sign, as in the case of Fig. 6.11, the message passing process within

this sub-graph will fall into the trap of message oscillation with a high probability. After-

wards, with a certain number of sub-graphs falling into the trap of message oscillation,

these sub-graphs will soon bring the whole graph into a periodic oscillating state, and

consequently prevent the receiver from achieving any performance gain via iterations. To

obtain a desirable performance, the trap of message oscillation has to be avoided. There

are several possibilities to achieve this, to be elaborated in the following.

The first possibility is to use a large spreading factor, as already implied by Fig. 6.5(b).

Given a large spreading factor, each variable node will be connected with a large amount

of summation checks. Due to a diversity effect, the sum of messages from these summation

checks is reliable already in the initial iteration. A variable node pumping out reliable

messages helps the graph to converge to a stable state instead of creates periodic message

oscillations. If most of the variable nodes behave like this, it will be difficult for message

osciallations to take place. More specifically, channel observations close to ±αN are

particularly helpful for the detection process, since the corresponding summation checks

will not create or participate periodic message oscillations. We have P (x = ±αN) = 2/2N

for SM-EPA symbols. Given a spreading factor that is comparable to 2N−1, the chance

that each variable node receives at least one channel observation close to ±αN becomes

considerable, and consequently drops the probability of message oscillations to a low level.

For the case of Fig. 6.5(b), we have 2N−1 = 27 = 128. Nevertheless, an unnecessarily large

spreading factor leads to an unnecessarily low data rate, which is certainly undesirable.

The second possibility is to enlarge the length of cycles. According to former discussions,

a necessary condition for message oscillations to happen is that each graph node receives

the “echos” of the messages delivered by itself from the rest of graph within a very limited

number of iterations. Easy to imagine, it is strictly not possible for a periodic message

oscillation to happen over a cycle-free factor graph. Moreover, message “echos” from long

cycles are likely to have a diversity due to being extrinsic. Hence, a reasonable conjecture is

that a factor graph consisting of purely long cycles will be immune to message oscillations.

We will check the correctness of this conjecture via numerical simulations in Section 6.4.3.

84 CHAPTER 6. SPREADING, SCRAMBLING, AND INTERLEAVING

v

+ + + +

+
− +

−

(a) Variable-node-based scrambling (VBS).

+

+ + + +

+
− +

−

(b) Summation-check-based scrambling (SBS).

Figure 6.16: Two possible strategies for scrambling: VBS and SBS.

0 1 2 3 4 5 6 7 8 9 10
Iteration Index

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

Fr
ac

tio
n

of
 P

os
iti

ve
 M

es
sa

ge
s

(a) Variable-node-based scrambling.

0 1 2 3 4 5 6 7 8 9 10
Iteration Index

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

Fr
ac

tio
n

of
 P

os
iti

ve
 M

es
sa

ge
s

(b) Summation-check-based scrambling.

Figure 6.17: The effect of scrambling on the variation of FPM w.r.t. iterations.

The third and the most efficient way to avoid message oscillations is to apply scrambling.

Not difficult to find, the primary condition for periodic message oscillations is that by

receiving uni-sign incoming messages a graph node will produce stronger but still uni-

sign outgoing messages. By means of scrambling after repetition encoding, cf. Fig. 5.6,

every second edge from an individual varaible node will contain a message-sign-reversing

operation as illustrated in Fig. 6.16(a). Suppose that a message oscillation tends to start,

such that a variable node receives uni-sign incoming messages. Due to flipping, half of

the messages will have a reversed sign when they finally enter this variable node. In the

following message updating process at this variable node, the negative messages will more

or less cancel out the positive messages. As a result, the new outgoing messages from this

variable node will be weaker and usually non-uni-sign. In this way, the primary condition

for message oscillations gets destroyed. We call such a scrambling strategy variable-node-

based scrambling (VBS). Similarly, we may apply scrambling after interleaving such that

every second edge from an individual summation check contains a message-sign-reversing

operation, as depicted in Fig. 6.16(b). We call such a scrambling strategy summation-

check-based scrambling (SBS). Fig. 6.17 measures the FPM before and after each message

updating operation in a few iterations for VBS and SBS. It shows that VBS and SBS are

both effective in stabilizing the iterative detection process, with VBS showing slightly

better performance. We will assess the corresponding BER performances in Section 6.4.3.

6.2. EFFECTS OF SCRAMBLING 85

x1 x2+ +

v1

v2

b

b

b

(a) Without scrambling.

x1 x2+ +

v1

v2

b

b

b

(b) With one code bit flipped.

Figure 6.18: Factor graph for repetition-coded SM-EPA, SF = 2, N = 2, K = 2.

v1 v2
0 0

0 1

1 0

1 1

b

b

b

b

b

b

b

x1 x2
+2 +2

0 0

−2−2

b

b

(a) Without scrambling.

v1 v2
0 0

0 1

1 0

1 1

b

b

b

b

b

b

b

b

x1 x2
+2 0

0 +2

0−2

−2 0
b

b

(b) With one code bit flipped.

Figure 6.19: Overall mapping rule for repetition-coded SM-EPA, SF = 2, N = 2, α = 1.

6.2.2 Distinguishability of Overlapped Repetition Code Words

In the previous discussion, we have seen an important effect of scrambling for repetition-

coded SM-EPA in preventing an iterative receiver from falling into the trap of message

oscillation. In the following, we consider another effect of scrambling, which improves the

distinguishability of overlapped repetition code words.

To ease the discussion, we consider repetition-coded SM with SF = 2 and N = 2 as

an illustrative example. As assumed throughout this chapter, equal power allocation is

adopted. Suppose that the block length is very short such that each burst contains merely

two info bits. Given these assumptions, an optimal interleaver will lead to a factor graph

depicted in Fig. 6.18(a). Clearly, this is a single-cycle graph. Besides, the two repetition

code words corresponding to v1 and v2 overlap with each other. In order to emphasize

the effect of scrambling, we further assume that the transmission channel is noiseless.

For the system under consideration, the prerequisite for an error-free detection is that

the mapping rule from the info word v
.
= [v1, v2] onto the symbol sequence x

.
= [x1, x2] is

bijective. It is easy to derive that, without scrambling, the overall mapping rule will be

non-bijective, as shown in Fig. 6.19(a). Since +1− 1 = −1 + 1 = 0, the bit combinations

[0, 1] and [1, 0] will both be mapped onto an all-zero symbol sequence. One may call such

a system a catastrophic encoder. Hence, error-free detection is not possible for any type

of receiver algorithms. Now, we apply scrambling, but only for v2. The resulting factor

86 CHAPTER 6. SPREADING, SCRAMBLING, AND INTERLEAVING

0 2+ +

v1

v2

0 +∞

0 −∞

b

b

(a) 1st iteration, SC’s → VN’s.

0 2+ +

v1

v2

+∞ 0

−∞ 0

b

b

(b) 1st iteration, VN’s → SC’s.

0 2+ +

v1

v2

+∞ +∞

−∞ −∞

b

b

(c) 2nd iteration, SC’s → VN’s.

0 2+ +

v1

v2

+∞ +∞

−∞ −∞

b

b

(d) 2nd iteration, VN’s → SC’s.

Figure 6.20: A message passing procedure on a length-4 cycle with one edge flipped.

graph is given in Fig. 6.18(b), where the dashed edge denotes a bit-flipping operation.

Correspondingly, one obtains an overall mapping rule as shown in Fig. 6.19(b). What can

be seen is that the overall mapping rule is now bijective. Given a maximum-likelihood

receiver, error-free detection can be achieved, and actually so does an iterative receiver.

Suppose that the received symbol sequence is [0,+2]. With a little bit of computation,

one obtains a message passing procedure as demonstrated in Fig. 6.20. Since the channel

is noiseless, the magnitude of an LLR message is infinite, whenever it is not zero. One

may recognize that even in the first iteration correct decisions are already available for v1

and v2, while in the second iteration all messages are non-zero and actually stable. Note

that a degree-2 variable node simply exchanges the incoming messages without altering

the signs or the magnitudes. In contrast, a degree-2 summation check with observation 0

exchanges the incoming messages as well, but with the message signs reversed.

Easy to find, if we apply scrambling for both v1 and v2, the overall mapping rule will again

be non-bijective. This suggests that applying scrambling for all repetition code words

does not always give the best solution. For the sake of easy elaboration, we delay further

discussion on this topic till Section 6.4.3, before which we will keep using the scheme that

flips every second code bit. The example considered so far is special, as the cycle length is

only 4. In reality, length-4 cycles can be eliminated via a proper interleaver design. The

effect of scrambling in improving the distinguishability of overlapped repetition code words

gets weaker when the cycle length increases. Nevertheless, it is still useful for low-degree

variable nodes when the cycle length is moderate, which is studied in Section 6.4.3.

6.3. EFFECTS OF INTERLEAVING 87

0 2 4 6 8 10 12 14 16 18 20
E

b
/N

0
 in dB

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

1st try
2nd try
3rd try
4th try
Average

(a) Equal power allocation.

0 2 4 6 8 10 12 14 16 18 20
E

b
/N

0
 in dB

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

1st try
2nd try
3rd try
4th try
Average

(b) Unequal power allocation.

Figure 6.21: BER vs. Eb/N0, repetition-coded SM-EPA, every second code bit flipped,

random interleaving, SF = 2, N = 2, 300 symbols per block, 20 iterations.

6.3 Effects of Interleaving

So far, we have investigated the effects of spreading and scrambling on repetition-coded

SM-EPA. In the relevant discussions we have always assumed random interleaving. How-

ever, it is not yet clear whether a random interleaver is already good enough. In this

section, the influence of interleaving on the performance of repetition-coded SM-EPA will

be investigated. Via a simple example, the impact of the graph structure on the receiver

stability of repetition-coded SM-EPA becomes clear. While this section mainly focuses on

conceptual studies, the issue of interleaver design will be treated in detail in Section 6.4.

6.3.1 A First Impression

Let us first have a rough impression on the topic under discussion. For simplicity, let us

choose SF = 2 and N = 2. In order to emphasize the effects of interleaving, here we

choose a moderate block length of K = 300. The corresponding BER performances are

demonstrated in Fig. 6.21 for EPA as well as UPA. In both Fig. 6.21(a) and Fig. 6.21(b),

the dashed curve gives the average performance corresponding to 50000 randomly gener-

ated interleaver patterns and the four solid curves give the performances corresponding

to four fixed but randomly generated interleaver patterns. By the first snapshot, one sees

that repetition-coded SM-EPA is very sensitive to the interleaver pattern while repetition-

coded SM-UPA is insensitive. Since GPA is simply a hybrid of EPA and UPA, it is not

difficult to imagine that the situation of SM-GPA will be somewhere in between that of

SM-EPA and SM-UPA. This gives the reason why the discussion in this chapter merely

focuses on SM-EPA. After all, one observes from Fig. 6.21(a) that different interleaver

88 CHAPTER 6. SPREADING, SCRAMBLING, AND INTERLEAVING

patterns may lead to dramatically different BER performances for repetition-coded SM-

EPA. Hence, for a moderate block length, the interleaver pattern needs to be carefully

designed rather than being created completely at random.

According to Fig. 6.21(a), the average performance of random interleaving is not accept-

able for repetition-coded SM-EPA, under the current system setup. However, there are

some interleaver patterns that bring acceptable performances, e.g., the 2nd and 3rd try.

Hence, one may wonder what is the true reason behind this huge performance difference.

To answer this question, we introduce in the following a simple yet heuristic interleaver

construction example for repetition-coded SM-EPA with SF = 2 and N = 2.

6.3.2 A Heuristic Example for Interleaver Design

Consider the transmission of four info bits [v1, v2, v3, v4]. Assume that the spreading,

scrambling, and interleaving operations finally yield the following code bit sequence:

[v1, v2, v3, v4]
spreading−→ [v1, v1, v2, v2, v3, v3, v4, v4]
scrambling−→ [v1, v1, v2, v2, v3, v3, v4, v4]
interleaving−→ [v1, v2, v2, v3, v3, v4, v4, v1] ,

where vi denotes the complement of vi inGF (2). Note that the interleaver merely performs

a one-step cyclic shift on the bit sequence. Now, at the output of the superposition mapper

one obtains

x1 = B(v1) +B(v2),

x2 = B(v2) +B(v3),

x3 = B(v3) +B(v4),

x4 = B(v4) +B(v1),

where B(v)
.
= 1−2v stands for the BPSK mapping operation. As a result, the correspond-

ing factor graph will be given by Fig. 6.22, which shows that the entire set of graph nodes

are aligned within one unique cycle. Obviously, this simple interleaver indeed maximizes

the cycle length. In the next step we will have some interesting study on the performance

of such a system setup, which is actually easily predictable.

Revisiting Fig. 5.2 and related discussion therein, one sees that for noiseless SM-EPA

transmission with N = 2, the LLR messages leaving from a summation check fall into two

extremes: of infinite reliability when the observation x is nonzero and of zero reliability

when x is zero, as long as there is no a priori information available for the involved code

6.3. EFFECTS OF INTERLEAVING 89

x1 x2 x3 x4

+ + + +

v1 v2 v3 v4

b

b

=⇒ + x1

+

x2

+x3

+

x4

v2v3

v4 v1

Figure 6.22: Factor graph for repetition-coded SM, SF = 2, N = 2, K = 4, one-step

cyclic-shift interleaving. Each dashed edge denotes a bit-flipping operation.

bits. Consequently, for the system under consideration, the results of iterative detection

will also fall into two extremes: Pe = 0.5 when the observed SM symbols [x1, x2, x3, x4] are

all zero and Pe = 0 whenever there is one observed SM symbol being nonzero, assuming

a noiseless channel. The respective explanation is given below.

Suppose that the received symbol seqeuence is

[x1, x2, x3, x4] = [0, 0, 0, 0]

which happens when the transmitted info bits are all-zero or all-one, i.e.,

[v1, v2, v3, v4] = [0, 0, 0, 0] or [v1, v2, v3, v4] = [1, 1, 1, 1] .

Clearly, this will be a catastrophic encoding scenario as two distinct info words are mapped

onto the same code word. At the initial iteration, all messages leaving the summation

checks will be zero. The exchanging of all-zero messages at the variable nodes will generate

all-zero messages as well. At the second iteration, by receiving all-zero messages the

summation checks will deliver all-zero messages again. Therefore, nothing will happen

through iterative message passing and the resulting bit error probability is Pe = 0.5.

Now suppose that one of the observed symbols is non-zero, for example

x1 = +2 . (6.4)

At the initial iteration, the summation check associated with x1 will deliver reliable mes-

sages to variable nodes v1 and v2. Then, the information flow procedure goes as depicted

in the right part of Fig. 6.22. Receiving the message forwarded by node v2, summation

check x2 will be able to deliver a reliable message to node v3, regardless of the particular

value of x2. The same situation holds for the message from x4 to v4 as well. Hence, after

90 CHAPTER 6. SPREADING, SCRAMBLING, AND INTERLEAVING

0 2 4 6 8 10 12 14 16 18 20
E

b
/N

0
 in dB

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

K= 2, 1 Iter.
K= 4, 2 Iter.
K= 6, 3 Iter.
K= 8, 4 Iter.
K=10, 5 Iter.
K=12, 6 Iter.

(a) Effect of block length.

0 2 4 6 8 10 12 14 16 18 20
E

b
/N

0
 in dB

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

 1 Iter.
 2 Iter.
 4 Iter.
 6 Iter.
 8 Iter.
10 Iter.

(b) Effect of iterations, K = 300.

Figure 6.23: Repetition-coded SM-EPA, SF = N = 2, one-step-cyclic-shift interleaving,

every second code bit flipped. K denotes the number of symbols per block.

+ + + +vi
b

Figure 6.24: An open chain of nodes.

two iterations, the reliable messages from summation check x1 have already reached all

the variable nodes, and subsequently enables an error-free decision for all the bits.

Note that the probability for the info bits to be all-zero or all-one is given by 2 × 2−4.

Therefore, we predict that the average bit error probability is

Pe =
2

24
· 0.5 +

(
1− 2

24

)
· 0 = 0.0625 . (6.5)

We can easily generalize this conclusion for an arbitrary block length. Given a noiseless

channel and sufficient receiver iterations, the average bit error probability will be

Pe =
2

2K
· 0.5 +

(
1− 2

2K

)
· 0 =

1

2K
, (6.6)

which in fact gives the level of error floor in case of transmission over the AWGN channel.

(6.6) can be well verified by the Monte Carlo simulation results provided in Fig. 6.23(a),

where the number of iterations is chosen to be K/2 such that the messages from one

summation check will reach all other nodes once and only once. Clearly, by increasing the

block length K, one can make this error probability arbitrarily close to zero. In practice,

however, an error probability around 10−6 is already acceptable for some applications.

Therefore, K/2 receiver iterations are not always necessary. Easy to imagine, within

T < K/2 iterations, the graph is seen from a particular node as an open chain, i.e., it

looks like cycle-free. Due to bi-directional message passing, the amount of variable nodes

reachable from a certain variable node within T iterations is given by 2T , cf. Fig. 6.24.

6.3. EFFECTS OF INTERLEAVING 91

The probability for these bits, including the bit at the origin, to be all-zero or all-one is

given by 2× 2−(1+2T). Hence, the average bit error probability will be

Pb = 2 · 2−(1+2T) · 0.5 = 2−(1+2T) , (6.7)

One sees from Fig. 6.23(b) that after 10 iterations the error floor level drops below 10−6.

In general, whenever a graph contains a non-trivial amount of degree-2 variable nodes,

the corresponding interleaver design needs to be specifically careful. We will come back

to this topic in Section 6.4.2.

6.3.3 Summation Check Extrinsic Message Degree

In the field of interleaver design for LDPC codes, it is a common knowledge that the

minimum cycle length of the graph, often called the graph girth, should be large enough.

This is also true for repetition-coded SM-EPA, as demonstrated by the discussion in Sec-

tion 6.3.2. However, in case of irregular repetition-coded SM-EPA, there will be another

critical issue that may cause a significant performance difference.

Let us consider a repetition-coded SM-EPA system with N = 3. We apply the following

degree distribution

λ(D) = 0.75D2 + 0.25D3 . (6.8)

That is, 75% of variable nodes have a repetition degree of 2 and 25% of variable nodes

have a repetition degree of 3. Since N = 3, each summation check is connected with three

variable nodes. Given an interleaver pattern that has not been specifically tuned, four

different type of segments may exist in the graph, as depicted in Fig. 6.25. Similar to the

definition of approximate cycle extrinsic message degree (EMD) in [59], we define the EMD

of a summation check as the amount of extrinsic message paths available from the variable

nodes connected to it. For example, in Fig. 6.25(a) the summation check has an EMD of

6, and in Fig. 6.25(b) the summation check has an EMD of 5. This definition of EMD

is only accurate for a cycle-free graph. When the graph contains cycles, this definition of

EMD is approximate, because the message from a variable node to a summation check

may be not completely extrinsic. For example, in the scenario depicted in Fig. 6.26, the

EMD of the summation check in the middle of the graph segment is only approximately 6,

as the messages from node v1 and node v3 are not completely extrinsic due to the length-6

cycle. Nevertheless, for a well-designed graph with a large girth, the accurateness of this

EMD definition is satisfying. On average, the EMD of a summation check well describes

the amount of external helps that this summation check can get from the rest of the graph

during iterative message passing. Certainly, the larger the EMD is, the easier it is for a

summation check to deliver reliable decisions for the involved code bits.

92 CHAPTER 6. SPREADING, SCRAMBLING, AND INTERLEAVING

+

v1

v2 v3

b

(a) EMD = 6.

+

v1

v2 v3

(b) EMD = 5.

+

v1

v2 v3

(c) EMD = 4.

+

v1

v2 v3

b

(d) EMD = 3.

Figure 6.25: Summation checks having various extrinsic message degrees (EMD).

+ +

+

v1

v2 v3

v4

EMD ≈ 6

b

Figure 6.26: A scenario that the definition of summation check EMD is only approximate.

In addition to the degree distribution of variable nodes, the distribution of summation

check EMD (SCE) is another important description for the structural property of a graph.

When the summation checks in a graph possess various EMD’s, the graph attains another

type of irregularity. Easy to imagine, those summation checks with a high EMD will first

start to output reliable messages, which then help those low-EMD summation checks to

output reliable messages. This type of irregularity is often helpful for systems working

closely to a certain theoretical limit. However, there is also a price for this irregularity. In

case that a certain amount of summation checks with a very low EMD form an isolated

sub-graph, a non-trivial error floor typically occurs. Let us presume that the degree

distribution in (6.8) can provide a good receiver convergence2 for SM-EPA with N = 3.

Suppose that within an isolated sub-graph all the summation checks are connected with

purely degree-2 variable nodes, i.e., all with a connectivity shown in Fig. 6.25(d). The

iterative receiver is likely to encounter problems, as we observe from Fig. 5.9(a) that it is

difficult to achieve a receiver convergence for regular repetition-coded SM-EPA with SF =

2 and N = 3. Generally speaking, a wide SCE distribution is good for the performance

in the waterfall region, while a narrow SCE distribution is good for the performance in

the high-SNR region. However, this statement has to be understood in a relative way.

In case that a receiver convergence is not achievable given a narrow SCE distribution, a

wide SCE distribution is also good for the performance in the high-SNR region.

2The investigation in Section 6.4.2 will verify this presumption.

6.4. LOW-DENSITY SUMMATION-CHECK CODE 93

6.4 Low-Density Summation-Check Code

Section 6.1, 6.2, and 6.3 investigate the effects of spreading, scrambling, and interleaving

on repetition-coded SM-EPA, from various aspects. Among all, the most important find-

ing is that the performance of repetition-coded SM-EPA can be improved via irregular

spreading. It is worthwhile to mention that the unequal error protection effect caused by

irregular spreading has an essential difference to what unequal power allocation will cause.

In general, the irregularity in spreading has no influence on the symbol distribution of the

superposition mapper. Hence, SM with irregular spreading does not lose the potential to

achieve the Gaussian channel capacity, as long as the symbol distribution is Gaussian-like.

In contrast, SM-UPA brings a uniform symbol distribution and consequently loses the op-

timality for the Gaussian channel. Compared to spreading, scrambling and interleaving

neither vary the system data rate nor change the situation of error protection. Conse-

quently, these two operations have no explicit influence on the theoretical performance

limit. However, their strong impacts on the performance of a practical iterative receiver

are evident, given a finite block length. For repetition-coded SM-EPA, scrambling to-

gether with interleaving dramatically improves the receiver stability, as demonstrated in

Section 6.2 and 6.3. Applying scrambling after spreading prevents a receiver from falling

into the trap of message oscillation, while applying interleaving after scrambling increases

the amount of reachable channel observations from an individual info bit within a finite

number of iterations. Furthermore, scrambling together with interleaving helps in distin-

guishing partially or completely overlapped repetition codewords, if it does happen due

to certain reasons. Therefore, one may treat scrambling and interleaving as two necessary

companions for spreading. Without these two companions, a good spreading scheme alone

can not provide a satisfying performance for SM-EPA.

Summarizing the above statements, to attain a good performance for repetition-coded

SM-EPA, one needs a good spreader, a good scrambler, and a good interleaver. One

needs some fine tuning in order to obtain a good spreader, and one needs some good

methods in order to obtain a good interleaver. A simple scrambler that flips every second

code bit does a good job in many cases. However, when the graph contains a large amount

of degree-2 variable nodes, some fine tuning is also necessary for the scrambler. Moreover,

since these three modules interact with each other, one should do the optimization jointly

instead of separately. To facilitate this work, we propose a novel concept, called low-

density summation-check (LDSC) coding, for repetition-coded SM. Directly from the

name, one already gets an impression that it should have a close relationship to low-

density parity-check (LDPC) coding. As a matter of fact, an LDSC code is just a new

way of interpreting a complete system of repetition-coded SM, including scrambling and

interleaving. Its basic principle shares much commonality with that of an LDPC code.

94 CHAPTER 6. SPREADING, SCRAMBLING, AND INTERLEAVING

+ + + +

(a) Factor graph.




1 0 0 1 1 0 1 0
0 1 1 0 1 0 0 1
1 1 0 0 0 1 1 0
0 0 1 1 0 1 0 1




(b) Incidence matrix.

Figure 6.27: Factor graph and incidence matrix of an LDPC code.

+ + + + + +

(a) Factor graph.




1 1 0 1 1 0 0 0
0 1 1 0 0 1 1 0
1 0 0 1 0 1 0 1
0 0 1 0 1 0 1 1
0 1 0 1 1 0 1 0
1 0 1 0 0 1 0 1




(b) Incidence matrix.

Figure 6.28: Factor graph and incidence matrix of an LDSC code.

6.4.1 Basic Principle

Consider LDPC-coded BPSK transmission over the Gaussian channel. Since one BPSK

symbol carries merely one bit, each code bit from the LDPC encoder will be individually

associated with a channel observation. Consequently, the overall factor graph of such a

system can be drawn as in Fig. 6.27(a), where each � stands for a parity check, each

© stands for a code bit, and each � denotes a channel observation. In addition to

the graphical representation, there is a more traditional but useful representation for

parity-check codes. That is the incidence matrix of code bits, which is also known as

the parity-check matrix of the corresponding code. For the graph in Fig. 6.27(a), the

equivalent incidence matrix will be as in Fig. 6.27(b). By convention, each column of the

matrix corresponds to a code bit and each row corresponds to a parity check, while the

associations between code bits and parity checks are marked by nonzero entries in the

matrix. Given a large block length, the density of nonzero entries will be very low, which

gives the naming reason of LDPC code. As for the design of LDPC codes, both the factor

graph representation and the incidence matrix representation are useful, and in fact these

two concepts are often interchangeable.

Now, let us consider a repetition-coded SM system with SF = 3 and N = 4. Suppose

that its factor graph is as in Fig. 6.28(a), where each variable node is connected with three

summation checks due to the degree-3 repetition operations. Comparing Fig. 6.28(a) with

Fig. 6.27(a), one will find that these two graphs have very similar structures. The only

6.4. LOW-DENSITY SUMMATION-CHECK CODE 95

+ + + + + +

(a) Factor graph.




+1 +1 0 +1 +1 0 0 0
0 −1 +1 0 0 +1 +1 0

−1 0 0 −1 0 −1 0 +1
0 0 −1 0 −1 0 −1 −1
0 +1 0 +1 +1 0 +1 0

+1 0 +1 0 0 +1 0 +1




(b) Incidence matrix.

Figure 6.29: Factor graph and incidence matrix of an LDSC code, with scrambling.

difference is in the association with channel observations. For LDPC code, channel obser-

vations are connected with code bits, while for repetition-coded SM, channel observations

are connected with summation checks. Consequently, we may follow the fashion of LDPC

codes and construct an incidence matrix for the graph in Fig. 6.28(a). The resulting ma-

trix is given in Fig. 6.28(b). Sticking with the LDPC convention, we associate each row of

the matrix with a summation check and each column with a variable node. Accordingly,

we also use a nonzero entry in the matrix to mark the interconnection between a variable

node and a summation check. Given a large block length, this incidence matrix will be of

low density as well. Hence, we may safely dub a repetition-coded SM system a low-density

summation-check (LDSC) encoding system, without loss of generality.

To include scrambling in the factor graph, we can use dashed edges to represent bit flipping

operations, cf. Fig. 6.29(a). In a similar way, we may use two types of nonzero entries in

the incidence matrix, as shown in Fig. 6.29(b). Naturally, a “+1” stands for a non-flipped

code bit, and a “−1” stands for a flipped code bit. In this way, both the factor graph and

the incidence matrix embrace the complete functionality of repetition-coded SM. Note

that the applied scrambling scheme in Fig. 6.29 follows the idea of variable-node-based

scrambling. For practice, one does not have to align the flipping signs in a well-sorted

order as in Fig. 6.29. To avoid the trap of message oscillation, one merely needs to ensure

that about half of the nonzero entries in each column are negative. In this concern, the

order of flipping signs makes no difference. Often it is more convenient to assign flipping

signs in a random order, when the interleaver and the scrambler are designed jointly.

There are many advantages to use the concept of LDSC coding for the system optimization

of repetition-coded SM. The first advantage is that length-2 cycles are inherently avoided,

since an LDSC matrix cannot have two nonzero entries in the same position. The second

advantage lies in the convenience for interleaver design. Borrowing the available methods

from LDPC coding, one attains plenty of possibilities to improve the quality of interleaver

pattern. The third advantage comes from the full representativeness of the LDSC matrix,

which integrates spreading, scrambling, and interleaving. Given a well-designed spreading

scheme, the task of system optimization is nothing more than a matrix construction.

96 CHAPTER 6. SPREADING, SCRAMBLING, AND INTERLEAVING

6.4.2 Computer-Based Interleaver Design

By the principle of Bayesian inference [60–64], an iterative belief propagation algorithm

can only be guaranteed to converge to the maximum-likelihood solution if the underlying

factor graph is cycle-free [65–69]. In reality, however, cycles are often unavoidable given a

finite block length. Nevertheless, an iterative belief propagation algorithm will still work

well if the cycles are long enough, which is evident from the success of Turbo codes and

LDPC codes. Certainly, the larger the cycle length is, the better performance one attains.

In general, the maximum possible cycle length is determined by the code structure and the

block length, while given a certain code structure and a certain block length the practically

achieved cycle length is solely determined by the interleaver pattern. Therefore, interleaver

design is always a critical issue w.r.t. the performance of iterative decoding.

A brute-force approach for interleaver design is to try a large amount of randomly gen-

erated interleaver patterns and select the one that delivers the best performance. This

approach is universal but energy-consuming, particularly when the block length is large.

In the past decade, a lot of methods have been proposed for an efficient optimization of

interleaver patterns, in the context of LDPC code design. Among these methods, many

are computer-based controlled random approaches [70–74], while others try to utilize the

available theory from finite mathematics [75–80]. Using the concept of LDSC coding, all

relevant methods from LDPC coding can easily be borrowed for the optimization of inter-

leaver patterns for repetition-coded SM. In this section, we consider two computer-based

methods: MacKay’s method [70] and the progressive edge-growth (PEG) algorithm [81],

and check their effectiveness in improving the performance of repetition-coded SM-EPA.

Together with these two algorithms, the issue of SCE distribution is investigated. Besides,

we derive a randomized graph building (RGB) algorithm from the PEG algorithm.

MacKay’s Matrix Construction Method

Taking the previous example given in Fig. 6.29, now we have a close look at the graph

structure. Due to the small block length, this graph contains a lot of short cycles. For

example, the 3rd and the 7th variable nodes together with the 2nd and 4th summation

checks form a length-4 cycle, as emphasized in Fig. 6.30(a). Correspondingly, in the

incidence matrix, the 3rd and the 7th columns both have nonzero entries in the 2nd and

4th rows. Alternatively, one may also detect short cycles directly from the incidence

matrix. For example, in Fig. 6.30(b), the six entries surrounded by dashed boxes create a

length-6 cycle, which can easily be verified by checking Fig. 6.30(a). Length-4 and length-

6 short cycles are often harmful for iterative decoding, as within very few iterations the

6.4. LOW-DENSITY SUMMATION-CHECK CODE 97

+ + + + + +

(a) Factor graph.




+1 +1 0 +1 +1 0 0 0
0 −1 +1 0 0 +1 +1 0

−1 0 0 −1 0 −1 0 +1
0 0 −1 0 −1 0 −1 −1
0 +1 0 +1 +1 0 +1 0

+1 0 +1 0 0 +1 0 +1




(b) Incidence matrix.

Figure 6.30: Cycles in the factor graph and the incidence matrix of an LDSC code.

messages passing in the graph already become non-extrinsic. Therefore, in the code-design

procedure of LDPC coding, removing length-4 and length-6 cycles is typically considered

as the first task. In [70], MacKay proposed a random matrix construction algorithm

that guarantees the non-existence of short cycles, principally length-4 and length-6, in

the corresponding factor graph. This method starts with an empty incidence matrix and

adds randomly generated columns one-by-one. Before adding a new column, one checks

if it will cause cycles shorter than the requirement. If it does, this column is thrown away

and one tries another random generation. There is a chance that at a certain stage one

fails to obtain a valid column. In this case, the whole matrix is cleaned and the procedure

starts again from the very beginning. The complexity of MacKay’s method depends on

the length of cycles that one wants to eliminate. Certainly, the larger this length is the

higher is the computational load for constructing an incidence matrix. Nevertheless, this

computation load applies only once, during the design stage. Therefore, concerning the

complexity of interleaver design, one only needs to ensure that it is manageable by the

available computational power. Last but not least, by means of MacKay’s method, the

actual graph girth of the obtained matrix is unknown, i.e., it is only guaranteed to be

larger than or equal to the targetted value. In most cases, however, the actual graph girth

will be equal to the targetted value, since the chance to get short cycles is rather high by

random matrix construction without specific controlling.

Interleaver patterns designed via MacKay’s method offer desirable performances for LDPC

codes, as long as the block length is not so small. However, when it comes for LDSC codes,

this is not always the case, particularly when an irregular degree distribution is applied

and the amount of degree-2 variable nodes is non-trivial. To see this, let us consider the

system setup used in Section 6.3.3, i.e., N = 3 and degree distribution

λ(D) = 0.75D2 + 0.25D3 . (6.9)

Clearly, the average spreading factor of the corresponding repetition code is given by

SF = 0.75× 2 + 0.25× 3 = 2.25. We take a moderate block length of K = 1500, and we

stay with the variable-node-based scrambling strategy that flips every second code bit.

98 CHAPTER 6. SPREADING, SCRAMBLING, AND INTERLEAVING

A
A

A

A

A

A

A A A A A

0 2 4 6 8 10 12 14 16 18 20
E

b
/N

0
 in dB

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

Random interleaving
MacKay, Girth= 4
MacKay, Girth= 6
MacKay, Girth= 8
MacKay, Girth=10
MacKay, Girth=12
MacKay, Girth=14
MacKay, Girth=16
MacKay, Girth=18A A

Figure 6.31: LDSC-EPA, every second code bit flipped, N = 3, 1500 symbols per block,

40 iterations. Variable node degree distribution: 0.75D2 + 0.25D3.

To have a reasonable expectation for the achievable performance, let us revisit Fig. 5.9(a)

and Fig. 5.9(b), where the performance of regular repetition-coded SM-EPA with random

interleaving is investigated. The scrambling strategy adopted therein is identical to what

adopted here. One observes an error floor at 1 × 10−2 for SF = 2 and an error floor

at 5 × 10−7 for SF = 3. By using an irregular repetition code with 2 < SF < 3, one

expects a performance somewhere in between that of SF = 2 and that of SF = 3. The

corresponding result in Fig. 6.31 confirms this conjecture. Given random interleaving, the

BER curve of the current system shows an error floor at about 5 × 10−4, which is lower

than 1 × 10−2 but higher than 5 × 10−7. Now, by using LDSC matrices constructed via

MacKay’s method, we try to reduce the error floor level. With a targetted girth of 4, the

interleaver designed by MacKay’s method happens to perform worse than the random

interleaver. This is of no surprise, because a random interleaver can from time to time

acquire some nice patterns. Increasing the targetted girth step-by-step, the error floor

level reduces, but not always. For example, the curves of girth 8, 12, and 14 overlap with

each other, and the curve of girth 10 is even higher than that of girth 8. For the tests in

Fig. 6.31, we have just made one time of random matrix construction for each targetted

girth. That is we have not tried to select out a relatively good matrix from multiple

random matrix constructions. We intentionally do so in order to attain an unadorned

picture for the performance of MacKay’s method when applied in LDSC codes. The

most important message we obtain from this set of tests is that enlarging the graph girth

only is not sufficient for LDSC codes. Given an irregular degree distribution, cycles can

behave very differently, even with identical lengths. Note that the error floor level is still

non-trivial for a girth as large as 18. For the current system, 18 is almost the maximum

achievable girth. In fact, one already needs to adopt a randomized column-construction

order for achieving a girth of 18. Therefore, to improve the performance further, a more

advanced governing rule is necessary for the random matrix construction procedure.

6.4. LOW-DENSITY SUMMATION-CHECK CODE 99

2 3 4 5 6 7
Summation Check EMD

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ili

st
ic

 D
is

tr
ib

ut
io

n

(a) Girth = 4.

2 3 4 5 6 7
Summation Check EMD

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ili

st
ic

 D
is

tr
ib

ut
io

n

(b) Girth = 6.

2 3 4 5 6 7
Summation Check EMD

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ili

st
ic

 D
is

tr
ib

ut
io

n

(c) Girth = 12.

2 3 4 5 6 7
Summation Check EMD

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ili

st
ic

 D
is

tr
ib

ut
io

n
(d) Girth = 18.

Figure 6.32: SCE distribution of the LDSC matrices constructed by MacKay’s method.

SCE Distribution and Degree-2 Variable Nodes

To have a good performance, an irregular LDSC code requires the graph to not only

have a large girth but also good micro structures. The results in Fig. 6.31 are in fact

reasonable, since MacKay’s matrix construction method merely takes care of the graph

girth but nothing else. In the following discussion, we will investigate the influence from

the SCE distribution as well as the local graph structure of degree-2 variable nodes. Let

us first check the SCE distribution of the LDSC matrices used in the tests for Fig. 6.31.

The corresponding results are provided in Fig. 6.32. In the case of girth 4, more than 40

percent of summation checks are connected with pure degree-2 variable nodes, i.e., with an

EMD of 3. As already mentioned in Section 6.3.3, if some isolated sub-graphs are formed

among these summation checks, the iterative decoder may easily get stuck at a certain

stage of message passing, because an SF = 2 regular repetition code can not3 provide a

good convergence for SM-EPA with N = 3. By raising the graph girth till 12, the SCE

distribution does not change very much. The SCE distribution for girth 18 is much more

concentrated on the EMD of 4, which corresponds to a connectivity given in Fig. 6.25(c).

Nevertheless, this is due to a randomized column-construction order instead of a large

girth. These observations reveal that MacKay’s method does not introduce any explicit

control on the SCE distribution. On the other hand, a concentrated SCE distribution is

generally beneficial for the system performance, to be shown in the following.

3We will soon clarify this via EXIT chart analysis in Section 6.4.4.

100 CHAPTER 6. SPREADING, SCRAMBLING, AND INTERLEAVING

2 3 4 5 6
Summation Check EMD

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

st
ic

 D
is

tr
ib

ut
io

n

(a) SCE distribution.

0 2 4 6 8 10 12 14 16 18 20
E

b
/N

0
 in dB

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

Random interleaving
MacKay-SCE4, Girth 4
MacKay-SCE4, Girth 8
MacKay-SCE4, Girth 18
MacKay-SCE4-patched, Girth 18

(b) BER vs. Eb/N0.

Figure 6.33: Irregular LDSC-EPA, every second code bit flipped, N = 3, 1500 symbols

per block, 40 iterations. Variable node degree distribution: 0.75D2 + 0.25D3.

To check how concentrated the SCE distribution of an LDSC graph can be, one needs to

convert a node-perspective degree distribution into an edge-perspective EMD distribution.

Note that an edge from a degree-β variable node provides an EMD of β−1 for a summation

check, and there are in total β edges diverging from a degree-β variable node. Therefore,

for the VN degree distribution in (6.9), we have the equivalent edge EMD distribution as

λ̃(D) =
0.75× 2

0.75× 2 + 0.25× 3
D1 +

0.25× 3

0.75× 2 + 0.25× 3
D2

=
2

3
D1 +

1

3
D2 . (6.10)

That is among all edges, a fraction of 2/3 have an EMD of 1 and a fraction of 1/3 have

an EMD of 2. As a matter of fact, (6.10) gives a check-wise edge EMD distribution that

leads to a minimized SCE distribution range. Given N = 3, we may let each summation

check be plugged with two EMD-1 edges and one EMD-2 edges, which leads to

SCE = 3 · 2

3
· 1 + 3 · 1

3
· 2 = 2 · 1 + 1 · 2 = 4 , (6.11)

i.e., connect every summation check in a way depicted by Fig. 6.25(c). This can easily be

achieved during matrix construction, by enforcing each row to have exactly two nonzero

entries at weight-2 columns. Adding this new strategy, we obtain a modified MacKay’s

method, which will be referred as “MacKay-SCE4”. Fig. 6.33 provides corresponding

results. The SCE distribution now merely contains a Dirac impulse at 4. Comparing

Fig. 6.33(b) with Fig. 6.31, one observes that the error floor level is noticeably reduced

by using the new method. For example, the error floor level is dropped from 2.5×10−5 to

1×10−8 for a targetted girth of 18. Therefore, a narrow and concentrated SCE distribution

is beneficial for the high-SNR performance. This phenomenon can be explained by the

6.4. LOW-DENSITY SUMMATION-CHECK CODE 101




+1 0 0 0 0 +1 0 +1
−1 +1 0 0 0 0 +1 0
0 −1 +1 0 0 0 0 −1
0 0 −1 +1 0 0 −1 0
0 0 0 −1 +1 0 0 +1
0 0 0 0 −1 −1 +1 0




Figure 6.34: An LDSC matrix constructed by the MacKay-SCE method with a special

treatment on degree-2 VN’s. N = 3, λ(D) = 0.75D2 + 0.25D3. VN-based scrambling.

statements in Section 6.1.3. By having a narrow and concentrated SCE distribution, high-

degree variable nodes get evenly distributed over the whole graph. In this way, the graph

achieves a high efficiency for information aggregation/distribution, since each high-degree

variable node is able to help a large amount of low-degree variable nodes. Contrarily, if

the high-degree variable nodes are all squeezed together, if will be difficult for the rest of

the graph to benefit from the strong messages delivered by these nodes.

According to Section 6.3.2, degree-2 variable nodes are particularly sensitive to the cycle

length. For the system under current discussion, whenever the degree-3 variable nodes all

get correctly estimated, the remaining decoding task is equivalent to that for a regular

LDSC code with SF = 2 and N = 2. In this scenario, the achievable BER performance

strongly depends on the length of cycles formed by degree-2 variable nodes. For example,

for a length-40 cycle consisting of degree-2 variable nodes only, the error probability will

be 2−20 ≈ 9.5× 10−7, according to (6.6). By using the MacKay-SCE4 method, the graph

is likely to contain this type of cycles, which are not really short but harmful for the

performance. To remove this type of cycles, we apply a small patch to the MacKay-SCE4

method. We generate all the columns with weight 2 in a deterministic fashion, such that

the degree-2 variable nodes form a unique cycle with the largest possible length. Fig. 6.34

gives an illustrative example for this patch. It is easy to identify that we have applied

one-step-cyclic-shift interleaving (cf. Section 6.3.2) for the degree-2 variable nodes. As a

result, the nine degree-2 variable nodes form a unique cycle with length 12. The last three

columns corresponding to degree-3 variable nodes are generated quasi-randomly under

the cycle length constraint, so that the graph quality for the degree-3 variable nodes

is not degraded. It is also easy to find that the EMD’s of summation checks are still

identical. With this patched method, we achieve for K = 1500 a performance as shown in

Fig. 6.33(b), marked by “MacKay-SCE4-patched”. The error floor level is reduced from

10−8 to 10−9, but still nonzero. This interesting test gives two important messages. First,

degree-2 variable nodes are very special. Whenever a graph contains a non-trivial amount

of degree-2 variable nodes, a special carefulness should be taken. Second, there are other

types of cycles contributing to the error floor, which will be discussed in Section 6.4.3.

102 CHAPTER 6. SPREADING, SCRAMBLING, AND INTERLEAVING

The Progressive Edge-Growth Algorithm

In the graph terminology, the length of the shortest cycle in a graph is called the graph

girth, while the length of the shortest cycle passing a variable node is called the local

girth for this variable node. Concerning the performance of iterative decoding, not only

the graph girth but also the local girths are important. Furthermore, the run-time local

girths, which are the local girths for certain variable nodes given that the other variable

nodes have been correctly estimated and virtually eliminated from the graph, play an im-

portant role for the decoding performance in the low-BER region. The observations in the

previous discussion clearly support this statement. When degree-2 variable nodes exist,

enlarging the cycle length among these low-degree variable nodes noticeably improves the

performance of an LDSC code. Note that high-degree variable nodes typically get correct

decisions earlier than low-degree variable nodes. Upon this recognition, the progressive

edge-growth (PEG) algorithm proposed in [71, 81] tries to maximize the run-time local

girths for each variable node and consequently reduce the error floor level. The algorithm

starts from a set of non-connected variable nodes and check nodes, and build the graph by

adding edges one-by-one, in a way that a low-degree variable node always gets connected

earlier than a high-degree variable node. Before adding a new edge, the algorithm searches

through the partially connected graph and builds up a tree by treating the variable node

under operation as the root, similar to the graph piece given in Fig. 6.3. When this is

done, there will be two possible scenarios. The first scenario is that the tree cannot grow

further but there are some check nodes unreachable. In this case, the algorithm adds an

edge between the variable node and a currently unreachable check node. As a result, the

newly added edge does not create a new cycle. The second scenario is that the tree cannot

grow further because it already includes all the check nodes of the graph. In this case,

the algorithm adds an edge connecting the variable node to a check node locating in the

farthest level of the tree. For example, if a new edge is to be added for the variable node v

in Fig. 6.3, then the best check node candidates are those locating in the outermost ring,

because these check nodes have the largest distance from v in the tree, and consequently

will provide the largest cycle length for the new edge to be added. For both scenarios,

often there will be multiple check node candidates having the best quality concerning the

local girth. If this happens, the algorithm chooses a check node candidate that has the

minimum connectivity in the partially connected graph. The subtle reason given by the

authors in [71, 81] is that doing so will result in a graph with the check-node degrees as

uniform as possible, which brings some practical benefits for LDPC codes. However, we

will show that the most important impact from this treatment is in reducing the dynamic

range of the check node EMD. In many cases, the check node EMD distribution largely

shapes the behaviour of an iterative decoder, and is often critical for the performance.

6.4. LOW-DENSITY SUMMATION-CHECK CODE 103




+1 0 0 −1 0 0 0 +1
0 −1 0 0 −1 0 +1 0
0 0 +1 0 +1 0 0 +1
0 +1 0 +1 0 0 −1 0

−1 0 0 0 0 −1 +1 0
0 0 −1 0 0 +1 0 −1




b

Figure 6.35: An LDSC matrix constructed by the PEG algorithm. The corresponding

graph girth is 4. N = 3, K = 6, VN-based scrambling. λ(D) = 0.75D2 + 0.25D3.

In the early stage of edge-growth, most of the nodes are not yet connected. Hence, there

is a high degree of freedom for the graph construction. Since the PEG algorithm starts

with the lowest-degree variable nodes, it first tries to maximize the length of cycles among

degree-2 variable nodes4. Given N = 3 and the degree distribution in (6.9), the amount of

degree-2 variable nodes is exactly equal to the amount of summation checks. As a result,

the PEG algorithm will also let the degree-2 variable nodes form a unique cycle, in a way

equivalent to that of one-step-cyclic-shift interleaving. Fig. 6.35 gives an LDSC matrix

constructed by the PEG algorithm, with all the parameters identical to that in Fig. 6.34.

Though all the columns have been generated in a quasi-random way, one finds that the

first six columns form a unique cycle with length 12. Clearly, compared to the patch that

we added to MacKay’s method, the PEG algorithm offers a more systematic solution.

Fig. 6.36 demonstrates the complete procedure for building the LDSC matrix in Fig. 6.35.

One first aligns the variable nodes in a way such that their degrees are non-descending. In

Fig. 6.36, degree-2 variable nodes are on the left side of degree-3 variable nodes. Hence,

the PEG algorithm proceeds from left to right, in a node-by-node fashion. For adding each

new edge to a variable node, one needs to select a check node such that either no new cycle

is created or the newly created cycle has the largest possible length, given the partially

connected graph. When there are multiple valid check node candidates, the one with the

minimum current connectivity is selected. For example, from Fig. 6.36(a) to 6.36(c), a new

edge is always connected to a check node which is previously not connected to any variable

node. Hence, the minimum-current-connectivity-selection (MCCS) treatment enables an

even spread of newly added edges among check nodes. Note that, from Fig. 6.36(d) to

6.36(f) the six newly added edges are again evenly assigned to six summation checks, and

from Fig. 6.36(g) to 6.36(h) the situation is the same. As a result, all summation checks

get an EMD of 4. Therefore, by using the MCCS treatment, the PEG algorithm typically

results in a narrow and concentrated check node EMD distribution5.

4Degree-2 variable nodes are the lowest-degree variable nodes that are relevant for cycle elimination.
5Here we assume a regular check node degree distribution. When the check nodes have an irregular

degree distribution, the situation is often the opposite, to be discussed in Chapter 7.

104 CHAPTER 6. SPREADING, SCRAMBLING, AND INTERLEAVING

+ + + + + +

(a) Edge growth for the 1st node.

+ + + + + +

(b) Edge growth for the 2nd node.

+ + + + + +

(c) Edge growth for the 3rd node.

+ + + + + +

(d) Edge growth for the 4th node.

+ + + + + +

(e) Edge growth for the 5th node.

+ + + + + +

(f) Edge growth for the 6th node.

+ + + + + +

(g) Edge growth for the 7th node.

+ + + + + +

(h) Edge growth for the 8th node.

Figure 6.36: A progressive edge-growth procedure for building an LDSC code. The corre-

sponding graph girth is 4. N = 3, K = 6, VN-based scrambling. λ(D) = 0.75D2+0.25D3.

Thick lines represent the newly added edges at the current edge-growth operations.

6.4. LOW-DENSITY SUMMATION-CHECK CODE 105

2 3 4 5 6
Summation Check EMD

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ili

st
ic

 D
is

tr
ib

ut
io

n

(a) SCE distribution, girth 18, w/o MCCS.

2 3 4 5 6
Summation Check EMD

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

st
ic

 D
is

tr
ib

ut
io

n

(b) SCE distribution, girth 18, with MCCS.

0 500 1000 1500 2000
Variable Node Index

10
1

10
2

10
3

10
4

B
ui

ld
-T

im
e

L
oc

al
 G

ir
th

D-2 VN’s D-3 VN’s

(c) Build-time local-girth evolution, with MCCS.

0 2 4 6 8 10 12 14 16 18 20
E

b
/N

0
 in dB

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

Random interleaving
PEG, girth=18, without MCCS
PEG, girth=18, with MCCS

(d) BER vs. Eb/N0.

Figure 6.37: Irregular LDSC-EPA, every second code bit flipped, N = 3, 1500 symbols

per block, 40 iterations. Variable node degree distribution: 0.75D2 + 0.25D3.

Now we check the effectiveness of the PEG algorithm by taking the same parameters as in

Fig. 6.33. First, the influence of the MCCS treatment on the SCE distribution is clearly

demonstrated by Fig. 6.37(a) and 6.37(b). It can be seen that using the MCCS treatment

makes a big difference to the graph structure. In Fig. 6.37(c), the build-time6 local-girth

evolution for the PEG process with the MCCS treatment is provided. One observes that

by adding edges for the first 1499 degree-2 variable nodes, no single cycle is created. By

adding edges for the 1500th degree-2 variable node, a cycle of length 3000 is created.

Afterwards, the local girths for the degree-3 variable nodes decline exponentially due to

the rapidly decreasing connection freedom. By the end of the PEG process, the overall

graph girth is given by 18. Fig. 6.37(d) provides the BER performances. The difference

between without and with MCCS is evident. By achieving a narrow SCE distribution, the

MCCS treatment avoids the overlapping of cycles formed by low-degree variable nodes,

which is effective for reducing the error floor level. Applying the MCCS treatment, no

error floor has been observed above 10−10, as shown in Fig. 6.37(d). In later discussions,

we implicitly assume the MCCS treatment for the PEG algorithm.

6The local girths in Fig. 6.37(c) are recorded during the graph building process. They reflect the local

girths of the variable node under current operation in the partially connected graph.

106 CHAPTER 6. SPREADING, SCRAMBLING, AND INTERLEAVING




+1 0 0 0 0 0 +1 −1
0 −1 −1 0 0 0 0 +1
0 0 0 0 −1 −1 +1 0
0 +1 0 +1 0 +1 0 0
0 0 +1 0 +1 0 0 +1

−1 0 0 −1 0 0 −1 0




b

Figure 6.38: An LDSC matrix constructed by the RGB algorithm. The corresponding

graph girth is 4. N = 3, K = 6, VN-based scrambling. λ(D) = 0.75D2 + 0.25D3.

A Randomized Graph Building Algorithm

The working principle of the PEG algorithm capitalizes the following facts from iterative

decoding of irregular codes. First, low-degree variable nodes are more sensitive to short

cycles than high-degree variable nodes. Second, during iterative decoding, high-degree

variable nodes get correctly estimated earlier than low-degree variables. Third, given

that high-degree variable nodes have been correctly estimated, the decoding performance

for the low-degree variable nodes is determined by the structure of the partial graph

that excludes those correctly estimated high-degree variable nodes. Therefore, a graph

constructed by the PEG algorithm heavily leans toward low-degree variables in the sense of

structural quality, cf. Fig. 6.37(c). Such a graph is good for the performance if those high-

degree variable nodes do get correctly estimated. However, in some cases, the decoding

performance may also be sensitive to the graph quality of high-degree variable nodes. In

such cases, a graph built by the PEG algorithm often leads to an undesirable performance.

In order to achieve a balanced interleaver design, we propose a randomized graph building

(RGB) algorithm, which is derived from the PEG algorithm. The RGB algorithm inherits

the edge-growth mechanism from the PEG algorithm, but proceeds in a random order

w.r.t. variable nodes with different degrees. Fig. 6.38 gives an LDSC matrix constructed

by the RGB algorithm and Fig. 6.39 demonstrates the corresponding graph construction

procedure. For each set of edge-growth operations, the RGB algorithm randomly selects a

variable node that is not yet connected, regardless of the corresponding degree. To reduce

cycle overlapping, the RGB algorithm also adopts the minimum-current-connectivity-

selection (MCCS) treatment during edge growth. From the first snapshot, one may think

that these two algorithms are rather similar. However, for systems working closely to the

theoretical limit, these two algorithms lead to dramatically different performances. Due to

the randomized edge-growth procedure, not all high-degree variable nodes will encounter

a low-quality local graph structure. As a price, not all low-degree variable nodes will

encounter a high-quality local graph structure. Last but not least, the RGB algorithm

typically leads to a wide but concentrated check node EMD distribution.

6.4. LOW-DENSITY SUMMATION-CHECK CODE 107

+ + + + + +

(a) The 1st set of edge-growth operations.

+ + + + + +

(b) The 2nd set of edge-growth operations.

+ + + + + +

(c) The 3rd set of edge-growth operations.

+ + + + + +

(d) The 4th set of edge-growth operations.

+ + + + + +

(e) The 5th set of edge-growth operations.

+ + + + + +

(f) The 6th set of edge-growth operations.

+ + + + + +

(g) The 7th set of edge-growth operations.

+ + + + + +

(h) The 8th set of edge-growth operations.

Figure 6.39: A randomized edge-growth procedure for building an LDSC code. The corre-

sponding graph girth is 4. N = 3, K = 6, VN-based scrambling. λ(D) = 0.75D2+0.25D3.

Thick lines represent the newly added edges at the current edge-growth operations.

108 CHAPTER 6. SPREADING, SCRAMBLING, AND INTERLEAVING

D2

+

D3 D2

+ + +

D4 D2 D2 D2 D3 D2

+ + + +

D2 D3 D2 D2 D8 D2 D2 D5

+ + + + +

1st level

2nd level

(including VN’s of all degrees)

3rd level

(excluding VN’s of D > 2)

4th level

(excluding VN’s of D > 2)

A degree-2 VN

A degree-3 VN

+

The
newly

added
edge

b

b

Figure 6.40: A selective tree growth procedure for a degree-2 variable node, Υ = 2.

Since the RGB algorithm operates in a random order w.r.t. the VN degree, there is a

non-trivial chance to form a short cycle among low-degree variable nodes, particularly by

the end of graph construction when the remaining connection freedom is very limited.

To solve this problem, we can take two simple but effective approaches. For an easy

reference, we may call the tree growth procedure of the PEG algorithm a full tree growth

(FTG). The RGB algorithm in fact treats all variable nodes in a fair way. To slightly

lean the graph quality towards low-degree variable nodes, we may set finite and different

tree searching depths for VN’s with different degrees. By allowing a large searching depth

for low-degree VN’s and a small searching depth for high-degree VN’s, the local graph

structure of low-degree VN’s will be better than that of high-degree VN’s, in an average

sense. We call this approach a distinct tree growth (DTG). In addition, we may apply a

selective tree growth (STG) for the RGB algorithm, as illustrated in Fig. 6.40. Setting a

cut-off threshold Υ, we exclude all VN’s having a degree larger than that of the VN under

current operation, if these variable nodes are not within Υ levels from the root. Doing

so we give a higher priority for eliminating short cycles formed by low-degree VN’s. For

example, as shown in Fig. 6.40, a summation check is connected with a degree-4 VN in

the 3rd level. By FTG or DTG, this check node should not be selected for linking the

new edge, since there are other check nodes that are farther from the root. By STG,

however, this check node can be selected for the new edge, because it is not connected

to any degree-2 VN within Υ = 2 levels from the root VN. The underlying principle for

STG is that short cycles involving high-degree VN’s are less risky than those involving

low-degree VN’s only. For easy illustration, we have used a rather small cut-off threshold

in Fig. 6.40. In reality, a larger Υ is necessary to obtain a robust decoding performance.

6.4. LOW-DENSITY SUMMATION-CHECK CODE 109

2 3 4 5 6 7
Summation Check EMD

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ili

st
ic

 D
is

tr
ib

ut
io

n

(a) SCE distribution, with MCCS.

0 500 1000 1500 2000
Variable Node Index

10
1

10
2

10
3

B
ui

ld
-T

im
e

L
oc

al
 G

ir
th

D-2 VN’s D-3 VN’s

(b) Build-time local-girth evolution, FTG.

0 500 1000 1500 2000
Variable Node Index

10

20

30

40

50

60

70

80

90

100

B
ui

ld
-T

im
e

L
oc

al
 G

ir
th

D-2 VN’s D-3 VN’s

(c) Build-time local-girth evolution, DTG.

0 2 4 6 8 10 12 14 16 18 20
E

b
/N

0
 in dB

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

Random interleaving
RGB with FTG
RGB with DTG
RGB with STG, ϒ=10
RGB with STG, ϒ= 6
RGB with STG, ϒ= 4
RGB with STG, ϒ= 3

(d) BER vs. Eb/N0.

Figure 6.41: Irregular LDSC-EPA, every second code bit flipped, N = 3, 1500 symbols

per block, 40 iterations. Variable node degree distribution: 0.75D2 + 0.25D3.

Using the MCCS treatment, the RGB algorithm typically results in an SCE distribution

that is concentrated but not necessarily narrow, as shown in Fig. 6.41(a). Nevertheless,

this is an advantage instead of disadvantage, to be discussed in Section 6.4.5. With FTG,

low-degree VN’s and high-degree VN’s are treated fairly concerning cycle lengths, cf.

Fig. 6.41(b). With DTG, low-degree VN’s have a good chance to have larger local girths.

In case of Fig. 6.41(c), the searching depth for degree-2 VN’s is 40 and the searching

depth for degree-3 VN’s is 20. Note that, linking an edge to a check node in the 40th level

creates a cycle of length 80. Fig. 6.41(d) shows that applying DTG brings a noticeable

reduction in the error floor level, w.r.t. FTG. Now we apply STG, and still use a searching

depth of 40 for degree-2 VN’s and 20 for degree-3 VN’s. One observes from Fig. 6.41(d)

that this reduces the error floor level further. Besides, it can be seen that a smaller cut-off

threshold leads to a lower error floor level. In the current case, Υ = 4 and Υ = 3 give the

best performances. As a matter of fact, these two threshold values are the best choices for

most applications. Since Υ trades off the graph quality for low-degree VN’s and that for

high-degree VN’s, Υ = 2 is a relatively risky choice, in the sense of causing a non-trivial

probability for burst errors when N is large. Last but not lease, one can easily reduce the

error floor of the current code design to a negligible level by increasing the block length.

110 CHAPTER 6. SPREADING, SCRAMBLING, AND INTERLEAVING

0 2 4 6 8 10 12 14 16 18 20
E

b
/N

0
 in dB

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

NS, K=1500, girth=18
VBS, K=1500, girth=18
SBS, K=1500, girth=18

(a) N = 3, λ(D) = 0.75D2 + 0.25D3.

0 2 4 6 8 10 12 14 16 18 20
E

b
/N

0
 in dB

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

NS, K = 1280, girth = 8
NS, K = 5120, girth = 10
NS, K = 12800, girth = 12
NS, K = 51200, girth = 14
VBS, K = 1280, girth = 8
SBS, K = 1280, girth = 8

(b) N = 5, λ(D) = 0.80D3 + 0.20D4.

Figure 6.42: Irregular LDSC-EPA, PEG-designed interleavers, 40 iterations.

6.4.3 Computer-Based Scrambler Design

In Section 6.4.2, we have shown that for achieving a low error floor level the run-time local

girths of low-degree variable nodes should be large enough. However, this is not always

achievable, due to many possible reasons. In this section, we devise a scrambling strategy

that can reduce residual errors when the decoding process is almost accomplished. For a

systematic study, the discussion starts with some numerical assessments on scrambling.

The Influence of Scrambling w.r.t. Graph Girth

In Section 6.2.1, we conjecture that a graph with a very large girth will be immune to the

trap of message oscillation. Now we try to verify this conjecture via numerical tests. We

consider LDSC-EPA with N = 3 and N = 5. Typically, a higher bit load leads to a smaller

graph girth, given a fixed block length. Fig. 6.42(a) provides the BER performances for

the case of N = 3, given no scrambling (NS), VN-based scrambling (VBS), and SC-based

scrambling (SBS). In fact, no performance difference is observed w.r.t. different scrambling

schemes. Given a small bit load and a large girth as 18, the iterative decoder is indeed

insensitive to scrambling. Fig. 6.42(b) provides the BER performances for the case of

N = 5. Due to a higher bit load, the iterative decoder becomes sensitive to scrambling.

Given no scrambling and a girth 6 10, the error floor level is considerable, which is caused

by burst errors resulting from message oscillations. One also observes that the error floor

level can be reduced by increasing the graph girth. This verifies the conjecture. After all,

Fig. 6.42(b) shows that scrambling is much more efficient than a large girth in the sense

of avoiding the trap of message oscillation. Note that even for a girth of 14, there is a

non-trivial performance penalty in the low-SNR region when scrambling is not applied.

6.4. LOW-DENSITY SUMMATION-CHECK CODE 111

+ 2

+

0

+0

+

0

01

0 1

b

b

(a) Flip an odd number of edges.

+ 2

+

0

+

0

0

1

0

b

b

(b) Flip an even number of edges.

Figure 6.43: Scrambling strategies for cycles containing an even or odd number of SC’s.

A Heuristic Example for Scrambler Design

In most of the previous discussions, we have used a VN-based scrambling strategy, which

flips every second edge diverging from a VN. This approach is appropriate and good, but

not necessarily the best that we can do, particularly for degree-2 VN’s. Fig. 6.42 actually

gives two meaningful hints for scrambler design. First, the primary effect of scrambling

for high-degree VN’s is in avoiding the trap of message oscillation. In this concern, a

VN-based scrambler does the job very well. Second, degree-2 VN’s are usually irrelevant

to message oscillations. This has two reasons. By an appropriate interleaver design, the

local girths of degree-2 VN’s are often much larger than that of high-degree VN’s. Besides,

a degree-2 VN does not have a message-sign-unification functionality (cf. Section 6.2.1),

as it simply exchanges the two messages that it receives. Hence, scrambling is in fact

unnecessary for degree-2 VN’s if it is for avoiding the trap of message oscillation.

During iterative LDSC decoding, VN’s with the highest degree get correctly estimated

first and degree-2 VN’s get correctly estimated last. For this reason, cycles formed by

pure degree-2 VN’s are usually the major cause for the residual errors. As scrambling is

not mandatory for degree-2 VN’s, we may use it in a new way. Illustrated in Fig. 6.43,

we flip one and only one edge for a cycle containing an even number of summation checks

(SC’s), and we do not flip any edge if the cycle contains an odd number of SC’s. Assuming

a noiseless channel, a cycle formed by pure degree-2 VN’s will produce decision errors if

and only if all SC’s come with a zero channel observation. Without much difficulty, one

finds that the two cycles given in Fig. 6.43 are free of such scenarios, i.e., there will be at

least one SC coming with a non-zero observation. Based on this observation, we can easily

generalize the scrambling strategy. For the case of Fig. 6.43(a), the error probability will

be zero as long as the number of flipped edges is odd. For the case of Fig. 6.43(b), the

error probability will be zero as long as the number of flipped edges is even. In fact, such

a scrambling strategy tries to eliminate those risky stopping sets from an LDSC graph.

112 CHAPTER 6. SPREADING, SCRAMBLING, AND INTERLEAVING

+ 0

+

0

+0

+

0

00

0 0

b

b

(a) An even number of edges are flipped.

+ 0

+

0

+

0

1

0

0

b

b

(b) An odd number of edges are flipped.

Figure 6.44: Two stopping sets formed by degree-2 variable nodes.

Stopping Sets for LDSC-EPA

The issue of stopping sets is first discovered in the field of LDPC-coded transmission over

the binary erasure channel. When the channel erasures include a group of variable nodes

that form a stopping set, iterative decoding fails [82]. For LDPC-coded transmission over

the AWGN channel, the related concept is trapping sets [83]. Now for LDSC-EPA, there

exists stopping sets both over the noiseless channel and the AWGN channel. We define a

stopping set for LDSC-EPA as an ensemble of variable nodes and summation checks that

fulfill the following conditions:

1. Every summation check is connected to an even number of variable nodes, with this

number being larger than or equal to 2;

2. Every variable node is connected with at least one summation checks within this

ensemble and no summation check outside this ensemble;

3. For every cycle formed within this ensemble, the number of flipped edges is even if

this cycle contains an even number of summation checks, and the number of flipped

edges is odd if this cycle contains an odd number of summation checks.

By applying some changes on the scrambling patterns in Fig. 6.43, we obtain two stop-

ping sets formed by degree-2 variable nodes, as illustrated in Fig. 6.44. According to

Section 6.3.2, the stopping set in Fig. 6.44(a) has an error probability of 2−4, and the one

in Fig. 6.44(b) has an error probability of 2−3, assuming a noiseless channel. A stopping

set is characterized by a non-zero probability to have the relevant chip summations being

all-zero. For example, given the specific bit values marked in Fig. 6.44, the summation

checks in these two stopping sets all come with a zero channel observation. Alternatively,

this is to say that a stopping set is characterized by a non-bijective mapping rule between

the info bits and the chip summations encompassed by this set. Note that the two cycles

in Fig. 6.44 are always stopping sets, regardless of the degree of the summation checks.

6.4. LOW-DENSITY SUMMATION-CHECK CODE 113

+

0

01

b

b

(a) A (2, 1) stopping set.

+

0

+0

+

0

0

1

0

+

0

+

0

+ 0

+

0

0

1

0

b

b

(b) A (6, 7) stopping set.

Figure 6.45: Two stopping sets formed by degree-1, degree-2, and degree-3 variable nodes.

For shorthand notations, we say a stopping set is a (m,n) stopping set if it contains m

variable nodes and n summation checks. A stopping set does not have to contain cycles.

For example, the (2, 1) stopping set in Fig. 6.45(a) actually gives the smallest stopping

set for LDSC-EPA, which occurs when the spreading factor is 1. The error probability of

this stopping set is 1/4, cf. Fig. 4.1. Roughly speaking, the smaller a stopping set is, the

higher is the error probability. Hence, when an iterative LDSC-EPA decoder produces an

error floor, this error floor is mostly contributed by those small stopping sets. As shown in

Fig. 6.43, a clever scrambling scheme can help to eliminate some stopping sets. Hence, by

enumerating those risky stopping sets and sequentially eliminating them via scrambling,

a significant reduction can be expected for the error floor level. Let us still consider the

system setup: N = 3 and λ(D) = 0.75D2 + 0.25D3, which is used as an illustrative

example in Section 6.4.2. Suppose the graph girth is 6, such that no cycles with a length

smaller than 6 exist. Given this assumption, the most risky stopping set is actually the

one in Fig. 6.44(b), and the stopping set in Fig. 6.44(a) actually gives the secondary risky

one. By applying the scrambling strategy given in Fig. 6.43, these stopping sets formed

by pure degree-2 variable nodes can effectively be eliminated. In general, a stopping set

containing high-degree variable nodes has a larger size than a stopping set containing low-

degree variable nodes only, given the same minimum cycle length. For example, the (6, 7)

stopping set in Fig. 6.45(b) contains two length-6 cycles but only has an error probability

of 2−6, which is much lower than that of Fig. 6.44(a) and Fig. 6.44(b). Easy to imagine,

by replacing one degree-2 variable node in Fig. 6.45(b) by a degree-3 variable node, the

stopping set will include more summation checks and consequently lead to a lower error

probability. This explains why a stopping set containing many high-degree variable nodes

is not relevant to the error floor. Hence, for reducing the error floor level, those stopping

sets that need to be eliminated are the ones formed mainly by degree-2 variable nodes.

Following this observation, we devise in the next step a cycle-based scrambling strategy.

114 CHAPTER 6. SPREADING, SCRAMBLING, AND INTERLEAVING

A Cycle-Based Scrambling Strategy

A cycle-based scrambling strategy aims to eliminate those risky stopping sets in an LDSC

graph via avoiding a non-bijective mapping rule in certain short cycles. We define the

weight of a cycle as the summation of the degree of the variable nodes involved in this

cycle. By this definition, the weight of a cycle is equivalent to the maximum Hamming

distance between the repetition codewords corresponding to this cycle. For example, the

cycle in Fig. 6.44(a) has a weight of 8, the cycle in Fig. 6.44(b) has a weight of 6, and

the two cycles in Fig. 6.45(b) both have a weight of 7. In general, a low-weight cycle is

more risky than a high-weight cycle, because on average the size of the stopping set that a

low-weight cycle belongs to is smaller than the size of the stopping set that a high-weight

cycle belongs to. Fig. 6.44(b) and Fig. 6.45(b) give a good example for such a situation.

A cycle-based scrambling (CBS) strategy decides the scrambling pattern as follows.

1. Construct an LDSC matrix via a certain algorithm, and meanwhile apply VN-based

scrambling for all VN’s (optionally one may exclude all degree-2 VN’s).

2. Perform cycle searching for a certain VN. During the cycle searching, only those

VN’s that have a degree smaller than or equal to the degree of the current VN are

considered. Record the smallest-weight (usually not the shortest) cycle that the

current VN is involved. For this cycle, change the flipping sign for one of the edges

diverging from the current VN if the cycle contains an even number of summation

checks and an even number of flipped edges or if the cycle contains an odd number

of summation checks and an odd number of flipped edges. Lock all edges involved

in this cycle and forbid any further change on the flipping sign of these edges. If

desired, one may search for a cycle whose weight is larger than the previous one but

smaller than all the others, and so on. Nevertheless, flipping the edges diverging

from a degree-D VN can at most eliminate D − 1 stopping sets.

3. Execute the above operation for all VN’s, in an order that a low-degree VN always

gets treated earlier than a high-degree VN.

Note that the above scheme actually makes some adjustments on a VN-based scrambling

pattern, whenever it is necessary. Statistically, the amount of flipped edges is still approx-

imately equal to the amount of non-flipped edges in this graph, after these adjustments.

Hence, doing so will not increase the risk of message oscillation. The effectiveness of this

scrambling strategy will be verified by the numerical results provided in Section 6.4.5. In

practice, it is often sufficient to apply CBS for VN’s with a degree smaller than or equal

to 3. Certainly, it does not harm if one applies CBS for all VN’s, but it will not provide

any noticeable performance improvement. Moreover, it is usually not feasible to fully rely

on scrambling to enable a perfect data separation, to be explained in the following.

6.4. LOW-DENSITY SUMMATION-CHECK CODE 115

+

0

+

+1

+

0

+

0

+

+1

+

0

1 0

0 0 0

0 1 b

Figure 6.46: A graph piece that contains a (6, 6) stopping set.

+

0

+

0

+

0

0 0

1 0
b

Figure 6.47: A (4, 3) stopping set.

As a matter of fact, there are many types of stopping sets that are not removable by means

of clever scrambling. To illustrate this situation, let us consider two examples. Fig. 6.46

gives a graph piece that contains a (6, 6) stopping set. Checking this graph piece carefully,

one may find that the single flipped edge in the left cycle prevents this cycle from forming

a (4, 4) stopping set, and so does the single flipped edge in the right cycle. Since these

two cycles are the smallest-weight cycles within this graph piece, the current scrambling

pattern is in fact optimal. Nevertheless, it is easy to find that the nodes in the outer ring

form a (6, 6) stopping set. It is not possible to remove this stopping set without changing

one of the two length-8 cycles into a stopping set. This observation actually implies that a

regular SF = 2 repetition code can not support SM-EPA with N = 3. Fig. 6.47 provides

a (4, 3) stopping set as the second example. Easy to find, this stopping set contains two

length-4 cycles, none of which forms a stopping set due to clever scrambling. However,

as these two cycles join each other at a summation check, a (4, 3) stopping set is formed.

It can be seen from Fig. 6.47 that the channel observations are all zeros given the bit

values as marked in the graph. With some simple derivations, one finds that the error

probability of this stopping set is given by 2−4, assuming a noiseless channel. Note that it

is strictly not possible to avoid such a stopping set by means of scrambling. There are in

general two possible approaches to reduce the errors from the above two types of stopping

sets. The first approach is to forbid a summation check to be connected with more than

two degree-2 variable nodes, so that graph pieces as in Fig. 6.46 and Fig. 6.47 will not

exist. The second approach is to enlarge the cycle length by using a larger block length.

Both approaches are useful and effective, to be demonstrated in Section 6.4.5.

116 CHAPTER 6. SPREADING, SCRAMBLING, AND INTERLEAVING

0 2 4 6 8 10 12 14 16 18 20
E

b
/N

0
 in dB

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

K = 1000
K = 2000
K = 4000
K = 10000
K = 20000
K = 40000
BPSK bound

Figure 6.48: Regular LDSC-EPA, SF = 3, N = 6, PEG-designed interleavers, 100 itera-

tions. K denotes the number of symbols per block.

6.4.4 Supportable Rate with Regular Repetition

Given random interleaving, the supportable rate of regular repetition-coded SM-EPA is

slightly less than 2 bits/symbol, cf. Section 5.3.2. It is interesting to check whether this

situation can be improved by using the framework of LDSC coding and the interleaver

design method, namely the PEG algorithm, described in Section 6.4.2. Note that the

RGB algorithm is equivalent to the PEG algorithm for regular LDSC coding.

Fig. 6.48 shows the performance of regular LDSC codes with equal power allocation, for

a spreading factor of SF = 3 and a bit load of N = 6. One observes that, the error

floor levels for moderate block lengths are still significant, even for interleavers designed

via the PEG algorithm. By increasing the block length to K = 40000, the error floor

finally diminishes. Note that for regular LDSC codes a graph built by the PEG algorithm

is almost optimal, if not exactly. Still, a very large block length is necessary to achieve

a decoding convergence. This scenario reminds one that the data rate of 2 bits/symbol

might be closely related to a certain type of theoretical limit for regular LDSC-EPA.

For an iterative LDSC decoder, a prerequisite for convergence is that the variable nodes

and the summation checks interact with each other in a mutually beneficial way, during

iterations. In detail, this is to guarantee that given the extrinsic information delivered by

the variable nodes in the current iteration, the summation checks will be able to produce

a stronger extrinsic information to the variable nodes w.r.t. the extrinsic information

produced in the previous iteration. Only then, will iterations bring potential performance

gain. S. ten Brink proposed in [84–86] a novel method, called extrinsic information transfer

(EXIT) chart, to visualize the fitness between a pair of iterative decoding modules. This

method is nowadays very popular for the design and analysis of iteratively decodable

channel codes. In the context of LDSC coding, an EXIT chart analysis is to check the

6.4. LOW-DENSITY SUMMATION-CHECK CODE 117

Summation
Checks

Variable
Nodes

Channel

Observations

IE,SC b= IA,VN

IA,SC b= IE,VN

Soft

Decisions

Iterative Decoderb

Figure 6.49: The interaction between summation checks (SC) and variable nodes (VN).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
I
A,SC

 I
E,VN

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I E
,S

C
 I

A
,V

N

SC, N = 6
VN, SF = 3
Decoding trajectory

(a) SF = 3, N = 6.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
I
A,SC

 I
E,VN

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I E
,S

C
 I

A
,V

N

SC, N = 2
SC, N = 3
SC, N = 4
SC, N = 5
SC, N = 6
SC, N = 8
SC, N = 16
SC, N = 32

VN, S
F = 4

VN, SF = 16

VN, SF = 3

VN, SF = 8

VN, S
F = 2

(b) Various SF and N .

Figure 6.50: EXIT charts for regular LDSC-EPA transmission over a noiseless channel.

extrinsic information transfer property of the summation check ensemble and that of the

variable node ensemble. As shown in Fig. 6.49, the extrinsic information (IE,SC) outputting

from the summation checks correspond to the a priori information (IA,VN) inputting to the

variable nodes, and vice versa. The major contribution of ten Brink in [84] is in proposing

the mutual information between LLR messages and code bits as a metric to measure the

strength of extrinsic information exchanging between the iterative decoding modules. This

metric proves to be stable and practical for many types of iterative decoders and many

types of channels. Fig. 6.50 gives two EXIT charts7 for regular LDSC-EPA. We have

assumed a noiseless transmission channel so as to check the ultimate performance limit.

To achieve a decoding convergence, the EXIT curve of the VN ensemble must be below

that of the SC ensemble. Only then will a tunnel for iterative message enhancing be open.

Fig. 6.50(a) shows that the convergence tunnel is open for SF = 3 and N = 6 but almost

closing in the middle region. Hence, it will take many iterations for an iterative decoder

to make a way through the middle section of the tunnel. Since an EXIT chart analysis

assumes a cycle-free factor graph, the performance predicted by it is strictly achievable

only for an infinite block length. This explains why one needs a block length as large as

K = 40000 in order to achieve a decoding convergence in the previous test, cf. Fig. 6.48.

More EXIT curves are provided in Fig. 6.50(b). It can be seen that given SF = 2, the

7The EXIT curves in this figure have been obtained by using the simplified mutual information cal-

culation method proposed by Land et al. [87–89]. This method is equivalent to the one proposed by S.

ten Brink in [84] for optimal APP demapping and decoding, but more convenient.

118 CHAPTER 6. SPREADING, SCRAMBLING, AND INTERLEAVING

0 2 4 6 8 10 12 14 16 18 20
E

b
/N

0
 in dB

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

K = 1000
K = 2000
K = 4000
K = 10000
K = 20000
K = 40000
BPSK bound

(a) SF = 4, N = 8.

0 2 4 6 8 10 12 14 16 18 20
E

b
/N

0
 in dB

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

K = 1000
K = 2000
K = 4000
K = 10000
K = 20000
K = 40000
BPSK bound

(b) SF = 8, N = 16.

Figure 6.51: Regular LDSC-EPA, PEG-designed interleavers, 100 iterations. K denotes

the number of symbols per block.

convergence tunnel is only open for N 6 2. Hence, the maximum supportable rate for

SF = 2 is merely 1 bit/symbol, which complies with the results in Section 5.3.2 and

Section 6.3.2. On the other hand, for SF > 3, the convergence tunnel will be open for

all N 6 2 ·SF . This well explains the 2 bits/symbol rate limit for regular LDSC-EPA. It

can also be seen from Fig. 6.50(b) that the middle section of the convergence tunnel for

SF = 4 and N = 8 is wider than that for SF = 3 and N = 6. Besides, the situation of

SF = 8 and N = 16 is just somewhere in between the former two cases. This phenomenon

is clearly reflected in the corresponding BER performances provided in Fig. 6.51, in the

sense of minimum required block length for decoding convergence. Besides, from Fig. 6.48

and Fig. 6.51 one also observes that the BER curve of N = 8 approaches the asymptotic

BPSK bound earlier than that of N = 6 and N = 16, given K = 40000. This is also due

to the difference of the tunnel width in the middle section. So far, we may conclude that

2 bits/symbol is achievable for regular LDSC-EPA, given a large enough block length and

a well-designed interleaver.

6.4. LOW-DENSITY SUMMATION-CHECK CODE 119

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
I
A,SC

 I
E,VN

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
I E

,S
C

 I
A

,V
N

SC, regular, N = 8
VN, 20% D2 + 60% D3 + 20% D8
Decoding trajectory

(a) EXIT chart, noiseless channel.

0 2 4 6 8 10 12 14 16 18 20
E

b
/N

0
 in dB

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

K = 4750
K = 9500
K = 38000
BPSK bound

(b) BER vs. Eb/N0.

Figure 6.52: Irregular LDSC-EPA, SF = 3.8, N = 8, PEG, 100 iterations.

6.4.5 Supportable Rate with Irregular Repetition

In many related works [27,37–39,41,42], a 2 bits/symbol rate limit always exists for coded

SM-EPA transmission, either explicitly or implicitly mentioned therein. It is commonly

assumed by relevant researchers that a higher bandwidth efficiency is only possible by

using unequal power allocation for the superposition mapper. In this section we will show

that this presumption is in fact not precise. With a carefully designed irregular repetition

code, the supportable rate of SM-EPA can easily go beyond 2 bits/symbol.

From Fig. 6.50(b), we see that the convergence tunnel is very narrow in the middle region

but unnecessarily wide in the right region, for N = 2 · SF with SF > 3. In other words,

the EXIT curve of an SM-EPA demapper and that of a regular repetition decoder do not

really fit. According to the area property of EXIT charts [90–92], any area between two

EXIT curves leads to a rate loss relative to the capacity. In the context of Fig. 6.50(b),

where a noiseless channel is assumed, the capacity is given by the SM-EPA symbol entropy.

For example, the capacity is about 2.54 bits/symbol for N = 8, cf. Tab. 3.3. By a careful

code design, rates more than 2 bits/symbol should be achievable. A natural solution is

to reduce the surplus of the convergence tunnel in the right region. Fig. 6.52 provides the

performance for LDSC-EPA with a well-tuned degree distribution. The average spreading

factor is SF = 3.8, which leads to a rate of 2.1 bits/symbol. One observes that the decoder

has no problem to converge. Hence, the rate limit of 2 bits/symbol is successfully broken.

Besides, as the convergence tunnel is widely open for the whole region, the decoder also

becomes less sensitive to the block length, cf. Fig. 6.52(b). Now let us revisit Fig. 6.2.

The two irregular degree distributions considered therein both have an average spreading

factor of 4, which is in fact higher than that in Fig. 6.52. Hence, the corresponding error

floors are caused by the imperfectness of random interleaving given a finite block length.

120 CHAPTER 6. SPREADING, SCRAMBLING, AND INTERLEAVING

Revisiting Fig. 6.52(a), one finds that there is still space to reduce the spreading factor.

Motivated by this observation, we apply a VN degree distribution with SF = 3.6, which

leads to a rate of 8/3.6 ≈ 2.22 bits/symbol. Fig. 6.53(a) gives the corresponding EXIT

chart. Since the convergence tunnel becomes very tight in the rightmost region, it takes

309 iterations for the decoding trajectory to reach the point at (1, 1). To avoid the risk of

insufficient iterations, we increase the iteration number to 400 for the BER performance

test. Let us first focus on the performance resulting from the PEG-designed interleaver.

One observes from Fig. 6.53(b) that a significant error floor exists even for a block length as

large as K = 45000. By a careful investigation on the error pattern, we found that at high

SNR’s the majority of the data blocks comes with completely error-free decisions while a

few data blocks come with decisions full of errors. Hence, the error floor is caused by burst

errors. In Fig. 6.53(c) to 6.53(e), the LLR density evolution processes for three selected

data blocks are demonstrated. These three data blocks all attain error-free decisions by

the end of iterative decoding. The measured probability density function (PDF) shows

the evolution of the distribution of the LLR messages (for info bits) w.r.t. iterations,

given a noiseless channel. Easy to understand, the PDF is always bi-Gaussian in the

initial iteration. As soon as a good decoding convergence is achieved, the PDF becomes a

multiple8-Dirac function. Vividly shown by Fig. 6.53(c) to 6.53(e), the actually required

number of iterations varies dramatically from block to block. For block 1, the decoding

convergence is achieved after about 60 iterations. For block 2, this is after about 100

iterations. For block 3, more than 250 iterations are necessary to achieve the decoding

convergence. The reason behind this phenomenon is that the amount of information that

those moderate-size stopping sets obtain from the channel vary dramatically from block

to block. We will give an in-depth discussion on this issue in Section 7.1.3. With a non-

trivial chance, certain stopping sets receive all zeros for the relevant channel observations

and fail to deliver reliable messages. If these stopping sets involve many high-degree

variable nodes, a situation as in Fig. 6.53(f) occurs, which leads to a burst of decision

errors. This observation raises a critical question for the PEG algorithm. By starting from

low-degree variable nodes and ending at high-degree variable nodes, the PEG algorithm

maximizes the size of stopping sets involving low-degree variable nodes only but sacrifices

the size of stopping sets involving high-degree variable nodes. In other words, it reduces

the probability of residual errors but increases the probability of burst errors. For LDPC-

coded BPSK transmission over the AWGN channel, this is rarely an issue, because each

code bit is associated with a channel observation free of interference. For LDSC codes,

however, this becomes a problem whenever the targetted rate is close to the capacity.

8For the sake of numerical stability, the summation check output messages are limited to be in [−12, 12].

As a result, the strongest LLR messages have a magnitude of 96, delivered by those degree-8 variable

nodes, and the weakest messages have a magnitude of 24, delivered by those degree-2 variable nodes.

6.4. LOW-DENSITY SUMMATION-CHECK CODE 121

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
I
A,SC

 I
E,VN

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I E
,S

C
 I

A
,V

N

SC, regular, N = 8
VN, 46% D2 + 24% D3 + 16% D6 + 12% D7 + 2% D8
Decoding trajectory

(a) EXIT chart, noiseless channel.

0 2 4 6 8 10 12 14 16 18 20 22 24
E

b
/N

0
 in dB

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

PEG
RGB with DTG
RGB with STG, ϒ = 3

(b) BER vs. Eb/N0.

0
20

40
60

80
100

−100

−50

0

50

100
0

0.05

0.1

0.15

0.2

0.25

Iteration Index
LLR

P
ro

ba
bi

lit
y

D
en

si
ty

 F
un

ct
io

n

(c) LLR density evolution, PEG, block 1. (d) LLR density evolution, PEG, block 2.

(e) LLR density evolution, PEG, block 3. (f) LLR density evolution, PEG, block 4.

Figure 6.53: Irregular LDSC-EPA, SF = 3.6, N = 8, K = 45000, VBS, 400 iterations.

122 CHAPTER 6. SPREADING, SCRAMBLING, AND INTERLEAVING

The respective BER curve in Fig. 6.53(b) verifies this assertion. In contrast, the RGB

algorithm proposed in Section 6.4.2 constructs the graph in a randomized order, which

achieves a balance between the size of the stopping sets involving only low-degree variable

nodes and the size of the stopping sets involving high-degree variable nodes as well. In

other words, the RGB algorithm achieves a trade-off between the probability of burst

errors and that of residual errors. Shown by Fig. 6.53(b), using the RGB algorithm with a

distinct tree growth (DTG) procedure enables a good decoding convergence, albeit leaving

a non-trivial error floor. To reduce the error floor level, we apply a selective tree growth

(STG) procedure for the RGB algorithm. Taking a cut-off threshold of Υ = 3, no error

floor is observed above 10−7, cf. Fig. 6.53(b). In fact, for the high SNR region more than

200000000 info bits have been transmitted during the simulation and no single decision

error has been detected. Nevertheless, one observes that there is a cross-over between the

curve for DTG and the curve for STG, in the high-BER region. This is because an STG

procedure improves the graph quality w.r.t. the low-degree variable nodes but degrades the

graph quality w.r.t. the high-degree variable nodes. The performance difference between

a PEG-designed interleaver and an RGB-designed interleaver can also be explained via

the respective summation check EMD distributions. As shown in Fig. 6.54, the SCE

distribution resulting from the PEG algorithm is very narrow, which is good for achieving

a low error floor but challenging for eliminating burst errors. Eventually, if one increases

the block length to an extremely large number, a PEG-designed interleaver should be

able to offer a good performance as well. By using the RGB algorithm with DTG, the

SCE distribution is concentrated and rich of diversity. This SCE diversity is very helpful

in starting a successful decoding process but leads to some penalty for the performance

in the low-BER region. In comparison, the SCE distribution resulting from RGB-STG is

more diverse than that from PEG and narrower than that from RGB-DTG. Consequently,

the resulting BER performance is better than that from PEG, in the high-BER region,

and better than that from RGB-DTG, in the low-BER region. After all, a finite-length

LDSC code has a strictly non-zero error probability, as long as the corresponding graph

contains some stopping sets. Certainly, if the smallest stopping set has a large enough

size, the error floor level will be negligible. The primary task of interleaver design for

an LDSC code is not to pursue a zero error probability but to achieve a good balance

between the burst error probability and the residual error probability.

For the simulations in Fig. 6.53(b), the tree searching depth regulations applied for the

RGB-DTG curve and the RGB-STG curve are identical. The searching depth for degree-

2 variable nodes is limited to 40, and the searching depth for degree-3 variable nodes is

limited to 20. For all the other variable nodes, the searching depth is limited to 20−(D−3),

where D is the degree of the corresponding variable node. This searching depth regulation

proves to be robust for LDSC matrix construction with various configurations. In the

6.4. LOW-DENSITY SUMMATION-CHECK CODE 123

0 10 20 30 40 50 60
Summation Check EMD

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ili

st
ic

 D
is

tr
ib

ut
io

n

Narrow and concentrated

(a) PEG.

0 10 20 30 40 50 60
Summation Check EMD

0.00

0.05

0.10

0.15

Pr
ob

ab
ili

st
ic

 D
is

tr
ib

ut
io

n

Wide but concentrated

Leads to some penalty
in the low-BER region

Helpful for starting
a decoding process

(b) RGB with DTG.

0 10 20 30 40 50 60
Summation Check EMD

0.00

0.05

0.10

0.15

Pr
ob

ab
ili

st
ic

 D
is

tr
ib

ut
io

n

(c) RGB with STG, Υ = 3.

Figure 6.54: SCE distributions for irregular LDSC-EPA, SF = 3.6, N = 8, K = 45000.

124 CHAPTER 6. SPREADING, SCRAMBLING, AND INTERLEAVING

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
I
A,SC

 I
E,VN

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I E
,S

C
 I

A
,V

N

SC, regular, N = 8
VN, irregular, SF = 6
Decoding trajectory

(a) EXIT chart, noiseless channel.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
E

b
/N

0
 in dB

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

PEG, VBS
PEG, CBS
RGB with DTG, VBS
RGB with DTG, CBS

(b) BER vs. Eb/N0.

Figure 6.55: Irregular LDSC-EPA, SF = 6, N = 16, K = 60000, 400 iterations.

following discussion, we will apply this regulation to LDSC code design for N = 16 and

N = 32. For a variable node with the degree D > 21, we have 20− (D − 3) < 2. In this

case, we set the searching depth limit to 2, so that at least length 4 cycles can be avoided.

According to Tab. 3.3, the supportable bandwidth efficiency of SM-EPA with N = 16 is

limited by 3.0465 bits/symbol. We apply the following VN degree distribution:

λ(D) = 0.29D2 + 0.28D3 + 0.09D4 + 0.06D7 + 0.08D10 + 0.09D12 + 0.07D16 + 0.04D20 ,

which leads to an average spreading factor of 6. The corresponding bandwidth efficiency

is 16/6 ≈ 2.606 bits/symbol, which is close to the theoretical limit. Fig. 6.55 provides

the EXIT chart as well as the resulting BER performances with different interleavers and

different scramblers. Compared to the case of N = 8, a PEG-designed interleaver offers

an even worse performance, in the sense that the probability of encountering burst errors

is almost 1. As an interesting test, we apply cycle-based scrambling (CBS) to the PEG-

designed LDSC matrix, and the resulting performance is nearly identical, cf. Fig. 6.55.

Hence, the effect of scrambling in enabling a successful data separation is marginal, given

a large N . The two stopping sets in Fig. 6.46 and Fig. 6.47 serve as a good explanation

for this situation. Nevertheless, the effect of scrambling in eliminating residual errors

is evident. With variable-node-based scrambling, an RGB-designed interleaver shows an

error floor at about 5×10−5. Applying CBS, no error floor has been observed. Comparing

Fig. 6.55 with Fig. 6.53, one finds that selective tree growth and cycle-based scrambling

are both effective in reducing the error floor level from an LDSC code.

Following the above treatments, now we check the supportable rate of irregular LDSC-

EPA with N = 32. For the simulations in Fig. 6.53, we have used a block length of 45000.

For the simulations in Fig. 6.55, we have used a block length of 60000. Now for N = 32,

we will use a block length larger than 100000. The reason for doing so is that the density

6.4. LOW-DENSITY SUMMATION-CHECK CODE 125

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
I
A,SC

 I
E,VN

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
I E

,S
C

 I
A

,V
N

SC, regular, N = 32
VN, irregular, SF = 10.45
Decoding trajectory

(a) EXIT chart, noiseless channel.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
E

b
/N

0
 in dB

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

PEG, VBS
RGB with DTG, VBS
RGB with DTG, CBS
RGB with DTG, CBS, SC-irregular

(b) BER vs. Eb/N0.

Figure 6.56: Irregular LDSC-EPA, SF = 10.45, N = 32, K = 104500, 400 iterations.

of an LDSC matrix is given by SF/K. When the spreading factor increases, a larger block

length is necessary in order to keep the matrix density in a reasonable level. After some

fine tuning, we obtain for SM-EPA with N = 32 the following VN degree distribution:

λ(D) = 0.29D2 + 0.08D3 + 0.20D4 + 0.09D7 + 0.06D10

+0.08D16 + 0.09D24 + 0.07D32 + 0.04D48 , (6.12)

which leads to an average spreading factor of 10.45. The corresponding EXIT chart is

given in Fig. 6.56(a). One observes that the EXIT curve of the SC ensemble and that of the

VN ensemble well match with each other. In case that a decoding convergence is attainable

given a practical block length, we achieve a rate of 32/10.45 ≈ 3.0622 bits/symbol, which

is far beyond the previously known limit of 2 bits/symbol. Typically, the larger the bit

load N is, the more sensitive the decoder is to the graph structure, since a high-degree

summation check considerably increases the chance of forming stopping sets. As expected,

a PEG-designed interleaver does not provide a desirable performance, and using the RGB

algorithm with a distinct tree growth (DTG) procedure eliminates the probability of

burst errors but results in a non-trivial error floor, cf. Fig. 6.56(b). Applying cycle-based

scrambling drops the error floor from 8× 10−5 to 3.5× 10−7, which is still non-negligible.

Due to the existence of very-high-degree variable nodes, short cycles can easily be formed

among low-degree variable nodes, given a randomized graph construction order. The main

causes for the error floor after applying CBS are graph pieces similar to that in Fig. 6.46

and Fig. 6.47. As already mentioned in Section 6.4.3, there is an simple solution to avoid

these types of graph pieces. Limiting the number of degree-2 variable nodes connected to

every summation check below or equal to 2 effectively eliminates the choice to encounter

such stopping sets. However, this simple solution is not practical, unless one relaxes the

regulation on the summation check degree distribution. Due to randomized edge-growth

operations, the RGB algorithm has a negligible chance to fulfill such a requirement, as

126 CHAPTER 6. SPREADING, SCRAMBLING, AND INTERLEAVING

0 0.2 0.4 0.6 0.8 1
I
A,SC

0

0.2

0.4

0.6

0.8

1

I E
,S

C

SC, regular, N = 32
SC, irregular, 0.49% D31 + 99.04% D32 + 0.45% D33 + 0.02% D34

Figure 6.57: EXIT chart for two SC ensembles, EPA, N = 32, noiseless channel.

long as all summation checks are required to have a designated degree. Note that the VN

degree distribution in (6.12) is a valid design not only for a regular SC degree distribution

with N = 32 but also for those quasi-regular SC degree distributions with an average bit

load of 32. Hence, it is in fact safe to relax the SC degree regulation during the graph

construction. Given this motivation, we perform a new graph construction via RGB-DTG,

taking into account the connection constraint on degree-2 variable nodes. The resulting

LDSC matrix has the following SC degree distribution:

η(D) = 0.0049D31 + 0.9904D32 + 0.0045D33 + 0.0002D34 , (6.13)

which leads to an average bit load of 32. Note that this is not from a code design but

is a natural result from the graph construction procedure without applying an SC degree

regulation. Nevertheless, one finds that this degree distribution is almost regular, in the

sense that the fraction for D 6= 32 is marginal. This is achieved largely because of the

MCCS treatment adopted by the RGB algorithm. Fig. 6.57 compares the EXIT function

of a regular SC ensemble with N = 32 and an irregular SC ensemble obeying (6.13). One

can hardly see any difference between the two EXIT curves. Hence, the degree distribution

in (6.12) fits that in (6.13) as well. Given the new LDSC matrix and applying cycle-based

scrambling, no error floor is observed any more, as shown in Fig. 6.56(b).

Up to this point, it is evident that the supportable rate of SM-EPA is virtually unlimited,

given a well-designed irregular repetition code. Certainly, to achieve a very high data rate

one needs to take an extremely large bit load, because the entropy of an SM-EPA symbol

grows logarithmically w.r.t. the bit load. Equivalently, this is to say that SM-EPA is not

really suitable for very-high-rate transmission, in the concern of computational complexity.

The discussions within this chapter have not included the issue of power efficiency, in order

to attain an easy elaboration. Nevertheless, the discussions in the next chapter treat code

design in a more general framework, with the bandwidth efficiency and power efficiency

both carefully considered.

Chapter 7

Channel Coding for Superposition

Mapping

Superposition mapping offers many advantages including Gaussian-like symbol distribu-

tion, low-complexity SISO demapping, and configuration flexibility. On the other hand,

superposition mapping also necessitates a completely new way of thinking for code design.

Shown in Chapter 5, using classical powerful parity-check codes leads to a very unsatisfy-

ing performance for superposition mapping. In contrast, the results from repetition-coded

SM are more desirable, in the sense of supportable bandwidth efficiency. For this reason,

Chapter 6 carries out a thorough study on the working mechanism of repetition-coded

SM. This study yielded many useful hints for a more systematic code design. For coded

SM transmission, the primary task of channel coding is to enable the separation of su-

perimposed chips. If and only if this primary task can be successfully accomplished,

will a channel code get the chance to combat the additive noise in an efficient way. For

this primary task, repetition coding deserves to be a good choice because it enables an

efficient information aggregation and distribution process. Besides, having zero coding

gain is not a big issue in the stage of data separation. In fact, superposition mapping

itself can offer a considerable power gain w.r.t. uniform bijective mapping. As long as the

task of data separation can be successfully accomplished, the necessary coding gain for a

superposition mapper is much less than that for a uniform bijective mapper. Hence, an

optimal coding scheme for SM should first ensure the possibility of data separation and

then provide a moderate but sufficient coding gain. Clearly, the question is how to design

such a code. This is what the present chapter will be dedicated to. Various aspects, either

theoretical or practical, will also be discussed in this chapter. As a topic of great practical

importance, the proper way of combining repetition coding and parity-check coding will

be investigated in detail. The discussion will mostly start with SM-EPA and then extend

to the case of SM-UPA and SM-GPA when necessary.

127

128 CHAPTER 7. CHANNEL CODING FOR SUPERPOSITION MAPPING

+

b1 ∈ {0, 1}

b2 ∈ {0, 1}

bN ∈ {0, 1}

x ∈ {0, 1, . . . , N}

(a) An N -user binary adder channel.

+

c1 ∈ {±1}

c2 ∈ {±1}

cN ∈ {±1}

x ∈ {−N,−N + 2, . . . , N}

(b) SM-EPA with bit load N , α = 1.

Figure 7.1: Duality between the binary adder channel and SM-EPA.

7.1 Some Theoretical Aspects

Before we proceed with code design for superposition mapping, there are several interest-

ing issues necessary to be mentioned, including the duality between superposition mapping

and the binary adder channel, rate limits for coded SM-EPA transmission, and the effect

of finite block lengths. The discussion in this section gives a good starting point for the

work in the remainder of the chapter.

7.1.1 Duality to Binary Adder Channel

Although one may apply arbitrary type of power allocation to superposition mapping, the

equal power allocation (EPA) strategy should always be used as a basic building block,

since only then a Gaussian-like symbol distribution will be attainable. As a matter of

fact, SM-EPA itself is equivalent to the binary adder channel (BAC) well-known from

multi-user information theory [34, 93–96]. The binary adder channel describes a scenario

that multiple users communicate with a single receiver. Typically the inputs to the

binary adder channel are defined over GF (2), as depicted in Fig. 7.1(a). In comparison,

superposition mapping with equal power allocation shares exactly the same structure

with the BAC, except that its inputs are drawn from {±1}, illustrated in Fig. 7.1(b).

From an information theory point of view, SM-EPA and BAC are completely equivalent.

Consequently, all the channel codes developed for the BAC can easily be applied for SM-

EPA, and more importantly, all coding techniques developed within this thesis are also

applicable for the BAC. In the following, we will have a brief review on the available

coding approaches for the BAC.

7.1. SOME THEORETICAL ASPECTS 129

The capacity of a binary adder channel is given by the entropy of the channel output.

Due to nonuniform distribution, we have

H(x) < N . (7.1)

Therefore, channel coding is mandatory in order to achieve an error-free transmission,

and there is generally a rate limit for the channel code according to

R 6 H(x)/N , (7.2)

which is identical to the case of SM-EPA, as discussed in Section 3.2. Without loss of

generality, we may categorize the available coding approaches for BAC into three classes.

The first class of approaches are in fact well-known as code-division multiplexing (CDM) or

code-division multiple access (CDMA) [97]. By means of orthogonal spreading, a perfect

data reconstruction is possible via a bank of matched filters. This type of approaches

are simple and stable. However, when applied to a binary adder channel, the maximum

supportable data rate will be one bit per channel use regardless of the particular channel

capacity, due to the request for a strict orthogonality. Nowadays, the non-optimality

of orthogonal multiplexing has been commonly recognized [98, 99]. The second class of

approaches have a history dating back to the late 1970’s. In the concern of enhancing the

supportable data rate for the BAC, many researchers have been resorting to the concept

of uniquely decodable codes [35, 36, 94]. We will briefly elaborate the basic principle of

uniquely decodable codes in the next step, so as to show their advantages as well as

disadvantages for superposition mapping. The third class of approaches emerge after the

invention of turbo codes and the reinvention of LDPC codes. In recent years, researchers

have been particularly enthusiastic on applying iteratively decodable channel codes to

various types of multiple access channels [100–102], mainly encouraged by the superior

performance of sparse-graph codes on the binary-input AWGN channel. With the help

from orthogonal spreading or spatial receiver diversity, iteratively decodable parity-check

codes work very well for multiple access channels. Nevertheless, successful applications of

parity-check codes for a pure BAC (equal power allocation) with N > 3 have rarely been

reported. There are in fact many reasons behind such a situation. In this chapter, we

will clarify most of the relevant issues and provide practical solutions correspondingly.

By uniquely decodable codes, each user is assigned a unique spreading sequence that

serves as a user-specific identification code. The set of N spreading sequences are not

mutually orthogonal but uniquely distinguishable. For example, the following matrix

gives a uniquely decodable code for the BAC with N = 3 users:



1 1

1 −1

1 0


 , (7.3)

130 CHAPTER 7. CHANNEL CODING FOR SUPERPOSITION MAPPING

b1, b2, b3
0, 0, 0

0, 0, 1

0, 1, 0

1, 0, 0

0, 1, 1

1, 0, 1

1, 1, 0

1, 1, 1

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

x1, x2
0, 1

1, 1

1, 0

1, 2

2, 0

2, 2

2, 1

3, 1

Figure 7.2: The mapping rule of a 3-user uniquely decodable code.

where −1 denotes a bit flipping operation and 0 denotes a constant zero. Given this code

matrix, the spreading operation for each user will be defined as

b1 = 0 7→ [0, 0] , b1 = 1 7→ [1, 1]

b2 = 0 7→ [0, 1] , b2 = 1 7→ [1, 0]

b3 = 0 7→ [0, 0] , b3 = 1 7→ [1, 0] .

After linear superposition, one gets a mapping rule as depicted in Fig. 7.2. Though

the spreading sequences are non-orthogonal, they do guarantee a bijective mapping rule

between the input binary triple and the channel output couple. The achieved throughput

is 3/2 = 1.5 bits/symbol. As proposed by Chang in [34], one may recursively construct

a larger code matrix so as to support more users. Let D0 = 1 denote the 0th order code

matrix, the construction procedure is

Di+1 =




Di Di

Di −Di

Ii 0i


 , (7.4)

with Ii and 0i denoting an identity matrix and an all-zeros matrix of order 2i, respectively.

An important feature of this recursive construction method is that the bijectivity of

the corresponding mapping rule is always ensured. With a little bit of mathematical

maneuver, one finds that by the ith recursive construction the dimension of the code

matrix is given by (2i−1(i+ 2))× 2i and the corresponding throughput is

2i−1(i+ 2)

2i
=
i

2
+ 1 bits/symbol . (7.5)

For example, to achieve a data rate of 3 bits/symbol, one needs a code matrix of dimen-

sion 48 × 16. By abandoning strict orthogonality, uniquely decodable codes can achieve

significantly higher throughputs than orthogonal spreading. However, these codes come

with some non-trivial drawbacks, and are generally non-optimal.

7.1. SOME THEORETICAL ASPECTS 131

100 150 200 250 300
X

0.000

0.005

0.010

0.015

0.020

P(
X

)
Figure 7.3: Symbol distribution resulting from the 8th recursive code matrix construction.

According to (3.24), the capacity of the BAC with N = 48 is about 3.8396 bits/symbol.

Hence, a 48×16 uniquely decodable code is far from being optimal. Chang showed in [34]

that this code construction will be close to (but with a strictly nonzero gap) optimal only

when i reaches the infinity, which is certainly undesirable. Second, the available designs of

uniquely decodable codes [35,36,103] typically overlook one issue, that is by using a code

matrix that ensures bijective mapping the distribution of code symbols will no longer

be Gaussian, and consequently incurs a loss of optimality for BACs with an additive

Gaussian noise. For example, Fig. 7.3 shows the measured symbol distribution for the

code matrix obtained from the 8th recursive construction. One observes that the symbol

distribution is actually quasi-uniform within a wide range and is also slightly asymmetric.

Revisiting (7.3), one finds that a ‘0’ in the code matrix actually leads to an absence of a

certain bit in a certain symbol. Therefore, a uniquely decodable code is in fact a special

irregular repetition code with a deterministic scrambler and a deterministic interleaver.

The code matrix construction procedure is not as controlled as that of orthogonal spread-

ing, but it still does not include any randomness. The guiding idea of uniquely decodable

codes is clearly to ensure a zero error probability for the noiseless BAC. However, this

comes with a high price both in the symbol distribution and the achievable rate. Well-

known in the community, the success of Shannon in deriving channel capacity is largely

because of his way in treating the error probability. Instead of pursuing a zero error prob-

ability, Shannon tries to push the error probability arbitrarily small, but not necessarily

zero. An LDSC code can achieve an arbitrarily small error probability, but not necessarily

zero as long as a stopping set of certain size exists. From a practical point view, this is

already sufficient for most applications. Besides, in the sense of keeping a Gaussian-like

symbol distribution, LDSC codes are clearly more elegant than uniquely decodable codes.

Moreover, by means of controlled-random interleaving, LDSC codes can achieve higher

rates than uniquely decodable codes. For example, a uniquely decodable code with N = 8

has a code matrix of dimension 8×4, which leads to a rate of 2 bits/symbol. Given N = 8,

the supportable rate of LDSC codes is more than 2.2 bits/symbol, cf. Section 6.4.5. Last

but not least, code designs to be given in this chapter perform even closer to the capacity.

132 CHAPTER 7. CHANNEL CODING FOR SUPERPOSITION MAPPING

k bits

Source

Channel encoder

kR(D) bits

Source
binary

binary

Source

lossy

encoder
Channel
encoder

ideal

n symbols

SM

SM

bit tuples
Grouper

Grouper
bit tuplesbinary

binary

R, overloaded order N

order N

Figure 7.4: Coded SM transmission over a noiseless channel.

7.1.2 Finite-Error Capacity for Coded SM Transmission

For superposition mapping with equal power allocation or grouped power allocation,

the symbol distribution is Gaussian-like. Meanwhile, the mapping rule is non-bijective.

Hence, there will be a theoretical bound even for noiseless transmission.

Following the same procedure as in Section 2.4, we may draw an equivalent transmission

system for coded SM transmission over a noiseless channel, depicted in Fig. 7.4. To enable

error-free channel decoding at the receiver side, the following inequality must be fulfilled:

kR(D)/n 6 H(x) , (7.6)

where H(x) is the symbol entropy, which can be approximated as

H(x) ≈ 1

2
log2(2πeN/4) bits (7.7)

for SM-EPA and

H(x) ≈ 1

2
log2(

π

6
eG) + L bits (7.8)

for SM-GPA, cf. Section 3.3.3 and Section 3.5.3. Since

R(D) = 1− h(Pe) (7.9)

for a Bernoulli(1
2
) source, we get

k(1− h(Pe))/n 6 H(x) . (7.10)

Substituting k/n = R ·N into (7.10), we obtain

R ·N(1− h(Pe)) 6 H(x) , (7.11)

and subsequently

Pe > h−1

(
1− H(x)

R ·N

)
(7.12)

for Pe ∈ [0, 0.5].

7.1. SOME THEORETICAL ASPECTS 133

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Spreading Factor (SF = 1/R)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 P

ro
ba

bi
lit

y
N = 2
N = 4
N = 8
N = 16
N = 32
N = 64
N = 128

(a) SM-EPA.

0 1 2 3 4 5 6
Spreading Factor (SF = 1/R)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 P

ro
ba

bi
lit

y

L = 1
L = 2
L = 3
L = 4
L = 5
L = 6
L = 100

(b) SM-GPA, G = 4.

Figure 7.5: Finite-error capacity for coded SM transmission over a noiseless channel.

Fig. 7.5(a) illustrates the capacity curves for SM-EPA. With an increasing bit load, the

capacity curve shifts rapidly towards the right. This means that a larger spreading factor

is strictly necessary to enable a receiver convergence when N becomes larger. Moreover,

due to the logarithmic relationship between H(x) and N in (7.7), the increase of the

minimum required spreading factor is about proportional to the bit load. This causes a

serious problem for practical systems. Given a very large spreading factor, a very large

block length will be necessary in order to make the incidence matrix being low-density,

while a good performance is achievable only if the incidence matrix is low-density. Roughly

speaking, SM-EPA with N > 32 is not suitable for being used as a mapping scheme.

In contrast, the situation for SM-GPA is different, as shown in Fig. 7.5(b). The distance

between the capacity curves becomes smaller and smaller when one increases the number

of power levels, given a fixed group size. Furthermore, there is an ultimate limit for the

required spreading factor. According to (7.8), the minimum required spreading factor for

error-free SM-GPA transmission is given by

SF >
N

H(x)
=

G · L
1
2

log2(π
6
eG) + L

. (7.13)

In general, we have
G · L

1
2

log2(π
6
eG) + L

< G , (7.14)

while for very large L, we have

G · L
1
2

log2(π
6
eG) + L

≈ G . (7.15)

Hence, given ideal channel codes, taking SF = G should already ensure a perfect data

separation for all L. This result is indeed important for practice. That is, by using SM-

GPA and choosing R = 1/G one will not encounter any limit on the supportable rate,

which is a bottleneck for coded SM-EPA transmission.

134 CHAPTER 7. CHANNEL CODING FOR SUPERPOSITION MAPPING

7.1.3 Typicality of Finite-Length Symbol Sequences

Employing a nonuniform mapping scheme not only brings a new challenge for the code

design but also brings a new issue that is never concerned in conventional communication

systems employing uniform mapping schemes. In the following, we investigate the effect

of block length to the information-carrying capability of SM-EPA symbol sequences.

As a starting example, let us consider the case of SM-EPA with N = 2 and α = 1. Due

to the nonuniform symbol distribution

P (x = −2) =
1

4
, P (x = 0) =

1

2
, P (x = +2) =

1

4
,

the event {x = 0} carries one bit of information, and the event {x = ±2} carries two

bits of information. From a transmitter standpoint, it is nice to send more {x = 0} than

{x = ±2}, because this saves transmission power. However, from a receiver standpoint,

it is desirable to receive more {x = ±2} than {x = 0}, because this makes the detection

easier. Referring to Fig. 5.2 and the relevant mathematical derivations therein, we see

that by observing {x = ±2} an APP demapper can already deliver reliable LLR messages

in the initial iteration, while upon observing {x = 0} the produced LLR messages will

be all zero in the initial iteration. In an extreme case, if the channel is noiseless and the

received symbols are all zero, then an iterative receiver will completely fail regardless of

the strength of the channel code, since all messages from the demapper will be zero at the

initial iteration and naturally nothing will happen by doing further iterations. Regardless

of the particular block length, the occurrence of symbol values will be asymptotically

typical, by transmitting an infinite amount of blocks. Therefore, if a certain block contains

too many events {x = ±2}, there must be another block that will contain an insufficient

amount of events {x = ±2}. Given this concern, the best situation is that each symbol

block is typical, which in turn requires the block length to be infinite. Equivalently, this

is to say that the practically supportable rate given a finite block length will be smaller

than what promised by the symbol entropy.

In a more formal way, the above consideration is to ensure

− logP (x1, x2, . . . , xK) > − logP (v1, v2, . . . , vQ) , (7.16)

where K denotes the number of symbols per transmission block and Q denotes the number

of info bits per transmission block. The left term of (7.16) gives the amount of information

that a particular symbol block actually carries, and the right term of (7.16) gives the

amount of information that one tries to load onto this symbol block. As long as a certain

transmission block violates (7.16), error-free detection will be strictly prohibitive, even

over a noiseless channel. Assume that K is moderate and the applied interleaver pattern is

7.1. SOME THEORETICAL ASPECTS 135

good. Then, the symbols within a transmission block will be approximately independent,

which leads to

−
K∑

i=1

logP (xi) ' − logP (x1, x2, . . . , xK) . (7.17)

Note that − log2 P (v1, v2, . . . , vQ) = Q for i.u.d. info bits. Hence, (7.16) can be rewritten

as

−
K∑

i=1

log2 P (xi)
/
K > Q/K = R ·N . (7.18)

Without loss of generality, we may call −∑K
i=1 logP (xi)

/
K the block-wise information

rate. Certainly, R · N is the effective transmission rate of a particular system. In fact,

the above requirement is never an issue for systems employing bijective uniform mapping.

Given a bijective mapping scheme with bit load N , we have − log2 P (xi) ≡ log2 |X | ≡ N .

Consequently, (7.18) always holds, regardless of the block length K. Now, for the case of

nonuniform superposition mapping, the situation is different. The condition in (7.18) can

constantly be fulfilled only if R·N is small enough and K is large enough. According to the

asymptotic equipartition property (AEP) theorem [2], the small set of typical sequences

with probability

P (x1, x2, . . . , xK) = 2−K·H(x) (7.19)

will occupy almost all the probability for K →∞. Let AK represent the set of sequences

fulfilling (7.19), we have

lim
K→∞

Pr
{
AK
}

= 1 , (7.20)

and

lim
K→∞

|AK | = 2K·H(x) . (7.21)

As a result, we have

lim
K→∞

− log2 P (x1, x2, . . . , xK) = − log2 2−K·H(x) = K ·H(x) . (7.22)

Therefore, by taking R · N = H(x), the condition in (7.18) can constantly be fulfilled

if and only if the block length K is infinite, in case of coded SM-EPA transmission.

Consequently, if the block length K is finite, one has to take a small enough R · N such

that the probability that (7.18) gets violated will be sufficiently close to zero. In the

following, we illustrate this principle via some numerical tests.

Suppose that one wants to attain a rate of 2.5 bits/symbol via a coded SM-EPA system

with N = 8. According to Tab. 3.3, this is theoretically possible. In practice, however,

this demands a huge block length. Fig. 7.6 shows the measured block-wise information

rates given different block lengths. For the test, we assume that all code bits are mutually

independent, which is in fact the best case concerning the block-wise information rate.

136 CHAPTER 7. CHANNEL CODING FOR SUPERPOSITION MAPPING

0 20 40 60 80 100
Block index

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

B
lo

ck
-W

is
e

In
fo

rm
at

io
n

R
at

e

Failure Threshold

"Deep Fading"

(a) N = 8, K = 20.

0 20 40 60 80 100
Block index

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

B
lo

ck
-W

is
e

In
fo

rm
at

io
n

R
at

e

Failure Threshold
"Deep Fading"

(b) N = 8, K = 200.

0 20 40 60 80 100
Block index

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

B
lo

ck
-W

is
e

In
fo

rm
at

io
n

R
at

e

Failure Threshold

"Deep Fading"

(c) N = 8, K = 2000.

0 20 40 60 80 100
Block index

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

B
lo

ck
-W

is
e

In
fo

rm
at

io
n

R
at

e

Failure Threshold

(d) N = 8, K = 20000.

Figure 7.6: Block-wise information rate for randomly generated SM-EPA symbol blocks.

Since for the region below 2.5 bits/symbol a decoding failure will definitely occur, we call

the corresponding horizontal line as the failure threshold. Any block-wise information

rate below this threshold corresponds to a violation of (7.18). As a matter of fact, given

a small block length, the situation looks very similar to that of time-varying radio chan-

nels. The block-wise information rate varies dramatically from block to block, and there

is a big probability for it to drop below the failure threshold and sequentially causes a

“deep fading” effect for the decoder. By increasing the block length, the dynamic range

of the block-wise information rate reduces steadily. For K = 20000, no failure is observed

within the 100 tested blocks. Nevertheless, this does not mean that in practice a rate of

2.5 bits/symbol is achievable with K = 20000. Given a non-cycle-free graph, the actually

required block length is considerably larger than this value. One has to ensure that there

exits no quasi-isolated subgraph which contains a less amount of channel observations.

On the other hand, a good graph structure is only attainable given a sufficiently large

block length. Hence, to achieve a near-capacity rate for SM-EPA, a large block length is

mandatory, theoretically and practically. Fig. 7.6(a) shows that the block-wise informa-

tion rate frequently drops below 2.2 bits/symbol, for K = 20. This well explains why an

LDSC decoder becomes so sensitive to the interleaver pattern at this rate, cf. Fig. 6.53.

7.1. SOME THEORETICAL ASPECTS 137

REP SCR π SM +

z

MLSE
v b x y v̂

Low-density summation check (LDSC) encoder
b

Figure 7.7: Repetition-coded SM with maximum-likelihood sequence estimator.

0 2 4 6 8 10 12 14 16 18 20
E

b
/N

0
 in dB

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

Uncoded BPSK
MLSE, K = 10
MLSE, K = 20
ID, K = 10, 20 iter.
ID, K = 20, 20 iter.
ID, K = 2000, 20 iter.

Figure 7.8: Regular repetition-coded SM-EPA, SF = 3, N = 3, PEG, VBS.

7.1.4 Maximum-Likelihood Decoding vs. Iterative Decoding

For repetition-coded SM transmission, the optimal receiver in the sense of minimizing the

word error rate is the maximum-likelihood sequence estimator (MLSE), which computes

v̂ = arg max
ṽ
{y|ṽ} , (7.23)

cf. Fig. 7.7. This is an all-in-once brute-force approach. In former discussions on LDSC

coding, we always assume iterative decoding (ID), since for a typical block length the

complexity of the MLSE is prohibitive. Nevertheless, it is interesting to check the perfor-

mance difference of these two types of receivers, given short block lengths. From Fig. 7.8

one observes that there is a non-trivial performance difference for a block length of 10 and

20. Given the MLSE, no error floors are observed, which means that the mapping from v

to x is bijective. Therefore, the error floors resulting from iterative decoding are caused by

the inaccuracy of message passing given a small graph full of short cycles. Note that the

asymptotic performance of the MLSE is uniquely determined by the minimum code word

distance. By comparing the case of 10 and 20 in Fig. 7.8, it is evident that the minimum

code word distance of an LDSC code improves with the block length. For K = 20, there

is a distance to the BPSK bound, even with an MLSE receiver. However, if we increase

the block length to 2000, the asymptotic performance of LDSC approaches the BPSK

bound, even with iterative decoding, cf. Fig. 7.8. Certainly, in this case the performance

difference between the MLSE and iterative decoding becomes negligible. Hence, a large

block length not only improves the minimum code word distance but also reduces the

performance difference between the MLSE and iterative decoding.

138 CHAPTER 7. CHANNEL CODING FOR SUPERPOSITION MAPPING

7.2 Some Practical Aspects

In this section, we investigate some practical aspects of coded SM transmission. The goal

is to provide some valuable hints for a realistic system design, particularly in the sense of

choosing appropriate parameters when the performance requirement is certain.

7.2.1 Information-to-Complexity Ratio

For a practical system, one of the most critical concern is the computational complexity of

the transceiver, and usually the major computational load is at the receiver side. Hence,

given that the performance requirement is fulfilled, selecting a mapping format that leads

to the lowest demapping complexity is of significant importance. It has been shown in

Chapter 3 that SM-EPA and SM-GPA are both able to produce symbols with a Gaussian-

like probabilistic distribution. From an information theoretical point of view, SM-EPA

and SM-GPA are both optimal for data transmission over a Gaussian channel. However,

in the concern of the demapping complexity, SM-EPA and SM-GPA have substantially

different characteristics. Therefore, it is meaningful to check which mapping strategy is

the best for certain data rates. In the following, we compare the information-to-complexity

ratio, which describes the figure-of-merit of a mapping scheme, for SM-EPA and SM-GPA.

To provide a systematic study, SM-UPA is also considered.

Given a targeted bandwidth efficiency, the first step for designing a coded SM transmission

system is to choose an appropriate bit load N and a suitable coding rate R. For the bit

load N , one can resort to a mutual information analysis and select a moderate N that

ensures a capacity-achieving symbol distribution for the targeted bandwidth efficiency.

For example, to achieve a bandwidth efficiency of 2 bits/symbol, SM-EPA with N = 8

is a reasonable choice, according to Fig. 3.7(b). Naturally, the corresponding coding rate

should be R = 1/4. Note that choosing SM-EPA with N = 16 instead of N = 8 will not

bring any benefit but leads to an unnecessary complexity increase. Alternatively, one may

also choose SM-GPA with G > 2 and L = 2, according to Fig. 3.11 and Fig. 3.12. The

corresponding coding rate should be R = 1/G, which complies with the observation in

Section 7.1.2. More generally, we may derive a rule of thumb from the mutual information

analyses provided in Fig. 3.7(b), 3.11, and 3.12. Given SM-EPA or SM-GPA with G > 2,

the symbol distribution will be about capacity-achieving for rates fulfilling

R ·N 6 H(x)− 0.5 bits/symbol , (7.24)

where H(x) denotes the corresponding symbol entropy. Without loss of generality, we

may call H(x)− 0.5 the cut-off rate for superposition mapping. Coded SM transmission

operating below this rate has a good potential to approach the Gaussian channel capacity.

7.2. SOME PRACTICAL ASPECTS 139

1 2 3 4 5 6 7 8 9 10
Cut-off rate (bits/symbol)

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

In
fo

rm
at

io
n-

to
-C

om
pl

ex
ity

 R
at

io

SM-EPA
SM-GPA, G = 2
SM-GPA, G = 3
SM-GPA, G = 4
SM-UPA

Figure 7.9: Information-to-complexity ratio for superposition mapping.

We define the information-to-complexity ratio (ICR) of SM as the cut-off rate divided by

the demapping complexity. According to (3.24) and (5.21), we have

ICRSM-EPA
.
=

1
2

log2(πeN/2)− 0.5

N2
(7.25)

for SM with equal power allocation. According to (3.33) and (5.31), we have

ICRSM-GPA
.
=

1
2

log2(πeG/6) + L− 0.5

G22L
(7.26)

for SM with grouped power allocation. Similarly, we may define

ICRSM-UPA
.
=

1

2
N
/

2N (7.27)

for SM with unequal power allocation, by observing that for bijective uniform mapping the

most successful channel codes are of rate 1/2. Fig. 7.9 compares the ICR for SM with three

types of power allocation schemes. The first result shown by the figure is that SM-EPA is

not practical for high-rate transmission. Clearly, the reason is the logarithmic growth of

the symbol entropy w.r.t. the bit load N . The second result shown by Fig. 7.9 is that SM-

GPA is generally better than SM-EPA, which is due to the linear growth of the symbol

entropy w.r.t. the number of power levels. Hence, using SM-GPA instead of SM-EPA can

effectively reduce the computational complexity per info bit. Besides, the ICR of SM-GPA

degrades when the group size becomes larger, which is due to the logarithmic growth of

the symbol entropy w.r.t. the group size. Concerning the demapping complexity, SM-GPA

with G = 2 is the best choice. On the other hand, the symbol distribution for G = 2

has a triangular envelope, i.e., not really Gaussian-like, cf. Fig. 3.11. Nevertheless, the

theoretically achievable performance gain by using a larger group size is in fact marginal,

as shown by Fig. 3.11. The third result shown by Fig. 7.9 is that SM-GPA is more

complexity-efficient than SM-UPA for high-rate transmission. This is due to the fact that

the symbol entropy of SM-GPA is comparable to SM-UPA while its demapping complexity

is exponential in the number of power levels L but only quadratic in the group size G.

140 CHAPTER 7. CHANNEL CODING FOR SUPERPOSITION MAPPING

0 2 4 6 8 10 12 14 16 18 20
E

b
/N

0
 in dB

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

Shannon limit for 2 bits/symbol
Uncoded BPSK
Uncoded ASK-Gray, N = 2
Uncoded SM-UPA, N = 2
Regular LDSC-EPA, SF = 4, N = 8
Regular LDPC-ASK, R = 1/2, N = 4

3.9 dB

3.7 dB

Figure 7.10: Regular LDSC-EPA vs. uncoded SM-UPA for 2 bits/symbol.

7.2.2 Compression Gain and Irregularity Loss

Well-known in the coding community, the asymptotic coding gain of a channel code is

determined by the minimum distance between two code words. Assuming a binary-input

AWGN channel, the asymptotic coding gain is given by

∆ = 10 log10(R · dmin) dB , (7.28)

where R denotes the coding rate and dmin denotes the minimum code word distance. For

a linear binary block code, the minimum code word distance is identical to the minimum

Hamming weight of all valid code words excluding the all-zero one. In case of convolutional

coding, this minimum code word distance is often referred to as the free distance, which

corresponds to the minimum Hamming weight of error paths on a trellis diagram [104]. In

case of repetition coding, we have dmin = 1/R and subsequently ∆ = 0 dB for binary-input

AWGN channels. This is exactly the reason why researchers are often discouraged to use

repetition codes. Nevertheless, for non-binary-input AWGN channels, this understanding

is no longer appropriate. LDSC coding, i.e., repetition-coded superposition mapping, can

in fact provide a non-zero power gain w.r.t. uncoded uniform bijective mapping. As a good

example, Fig. 7.10 compares the performance of regular LDSC-EPA with that of uncoded

SM-UPA. Given SF = 4 and N = 8, the high-SNR performance of regular LDSC-EPA

is identical to that of uncoded BPSK, which is about 3.9 dB better than uncoded SM-

UPA with N = 2. Compared to uncoded ASK with Gray labeling, this power gain is

slightly less. Moreover, Fig. 7.10 shows that the performance of regular LDSC-EPA is

comparable to that of regular LDPC-coded ASK (Gray) till a BER of 10−5. Therefore,

the conventional understanding of coding gain is not really suitable for coded transmission

systems employing a non-bijective mapping scheme. The power gain offered by LDSC-

EPA comes from the “compression” procedure of superposition mapping. For this reason,

we dub such a power gain a “compression gain”.

7.2. SOME PRACTICAL ASPECTS 141

Given an infinite block length and a cycle-free graph, i.e., assuming that no variable nodes

form a stopping set, the minimum distance between the code words of an LDSC-EPA code

is determined by the chip magnitude and the minimum VN degree. Mathematically, this

can be written as

dmin,LDSC-EPA = (2α)2Dmin = 4α2Dmin . (7.29)

For LDSC-EPA, we have Eb = SF · α2. Hence, the above formula can be rewritten as

dmin,LDSC-EPA = 4
Dmin

SF
Eb . (7.30)

Note that (7.30) is independent of the bit load N . In other words, the minimum code word

distance of LDSC-EPA does not change with N , assuming a fixed VN degree distribution.

Now, let us check the situation of uncoded SM-UPA transmission. For uncoded SM-UPA,

we have Es = N ·Eb. According to Section 3.4.2, the average symbol energy for SM-UPA

can be written as

Es,SM-UPA =
N∑

n=1

(
a2−(n−1)

)2
=

4

3
a2(1− 2−2N) . (7.31)

Enforcing Es,SM-UPA = N · Eb, we obtain

a2 =
3N

4(1− 2−2N)
Eb . (7.32)

Since the minimum symbol distance for SM-UPA is determined by the smallest magnitude

of chips, we have

dmin,SM-UPA =
(
2a2−(N−1)

)2
= 16a22−2N = 12

N

22N − 1
Eb , (7.33)

which decreases rapidly with the bit load N . Given the above derivations, the asymptotic

coding gain of LDSC-EPA w.r.t. uncoded SM-UPA with bit load N can be written as

∆ = 10 log10

(
dmin,LDSC-EPA

dmin,SM-UPA

)
= 10 log10

(
(22N − 1)Dmin

3N · SF

)
dB . (7.34)

For the parameter set used in Fig. 7.10, i.e., Dmin = SF = 4 for LDSC-EPA and N = 2

for uncoded SM-UPA, the asymptotic coding gain is about 3.98 dB, which agrees with

the numerical results in Fig. 7.10. After all, the ultimate reason for this coding gain is

that the minimum symbol distance of SM-EPA is constantly given by 4α2, independent of

the bit load N . This is achieved by reducing the symbol cardinality from 2N to N + 1 via

non-bijective mapping. Therefore, a non-bijective nonuniform SM-EPA mapping scheme

leads to a smaller symbol entropy but a larger minimum symbol distance, compared to a

bijective uniform mapping scheme. Given an appropriate channel code, the “compression”

procedure of SM-EPA does not cause an information loss but provides a considerable

power gain which reduces the necessary coding gain for approaching the capacity.

142 CHAPTER 7. CHANNEL CODING FOR SUPERPOSITION MAPPING

0 2 4 6 8 10 12 14 16 18 20
E

b
/N

0
 in dB

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

Shannon limit for 2 bits/symbol
Uncoded BPSK
Regular LDSC-EPA, SF = 4, N = 8
Irregular LDSC-EPA, SF = 4, N = 1
Irregular LDSC-EPA, SF= 4, N = 8

2.5 dB

Figure 7.11: Regular LDSC-EPA vs. irregular LDSC-EPA for 2 bits/symbol.

In general, an irregular variable node degree distribution leads to a lower decoding thresh-

old but meanwhile degrades the performance in the high-SNR region. This phenomenon

can clearly be observed from Fig. 7.11, where the irregular LDSC-EPA code adopts the

following VN degree distribution:

λ(D) = 0.20D2 + 0.60D3 + 0.20D9 . (7.35)

The high-SNR performance of an irregular LDSC-EPA code is tightly bounded by that of

irregular repetition-coded BPSK with the same degree distribution. According to (7.30),

the asymptotic power loss of an irregular LDSC-EPA code w.r.t. a regular one is given by

∆̃ = 10 log10

(
SF

Dmin

)
dB . (7.36)

For the degree distribution in (7.35), we have Dmin = 2 and SF = 4. Correspondingly,

the asymptotic power loss will be ∆̃ ≈ 3 dB. In Fig. 7.11, the measured power loss is

about 2.5 dB at a BER of 10−7. If one measures at even lower BERs, this loss will finally

reach 3 dB. Without loss of generality, we may call such a power loss an “irregularity

loss”. An important message delivered by Fig. 7.11 is that one can not fully rely on an

irregular LDSC code for achieving the channel capacity.

Given grouped power allocation, a superposition mapper offers a compression gain as well,

but not for a repetition code with a spreading factor of SF > G. This can be explained

via a simple example. Suppose that one wants to achieve a rate of 4 bits/symbol over the

AWGN channel, and a 1/2 LDPC code is to be applied. Two possible choices would be

to use ASK with N = 8 or SM-GPA with G = 2 and L = 4. By the previous derivation,

it is evident that the minimum symbol distance of SM-GPA will be much larger than

that of ASK, for such a setup. Consequently, the amount of coding gain necessary for the

LDPC code to offer can be noticeably reduced, by using SM-GPA instead of ASK. On

the other hand, if a 1/4 regular repetition code is applied, the performance of SM-GPA

will be identical to that of ASK with N = 4. No loss occurs, but also no gain is achieved.

7.3. SUITABLE REDUNDANCY FOR SUPERPOSITION MAPPING 143

7.3 Suitable Redundancy for Superposition Mapping

The task of channel coding is to introduce a certain type of redundancy so as to protect

the originally mutually independent info bits. Given a bijective uniform mapping scheme,

the subject of error protection is merely the additive noise. In this case, the goal of code

design is to achieve a coding gain as much as possible. Given a non-bijective nonuniform

mapping scheme, the goal of code design becomes two-fold. The channel code has to first

ensure the possibility of perfect data separation and then provide a necessary coding gain

for combatting the additive noise. Therefore, code design for superposition mapping has

to be treated in a way essentially different to that for conventional mapping schemes. In

this section, we will have a brief discussion on the suitable type of redundancy for SM.

7.3.1 Repetitions vs. Parity Bits

In Chapter 5, we observe that regular parity-check codes are inferior to regular repetition

codes for SM-EPA in the sense of supportable bandwidth efficiency. In Chapter 6, the

high potential of irregular repetition-coded SM-EPA is revealed in the framework of LDSC

coding. Hence, it deserves to be an interesting work to check the effectiveness of irregular

parity-check codes for SM-EPA. It is also interesting to compare irregular repetition codes

with irregular parity-check codes, so as to find their pros and cons respectively.

Without loss of generality, an LDPC code can be interpreted as a serial concatenation of

a collection of repetition codes and a collection of single parity-check codes. Similarly, an

LDSC code can be deemed a serial concatenation of a collection of repetition codes and a

collection of single summation-check codes. LDPC codes offer superior performances for

the binary-input AWGN channel. On the other hand, LDSC codes offer superior perfor-

mances for the noiseless binary adder channel. Hence, there is indeed much commonality

between LDPC coding and LDSC coding. Let us first have a comparison on two types

of code constraints: parity checks (PC) and summation checks (SC). As a matter of fact,

one may consider a parity check as an XOR summation check. Typically, the result of

XOR summation is enforced to be zero, so as to impose a constraint among the involved

code bits. In general, parity checks are “thirsty” for the inputting messages. Let L
(i)
i and

L
(o)
i denote the ith input and output of a degree-D parity check. We have

L
(o)
i = �

16j6D,j 6=i
L

(i)
j ≈ sign{L(o)

i } min
16j6D,j 6=i

{|L(i)
j |} , i = 1, 2, . . . , D ,

where � is the box-plus operator [58]. With all-zero inputs, a parity check delivers all-zero

outputs. Hence, the EXIT curve of parity checks always starts from (0, 0), cf. Fig. 7.12(a).

Besides, the strength of the outputting messages from a parity check is mainly determined

144 CHAPTER 7. CHANNEL CODING FOR SUPERPOSITION MAPPING

0 0.2 0.4 0.6 0.8 1
I
A

0.0

0.2

0.4

0.6

0.8

1.0

I
E

PC, D = 2
PC, D = 3
PC, D = 4
PC, D = 6
PC, D = 8
PC, D = 16
PC, D = 32

(a) Parity checks.

0 0.2 0.4 0.6 0.8 1
I
E

0.0

0.2

0.4

0.6

0.8

1.0

I
A

VN, D = 2
VN, D = 3
VN, D = 4
VN, D = 6
VN, D = 8
VN, D = 16
VN, D = 32

(b) Variable nodes, Eb/N0 = 0 dB.

Figure 7.12: EXIT charts for regular 1/2 LDPC codes, binary-input AWGN channel.

by the strength of the weakest inputting message. As long as one input is close to zero,

the majority of the outputs will be close to zero as well. Furthermore, if more than one

inputs are close to zero, all the outputs will be close to zero. Consequently, a parity check

will deliver meaningful messages only if the a priori inputs are strong enough, particularly

when the check degree is high. For example, a degree-32 parity check needs the a priori

information to be as strong as 0.8 in order to deliver a nonzero extrinsic information. On

the other hand, real summation checks have a very similar property in the sense of being

“thirsty” for the inputting messages. Given equal power allocation, the EXIT curve of a

summation check becomes more and more convex when one increases the bit load N , as

shown in Fig. 7.13(a). The major difference between parity checks and summation checks

is that a summation check is able to deliver a nonzero extrinsic information given a zero a

priori information. This is because the result of an XOR addition is always binary while

the result of a real addition is (N+1)-ary, assuming equal power allocation. According to

the area property of EXIT charts [90–92], the EXIT curves of two concatenated decoders

must fit with each other in order to obtain a good performance. For a collection of single

parity-check codes, the best choice for concatenation is a collection of repetition codes.

Given a degree-D repetition decoder, the extrinsic L-value of the ith bit is produced as

L
(o)
i =

∑

16j6D,j 6=i
L

(i)
j .

As long as one input is strong, the decoder will generate meaningful messages, which is in

a sharp contrast to a single parity-check (SPC) decoder. For this reason, the EXIT curve

of a variable node (repetition decoder) is also convex, when plotted on an EXIT chart

with the abscissa and the ordinate swapped. From Fig. 7.12, one observes that the EXIT

curves of variable nodes are in a good fit with the EXIT curves of parity checks. This

actually gives the reason for the superior performance of LDPC codes for the binary-input

AWGN channel. For LDPC decoding, the EXIT curve of variable nodes always starts from

7.3. SUITABLE REDUNDANCY FOR SUPERPOSITION MAPPING 145

0 0.2 0.4 0.6 0.8 1
I
A

0.0

0.2

0.4

0.6

0.8

1.0

I
E

SC, N = 2
SC, N = 3
SC, N = 4
SC, N = 6
SC, N = 8
SC, N = 16
SC, N = 32

(a) Summation checks, EPA.

0 0.2 0.4 0.6 0.8 1
I
E

0.0

0.2

0.4

0.6

0.8

1.0

I
A

VN, D = 2
VN, D = 3
VN, D = 4
VN, D = 6
VN, D = 8
VN, D = 16
VN, D = 32

(b) Variable nodes.

Figure 7.13: EXIT charts for regular LDSC codes, noiseless channel.

a nonzero position, since each variable node is associated with a channel observation. In

comparison, for LDSC decoding, the EXIT curve of variable nodes always starts from

(0, 0), since the channel observations are not associated with the variable nodes. Similar

to the case of LDPC decoding, the EXIT curves of variable nodes are in a good fit with the

EXIT curves of summation checks, cf. Fig. 7.13, but not perfectly. When N is moderate,

there will be a non-trivial distance between the starting point of the EXIT curve of a

summation check, always given by (IA = 0, IE > 0), and that of a variable node, always

given by (IE = 0, IA = 0). Since any area between two EXIT curves leads to a rate loss

relative to the capacity, a pure repetition code is good for SM-EPA but not optimal, as

long as the bit load N is moderate. When N is rather large, however, a pure repetition

code is near-optimum for SM-EPA transmission over a noiseless channel, given a carefully

designed irregular degree distribution. For example, in Section 6.4.5 we have devised an

irregular repetition code that has an EXIT curve well matching to the EXIT curve of

SM-EPA with N = 32. Easy to imagine, for N approaching the infinity, a pure repetition

code will be optimal for SM-EPA, assuming a noiseless channel. Note that the uniquely

decodable code introduced in Section 7.1.1 is indeed a special irregular repetition code

with a deterministic scrambler and a deterministic interleaver, and it is already close to

be optimal when N approaches the infinity. Hence, it is of no surprise that an irregular

repetition code together with random interleaving will be capacity-achieving for SM-EPA

transmission over a noiseless channel, with N approaching the infinity.

Now, let us come back to the main topic of this discussion, that is what type of redundancy

is suitable for superposition mapping. To ease the discussion, we consider coded SM-EPA

with R = 1/4 and N = 8 as an example. We assume a noiseless channel. As known from

Chapter 6, a regular repetition code can already achieve a good performance in this case.

Nevertheless, a large block length is necessary in order to achieve a decoding convergence,

146 CHAPTER 7. CHANNEL CODING FOR SUPERPOSITION MAPPING

0 0.2 0.4 0.6 0.8 1
I
A,DEM

 I
E,DEC

0.0

0.2

0.4

0.6

0.8

1.0

I E
,D

E
M

 I
A

,D
E

C

SM-EPA, N = 8
REP, regular, SF = 4
Convergence trajectory

(a) Regular repetition-coded SM-EPA.

0 0.2 0.4 0.6 0.8 1
I
A,DEM

 I
E,DEC

0.0

0.2

0.4

0.6

0.8

1.0

I E
,D

E
M

 I
A

,D
E

C

SM-EPA, N = 8
REP, 20% D2 + 60% D3 + 10% D8 + 10% D10, SF = 4
Convergence trajectory

(b) Irregular repetition-coded SM-EPA.

0 0.2 0.4 0.6 0.8 1
I
A,DEM

 I
E,DEC

0.0

0.2

0.4

0.6

0.8

1.0

I E
,D

E
M

 I
A

,D
E

C

SM-EPA, N = 2
SM-EPA, N = 3
SM-EPA, N = 4
SM-EPA, N = 6
SM-EPA, N = 8
SM-EPA, N = 16
SM-EPA, N = 32
LDPC, regular, R = 1/4, 20 iter.

(c) Regular LDPC-coded SM-EPA.

0 0.2 0.4 0.6 0.8 1
I
A,DEM

 I
E,DEC

0.0

0.2

0.4

0.6

0.8

1.0

I E
,D

E
M

 I
A

,D
E

C

SM-EPA, N = 8
LDPC, irregular, R = 1/4, 20 iter.
Convergence trajectory

(d) Irregular LDPC-coded SM-EPA.

Figure 7.14: EXIT charts for coded SM-EPA transmission over a noiseless channel.

since the middle section of the convergence tunnel is very narrow, cf. Fig. 7.14(a). Using

a carefully tuned irregular repetition code, the convergence tunnel gets widely open for

the whole region, cf. Fig. 7.14(b). Hence, given the current system setup, redundancy

in the form of simple repetitions deserves to be a good choice. One may also consider

adding redundancy in the form of parity bits, i.e., apply a parity-check code for SM-EPA.

The results in Section 5.4.2 imply that the supportable bit load given a regular rate 1/4

LDPC code is less than 4. This observation is confirmed by the EXIT chart analysis

in Fig. 7.14(c), as the convergence tunnel is only open for N 6 3. A regular LDPC

decoder reaches IE = 1 when IA � 1, which corresponds to a considerable coding gain for

transmission over a noisy channel. However, there is a big penalty in the left region of the

EXIT curve. Compared to a repetition decoder, a regular LDPC decoder needs a much

stronger a priori information before it can provide any meaningful extrinsic information,

which is largely due to the special property of parity checks, cf. Fig. 7.12(a). Clearly,

regular LDPC codes are not suitable for SM-EPA transmission, particularly when N is

large. The situation can be improved by employing an irregular variable node degree

distribution, albeit with a considerable degradation on the achievable coding gain. For

7.3. SUITABLE REDUNDANCY FOR SUPERPOSITION MAPPING 147

example, consider a rate 1/4 irregular LDPC code with the following degree distributions

λ(D) = 0.76D1 + 0.18D2 + 0.02D10 + 0.02D24 + 0.01D40 + 0.01D80

η(D) = 1.0D6 ,

where η(D) stands for the parity check degree distribution. As shown in Fig. 7.14(d),

this code is able to open the convergence tunnel for SM-EPA with N = 8. Nevertheless,

in order to open the tunnel in the leftmost region, the highest VN degree is set to be 80.

As a result, a dominating number of variable nodes are now with degree 1. Consequently,

the decoder is no longer able to provide any meaningful coding gain. With such a code

design, there is indeed no practical benefit to use an LDPC code instead of a repetition

code, given the current system setup. Note that the encoding and decoding complexity of

LDPC codes is significantly higher than that of repetition codes. Later on, we will show

that in order to let an LDPC code offer an optimal performance for SM-EPA and SM-GPA

one has to introduce considerable irregularity into the parity check degree distribution.

Last but not least, by comparing Fig. 7.14(b) and Fig. 7.14(d), we find that a repetition

code is more effective in the left region, i.e., in the early stage of iterative decoding, while

an LDPC code is more effective in the right region, i.e., in the late stage of iterative

decoding. This observation indicates that to achieve a satisfying performance, either in

the sense of power efficiency or bandwidth efficiency, a good practice is to apply a serial

concatenation of LDPC code and repetition code, so as to combine the strength from both

codes and compensate the weakness for each, which gives the topic for Section 7.3.2.

7.3.2 Repetitions plus Parity Bits

For the sake of simplicity, we have been always assuming a noiseless channel in the previous

discussion. Moreover, we have merely focused on superposition mapping with equal power

allocation. In the following discussion, we will treat the issue of coded SM transmission

over the AWGN channel, given three power allocation strategies: EPA, UPA, and GPA.

As a preliminary remark, let us first make a comparison between the conventional ASK and

SM, for the sake of iterative decoding and demapping. Fig. 7.15(a) provides a set of EXIT

charts for the relevant discussion. For a fair comparison, we have fixed the SNR per code

bit to be always 5 dB regardless of the mapping format. It is a common knowledge that,

given a receiver that does not perform iterative decoding and demapping, the preferable

mapping format for the AWGN channel is ASK with Gray labelling. The reason becomes

evident by checking the EXIT curves in Fig. 7.15(a). These “curves” are almost straight

and more or less horizontal. This means that the extrinsic information from an ASK

demapper does not really become stronger by receiving a strong a priori input. This also

148 CHAPTER 7. CHANNEL CODING FOR SUPERPOSITION MAPPING

0 0.2 0.4 0.6 0.8 1
I
A

0.0

0.2

0.4

0.6

0.8

1.0

I
E

N = 1
N = 2
N = 3
N = 4
N = 5
N = 6
N = 7
N = 8

(a) ASK with Gray labelling.

0 0.2 0.4 0.6 0.8 1
I
A

0.0

0.2

0.4

0.6

0.8

1.0

I
E

N = 1
N = 2
N = 3
N = 4
N = 5
N = 6
N = 7
N = 8

(b) SM-EPA.

0 0.2 0.4 0.6 0.8 1
I
A

0.0

0.2

0.4

0.6

0.8

1.0

I
E

N = 1
N = 2
N = 3
N = 4
N = 5
N = 6
N = 7
N = 8

(c) SM-UPA.

0 0.2 0.4 0.6 0.8 1
I
A

0.0

0.2

0.4

0.6

0.8

1.0

I
E

G = 3, L = 1
G = 3, L = 2
G = 3, L = 3
G = 3, L = 4
G = 3, L = 5
G = 3, L = 6
G = 3, L = 7
G = 3, L = 8

(d) SM-GPA.

Figure 7.15: EXIT charts for SISO demapping, AWGN channel, Ec/N0 = 5 dB.

means that the initial output message from an ASK demapper is almost at the strongest

possible level. Consequently, a non-iterative receiver is able to achieve a near-optimum

performance for ASK. However, one should also not expect any meaningful performance

gain via iterative decoding and demapping. The starting and the ending position of the

EXIT curve drops when one increases the bit load N , because the minimum symbol

distance decreases w.r.t. N . As a non-trivial issue, ASK mapping is strictly non-capacity-

achieving for the AWGN channel due to a uniform symbol distribution. Now, let us

check the situation of SM-EPA, given the same SNR per code bit. One observes from

Fig. 7.15(b) that an SM-EPA demapper has an essentially different behaviour from an

ASK demapper. Compared to ASK demapping, the EXIT curve of SM-EPA demapping

starts from a considerably lower point, which is due to the inter-chip interference. On the

other hand, given a fixed Ec/N0 the EXIT curve of SM-EPA demapping always ends at a

fixed position, regardless of the bit load N . The reason behind this phenomenon is clear.

That is for SM-EPA the minimum symbol distance does not decrease w.r.t. the bit load.

It is also easy to find that the ending position of SM-EPA demapping is significantly

higher than that of ASK demapping, for all N >= 2. Note that such a difference in

7.3. SUITABLE REDUNDANCY FOR SUPERPOSITION MAPPING 149

the height of the ending position leads to a compression gain, assuming a well-matched

channel code. Besides, as the starting point and the ending point of SM-EPA demapping

significantly differ in the height, iterations between the decoder and the demapper are

mandatory for obtaining a good performance. When an unequal power allocation strategy

is applied, the situation of superposition demapping is similar to that of ASK demapping,

as shown in Fig. 7.15(c). This is because SM-UPA is equivalent to ASK with natural

labelling. Nevertheless, as the EXIT curves have a noticeable slope, iterations between

the decoder and the demapper are also necessary for systems employing SM-UPA. Finally,

one observes from Fig. 7.15(d) that the extrinsic-information-transfer behaviour of an

SM-GPA demapper is simply a hybrid of that of SM-EPA and SM-UPA. Important to

be mentioned, the ending position of SM-GPA demapping is merely influenced by the

number of power levels L but not the group size G. Given G > 1, SM-GPA is also able

to provide a compression gain w.r.t. ASK and SM-UPA.

For a coded transmission system applying iterative decoding and demapping, the ultimate

criterion for the channel code is not weak or strong but matched or unmatched. Fig. 7.15

shows that a superposition demapper behaves differently given different power allocation

strategies. Therefore, the optimal coding strategy for SM will also be dependent on

the adopted power allocation scheme. It is relatively easy to imagine that an irregular

Turbo code or an irregular LDPC code will be optimal for SM-UPA, as it has a very

similar property from ASK. For SM-EPA and SM-GPA, it is so far unclear which kind

of channel codes are optimal. A repetition code can offer a good performance for SM-

EPA, but often not the best, particularly when the transmission channel is not noise-free.

On the other hand, a typical design of irregular LDPC codes looks not optimal as well,

in the sense of providing no meaningful coding gain, cf. Fig. 7.14(d). Compared to

conventional ASK, both SM-EPA and SM-GPA need less coding gain for achieving the

capacity. Meanwhile, SM-EPA and SM-GPA both require the channel code to ensure the

separability of superimposed chips. Hence, a suitable channel code for SM-EPA or SM-

GPA should behave similarly to a repetition code that enables an efficient data separation,

in the early stage of iterative decoding and demapping, and behave similarly to a parity-

check code that offers a moderate coding gain, in the late stage of iterative decoding and

demapping. Then, a natural question would be if a serial concatenation of parity-check

code and repetition code can do a desirable work in this concern. Considering the low

complexity of a repetition codec, this question is also of great practical interest.

Suppose that we want to devise a transmission system that achieves 2 bits/symbol over

the AWGN channel. According to Fig. 3.7(b), SM-EPA with N = 8 is capacity-achieving

at this rate. The Shannon limit for 2 bits/symbol is at about 5.8 dB. To give some space

for practical imperfectness, let us target at a decoding threshold of 8 dB. An intuitive

150 CHAPTER 7. CHANNEL CODING FOR SUPERPOSITION MAPPING

Superposition
Demapper

Repetition

Decoder
LDPC
Decoder

Channel

Observations

IE,DEM b= IA,DEC

IA,DEM b= IE,DEC

Soft

Decisions

Channel Decoder
b

Figure 7.16: The interaction between the superposition demapper (DEM) and the channel

decoder (DEC). The LDPC decoder needs to perform some local iterations.

0 0.2 0.4 0.6 0.8 1
I
A,DEM

 I
E,DEC

0.0

0.2

0.4

0.6

0.8

1.0

I E
,D

E
M

 I
A

,D
E

C

SM-EPA, N = 8, E
b
/N

0
 = 8 dB

1/2 LDPC + 1/2 REP
Decoding trajectory

Iterative decoding and demapping gets stuck

Tunnel is closed in this region

Too much surplus in this region

(a) Regular LDPC + regular REP.

0 0.2 0.4 0.6 0.8 1
I
A,DEM

 I
E,DEC

0.0

0.2

0.4

0.6

0.8

1.0

I E
,D

E
M

 I
A

,D
E

C

SM-EPA, N = 8, E
b
/N

0
 = 8 dB

1/2 LDPC + 1/2 REP
Decoding trajectory

(b) Irregular LDPC + irregular REP.

Figure 7.17: SM-EPA with serially concatenated LDPC code and repetition (REP) code.

Rp = 1/2, Rr = 1/2, R = Rp ·Rr = 1/4. The LDPC decoder performs 20 local iterations.

coding strategy is to apply a serial concatenation of a rate Rp = 1/2 LDPC code and a

rate Rr = 1/2 repetition code. The corresponding EXIT chart testing model is provided

in Fig. 7.16. Note that this is the conventional way of EXIT chart analysis for coded

transmission system applying iterative decoding and demapping. A tricky issue here is

that one has to perform some LDPC-local iterations in order to obtain a good performance

prediction. For a systematic study, we first investigate the situation when the LDPC code

and the repetition code are both regular. Fig. 7.17(a) gives the resulting EXIT chart. It

can be seen that serially concatenating an LDPC code and a repetition code does combine

the nice features from both codes and largely mitigate the weaknesses from both codes.

In the early stage of iterations, the decoder acts similarly to a repetition decoder, as it

starts to deliver meaningful extrinsic information given a very weak a priori input. In

the late stage of iterations, the decoder acts similarly to an LDPC decoder, as it reaches

IE,DEC = 1 for IA,DEC � 1, i.e., it provides a considerable coding gain. Nevertheless, the

convergence tunnel is closed in the middle region. Hence, a decoding convergence is not

achievable given such a code design. However, one observes that there is a lot of surplus

in the right region, which means that a regular 1/2 LDPC code provides too much coding

gain for SM-EPA with N = 8. By using irregular degree distributions, we should be able

to utilize the surplus in the right region to open the tunnel in the middle region. We

7.3. SUITABLE REDUNDANCY FOR SUPERPOSITION MAPPING 151

apply

λ(D) = 0.700D1 + 0.080D3 + 0.120D4 + 0.020D5 + 0.080D6 (7.37)

for the repetition code, and we apply

λ(D) = 0.900D2 + 0.010D6 + 0.040D9 + 0.010D12 + 0.020D15 + 0.020D18

η(D) = 0.610D4 + 0.200D5 + 0.040D8 + 0.020D10 + 0.080D11 + 0.030D22 + 0.020D25

for the LDPC code1. The EXIT chart in Fig. 7.17(b) shows that the above code design

successfully opens the tunnel for Eb/N0 = 8 dB. Now, the LDPC decoder only provides a

moderate but sufficient coding gain. Meanwhile, it helps the repetition decoder in opening

the tunnel in the middle region. One observes from Fig. 7.17(b) that the convergence

tunnel is widely open for the whole region. Hence, to achieve a good performance, the

component LDPC code and the component repetition code should both be irregular. From

the EXIT chart in Fig. 7.17(b), the exact decoding threshold for this code design is even

lower than 8 dB. Nevertheless, it is so far unclear whether the promised decoding threshold

is easily achievable given a finite block length. We will provide a detailed performance

analysis for this code design in Section 7.4.4.

The above tests demonstrate that serially concatenating an LDPC code and a repetition

code gives a good practical coding approach for SM-EPA. By comparing Fig. 7.15(b)

with Fig. 7.15(d), we may safely conjecture that this statement also holds for SM-GPA.

However, there are several problems when using the conventional EXIT chart analysis

for designing this type of codes. First, as the LDPC decoder takes some local iterations,

the EXIT chart analysis is indeed interleaver-dependent. In other words, the resulting

performance prediction is only accurate for a specific system with a specific interleaver,

and certainly for a finite block length only. This leads to a problem when one tries to

design a capacity-achieving system, which is only possible by assuming an infinite block

length. Second, by every small adjustment on the degree distributions, a new simulation

is necessary to measure the EXIT curve of the decoder. A typical code optimization

commonly involves many times of degree distribution adjustments. Besides, an LDPC

code gives a superior performance only if the block length is large enough. In the end,

such a simulation-based EXIT chart analysis turns out to be not less time-consuming than

a direct BER performance test. Note that, for obtaining each EXIT curve, one needs to

perform decoding for a big number of IA’s. In comparison, a typical BER performance

test only involves a few SNR points. Therefore, to facilitate an efficient and accurate code

design for SM-EPA and SM-GPA, the EXIT chart analysis method has to be improved.

We will provide a competent solution in Section 7.4.3.

1The advantages as well as disadvantages of applying an irregular parity check degree distribution will

be discussed in Section 7.4.

152 CHAPTER 7. CHANNEL CODING FOR SUPERPOSITION MAPPING

7.4 Low-Density Hybrid-Check Code

For a long time, the optimal coding strategy for SM has been uncertain. Summarizing all

the previous discussions in this thesis, we are now ready to clarify fundamental issues on

channel coding for SM, and sequentially provide effective solutions. Chapter 6 shows that

the previously known rate limit of SM-EPA of about 2 bits/symbol can easily be broken

by using an irregular repetition code. Furthermore, with a carefully designed interleaver

and a scrambler, irregular repetition-coded SM-EPA is able to work at a rate close to the

capacity, cf. Section 6.4.5. Hence, an optimal channel code for SM-EPA should possess

most of the properties that an irregular repetition code has, such that an efficient data

separation can be achieved. For transmission over the AWGN channel, an important

issue is to combat the additive noise in an efficient way. The investigation in Section 7.3.2

demonstrates that a serial concatenation of LDPC code and repetition code can offer a

desirable performance, when both component codes adopt carefully designed irregular

degree distributions. Due to offering a considerable compression gain, an SM-EPA or an

SM-GPA demapper requires a much smaller coding gain w.r.t. an ASK demapper. Hence,

an optimal channel code for SM-EPA or SM-GPA should possess some properties that

a “weak” parity-check code has, such that a small but enough coding gain is provided.

In this section, we propose a universal coding framework, called low-density hybrid-check

(LDHC) coding, to facilitate the optimization of channel codes for SM.

7.4.1 Basic Principle

When interpreting a coded modulation system via a factor graph, researchers typically

encapsulate the signal demapping operation by a channel observation node, e.g., the

case in Fig. 6.27(a). This approach is correct when BPSK mapping is applied. In fact,

this approach is generally appropriate for systems employing ASK mapping, since the

output messages from an ASK demapper have a very weak dependence on the a priori

input, cf. Fig. 7.15(a). However, for a coded superposition modulation system, this

approach is no longer appropriate. As shown in Fig. 7.15, the extrinsic output from

a superposition demapper is strongly dependent on the a priori input. Therefore, one

should encapsulate the superposition demapping operation by a check node and treat it

as a special type of code constraints. In this sense, superposition mapping is merely an

integral part of the overall coding scheme. The successful applications of LDSC coding in

Chapter 6 clearly supports this way of thinking. The relevant discussions show that it is

beneficial to treat the serial concatenation of a repetition encoder (optionally including a

scrambler), an interleaver, and a superposition mapper as an LDSC encoder. Following a

7.4. LOW-DENSITY HYBRID-CHECK CODE 153

LDPC
u

REP
v π SM

x

Low-Density Summation-Check Encoder

Low-Density Hybrid-Check Encoder

b

Figure 7.18: SM with a serial concatenation of LDPC code and repetition code.

+s0 +s1 +s2 +s3 +s4 +s5

v0 v1 v2 v3 v4 v5 v6 v7

+
p0

+
p1

+
p2

+
p3

(a) Factor graph.




1 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 1
0 0 1 0 1 0 0 0
0 1 0 0 0 0 1 0
0 0 0 0 0 1 0 1
1 0 0 1 1 0 1 0
0 1 1 0 1 0 0 1
1 1 0 0 0 1 1 0
0 0 1 1 0 1 0 1




L
D
S
C

L
D
P
C

v0 v1 v2 v3 v4 v5 v6 v7

u0 u1 u2 u3

s0
s1
s2
s3
s4
s5
p0
p1
p2
p3

b

b

(b) Incidence matrix.

Figure 7.19: Low-density hybrid-check code.

similar track, we may treat the serial concatenation of an LDPC encoder and an LDSC

encoder as an LDHC encoder, illustrated in Fig. 7.18. The basic principle of LDHC

coding can be understood in two steps. The first step is to construct a factor graph for

the complete transmission system as in Fig. 7.19(a). One takes the output bits of the

LDPC encoder, i.e., the input bits to the repetition encoder, as variable nodes. Due to the

LDPC encoder, each variable node is connected with a certain amount of parity checks,

which are represented by � in Fig. 7.19(a). Due to the LDSC encoder, each variable node

is connected with a certain amount of summation checks, which are represented by ⊕
in Fig. 7.19(a). Naturally, the result of each summation check corresponds to an output

symbol and is therefore associated with a channel observation, which is marked by � in

Fig. 7.19(a). The second step is to construct an overall incidence matrix for the variable

nodes. For example, given the graph in Fig. 7.19(a), the corresponding incidence matrix

is shown in Fig. 7.19(b). Each column of the matrix is associated with a variable node,

i.e., a code bit. Each row in the upper part of the matrix represents one summation check,

while each row in the lower part of the matrix stands for one parity check. In case that

the LDPC encoder is systematic, some columns are also directly associated with info bits.

Given a reasonable block length, this incidence matrix will be of low density. Noting that

there are two types of code checks, we dub this matrix a low-density hybrid-check matrix.

The corresponding code we call a low-density hybrid-check code. The upper part of the

matrix gives a low-density summation-check matrix, and the lower part of the matrix

gives a low-density parity-check matrix. For clearness and compactness, in Fig. 7.19 we

have not explicitly described the scrambling operation often necessary in an LDSC code.

154 CHAPTER 7. CHANNEL CODING FOR SUPERPOSITION MAPPING

Adopting the concept of LDHC coding brings many benefits. Constructing the LDHC

matrix via a well-controlled random procedure, e.g., the PEG algorithm, short cycles can

be removed in a global level, i.e., no summation checks will form short cycles, no parity

checks will form short cycles, and no summation checks will form short cycles with parity

checks. Hence, an LDHC matrix enables a global-level interleaver optimization. Later

on, we will show that this is rather beneficial for superposition mapping. Besides, the

degree distribution of the LDPC code and the degree distribution of the LDSC code can

be optimized jointly. During an iterative decoding process, all elements in the factor

graph function in an interactive way. Hence, a joint code optimization often brings a sig-

nificant performance gain. Furthermore, the all-in-one LDHC matrix provides a versatile

platform for tuning the degree combination of variable nodes, i.e., the way of combining

the summation-check-side repetition degrees and the parity-check-side repetition degrees,

which significantly influences the achievable performance as well.

7.4.2 Compatible Code Structures

In the previous section, we have derived the concept of LDHC coding from an SM system

employing a serial concatenation of LDPC code and repetition code. In fact, the LDHC

coding architecture is also compatible with a parallel concatenation of LDPC code and

repetition code. Moreover, it supports purely LDPC-coded SM as well.

Fig. 7.20(a) gives a scenario that the LDPC encoder and the repetition encoder are parallel

concatenated. In this case, some code bits are protected only by parity bits and some

code bits are protected only by repetitions. The corresponding factor graph will look like

Fig. 7.20(b). One observes that some variable nodes are connected with multiple parity

checks but a single summation check, and some are connected with multiple summation

checks but no parity check at all. This code structure can also easily be identified from

the corresponding incidence matrix given in Fig. 7.20(c). One observes that some columns

of the LDHC matrix have a single nonzero entry in the upper part but multiple nonzero

entries in the lower part, and some have multiple nonzero entries in the upper part but

no nonzero entry in the lower part. Fig. 7.21 describes a scenario that a hybrid type of

code concatenation is applied. In this case, some code bits are protected only by parity

bits, e.g., v0 and v4, some are protected only by repetitions, e.g., v5 and v7, and some are

protected both by parity bits and repetitions, e.g., v1 and v3. After all, the important

message is that the architecture of LDHC coding is rather versatile and widely applicable.

As a matter of fact, when designing an LDHC code, one does not need to specifically make

a distinction between the underlying code structures. The only important thing is to find

valid variable/check node degree distributions that will offer a desired performance.

7.4. LOW-DENSITY HYBRID-CHECK CODE 155

LDPC

REP π SM
b

(a) Transmitter structure.

+s0 +s1 +s2 +s3 +s4 +s5

v0 v1 v2 v3 v4 v5 v6 v7

+
p0

+
p1

+
p2

+
p3

(b) Factor graph.




1 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1
0 0 0 1 1 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0




L
D
S
C

L
D
P
C

v0 v1 v2 v3 v4 v5 v6 v7

s0
s1
s2
s3
s4
s5
p0
p1
p2
p3

b

b

(c) LDHC matrix.

Figure 7.20: SM with a parallel concatenation of LDPC code and repetition code.

LDPC REP π SM

(a) Transmitter structure.

+s0 +s1 +s2 +s3 +s4 +s5

v0 v1 v2 v3 v4 v5 v6 v7

+
p0

+
p1

+
p2

+
p3

(b) Factor graph.




1 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 1
0 0 1 0 1 0 0 0
0 1 0 0 0 0 1 0
0 0 0 0 0 1 0 1
1 0 0 1 1 0 1 0
0 1 1 0 1 0 0 0
1 1 0 0 0 0 1 0
0 0 1 1 0 0 0 0




L
D
S
C

L
D
P
C

v0 v1 v2 v3 v4 v5 v6 v7

s0
s1
s2
s3
s4
s5
p0
p1
p2
p3

b

b

(c) LDHC matrix.

Figure 7.21: SM with a hybrid-type concatenation of LDPC code and repetition code.

156 CHAPTER 7. CHANNEL CODING FOR SUPERPOSITION MAPPING

LDPC SM
b

(a) Transmitter structure.

+s0 +s1 +s2 +s3

v0 v1 v2 v3 v4 v5 v6 v7

+
p0

+
p1

+
p2

+
p3

(b) Factor graph.




1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 0 0 1 0 0 1 1
0 1 1 0 1 0 0 1
0 0 0 0 1 1 1 1
0 0 0 1 0 1 1 1




L
D
S
C

L
D
P
C

v0 v1 v2 v3 v4 v5 v6 v7

s0
s1
s2
s3
p0
p1
p2
p3

b

b

(c) LDHC matrix.

Figure 7.22: SM transmission with a pure LDPC code, sorted VN degree alignment.

In addition to the previously described cases, there is another important application for the

concept of LDHC coding. For SM transmission with pure LDPC coding, the LDHC matrix

is still useful. As shown in Fig. 7.22, for purely LDPC-coded SM, all variable nodes have a

unique edge connected to a summation check, and consequently all columns of the LDHC

matrix have a unique nonzero entry in the upper part. It is true that these single 1’s in the

upper part of the LDHC matrix play no role for the optimization of degree distributions.

However, they are important for the optimization of interleaver patterns. Depicted in

Fig. 7.22(c), by leaving a single 1 in each column of the upper part of the incidence matrix,

we can easily detect and sequentially remove short cycles formed between summation

checks and parity checks. These hybrid type of cycles are often harmful for the stability

of the iterative decoder. One may easily find from Fig. 7.22(c) that the LDSC sub-

matrix has a Toeplitz structure. This eliminates the necessity of an extra interleaver

between the LDPC encoder and the superposition mapper. As a result, only the LDPC

sub-matrix needs to be constructed by using a certain interleaver design method. For

LDPC-coded modulation, the issue of variable node (VN) degree alignment is commonly

ignored, mainly due to the horizontal EXIT curve of conventional mapping schemes. For

LDPC-coded SM, however, this issue should be carefully taken into account, as the VN

degree alignment has a big impact on the summation check EMD distribution. Fig. 7.22(b)

gives an example that the VN degrees are sorted in a non-descending order in the graph.

From the left to the right, the variable nodes have parity-check-side repetition degrees:

[1, 1, 1, 2, 2, 2, 3, 4]. Consequently, from the left to the right, the summation checks have

EMD’s: [2, 3, 4, 7], which has a wide and non-concentrated distribution. Given certain

degree distributions, a sorted VN degree alignment is advantageous for the left region

of the convergence tunnel but disadvantageous for the right region of the convergence

7.4. LOW-DENSITY HYBRID-CHECK CODE 157

+s0 +s1 +s2 +s3

v0 v1 v2 v3 v4 v5 v6 v7

+
p0

+
p1

+
p2

+
p3

Figure 7.23: Factor graph for LDPC-coded SM, unsorted VN degree alignment.

tunnel. In contrast, one may apply an unsorted (randomized) VN degree alignment, as

shown in Fig. 7.23. In this case, the variable nodes have parity-check-side repetition

degrees: [1, 3, 2, 1, 1, 4, 2, 2], from the left to the right. Correspondingly, the summation

checks have EMD’s: [4, 3, 5, 4], which has a narrower and more concentrated distribution.

Therefore, an unsorted VN degree alignment is often advantageous for the right region of

the convergence tunnel but leads to a degradation in the left region of the convergence

tunnel. Note that the above statements are given under the assumption of an infinite

block length. In practice, however, an unsorted VN degree alignment is more desirable,

because it reduces the probability of residual errors caused by those summation checks

with an unnecessarily low EMD. We will come back to this topic in later discussions.

7.4.3 Degree Distribution & Degree Combination

Similar to the design of LDSC codes and LDPC codes, the first step for LDHC code

optimization is to identify an optimal or near-optimal degree distribution for the variable

nodes. A new issue for LDHC codes is that the global degree distribution of the variable

nodes in fact consists of two local degree distributions, one for the component LDSC code

and one for the component LDPC code. To achieve the best performance, the two local

degree distributions need to be optimized jointly instead of separately. Whenever the

degree distribution of the LDSC code is adjusted, the degree distribution of the LDPC

code needs to be adjusted as well, and vice versa. Inherently, an optimized global degree

distribution of an LDHC code also contains an optimized degree combination scheme,

which determines the way of combining SC-side repetition degrees and PC-side repetition

degrees on each variable node. A brute-force approach for optimizing the global degree

distribution, including the degree combination scheme, is the try-and-test method. One

tries a large collection of parameter sets and test the corresponding performances by

means of Monte Carlo simulations. This approach is valid always but is often impracti-

cal whenever the parameter space has a high dimension. Density evolution [56, 57] and

158 CHAPTER 7. CHANNEL CODING FOR SUPERPOSITION MAPPING

+s0 +s1 +s2 +s3

v0 v1 v2 v3 v4 v5 v6 v7

+
p0

+
p1

+
p2

+
p3

testing
interface

(a) The SC-side repetition degrees are all 1.

+s0 +s1 +s2 +s3

v0 v1 v2 v3 v4 v5 v6 v7

+
p0

+
p1

testing
interface

(b) The PC-side repetition degrees are all 1.

Figure 7.24: Two special cases of LDHC coding for which a two-part EXIT chart analysis

is applicable. “SC” stands for summation checks, and “PC” stands for parity checks.

EXIT chart analysis [84–86] are two popular semi-analytical methods for predicting the

performance of LDPC codes with iterative decoding. These two methods can be applied

for LDHC codes as well, though some modifications are necessary. Generally speaking,

density evolution is more accurate in predicting the decoding threshold. However, a big

drawback from density evolution is that it does not provide any intuition on how a degree

distribution can be improved further. This feature from density evolution is particularly

undesirable for the optimization of LDHC codes. Since we basically need to optimize two

local degree distributions in once, an indication on the direction of further improvement

is rather beneficial. For this reason, EXIT chart analysis deserves to be the preferable

choice for LDHC code optimization. In the following, we will introduce the usage of EXIT

charts in identifying optimal or near-optimal degree distributions for LDHC codes.

Conventional EXIT Chart Analysis

An important assumption from an EXIT chart analysis is that the involved factor graph

is cycle-free, which is also the primary assumption for density evolution. Nevertheless,

given a realistic parameter setup and a finite block length, the factor graph will usually

be non-cycle-free. By a conventional EXIT chart analysis, one divides a non-cycle-free

factor graph into two parts, with each part being cycle-free. Checking the extrinsic-

information-transfer property of these two parts, a good prediction can be obtained for

the theoretically achievable performance assuming a cycle-free graph. Certainly, the pre-

requisite for applying such a two-part EXIT chart analysis is that the graph can indeed

be divided into two cycle-free parts. This is actually the case for many coding techniques,

e.g., LDPC coding and turbo coding. Not difficult to find, the EXIT chart analyses in

the former discussions all follow such a two-part treatment. However, for LDHC cod-

ing, a two-part EXIT chart analysis is only suitable for two special cases, as depicted in

Fig. 7.24. For LDPC-coded SM transmission, the factor graph will be as in Fig. 7.24(a),

7.4. LOW-DENSITY HYBRID-CHECK CODE 159

+s0 +s1 +s2 +s3

v0 v1 v2 v3 v4 v5 v6 v7

+
p0

+
p1

+
p2

+
p3

testing
interface

testing
interface

Figure 7.25: The way of graph division for a three-part EXIT chart analysis.

where all variable nodes have degree-1 SC-side repetitions. In this case, cycles can only be

formed between variable nodes and parity checks. Consequently, one may set the testing

interface between the ensemble of variable nodes and the ensemble of parity checks, cf.

Fig. 7.24(a). Doing so results in two sub-graphs free of cycles. Note that the upper sub-

graph consists of two types of nodes, i.e., summation checks and variable nodes, but is

cycle-free due to degree-1 repetitions. A two-part EXIT chart analysis based on a graph

division given in Fig. 7.24(a) is independent of the interleaving pattern. There is an-

other special case of LDHC coding that a two-part EXIT chart analysis is suitable. That

is the component LDPC code is simply a collection of single-parity-check (SPC) codes.

In this scenario, all variable nodes will have degree-1 PC-side repetitions, as shown in

Fig. 7.24(b). Consequently, one may set the testing interface between the ensemble of

summation checks and the ensemble of variable nodes. Dividing the graph along this

testing interface breaks all the cycles formed between summations and variable nodes.

Clearly, the resulting EXIT chart analysis is also independent of the interleaving pattern.

In more general cases, when larger-than-1 repetition degrees exist both in the SC-side and

the PC-side, the corresponding graph can no longer be divided into two cycle-free parts.

To obtain an accurate prediction for the theoretically achievable performance, we need to

divide the graph into three parts that are all cycle-free, which necessitates a three-part

EXIT chart analysis method, to be proposed in the following.

An EXIT Emulation Technique for LDHC Decoding

Instead of using a single testing interface, we may use two testing interfaces for the EXIT

chart analysis. As illustrated in Fig. 7.25, we divide the graph of an LDHC code into three

ensembles: summation checks, variable nodes, and parity checks. Clearly, the resulting

sub-graphs are all cycle-free. The question is how to perform an EXIT chart analysis given

such a graph division. Without loss of generality, we may interpret the interaction between

these three ensembles as in Fig. 7.26. During an iterative LDHC decoding process, the

messages originate from the summation checks, i.e., from channel observations. Following

160 CHAPTER 7. CHANNEL CODING FOR SUPERPOSITION MAPPING

Summation
Checks

Variable
Nodes

Parity

Checks

Channel

Observations

IE,SC =̂ I
(SC)
A,VN

IA,SC =̂ I
(SC)
E,VN

I
(PC)
E,VN =̂ IA,PC

I
(PC)
A,VN =̂ IE,PC

Soft
Decisions

Iterative LDHC Decoder
b

Figure 7.26: The message flow during an iterative LDHC decoding process.

that, these messages are refined and strengthened by the variables nodes and sequentially

forwarded to the parity checks. Upon receiving a priori messages from the variable nodes,

the parity checks deliver extrinsic messages to the variable nodes. Then, these messages

are processed by the variable nodes and passed to the summation checks. This ends one

cycle of message passing. The purpose of an EXIT chart analysis is to verify the fitness

between iterative decoding modules. In the current scenario, the iterative decoder consists

of three interactive modules. As a result, the task of the EXIT chart analysis becomes

two-fold. It needs to verify the fitness between the SC ensemble and the VN-plus-PC

ensemble, and it needs to verify the fitness between the PC ensemble and the VN-plus-SC

ensemble. The extrinsic-information-transfer function of summation checks can easily be

measured via numerical simulations. For parity checks, the extrinsic-information-transfer

function can be obtained either numerically or analytically [105, 106]. However, it is not

straightforward to obtain the extrinsic-information-transfer function for the VN-plus-PC

ensemble and the VN-plus-SC ensemble. As stated previously, we should not do this work

via simulations. Otherwise, the resulting EXIT chart analysis will again be dependent on

the interleaver. To solve the problem, we propose a semi-analytical emulation technique.

Revisiting Fig. 7.26, one may recognize that the ensemble of variable nodes actually acts

as an amplify-and-relay unit for the messages between the ensemble of summation checks

and the ensemble of parity checks. In case that we are able to characterize the extrinsic-

information-transfer function for the VN ensemble, the iterative decoding process can in

fact be emulated via a computer-based analytical derivation procedure. To enable such

an approach, a Gaussian approximation is necessary for the distribution of LLR messages.

Given an AWGN channel with a BPSK input:

y = x+ z , x ∈ {±1} , z ∼ N (0, σ2
z) , (7.38)

we have the LLR of the symbol x as

LLR(x)
.
= ln

p(y|x = +1)

p(y|x = −1)
= ln

e
− (y−1)2

2σ2
z

e
− (y+1)2

2σ2
z

=
2

σ2
z

y =
2

σ2
z

x+
2

σ2
z

z . (7.39)

Hence, the LLR message itself is a Gaussian variable with mean µ = 2x/σ2
z and variance

σ2 = (2/σ2
z)

2
σ2
z = 4/σ2

z . Note that σ2 = 2|µ|. Since |x| ≡ 1, the distribution of the LLR

7.4. LOW-DENSITY HYBRID-CHECK CODE 161

message can be written as

LLR(x) ∼ N (sign (x) · σ2/2, σ2) . (7.40)

A distribution as in (7.40) is called a consistent Gaussian distribution. Now, the essential

assumption for the EXIT emulation method is that all messages passing in the graph have

a consistent Gaussian distribution2. Given this assumption, a one-to-one correspondence

exists between the metric σ and the mutual information I(x, LLR(x)), which is well-

known as the J function for EXIT chart analysis. For a shorthand notation, we define

Λ
.
= LLR(x). The J function is obtained as

J(σ)
.
= I(x; Λ) = H(x)−H(x|Λ) = 1− E

{
log2

1

P (x|Λ)

}

= 1−
∑

x=±1

∫ +∞

−∞
p(x,Λ) log2

1

P (x|Λ)
dΛ

= 1−
∑

x=±1

∫ +∞

−∞
P (x)p(Λ|x) log2

p(Λ)

p(x,Λ)
dΛ

= 1−
∑

x=±1

1

2

∫ +∞

−∞
p(Λ|x) log2

∑
x p(Λ|x)P (x)

p(Λ|x)P (x)
dΛ

= 1−
∑

x=±1

1

2

∫ +∞

−∞
p(Λ|x) log2

p(Λ|x = +1) + p(Λ|x = −1)

p(Λ|x)
dΛ

= 1−
∫ +∞

−∞
p(Λ|x = +1) log2

(
1 +

p(Λ|x = −1)

p(Λ|x = +1)

)
dΛ

= 1−
∫ +∞

−∞

1√
2πσ2

e−
(Λ−σ2/2)2

2σ2 log2(1 + e−Λ) dΛ , (7.41)

where the last equality utilizes (7.40) in the form:

p(Λ|x = ±1) =
1√

2πσ2
e−

(Λ∓σ2/2)2

2σ2 . (7.42)

In practice, we can make an extensive pre-calculation for (7.41) and save it into a look-up

table. Afterwards, a fast J function can be implemented by using the look-up table. In

case that a high-precision is required, one may apply a linear or polynomial interpolation.

Now, from J(·), we can numerically derive its inverse function

σ = J−1(I(x; Λ)) . (7.43)

Similarly, we can implement a fast version for this function via a large look-up table and

an appropriate interpolator.

2In fact, this assumption is commonly applied for the conventional EXIT analysis as well, whenever

an EXIT curve needs to be obtained via numerical simulations.

162 CHAPTER 7. CHANNEL CODING FOR SUPERPOSITION MAPPING

v

Λ
(i)
s,0 Λ

(i)
s,1 Λ

(i)
s,2

Λ
(i)
p,0 Λ

(i)
p,1 Λ

(i)
p,2 Λ

(o)
p,3

SC-side messages

PC-side messages

I
(SC)
A,VN

I
(PC)
A,VN I

(PC)
E,VN

b

b

b

(a) Create a message to a parity check.

v

Λ
(i)
s,0 Λ

(i)
s,1 Λ

(o)
s,2

Λ
(i)
p,0 Λ

(i)
p,1 Λ

(i)
p,2 Λ

(i)
p,3

SC-side messages

PC-side messages

I
(SC)
A,VN

I
(PC)
A,VN

I
(SC)
E,VN

b

b

b

(b) Create a message to a summation check.

Figure 7.27: Extrinsic information transfer processes at a variable node.

With the consistent-Gaussian assumption as well as the J and J−1 functions, we are now

ready to emulate the extrinsic information transfer process for a VN ensemble. Consider

a variable node has an SC-side repetition degree ds and a PC-side repetition degree dp.

In each iteration, this variable node receives ds messages from the summation checks and

dp messages from the parity checks. The generation of an extrinsic message at a variable

node is simply a linear addition. The extrinsic message to a parity check associated with

the ith edge should be created as

Λ
(o)
p,i =

ds−1∑

j=0

Λ
(i)
s,j +

dp−1∑

j=0,j 6=i
Λ

(i)
p,j , 0 6 i < dp , (7.44)

cf. Fig. 7.27(a). The extrinsic message to a summation check associated with the ith edge

should be created as

Λ
(o)
s,i =

ds−1∑

j=0,j 6=i
Λ

(i)
s,j +

dp−1∑

j=0

Λ
(i)
p,j , 0 6 i < ds , (7.45)

cf. Fig. 7.27(b). Staying with the notations in Fig. 7.26, we let I
(SC)
A,VN denote the mutual

information of LLR messages from the summation checks to the variable node, etc.. We

let

σs,in
.
= J−1

(
I
(SC)
A,VN

)
(7.46)

represent the distribution metric of the corresponding messages. Similarly, we define

σp,in
.
= J−1

(
I
(PC)
A,VN

)
. (7.47)

By the consistent-Gaussian assumption and assuming that the code bit has a value 0 (i.e.,

x = +1 for BPSK), the extrinsic messages to the parity checks will have a distribution as

Λ
(o)
p,i ∼ N

(
ds
σ2
s,in

2
+ (dp − 1)

σ2
p,in

2
, dsσ

2
s,in + (dp − 1)σ2

p,in

)
, 0 6 i < dp , (7.48)

7.4. LOW-DENSITY HYBRID-CHECK CODE 163

which leads to a distribution metric as

σp,out =
√
dsσ2

s,in + (dp − 1)σ2
p,in . (7.49)

Consequently, the mutual information of the LLR messages from the variable node to the

parity checks is given by

I
(PC)
E,VN = J(σp,out) = J

(√
dsσ2

s,in + (dp − 1)σ2
p,in

)

= J

(√
ds

[
J−1

(
I
(SC)
A,VN

)]2

+ (dp − 1)
[
J−1

(
I
(PC)
A,VN

)]2
)
. (7.50)

Following the same treatment for the messages to the summation checks, we obtain

I
(SC)
E,VN = J(σs,out) = J

(√
(ds − 1)σ2

s,in + dpσ2
p,in

)

= J

(√
(ds − 1)

[
J−1

(
I
(SC)
A,VN

)]2

+ dp

[
J−1

(
I
(PC)
A,VN

)]2
)
. (7.51)

(7.50) and (7.51) fully describe the behaviour of a variable node for message passing in

an iterative LDHC decoding process. The important feature of these two computations is

that they are independent of the interleaver. Nevertheless, as (7.50) and (7.51) are only

for a single variable node, an averaging operation is necessary to describe the behaviour of

an irregular VN ensemble. Certainly, the mutual information should be weighted by the

respective VN degree during the averaging operation. Given a fixed degree distribution,

the EXIT functions of a VN ensemble are fixed, which can be written as

IA,PC =̂ I
(PC)
E,VN = fv,p

(
I
(SC)
A,VN, I

(PC)
A,VN

)
= fv,p (IE,SC, IE,PC) (7.52)

IA,SC =̂ I
(SC)
E,VN = fv,s

(
I
(SC)
A,VN, I

(PC)
A,VN

)
= fv,s (IE,SC, IE,PC) . (7.53)

To characterize the behaviour of an SC ensemble, we can use a look-up table containing

pre-measured results obtained from numerical simulations. For an easy reference, let us

write the EXIT function of an SC ensemble as

IE,SC = fs (IA,SC, SNR) . (7.54)

The EXIT function of a PC ensemble is independent of the SNR. We may apply a look-

up table as well or simply utilize the duality between the EXIT function of parity checks

and that of variable nodes. According to the duality, for a degree dc parity check the

relationship between the input and output mutual information is given by

IE = 1− J
(√

(dc − 1) [J−1(1− IA)]2
)
, (7.55)

164 CHAPTER 7. CHANNEL CODING FOR SUPERPOSITION MAPPING

fs(·)
fv,p(·)
fv,s(·)

fp(·)
IE,SC =̂ I

(SC)
A,VN

IA,SC =̂ I
(SC)
E,VN

I
(PC)
E,VN =̂ IA,PC

I
(PC)
A,VN =̂ IE,PCSC ensemble VN ensemble PC ensemble

b

Figure 7.28: A semi-analytical EXIT emulator for iterative LDHC decoding.

which is exact for the binary erasure channel [90] and very accurate for the binary-input

AWGN channel [105, 106]. Given a certain degree distribution, the EXIT function of a

PC ensemble can be obtained via a weighted averaging process on the EXIT functions of

single parity checks. Let us write the EXIT function of a PC ensemble as

IE,PC = fp (IA,PC) . (7.56)

Given (7.52), (7.53), (7.54), and (7.56), we can emulate an iterative LDHC decoding

process without the need of any numerical simulations. As the first step, the emulator is

initialized with the following starting values:

IA,SC = 0 , IE,SC = fs (0, SNR) , IA,PC = 0 , IE,PC = 0 . (7.57)

Following that, the emulator performs iterations as illustrated in Fig. 7.28. Each concrete

node ensemble is replaced by its EXIT function, which is tailored for the respective

degree distribution. Local iterations between the SC ensemble and the VN ensemble are

optional. So are the local iterations between the VN ensemble and the PC ensemble.

By recording the value pair (I
(PC)
A,VN, I

(PC)
E,VN) throughout the emulation process, we obtain

an interleaver-independent EXIT curve for the VN-plus-SC ensemble. Accordingly, by

recording the value pair (I
(SC)
A,VN, I

(SC)
E,VN) throughout the emulation process, we obtain an

interleaver-independent EXIT curve for the VN-plus-PC ensemble. Moreover, an overall

decoding trajectory can be obtained by tracking the value pair (IA,SC, IE,SC) and the value

pair (IA,PC, IE,PC) throughout the emulation process. The emulation process stops when all

the mutual information values have reached 1 or it stops when all the mutual information

values stay unchanged from the last iteration.

There are many advantages to apply such an EXIT emulator instead of a simulation-based

EXIT chart analysis. The first advantage is that it truly gives a performance prediction

for an infinite block length and a cycle-free graph. Second, it is much more efficient than a

conventional EXIT chart analysis. In practice, one basically needs to perform a numerical

simulation only for the SC-ensemble, but only once for one SNR value. Afterwards, no

more simulation is needed at all, no matter how one adjusts the degree distribution of

the variable nodes or the check nodes. This greatly speeds up the code design process.

Third, the resulting EXIT chart provides a much better visual aid for the code design.

These advantages will soon become manifest via various code design examples.

7.4. LOW-DENSITY HYBRID-CHECK CODE 165

0 0.2 0.4 0.6 0.8 1
I
A,SC

 I
E,VN

0.0

0.2

0.4

0.6

0.8

1.0

I E
,S

C
 I

A
,V

N
SC, regular, N = 8
VN, regular, D = 4
Decoding trajectory

Surplus

Surplus

Tunnel is closed

Tunnel is closed

(a) LDSC-EPA, SF = 4.

0 0.2 0.4 0.6 0.8 1
I
A,SC

 I
E,PC

0.0

0.2

0.4

0.6

0.8

1.0

I E
,S

C
 I

A
,P

C

PC, regular, D = 6
SC, regular, N = 8
Decoding trajectory
VN + SC
VN + PC

Decoding gets stuck

(b) LDHC-EPA, Rr = 1/2, Rp = 1/2.

Figure 7.29: LDSC-EPA vs. LDHC-EPA, R = 1/4, N = 8, Eb/N0 = 8 dB.

A Code Design Example for SM-EPA with N = 8

To demonstrate the usage of the previously proposed EXIT emulation technique, we

consider a code design example for SM-EPA with N = 8, which has been briefly discussed

in Section 7.3.2. We target at a bandwidth efficiency of 2 bits/symbol, for which the

Shannon limit is at about 5.8 dB. For a unified notation, we use Rr to denote the coding

rate of the component repetition code of an LDHC code, and Rp that of the component

parity-check code. Consequently, the overall coding rate of an LDHC code is given by

R = Rr ·Rp. For the current discussion, we require R = 1/4.

To leave some room for easy elaboration, we first target at a decoding threshold of 8 dB.

Let us start with a regular LDSC-EPA code for SF = 1/R = 4. Fig. 7.29(a) provides the

corresponding EXIT chart. Since the graph of an LDSC code merely consists of two types

of nodes, a conventional two-part EXIT chart suffices. One observes that the convergence

tunnel is closed in the middle region and the rightmost region, but has surplus in the left

region and the right region. According to the area property of EXIT charts [90–92], the

area above a decoder EXIT curve is given by A = 1−R when plotted on swapped axes,

regardless of the code type. This means that the area above the EXIT curve is fixed given

a certain coding rate. Hence, in order to open the convergence tunnel, we need to transfer

the surplus in the left region and the right region to the middle region and the rightmost

region. One should not try to use an irregular LDSC code to solve this problem, as this will

open the tunnel in the middle region but make the tunnel gets closed even earlier in the

rightmost region. The discussion in Section 7.2.2 gives a firm support for this statement.

To open the tunnel in the rightmost region, some parity bits are necessary to be added.

By serially concatenating a 1/2 regular LDPC code with a 1/2 repetition code, the EXIT

emulator gives an EXIT chart as in Fig. 7.29(b), which shows that the decoding process

166 CHAPTER 7. CHANNEL CODING FOR SUPERPOSITION MAPPING

gets stuck in an even earlier stage w.r.t. the LDSC case. The important message here is the

effectiveness of the EXIT emulator. Comparing Fig. 7.29(b) with Fig. 7.17(a), one finds

that the VN-plus-PC curve well predicts the EXIT function of the concatenated decoder.

Certainly, it is more convenient to obtain this EXIT curve via the emulation approach

w.r.t. the simulation approach. As soon as the convergence tunnel gets closed in a certain

position, the decoding trajectory gets stopped therein. Note that in a conventional two-

part EXIT chart, the decoding trajectory is bouncing between the EXIT curve of a check

node ensemble and that of a variable node ensemble, cf. Fig. 7.29(a). In a three-part

EXIT chart, the most preferable choice is to plot the decoding trajectory between the

summation check ensemble and the parity check ensemble, cf. Fig. 7.29(b), as doing so

brings the best visual aid for code design. The following elaboration will make this reason

evident. We rewrite the code design corresponding to Fig. 7.17(b) in new notations:

λs(D) = 0.700D1 + 0.080D3 + 0.120D4 + 0.020D5 + 0.080D6

λp(D) = 0.900D2 + 0.010D6 + 0.040D9 + 0.010D12 + 0.020D15 + 0.020D18 (7.58)

ηp(D) = 0.610D4 + 0.200D5 + 0.040D8 + 0.020D10 + 0.080D11 + 0.030D22 + 0.020D25 ,

where λs(D) stands for the SC-side VN degree distribution, λp(D) the PC-side VN degree

distribution, and ηp(D) the parity check degree distribution. The average parity check

degree is 6 and the component coding rates are Rr = 1/2 and Rp = 1/2. Fig. 7.17(b)

shows that such a code design opens the tunnel given 20 LDPC-local iterations. This is

also the case by means of EXIT emulation, as shown in Fig. 7.30(a), though no LDPC-

local iterations are performed. It can be seen that the single decoding trajectory vividly

demonstrates the iterative decoding process. As a matter of fact, the density of the de-

coding trajectory in a certain area gives a good judgement for the fitness of the code

design in the respective decoding stage. Whenever the convergence tunnel is tight in a

certain region, it will take the emulator many iterations to pass this region, and conse-

quently make the decoding trajectory very dense in this region. Vice versa, the lower the

density is, the easier it is for the decoder to travel through that area. Nonetheless, for an

iterative LDHC decoding process, there are in fact two convergence tunnels, one between

the EXIT curve of the VN-plus-SC ensemble and that of the PC ensemble, one between

the EXIT curve of the SC ensemble and that of the VN-plus-PC ensemble. To achieve a

decoding convergence, both tunnels must be open for the whole region. Specifically, this is

to ensure that the VN-plus-SC curve is above the PC curve and the SC curve is above the

VN-plus-PC curve. If desired, we may let the emulator to record the decoding trajectories

inside these two tunnels, as demonstrated in Fig. 7.30(b). However, the visibility is much

worse than the case of plotting a single decoding trajectory. When the tunnel becomes

rather narrow, the decoding trajectory is difficult to distinguish. Alternatively, we may

also let the emulator to record the trajectory for the complete decoding process, which

7.4. LOW-DENSITY HYBRID-CHECK CODE 167

0 0.2 0.4 0.6 0.8 1
I
A,SC

 I
E,PC

0.0

0.2

0.4

0.6

0.8

1.0

I E
,S

C
 I

A
,P

C

PC, irregular
SC, regular, N = 8
Decoding trajectory
VN + SC
VN + PCToo much surplus

(a) With a single decoding trajectory.

0 0.2 0.4 0.6 0.8 1
I
A,SC

 I
E,PC

0.0

0.2

0.4

0.6

0.8

1.0

I E
,S

C
 I

A
,P

C

PC, irregular
SC, regular, N = 8
Upper trajectory
Lower trajectory
VN + SC
VN + PC

Not really visible

(b) With double decoding trajectories.

0 0.2 0.4 0.6 0.8 1
I
A,SC

 I
E,PC

0.0

0.2

0.4

0.6

0.8

1.0

I E
,S

C
 I

A
,P

C

PC, irregular
SC, regular, N = 8
Decoding trajectory
VN + SC
VN + PC

(c) With a complete decoding trajectory.

0 0.2 0.4 0.6 0.8 1
I
A,SC

 I
E,PC

0.0

0.2

0.4

0.6

0.8

1.0
I E

,S
C
 I

A
,P

C

PC, irregular
SC, regular, N = 8
Decoding trajectory
VN + SC
VN + PC

(d) With 10 LDSC-local iterations.

0 0.2 0.4 0.6 0.8 1
I
A,SC

 I
E,PC

0.0

0.2

0.4

0.6

0.8

1.0

I E
,S

C
 I

A
,P

C

PC, irregular
SC, regular, N = 8
Decoding trajectory
VN + SC
VN + PC

(e) With 10 LDPC-local iterations.

0 0.2 0.4 0.6 0.8 1
I
A,SC

 I
E,PC

0.0

0.2

0.4

0.6

0.8

1.0

I E
,S

C
 I

A
,P

C

PC, irregular
SC, regular, N = 8
Decoding trajectory
VN + SC
VN + PC

(f) With 10 LDSC/LDPC-local iterations.

Figure 7.30: LDHC-EPA, Rr = 1/2, Rp = 1/2, N = 8, Eb/N0 = 8 dB.

168 CHAPTER 7. CHANNEL CODING FOR SUPERPOSITION MAPPING

yields an EXIT chart as in Fig. 7.30(c). This visualizes the trace of the decoding process

for every SC-to-VN-to-PC-to-VN-to-SC message passing cycle. Nevertheless, compared

to Fig. 7.30(a), doing so does not improve the visibility of the EXIT chart but causes some

unnecessary confusions. Therefore, in the rest of the thesis, we will exclusively adopt a

single decoding trajectory that bouncing inbetween the EXIT curves of two check node

ensembles. The proposed EXIT emulation technique is also useful in checking the neces-

sity as well as the effectiveness of making LDSC-local iterations or LDPC-local iterations.

For example, if one makes 10 LDSC-local iterations in each global iteration, the resulting

EXIT chart will be as shown in Fig. 7.30(d). It can be seen that, before jumping to the PC

curve, the decoding trajectory travels for a certain distance along the SC curve, in each

global iteration. This distance decreases as the overall decoding process proceeds. In the

late stage of iterative decoding, the benefit of LDSC-local iterations almost diminishes.

Hence, it only makes sense to apply LDSC-local iterations in the early decoding stage. In

the late decoding stage, the main task of the decoder is to offer some coding gain, which

is relatively irrelevant to the repetition decoder. If one makes 10 LDPC-local iterations

in each global iteration, the resulting EXIT chart will be as shown in Fig. 7.30(e). Now,

the decoding trajectory travels along the PC curve for a certain distance, before it jumps

to the SC curve. One observes that the effectiveness of LDPC-local iterations is most ev-

ident in the early stage as well as the late stage of iterative decoding. In the early stage,

by means of LDPC-local iterations, those variable nodes with a high PC-side repetition

degree can deliver a strong information to the rest of the graph and consequently help

the overall decoding process. In the late stage, those variable nodes with a low PC-side

repetition degree start to deliver strong messages given a certain amount of LDPC-local

iterations. Certainly, we may apply LDSC-local iterations together with LDPC-local it-

erations, which leads to an EXIT chart as in Fig. 7.30(f). Comparing Fig. 7.30(f) with

Fig. 7.30(a), one observes that the number of global iterations is reduced by means of

LDSC/LDPC-local iterations. Nevertheless, this does not necessarily reduce the overall

decoding complexity, and often the situation is the opposite if the local iterations are not

well scheduled. From a theoretical point of view, local iterations can in no chance improve

the ultimately achievable performance. For the sake of compactness, we exclude the topic

of local iterations in the rest of the thesis.

In the above discussion, a sorted VN degree combination is assumed. That is, we combine

the SC-side repetition degrees and the PC-side repetition degrees exactly as indicated by

(7.58). A variable node with the lowest SC-side repetition degree is assigned with the

lowest PC-side repetition degree, and a variable node with the highest SC-side repetition

degree is assigned with the highest PC-side repetition degree. This can easily be achieved

by sorting the degree alignment of variable nodes in a graph. For example, one sorts the

SC-side repetition degrees into a non-descending order and so for the PC-side repetition

7.4. LOW-DENSITY HYBRID-CHECK CODE 169

0 0.2 0.4 0.6 0.8 1
I
A,SC

 I
E,PC

0.0

0.2

0.4

0.6

0.8

1.0

I E
,S

C
 I

A
,P

C

PC, irregular
SC, regular, N = 8
Decoding trajectory
VN + SC
VN + PC

Decoding gets stuck

Figure 7.31: Rr = 1/2, Rp = 1/2, N = 8, Eb/N0 = 8 dB, unsorted degree combination.

degrees. Although there are uncountable possibilities for doing the degree combination,

such a sorted scheme is in fact the most efficient one in most cases. The underlying

idea is that to let high-degree variable nodes open the tunnel in the left region and low-

degree variable nodes offer a moderate coding gain. One may wonder what happens if

we perform an unsorted degree combination. Given the same degree distribution as in

(7.58), an unsorted (randomized) degree combination gives an EXIT chart as in Fig. 7.31.

Clearly, the code design is no longer valid in this case, as a decoding convergence is no

longer achievable. In some special situations, it makes sense to apply a degree combination

that is sorted not exactly in a non-descending order. However, for the sake of clearness,

we will exclusively assume a sorted degree combination that always combine high SC-side

repetition degrees with high PC-side repetition degrees.

Since the Shannon limit for 2 bits/symbol is at about 5.8 dB, the code design given

in (7.58) is still not optimal, at least theoretically. Revisiting Fig. 7.30(a), we find that

there is too much surplus between the SC curve and the VN-plus-PC curve in the leftmost

region. This is a typical problem for repetition coding, as it tends to be over-qualified in

the early stage of iterative decoding. Nevertheless, as the area above the decoder curve is

constant given a fixed coding rate, an unnecessary surplus in one region must leads to a

tight or closed tunnel in some other region. To reduce the surplus in the leftmost region,

a straightforward solution is to reduce the amount of SC-side repetitions and meanwhile

increase the amount of PC-side repetitions. Let us target at a decoding threshold of

Eb/N0 = 7 dB and consider the following degree distributions:

λs(D) = 0.866D1 + 0.054D2 + 0.020D3 + 0.020D4 + 0.020D5 + 0.020D6

λp(D) = 0.840D2 + 0.020D5 + 0.020D6 + 0.020D7 + 0.020D9 + 0.020D10

+0.020D14 + 0.020D20 + 0.020D45

ηp(D) = 0.100D4 + 0.500D5 + 0.360D6 + 0.020D17 + 0.020D30 (7.59)

170 CHAPTER 7. CHANNEL CODING FOR SUPERPOSITION MAPPING

with Rr = 3/4 and Rp = 1/3. Fig. 7.32(a) gives the corresponding EXIT chart, which

shows that this is a valid code design for a decoding threshold of 7 dB. Compared to

Fig. 7.30(a), the decoding trajectory becomes more dense, which means that it gets more

difficult for the decoder to converge with a finite block length. Nevertheless, there is still

some surplus in the leftmost region. Hence, as long as the SC curve starts from a position

with a non-trivial height, a repetition code introduces a certain extent of suboptimality.

Certainly, for SM-EPA with a very large N , this suboptimality becomes negligible. At

this point, a natural question would be what will be the achievable decoding threshold if

we increase the repetition coding rate further. The following degree distributions:

λs(D) = 0.900D1 + 0.100D2

λp(D) = 0.590D2 + 0.110D3 + 0.130D4 + 0.050D5 + 0.020D7

+0.050D11 + 0.010D12 + 0.020D16 + 0.010D21 + 0.010D73

ηp(D) = 0.150D3 + 0.330D4 + 0.400D5 + 0.020D8 + 0.040D14

+0.040D15 + 0.010D40 + 0.010D51 (7.60)

with Rr = 0.909 and Rp = 0.275 achieves a decoding threshold of 6 dB, which is only

0.2 dB away from the Shannon limit. The resulting EXIT chart is given in Fig. 7.32(b).

It is reasonable that the decoding trajectory becomes extremely dense, as the channel

capacity is only achievable given an infinite block length and an infinite number of itera-

tions. Typically, for a rate below the capacity, the valid code designs will not be unique.

By setting the SC-side repetition degrees to be all 1’s, we find another code design that

achieves a decoding threshold of 6 dB as well. Fig. 7.32(c) gives the EXIT chart for the

degree distributions:

λs(D) = 1.000D1

λp(D) = 0.600D2 + 0.080D3 + 0.130D4 + 0.080D5 + 0.010D6

+0.050D11 + 0.010D12 + 0.020D16 + 0.010D17 + 0.010D92

ηp(D) = 0.160D3 + 0.320D4 + 0.400D5 + 0.020D8 + 0.040D14

+0.040D15 + 0.010D40 + 0.010D52 (7.61)

with Rr = 1 and Rp = 1/4. Checking Fig. 7.32(c) carefully, one finds that for some regions

the decoding trajectory is still not extremely dense. This marginal remaining surplus is

from the 0.2 dB distance to the Shannon limit.

According to the above code designs, superposition mapping with equal power alloca-

tion is indeed capacity-achieving. Nevertheless, given the code designs corresponding to

Fig. 7.32(b) and Fig. 7.32(c), the promised decoding threshold at 6 dB is only achievable

given an infinite block length and a cycle-free graph. We will provide BER performance

analysis for these code designs in Section 7.4.4, in conjunction with interleaver design.

7.4. LOW-DENSITY HYBRID-CHECK CODE 171

0 0.2 0.4 0.6 0.8 1
I
A,SC

 I
E,PC

0.0

0.2

0.4

0.6

0.8

1.0

I E
,S

C
 I

A
,P

C

PC, irregular
SC, regular, N = 8
Decoding trajectory
VN + SC
VN + PCStill some surplus

(a) Rr = 3/4, Rp = 1/3, Eb/N0 = 7 dB.

0 0.2 0.4 0.6 0.8 1
I
A,SC

 I
E,PC

0.0

0.2

0.4

0.6

0.8

1.0

I E
,S

C
 I

A
,P

C

PC, irregular
SC, regular, N = 8
Decoding trajectory
VN + SC
VN + PC

(b) Rr = 0.909, Rp = 0.275 , Eb/N0 = 6 dB.

0 0.2 0.4 0.6 0.8 1
I
A,SC

 I
E,PC

0.0

0.2

0.4

0.6

0.8

1.0

I E
,S

C
 I

A
,P

C

PC, irregular
SC, regular, N = 8
Decoding trajectory
VN + SC
VN + PC

(c) Rr = 1, Rp = 1/4, Eb/N0 = 6 dB.

Figure 7.32: LDHC-EPA, R = 1/4, N = 8, sorted degree combination.

172 CHAPTER 7. CHANNEL CODING FOR SUPERPOSITION MAPPING

LDSC

Matrix

LDPC

Matrix

b

(a) Separate construction.

LDSC

Matrix

LDPC

Matrix

b

(b) Block-wise construction.

LDHC

Matrix
b

(c) All-in-one construction.

Figure 7.33: Possible ways for constructing an LDHC matrix.

7.4.4 Possible Ways for Interleaver Design

Given an infinite block length and a cycle-free graph, the achievable performance is de-

termined by the degree distribution of variable nodes. On the other hand, the practically

achievable performance is significantly influenced by the interleaver pattern, given a finite

block length and a non-cycle-free graph. Hence, after one obtains an optimized degree

distribution for LDHC coding, the second step for code optimization is to design an in-

terleaver pattern that can approach as closely as possible to the performance promised by

the degree distribution. We have provided in Section 6.4.2 an extensive discussion on the

topic of interleaver design for LDSC code optimization. The interleaver design methods

introduced therein are easily applicable for LDHC codes as well. Nevertheless, since an

LDHC matrix is basically a vertical concatenation of an LDSC matrix and an LDPC

matrix, there are in fact more options available for the matrix construction. As shown in

Fig. 7.33, there are generally three possible approaches to construct the incidence matrix

of an LDHC code. The first approach is to construct the constituent LDSC matrix and

the constituent LDPC matrix separately, cf. Fig. 7.33(a). The second approach is to

construct the LDHC matrix block-wise, cf. Fig. 7.33(b). The third approach is to con-

struct the LDHC matrix all-in-once, cf. Fig. 7.33(c). By the first approach, hybrid-type

of cycles between summation checks and parity checks are completely ignored. Though

this approach is by no means optimal, it is in fact the common practice in state-of-the-art

systems applying a serial concatenation of repetition code and parity-check code. By the

second approach, hybrid-type of cycles can be taken into account in the interleaver design.

Besides, one gets an option for designing which sub-matrix first. Certainly, the sub-matrix

that gets constructed first will have a better graph quality than the sub-matrix that gets

constructed second, as the freedom in a graph steadily drops with the construction pro-

cess. Moreover, one may apply different methods for the two sub-matrices, e.g., the PEG

algorithm for the LDSC matrix and the RGB algorithm for the LDPC matrix. By the

third approach, both constituent matrices are constructed simultaneously and jointly.

7.4. LOW-DENSITY HYBRID-CHECK CODE 173

0 0.2 0.4 0.6 0.8 1
I
A,DEM

 I
E,DEC

0.0

0.2

0.4

0.6

0.8

1.0
I E

,D
E

M
 I

A
,D

E
C

SC, N = 8, E
b
/N

0
 = 8 dB

VN + PC, PEG with MCCS
VN + PC, RGB with MCCS

(a) EXIT chart, 20 LDPC-local iterations.

4 5 6 7 8 9 10 11 12
E

b
/N

0
 in dB

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

Shannon limit
PEG with MCCS
RGB with MCCS
PEG with MCFS
RGB with MCFS

(b) BER vs. Eb/N0.

Figure 7.34: LDHC-EPA, Rr = 1/2, Rp = 1/2, K = 40000, VBS, 100 global iterations.

Challenges from Irregular Parity Check Degree Distributions

To check the influence of interleaving on LDHC decoding, we consider the code design in

(7.58) as an illustrative example. For the sake of clearness, let us assume separate matrix

construction and fix the interleaver design method for the LDSC sub-matrix as the PEG

algorithm. Recall that in Fig. 7.17(b) a conventional EXIT chart has been provided for

the same code design. For obtaining this EXIT chart, we have set a testing interface in

between the SC ensemble and the VN ensemble. Correspondingly, the resulting EXIT

chart is independent of the SC-side interleaver but dependent of the PC-side interleaver.

Although such an EXIT chart analysis is inefficient for designing capacity-achieving LDHC

codes, it is useful for checking the influence of interleaving on the practically achievable

performance. Well-known in the community of LDPC coding, a narrow and concentrated

parity check degree distribution often provides the best performance for a moderate block

length. On the other hand, the code design in (7.58) adopts a wide and dispersed parity

check degree distribution. Revisiting (7.59), (7.60), and (7.61), one finds that it is in fact

typical for code designs optimized for SM-EPA with N = 8. As a matter of fact, an

LDPC code design with a wide VN degree distribution and a wide PC degree distribution

presents a big challenge for the interleaver design. In Fig. 7.17(b) we have applied the RGB

algorithm for constructing the LDPC sub-matrix. The reason for doing so can be found

in Fig. 7.34, which demonstrates the noticeable difference between a PEG-constructed

LDPC sub-matrix and an RGB-constructed LDPC sub-matrix. One observes that using

the PEG algorithm for the LDPC sub-matrix leads to a convergence tunnel closed in the

middle region and consequently an almost flat BER curve. In contrast, by using the RGB

algorithm for the LDPC sub-matrix, the promised decoding threshold at 8 dB is achieved,

albeit with a non-trivial error floor. For the sake of compactness, we delay the discussion

on the error floor to the part treating with short cycles.

174 CHAPTER 7. CHANNEL CODING FOR SUPERPOSITION MAPPING

Since popular LDPC code designs all put the irregularity mainly in the VN degree distri-

bution, the PEG algorithm is indeed not devised for a code design as in (7.58). Nonethe-

less, for the simulations in Fig. 7.34(b) the LDSC sub-matrix has been constructed via

the PEG algorithm. This causes no problem since the code design under current con-

sideration applies a regular summation check degree distribution. The large performance

difference between a PEG-constructed LDPC sub-matrix and an RGB-constructed LDPC

sub-matrix in fact comes from the different parity check EMD distributions. Given a wide

VN degree distribution and a wide PC degree distribution, the PEG algorithm tends to

produce a severely dispersed parity check EMD distribution, as illustrated in Fig. 7.35(a).

Moreover, it tends to fill up the sockets of low-degree parity checks by the edges from

low-degree variable nodes. To see this, let us define the normalized EMD of a check node

as the EMD of this check divided by the degree of this check. Averaging the normal-

ized EMD over all parity checks with the same degree, we obtain a parity check EMD

spectrum as in Fig. 7.35(b). One observes that the average normalized EMD is strongly

ascending w.r.t. the parity check degree, which means that the majority of low-degree

variable nodes are connected to the low-degree parity checks and vice versa. However, for

LDHC-EPA with a large N , only those low-degree parity checks can produce meaning-

ful extrinsic messages in the early decoding stage. In case that low-degree parity checks

are fully connected with low-degree variable nodes, these messages cannot be effectively

strengthened and disseminated over the graph. This explains the flat BER curve result-

ing from a PEG-constructed LDPC sub-matrix, since the decoding process gets stuck

in a rather early stage. Note that in Fig. 7.34(a) the leftmost section of the tunnel is

opened by the repetition decoder instead of the LDPC decoder. In contrast, the parity

check EMD distribution resulting from an RGB-constructed LDPC sub-matrix is wide

but concentrated, cf. Fig. 7.35(c). Besides, the average normalized EMD is only slightly

ascending w.r.t. the parity check degree, cf. Fig. 7.35(d). This means that the edges from

low-degree variable nodes and the edges from high-degree variable nodes are more or less

evenly spread over the graph. Consequently, a better performance has been achieved.

In reality, a wide check node degree distribution brings another problem. It is relatively

difficult to attain a successful graph construction that strictly fulfills the designated check

node degree distribution. The reason is that the minimum-current-connectivity-selection

(MCCS) treatment can not properly handle graph construction given a wide and dispersed

check node degree distribution. With the MCCS treatment, both the PEG algorithm and

the RGB algorithm tend to first fill up all the sockets from the low-degree check nodes

and leave a situation that a big amount of remaining edges have to be plugged to a

small amount of high-degree check nodes. Since one cannot plug multiple edges from a

single variable node to the same check node3, the graph construction process often fails in

3Doing so will create length-2 cycles, which is extremely harmful for the performance.

7.4. LOW-DENSITY HYBRID-CHECK CODE 175

0 100 200 300 400
Parity Check EMD

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ili

st
ic

 D
is

tr
ib

ut
io

n

Severely dispersed check EMD’s

(a) PEG with MCCS.

0 3 6 9 12 15 18 21 24 27 30
Parity Check Degree

0

3

6

9

12

15

A
ve

ra
ge

 N
or

m
al

iz
ed

 E
M

D

Strongly ascending

(b) PEG with MCCS.

0 100 200 300 400
Parity Check EMD

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ili

st
ic

 D
is

tr
ib

ut
io

n

Wide as well, but much more concentrated

(c) RGB with MCCS.

0 3 6 9 12 15 18 21 24 27 30
Parity Check Degree

0

3

6

9

12

15

A
ve

ra
ge

 N
or

m
al

iz
ed

 E
M

D

Slightly ascending

(d) RGB with MCCS.

0 100 200 300 400
Parity Check EMD

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ili

st
ic

 D
is

tr
ib

ut
io

n

Narrower, but still dispersed

(e) PEG with MCFS.

0 3 6 9 12 15 18 21 24 27 30
Parity Check Degree

0

3

6

9

12

15

A
ve

ra
ge

 N
or

m
al

iz
ed

 E
M

D

Still ascending

(f) PEG with MCFS.

0 100 200 300 400
Parity Check EMD

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ili

st
ic

 D
is

tr
ib

ut
io

n

Similar to the case of RGB with MCCS

(g) RGB with MCFS.

0 3 6 9 12 15 18 21 24 27 30
Parity Check Degree

0

3

6

9

12

15

A
ve

ra
ge

 N
or

m
al

iz
ed

 E
M

D

Uniform and random

(h) RGB with MCFS.

Figure 7.35: Parity check EMD distributions for the LDPC sub-matrix, Rp = 1/2.

176 CHAPTER 7. CHANNEL CODING FOR SUPERPOSITION MAPPING

the late stage. To solve this practical problem, we propose a minimum-current-fullness-

selection (MCFS) treatment for the PEG algorithm and the RGB algorithm. We define

the current fullness of a check node as

current fullness of a check node
.
=

the amount of currently connected edges

designated degree of the check node
. (7.62)

During an edge-growth procedure, when there are multiple check nodes fulfilling the cycle-

length requirement for the current variable node, we connect the new edge from the current

variable node to the check node candidate that has the minimum current fullness among

the others. Adopting the MCFS treatment, the success rate of the PEG algorithm and

the RGB algorithm can be significantly improved, for code designs that apply a wide and

dispersed check node degree distribution. Note that the MCFS treatment is equivalent

to the MCCS treatment given a regular check node distribution. The advantage of the

MCFS treatment lies in the fact that it treats check nodes with different designated

degrees in a fair way. For example, given a degree-6 check node that has 4 currently

connected edges and a degree-20 check node that has 5 currently connected edges, the

MCCS treatment will select the degree-6 check node for linking the new edge, while the

MCFS treatment will select the degree-20 check node. Clearly, the best choice is to take

the degree-20 check node as it has much more free sockets available w.r.t. the degree-6

check node. Applying the MCFS treatment also brings changes to the check node EMD

distribution, as demonstrated in Fig. 7.35(e) to Fig. 7.35(h). The situation is improved for

both the PEG algorithm and the RGB algorithm. Note that an interleaver-independent

EXIT chart analysis implicitly assumes an identical normalized EMD for all check nodes.

Nevertheless, the check node EMD distribution is still dispersed, given the PEG algorithm.

Hence, a good decoding convergence is still not achievable, cf. Fig. 7.34(b). Given the

RGB algorithm, the MCFS treatment brings a noticeable performance improvement in the

low-SNR region but not in the high-SNR region. The reason is that the edges from certain

variable node groups are less congested in the low-degree check nodes but more congested

in the high-degree check nodes. Afterall, the non-trivial error floor in Fig. 7.34(b) is in

fact closely related to those short cycles among summation checks and parity checks.

Cycles in an LDHC Graph

The graph for an LDHC code contains three different types of cycles, as depicted in

Fig. 7.36. The first type of cycles contain only summation checks, cf. Fig. 7.36(a).

From the study in Chapter 6, it is clear that short cycles of this type should be avoided

by using a proper interleaver pattern, as they are responsible for the decoding problem

in the early stage and consequently responsible for burst errors. The second type of

cycles contain only parity checks, cf. Fig. 7.36(b). It is well-known in the community

7.4. LOW-DENSITY HYBRID-CHECK CODE 177

+

+

+

+

+
+

+

++

+

+

+

+ +

b

b

bb

(a) A cycle with pure SC’s.

+

+

+

+

+

+
+

+

+
+

b

b

(b) A cycle with pure PC’s.

+

+

+

+

10

0 1

b

b

(c) A cycle with SC’s and PC’s.

Figure 7.36: Three types of cycles in the factor graph for an LDHC code.

of LDPC coding that short cycles of this type should be avoided, because such cycles

degrade the minimum code word distance and sequentially degrade the achievable power

efficiency. The third type of cycles contain summation checks as well as parity checks, cf.

Fig. 7.36(c). Now, the question is if it is necessary to eliminate short cycles of this type as

well. The answer is definitely positive. The three cycles in Fig. 7.36 in fact gives a good

reason. In an LDHC graph, a stopping set can be formed if and only if all check nodes

in a certain set are connected to the variable nodes of this set at least twice. Therefore,

the cycle in Fig. 7.36(a) does not form a stopping set, due to the extrinsic parity checks

connected to the variable nodes of this cycle. Similarly, the cycle in Fig. 7.36(b) does

not form a stopping set as well, because of the extrinsic summation checks connected to

the variable nodes of this cycle. However, the cycle in Fig. 7.36(c) does form a stopping

set, in case of equal power allocation. Suppose that in a certain iteration, all the variable

nodes connected to the parity checks of this cycle have been correctly estimated, except

those variable nodes belonging to this cycle, and all the variable nodes connected to the

summation checks of this cycle have been correctly estimated, except those variable nodes

belonging to this cycle. In this case, ambiguity-free decisions for the variable nodes within

this cycle are still not possible, if their values are as marked in Fig. 7.36(c). Note that a

parity check does not distinguish between the bit pairs: (0, 0) and (1, 1). As a matter of

fact, for LDHC decoding the third type of cycles are primarily responsible for the error

floor, if it exists. For an LDHC code that contains a vast amount of variable nodes that

have SC-side repetition degree 1 and PC-side repetition degree 1, this type of cycles are

critical for the performance. The numerical results in Section 7.5 will clearly demonstrate

this phenomenon, when we try to approach the capacity of the noiseless BAC.

To see the necessity of eliminating short cycles of the type given by Fig. 7.36(c), let us

still consider the code design in (7.58) as an example. For an easy reference, now we

define a naming convention for the three types of matrix construction methods shown

in Fig. 7.33. By constructing the LDSC sub-matrix via the PEG algorithm and the

LDPC sub-matrix via the RGB algorithm in a separate way, we refer to the corresponding

178 CHAPTER 7. CHANNEL CODING FOR SUPERPOSITION MAPPING

4 5 6 7 8 9 10 11 12
E

b
/N

0
 in dB

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

Shannon limit
PEG & RGB
PEG + RGB

(a) Separate design vs. block-wise design.

4 5 6 7 8 9 10 11 12
E

b
/N

0
 in dB

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

Shannon limit
RGB + RGB
RGB

(b) Block-wise design vs. all-in-one design.

Figure 7.37: LDHC-EPA, Rr = 1/2, Rp = 1/2, K = 40000, VBS, 100 global iterations.

interleaver design method as “PEG & RGB”. By constructing the LDSC sub-matrix via

the PEG algorithm and the LDPC sub-matrix via the RGB algorithm in a block-wise

fashion, we refer to the corresponding interleaver design method as “PEG + RGB”.

Finally, in case that the whole LDHC matrix is constructed all-in-once via the RGB

algorithm, we refer to the corresponding interleaver design method simply as “RGB”.

Fig. 7.37(a) checks the performance difference between a separately constructed interleaver

pair and a block-wise constructed interleaver pair. It can be seen that by removing those

short cycles containing summation checks as well as parity checks a noticeable performance

improvement is achieved. Particularly, no error floor has been observed above 10−7. This

tells that the error floor from a separate interleaver design is mainly caused by stopping

sets similar to that in Fig. 7.36(c). Besides, as the BER performance also becomes better

in the low-SNR region, removing cycles among summation checks and parity checks also

improves the overall code distance spectrum. As a block-wise interleaver design is clearly

beneficial, one may expect that an all-in-one interleaver design will further improve the

performance. Nevertheless, the true situation is in fact the opposite, as demonstrated by

Fig. 7.37(b). In order to have a fair comparison, the block-wise interleaver design applies

the RGB algorithm for both the LDSC sub-matrix and the LDPC sub-matrix. One

observes that an all-in-one interleaver design brings some penalty in the low-SNR region

as well as in the high-SNR region. The reason can be found in (7.58). On average, the SC-

side repetition degrees are smaller than the PC-side repetition degrees. As a result, short

cycles in the LDSC sub-matrix are more critical for the performance. By constructing

the LDSC sub-matrix first and the LDPC sub-matrix second, one gives a higher priority

to the elimination of short cycles in the LDSC sub-matrix, and consequently achieves

a better performance. Furthermore, a block-wise interleaver design gives an additional

flexibility in combining the PEG algorithm and the RGB algorithm. Carefully checking

Fig. 7.37(a) and Fig. 7.37(b), one finds that a “PEG + RGB” combination gives a better

7.4. LOW-DENSITY HYBRID-CHECK CODE 179

4 5 6 7 8 9 10 11 12
E

b
/N

0
 in dB

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e Shannon limit

Rr = 1/2, Rp = 1/2
Rr = 3/4, Rp = 1/3
Rr = 0.909, Rp = 0.275
Rr = 1, Rp = 1/4

2.2 dB2.2 dB

(a) RGB + RGB.

4 5 6 7 8 9 10 11 12
E

b
/N

0
 in dB

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e Shannon limit

PEG + RGB, MCCS
RGB + RGB, MCCS
PEG + RGB, MCFS
RGB + RGB, MCFS

(b) Rr = 3/4, Rp = 1/3.

Figure 7.38: LDHC-EPA, R = 1/4, K ≈ 40000, VBS, 100 global iterations.

performance than a “RGB + RGB” combination, in the high-SNR region. This is because

a PEG-designed interleaver typically leads to a smaller residual error probability. In most

cases, a block-wise interleaver design with the LDSC sub-matrix constructed first offers

the best performance for a practical block length. For the sake of easy elaboration, we

implicitly assume such a matrix construction order in the remaining part of this thesis.

Refining the Code Design for a Practical Block Length

The block-wise interleaver design in Fig. 7.37(a) achieves a decoding threshold even lower

than 8 dB. However, the performance in the high-SNR region is not as good as promised

by the corresponding code design. Certainly, one may apply an even more sophisticated

interleaver design method to improve this situation by trading off the BER performance

in the low-SNR region, e.g., by constraining the amount of low-degree variable nodes

connected to each check node. Nevertheless, a more systematic solution is to adjust the

code design, taking into account the imperfectness of a practical system with a finite block

length. In general, a theoretically optimal code design does not necessarily lead to the

best practically achievable performance. Moreover, the situation is often the opposite.

As a good example, let us check the practically achievable performance of the four code

designs provided in Section 7.4.3 for LDHC-EPA with N = 8. Fig. 7.38(a) provides the

corresponding simulation results. One observes that the 7 dB code design given in (7.59)

offers the best performance, while the 6 dB optimal code design given in (7.61) offers the

worst performance. Furthermore, the 6 dB code design given in (7.60) enables a decoding

convergence but leads to a performance worse than that given by (7.59) as well as (7.58).

By comparing the coding rates corresponding to these four code designs, one recognizes

that repetition code is important for achieving a good performance given a practical block

180 CHAPTER 7. CHANNEL CODING FOR SUPERPOSITION MAPPING

0 0.2 0.4 0.6 0.8 1
I
A,SC

 I
E,PC

0.0

0.2

0.4

0.6

0.8

1.0

I E
,S

C
 I

A
,P

C

PC, irregular
SC, regular, N = 8
Decoding trajectory
VN + SC
VN + PC

(a) EXIT chart.

4 5 6 7 8 9 10 11 12
E

b
/N

0
 in dB

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

Shannon limit
Old design
New design

(b) BER vs. Eb/N0, RGB + RGB.

Figure 7.39: LDHC-EPA, Rr = 3/4, Rp = 1/3, K = 40000, VBS, 100 global iterations.

length. Note that the code design in (7.60) is very similar to that in (7.61), except in using

a tiny amount of SC-side repetitions. Nevertheless, this tiny amount of SC-side repetitions

in fact bring a huge difference for the practically achievable performance. As a side topic,

Fig. 7.38(b) checks the advantage of the MCFS treatment over the MCCS treatment for

the 7 dB code design. One sees that the MCFS treatment generally outperforms the

MCCS treatment. Since the 7 dB code design offers the best performance so far, we try

to derive from it a new code design that offers a better practically achievable performance.

Fig. 7.39(a) gives the EXIT chart for the following refined code design:

λs(D) = 0.866D1 + 0.054D2 + 0.020D3 + 0.020D4 + 0.020D5 + 0.020D6

λp(D) = 0.840D2 + 0.020D5 + 0.020D6 + 0.020D7 + 0.020D9

+0.040D10 + 0.020D17 + 0.020D52 (7.63)

ηp(D) = 0.150D4 + 0.500D5 + 0.310D6 + 0.020D17 + 0.020D35 ,

with Rr = 3/4 and Rp = 1/3. Compared to Fig. 7.32(a), we utilize the surplus in the

right section of the convergence tunnel to widen the left section of the convergence tunnel.

This is achieved by enlarging the irregularity both in the VN degree distribution and the

PC degree distribution. The BER results in Fig. 7.39(b) shows that this new code design

achieves a power gain of about 0.5 dB w.r.t. the old one. The above observation reveals

that a sufficient surplus is necessary in the left section of the convergence tunnel in order

to enable a successful iterative decoding process. As a matter of fact, such a code refining

approach is effective not only for coded SM transmission over the AWGN channel but also

for coded SM transmission over the noiseless channel, to be shown by various examples in

Section 7.5. After all, a theoretically optimal code design tends to squeeze out all the area

between an EXIT curve pair, while a practically optimal code design needs to guarantee

an appropriate surplus area in an appropriate region.

7.4. LOW-DENSITY HYBRID-CHECK CODE 181

4 5 6 7 8 9 10 11 12
E

b
/N

0
 in dB

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

Shannon limit
PEG + RGB, VBS
PEG + RGB, NS

Figure 7.40: LDHC-EPA, Rr = 1/2, Rp = 1/2, K = 40000, 100 global iterations.

7.4.5 Is Scrambling Still Necessary?

Revealed by the study in Chapter 6, the effects of scrambling on repetition-coded SM-EPA

are avoiding the trap of message oscillation and improving the separability of directly or

indirectly overlapped repetition code words. Given LDHC-EPA, it is unclear if scrambling

is still necessary, as each code bit is not only protected by SC-side repetitions but also

PC-side repetitions. Nevertheless, a single simulation is sufficient to clarify this issue. In

Fig. 7.40, the effect of scrambling for LDHC-EPA is clearly demonstrated. The adopted

code design is from (7.58). With no scrambling (NS), the decoder can not converge at

all. In contrast, given the same interleaver, the decoder converges well with variable-node

based scrambling (VBS). The reason for causing this dramatic performance difference is

evidently the periodic message oscillations within the LDSC sub-graph. Hence, scrambling

is still necessary, even when the repetition encoder has been concatenated with an LDPC

encoder. Certainly, in case that the SC-side repetition degrees are all 1, i.e., the LDHC

encoder is a pure LDPC encoder, scrambling is no longer necessary. In such scenarios,

the trap of message oscillation does not exist and it is not possible to use scrambling to

improve the separability of superimposed chip sequences. Finally, it is also not necessary

to apply cycle-based scrambling (CBS) for LDHC-EPA. As indicated by Fig. 7.36, given

that the PC-side repetition degrees are all larger than 0, a stopping set can not be formed

by pure summation checks. Therefore, the function of CBS in eliminating residual decision

errors also vanishes. Easy to imagine, the situation for LDHC-GPA is similar to that for

LDHC-EPA, given that the group size is larger than 1. Besides, it is also easy to imagine

that scrambling is not necessary for LDHC-UPA. For the sake of compact elaboration,

we assume VBS for all code designs that have SC-side repetition degrees larger than 1,

and we assume no scrambling for all code designs that have SC-side repetition degrees

all equal to 1, in the remaining part of this thesis. Further discussions on the effect of

scrambling will be excluded.

182 CHAPTER 7. CHANNEL CODING FOR SUPERPOSITION MAPPING

7.5 Code Design Examples for the Noiseless BAC

For SM-EPA, the primary task of channel coding is to enable a perfect data separation,

since superimposed chips with identical magnitudes severely interfere with each other. As

the extent of interference raises with the bit load N , the difficulty in enabling a perfect

data separation also increases with N . To highlight this aspect, we provide in this section

various code design examples for achieving high rates from SM-EPA transmission over

the noiseless channel. Equivalently, this is to design coding schemes that can work closely

to the capacity of the noiseless binary adder channel (BAC). Power efficiency will not

be concerned within this discussion. Nevertheless, for the sake of easy visualization, all

the BER performances will still be tested in the BAC with an additive white Gaussian

noise. According to Section 7.4.4, an LDPC code design applying a wide VN degree

distribution as well as a wide PC degree distribution presents a big challenge for the

interleaver design given a practical block length. Hence, we will stay with regular PC

degree distributions throughout this section. Such a code design constraint significantly

relaxes the requirement on the interleaver quality, and meanwhile causes no noticeable

penalty in the achievable bandwidth efficiency for the noiseless BAC, as long as a properly

configured irregular repetition code is applied when necessary.

7.5.1 The Case of N = 2

As shown in Section 7.3.1, the EXIT curve of SM-EPA demapping with N = 2 starts from

a relatively high position. Therefore, a pure parity-check code should provide a desirable

performance. According to Tab. 3.3, the symbol entropy of SM-EPA with N = 2 is

1.5 bits/symbol. Leaving some room for practical imperfectness, we target at a bandwidth

efficiency of 1.45 bits/symbol, which requests the coding rate to be R = 1.45/2 = 29/40.

After some fine tuning, we identify the following degree distribution set:

λs(D) = 1.0D1

λp(D) = 0.69D1 + 0.24D2 + 0.04D3 + 0.01D6 + 0.01D10 + 0.01D20 (7.64)

ηp(D) = 1.0D6 ,

which leads to Rr = 1 and Rp = 29/40. Since the SC-side repetition degrees are all 1,

we may consider a two-part (2-P) EXIT chart analysis as illustrated in Fig. 7.24(a). This

helps us to survey the influence of the VN degree alignment on the decoding performance,

which has been briefly introduced in Section 7.4.2. Fig. 7.41(a) provides a 2-P EXIT chart

for the above degree distribution set given a sorted VN degree alignment, i.e., the variable

nodes are aligned in the graph such that the degrees are non-descending, cf. Fig. 7.22(b).

7.5. CODE DESIGN EXAMPLES FOR THE NOISELESS BAC 183

0 0.2 0.4 0.6 0.8 1
I
A,VN+SC

 I
E,PC

0.0

0.2

0.4

0.6

0.8

1.0
I E

,V
N

+
SC

 I
A

,P
C

PC, regular, D = 6
VN + SC, noiseless

(a) 2-P EXIT chart, sorted VN alignment.

0 0.2 0.4 0.6 0.8 1
I
A,VN+SC

 I
E,PC

0.0

0.2

0.4

0.6

0.8

1.0

I E
,V

N
+

SC
 I

A
,P

C

PC, regular, D = 6
VN + SC, noiseless

Tunnel
beco

mes
narr

ower

Tunnel becomes wider

(b) 2-P EXIT chart, unsorted VN alignment.

0 0.2 0.4 0.6 0.8 1
I
A,SC

 I
E,PC

0.0

0.2

0.4

0.6

0.8

1.0

I E
,S

C
 I

A
,P

C

PC, regular, D = 6
SC, regular, N = 2
Convergence trajectory
VN + SC
VN + PC

(c) 3-P EXIT chart, independent of VN alignment.

0 2 4 6 8 10 12 14 16 18 20
E

b
/N

0
 in dB

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

SEP, sorted VN alignment
SEP, unsorted VN alignment
BLK, sorted VN alignment
BLK, unsorted VN alignment

(d) BER vs. Eb/N0.

Figure 7.41: LDPC-coded SM-EPA, R = 29/40, N = 2, K = 40000, PEG, 100 iterations.

In this case, high-degree VN’s are all connected to neighboring summation checks. The

resulting convergence tunnel is wide in the left region but narrow in the right region. Now,

we apply an unsorted VN degree alignment such that high-degree VN’s get evenly spread

over summation checks, cf. Fig. 7.23. The corresponding 2-P EXIT chart in Fig. 7.41(b)

shows that this achieves a balance between the left and right region of the convergence

tunnel. On the other hand, a three-part (3-P) EXIT chart resulting from the emulation

technique proposed in Section 7.4.3 is independent of the VN degree alignment. Virtually,

it assumes that all summation checks are linked with an equal amount of VN’s of a certain

degree. Comparing Fig. 7.41(c) and 7.41(b), one finds that the emulated VN-plus-SC

EXIT curve is approximately the same as the one from a 2-P EXIT chart assuming an

unsorted VN degree alignment. In the community of LDPC-coded modulation, the issue

of VN degree alignment is commonly ignored, mainly because of the weak interaction

between a bijective signal demapper and a channel decoder. For LDPC-coded SM-EPA,

however, the VN degree alignment makes a big difference in the decoding performance.

Fig. 7.41(a) and 7.41(b) show that a sorted VN degree alignment is beneficial for the early

decoding stage while a unsorted VN degree alignment is beneficial for the late decoding

184 CHAPTER 7. CHANNEL CODING FOR SUPERPOSITION MAPPING

stage. An early-stage decoding problem typically leads to burst errors, while a late-stage

decoding problem usually leads to residual errors. For this reason, a sorted VN degree

alignment is better for the high-BER region, while an unsorted VN degree alignment is

better for the low-BER region, as shown in Fig. 7.41(d). To have a fair comparison, we

have fixed the matrix construction method to be PEG for all simulations in Fig. 7.41(d).

Given a separately (SEP) designed interleaver, i.e., an LDPC sub-matrix constructed

independently of the LDSC sub-matrix, the error floor level is non-trivial for both VN

degree alignments. The main causes for this error floor are cycles containing hybrid checks

as in Fig. 7.36(c). Note that the VN degree distribution in (7.64) consists of a dominating

fraction of degree-2 VN’s, i.e., in the corresponding graph the majority of variable nodes

are connected with only a single parity check. For those variable nodes that have a PC-

side repetition degree of 1, short cycles similar to that in Fig. 7.36(c) actually form small

stopping sets, and consequently lead to a non-trivial error floor. Certainly, one can easily

reduce the error floor level by means of a block-wise (BLK) interleaver design. As for

the current case, the LDSC sub-matrix does not really need to be designed. One simply

constructs a binary Toeplitz matrix as in Fig. 7.22(c), such that no extra interleaving is

necessary after LDPC encoding. Afterwards, the LDPC sub-matrix is designed in a way

that short cycles between parity checks and summation checks are also eliminated. Doing

so brings a considerable enhancement. For a sorted VN degree alignment, residual errors

are largely reduced. For an unsorted VN degree alignment, no error floor is observed.

In the currently available literature, the highest rate achieved for a two-user binary adder

channel is 1.3178 bits/symbol, via a specifically designed uniquely decodable code [103].

As explained in Section 7.1.1, a uniquely decodable code cannot reach the Shannon limit

due to strictly stipulating a zero error probability. An interesting study on this issue can

be found in [107]. By pursuing a small error probability instead of a zero error probability,

an LDPC code can achieve a significantly higher rate than a uniquely decodable code, as

shown in the previous test. Nevertheless, in the available literature, the relevant studies

are exclusively focused on rates 6 1 bits/symbol [108, 109]. The first reason for such a

situation is that researchers typically hesitate to use degree-1 variable nodes in an LDPC

code, as this leads to a zero coding gain. However, for the noiseless BAC, it is in fact

theoretically undesirable to use a code which delivers a non-zero coding gain. Since the

summation check EXIT curve always ends at (1, 1) given a noiseless channel, a decoder

EXIT curve ending at (IE = 1, IA < 1) is strictly non-optimal. The second reason is that

the harmfulness of short cycles formed between parity checks and summation checks was

unrecognized. Whenever an error floor is observed, researchers merely spend effort in

improving the PC-side interleaver but not the overall interleaving scheme which includes

summation checks. For the code design in (7.64), it is not feasible to attain a desirable

performance without eliminating short cycles containing hybrid checks.

7.5. CODE DESIGN EXAMPLES FOR THE NOISELESS BAC 185

0 0.2 0.4 0.6 0.8 1
I
A,SC

 I
E,PC

0.0

0.2

0.4

0.6

0.8

1.0

I E
,S

C
 I

A
,P

C

PC, regular, D = 4
SC, regular, N = 4
Decoding trajectory
VN + SC
VN + PC

(a) Based on degree-4 parity checks.

0 0.2 0.4 0.6 0.8 1
I
A,SC

 I
E,PC

0.0

0.2

0.4

0.6

0.8

1.0

I E
,S

C
 I

A
,P

C

PC, regular, D = 6
SC, regular, N = 4
Decoding trajectory
VN + SC
VN + PC

A big challenge for the first few iterations

(b) Based on degree-6 parity checks.

Figure 7.42: LDHC-EPA, Rr = 1, Rp = 0.5075, N = 4, noiseless channel.

7.5.2 The Case of N = 4

According to Tab. 3.3, the capacity of a 4-user noiseless BAC is about 2.0306 bits/symbol.

Let us first check the theoretical supportable rate of LDPC codes for this channel. Since

a 3-P EXIT chart provides a better visual aid for code design and it is simulation-free

for tuning the degree distributions, from now on we exclude the use of conventional 2-P

EXIT charts. We first consider the following degree distribution set:

λs(D) = 1.0D1

λp(D) = 0.626D1 + 0.275D2 + 0.068D6 + 0.021D8

+0.003D16 + 0.002D18 + 0.003D26 + 0.002D28 (7.65)

ηp(D) = 1.0D4 ,

which leads to Rr = 1 and Rp = 0.5075. Given this code design, the achieved bandwidth

efficiency is 2.03 bits/symbol, which is in a negligible distance to the capacity. However, it

can be seen from Fig. 7.42(a) that the decoding trajectory is extremely dense. Given such

a code design, it is not feasible to achieve a decoding convergence with a finite-size graph

full of cycles. For any rate below the capacity, the valid code designs are not unique.

Based on degree-6 parity checks, the following code design

λs(D) = 1.0D1

λp(D) = 0.57D1 + 0.28D2 + 0.03D3 + 0.045D5

+0.02D7 + 0.04D10 + 0.01D22 + 0.005D150 (7.66)

ηp(D) = 1.0D6 ,

with Rr = 1 and Rp = 0.5075, opens the convergence tunnel as well, cf. Fig. 7.42(b).

Moreover, one observes that the decoding trajectory density is much lower than the former

186 CHAPTER 7. CHANNEL CODING FOR SUPERPOSITION MAPPING

case. Hence, for a 4-user BAC, LDPC coding based on degree-6 parity checks has more

potential than that based on degree-4 parity checks. However, it is still challenging to

achieve a decoding convergence. The problem is in the left section of the convergence

tunnel. Given an irregular VN degree distribution, the iterative decoding process always

starts with high-degree variable nodes. Consequently, high-degree variable nodes have

relatively small run-time local girths, which means that the run-time structural quality of a

graph is far from that of a cycle-free graph during the first few iterations. This necessitates

a large width for the leftmost section of the convergence tunnel. On the other hand, the

run-time structural quality of a graph improves as the iterative decoding proceeds, since

more and more variable nodes get correctly estimated and virtually eliminated from the

graph. For this reason, it is usually not a problem to have a convergence tunnel with a

small width in the rightmost region. Hence, given a practical block length, a preferable

code design should provide a convergence tunnel with its width continuously decreasing

from left to right. The code designs in Fig. 7.42(a) and Fig. 7.42(b) both do not satisfy

this criterion. To achieve a decoding convergence for a practical block length, we have to

reduce the data rate, so that there is a room for the imperfectness of the graph structure.

Let us target at a bandwidth efficiency of 1.9 bits/symbol, which requires R = 0.475. Since

the leftmost section of the convergence tunnel is of the highest priority to be widened, we

increase the highest variable node degree from 150 to 181. This leads to a code design as

λs(D) = 1.0D1

λp(D) = 0.57D1 + 0.28D2 + 0.03D3 + 0.045D5

+0.02D7 + 0.04D11 + 0.01D22 + 0.005D181 (7.67)

ηp(D) = 1.0D6 ,

with Rr = 1 and Rp = 0.475. The resulting EXIT chart is provided in Fig. 7.43(a). One

observes that the convergence tunnel does not become wider in the leftmost region. As

a result, this new code design does not make the first few iterations easier. The BER

results in Fig. 7.43(d) clearly support this statement. Either with a sorted VN alignment

or an unsorted VN alignment, the decoder cannot converge at all. This observation tells

that adding PC-side repetitions is not effective for the leftmost region, given a regular

parity check degree distribution. Now we apply an alternative degree distribution set:

λs(D) = 0.932D1 + 0.068D2

λp(D) = 0.57D1 + 0.28D2 + 0.03D3 + 0.045D5

+0.02D7 + 0.04D10 + 0.01D22 + 0.005D150 (7.68)

ηp(D) = 1.0D6 ,

with Rr = 0.9363, Rp = 0.5075, and R = RrRp = 0.475. In contrast to the code design

in (7.67), all the increased redundancy is now devoted to the SC-side repetitions. As

7.5. CODE DESIGN EXAMPLES FOR THE NOISELESS BAC 187

0 0.2 0.4 0.6 0.8 1
I
A,SC

 I
E,PC

0.0

0.2

0.4

0.6

0.8

1.0

I E
,S

C
 I

A
,P

C

PC, regular, D = 6
SC, regular, N = 4
Decoding trajectory
VN + SC
VN + PC

Tunnel is still very narrow at the beginning

(a) Rr = 1, Rp = 0.475, R = 0.475.

0 0.2 0.4 0.6 0.8 1
I
A,SC

 I
E,PC

0.0

0.2

0.4

0.6

0.8

1.0

I E
,S

C
 I

A
,P

C

PC, regular, D = 6
SC, regular, N = 4
Decoding trajectory
VN + SC
VN + PC

Tunnel becomes wider at the beginning

(b) Rr = 0.9363, Rp = 0.5075, R = 0.475.

0 0.2 0.4 0.6 0.8 1
I
A,SC

 I
E,PC

0.0

0.2

0.4

0.6

0.8

1.0

I E
,S

C
 I

A
,P

C

PC, regular, D = 6
SC, regular, N = 4
Decoding trajectory
VN + SC
VN + PC

(c) Rr = 0.9363, Rp = 0.517, R = 0.484.

0 5 10 15 20
E

b
/N

0
 in dB

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

Rr=1, Rp=0.475, VN sorted
Rr=1, Rp=0.475, VN unsorted
Rr=0.9363, Rp=0.5075
Rr=0.9363, Rp=0.5170

(d) BER vs. Eb/N0.

Figure 7.43: LDHC-EPA, N = 4, K ≈ 80000, PEG + RGB, 200 iterations.

shown in Fig. 7.43(b), this effectively widens the tunnel in the leftmost region. Applying

a block-wise LDHC matrix construction, the decoder converges very well, cf. Fig. 7.43(d).

Nevertheless, as the convergence tunnel is now wide for the whole region, there is still

space to increase the coding rate. In most cases, the convergence tunnel does not need to

be very wide in the right region. Under this motivation, we apply

λs(D) = 0.932D1 + 0.068D2

λp(D) = 0.597D1 + 0.253D2 + 0.035D3 + 0.04D5

+0.02D7 + 0.04D10 + 0.01D21 + 0.005D148 (7.69)

ηp(D) = 1.0D6 ,

with Rr = 0.9363 and Rp = 0.517. This leads to R = 0.4869 and R·N = 1.94 bits/symbol.

The resulting EXIT chart is provided in Fig. 7.43(c). One observes that the decoding

trajectory becomes very dense in the right region. Nevertheless, this is not a big problem

for the decoder, as long as the number of iterations is sufficiently large. The corresponding

BER curve in Fig. 7.43(d) verifies the feasibility of such a code design.

188 CHAPTER 7. CHANNEL CODING FOR SUPERPOSITION MAPPING

0 0.2 0.4 0.6 0.8 1
I
A,SC

 I
E,PC

0.0

0.2

0.4

0.6

0.8

1.0

I E
,S

C
 I

A
,P

C

PC, regular, D = 6
SC, regular, N = 8
Decoding trajectory
VN + SC
VN + PC

(a) Rr = 5/8, Rp = 1/2, 2.5 bits/symbol.

0 0.2 0.4 0.6 0.8 1
I
A,SC

 I
E,PC

0.0

0.2

0.4

0.6

0.8

1.0

I E
,S

C
 I

A
,P

C

PC, regular, D = 6
SC, regular, N = 8
Decoding trajectory
VN + SC
VN + PC

(b) Rr = 50/87, Rp = 1/2, 2.3 bits/symbol.

0 0.2 0.4 0.6 0.8 1
I
A,SC

 I
E,PC

0.0

0.2

0.4

0.6

0.8

1.0

I E
,S

C
 I

A
,P

C

PC, regular, D = 6
SC, regular, N = 8
Decoding trajectory
VN + SC
VN + PC

(c) Rr = 5/8, Rp = 23/50, 2.3 bits/symbol.

0 2 4 6 8 10 12 14 16 18 20
E

b
/N

0
 in dB

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

R
r
=5/8, R

p
=1/2

R
r
=50/87, R

p
=1/2

R
r
=5/8, R

p
=23/50

(d) BER vs. Eb/N0.

Figure 7.44: LDHC-EPA, N = 8, K ≈ 160000, 200 iterations.

7.5.3 The Case of N = 8

According to Tab. 3.3, the capacity of a noiseless 8-user BAC is about 2.5442 bits/symbol.

Let us first try to search a valid code design that achieves a data rate of 2.5 bits/symbol,

which stipulates the coding rate to be R = 5/16. To ease the task, we assume an infinite

block length, such that an EXIT chart analysis gives an accurate performance prediction.

Since repetition coding tends to be near-optimal for SM-EPA with a large N , we consider a

code design that devotes a considerable amount of redundancy to the SC-side repetitions:

λs(D) = 0.728D1 + 0.076D2 + 0.070D3 + 0.120D4 + 0.006D5

λp(D) = 0.480D1 + 0.359D2 + 0.012D3 + 0.050D4 + 0.046D7

+0.022D8 + 0.015D16 + 0.010D30 + 0.006D88 (7.70)

ηp(D) = 1.0D6 ,

with Rr = 5/8 and Rp = 1/2. The corresponding EXIT chart in Fig. 7.44(a) reveals that

this code design is in fact near-optimum. Clearly, a decoding convergence will only be

7.5. CODE DESIGN EXAMPLES FOR THE NOISELESS BAC 189

achievable given an infinite block length. Given a practical block length, we have to relax

the convergence tunnel a little bit, particularly in the left region. For the current system

setup, there are two opportunities to widen the convergence tunnel. One may increase

the degree of SC-side repetitions or the degree of PC-side repetitions. Let us first consider

increasing the degree of SC-side repetitions. To leave some space for code adjusting, we

reduce the targeted data rate to 2.3 bits/symbol. Correspondingly, the overall coding rate

is to be R = 23/80. Keeping the parity-check coding rate as Rp = 1/2, we reduce the

repetition coding rate to Rr = 50/87. This leads to a degree distribution set as

λs(D) = 0.724D1 + 0.086D2 + 0.083D3 + 0.087D5 + 0.020D8

λp(D) = 0.480D1 + 0.359D2 + 0.012D3 + 0.050D4 + 0.046D7

+0.022D8 + 0.015D16 + 0.010D30 + 0.006D88 (7.71)

ηp(D) = 1.0D6 .

Fig. 7.44(b) provides the corresponding EXIT chart. Compared to Fig. 7.44(a), the

density of the decoding trajectory is now much lower, i.e., the convergence tunnel is much

wider. Fig. 7.44(d) shows that the decoder converges very well, given this code design.

On the other hand, given the code design in (7.70), the decoder cannot converge at all, cf.

Fig. 7.44(d). Hence, it is indeed necessary to leave some space in the convergence tunnel,

given a practical block length. For a systematic study, let us also check the situation when

the surplus redundancy is allocated to the PC-side repetitions. After some fine tuning,

we obtain the following degree distribution set:

λs(D) = 0.728D1 + 0.076D2 + 0.070D3 + 0.120D4 + 0.006D5

λp(D) = 0.480D1 + 0.359D2 + 0.016D3 + 0.046D4 + 0.046D7

+0.022D8 + 0.015D16 + 0.008D34 + 0.008D100 (7.72)

ηp(D) = 1.0D6 ,

with Rr = 5/8 and Rp = 23/50. This code design achieves the same bandwidth efficiency

as that by (7.71). The resulting EXIT chart is given in Fig. 7.44(c). It can be seen that the

density of the decoding trajectory is also noticeably reduced. Consequently, a decoding

convergence is achievable as well for a finite block length, cf. Fig. 7.44(d). Besides, the

performance is more or less identical to that of the code design given in (7.71).

7.5.4 The Case of N = 16

In Section 7.5.2, we have assigned a small portion of the redundancy to the SC-side

repetitions for achieving a good decoding convergence given a finite block length. In

190 CHAPTER 7. CHANNEL CODING FOR SUPERPOSITION MAPPING

Section 7.5.3, we have assigned a considerable portion of the redundancy to the SC-side

repetitions, but the majority of the redundancy is still assigned to the PC-side repetitions.

Now, for a 16-user noiseless BAC, we can assign the majority of the redundancy to the

SC-side repetitions, without any noticeable loss in the code optimality. The capacity of

a 16-user noiseless BAC is about 3.0465 bits/symbol, cf. Tab. 3.3. The following degree

distribution set

λs(D) = 0.410D1 + 0.312D2 + 0.003D3 + 0.006D4 + 0.012D6 + 0.195D7 + 0.062D8

λp(D) = 0.638D1 + 0.256D2 + 0.006D5 + 0.012D6 + 0.019D7 + 0.040D10

+0.016D12 + 0.004D30 + 0.003D44 + 0.003D54 + 0.003D78 (7.73)

ηp(D) = 1.0D6 ,

with Rr = 1/3 and Rp = 9/16, effectively opens the convergence tunnel, as demonstrated

in Fig. 7.45(a). This achieves a rate of 3 bits/symbol, assuming an infinite block length.

Note that the repetition coding rate is now much lower than the parity-check coding rate.

Certainly, to enable a robust decoding performance with a finite block length, we need to

reduce the rate. Hence we consider the following degree distribution set

λs(D) = 0.410D1 + 0.312D2 + 0.003D3 + 0.006D4 + 0.012D6 + 0.195D7 + 0.062D8

λp(D) = 0.617D1 + 0.277D2 + 0.006D5 + 0.012D6 + 0.019D7 + 0.040D10

+0.016D12 + 0.004D30 + 0.003D44 + 0.006D100 (7.74)

ηp(D) = 1.0D6 ,

which leads to Rr = 1/3 and Rp = 21/40. From the corresponding EXIT chart in

Fig. 7.45(b), one observes that the resulting EXIT curves fit well with each other and

there is appropriate surplus space existing in the convergence tunnel. Consequently, a

good BER performance is observed in Fig. 7.45(c). Given this code design, the achieved

rate is 2.8 bits/symbol, which is higher than that we have achieved via LDSC coding in

Section 6.4.5. This shows the advantage of LDHC coding over LDSC coding.

Due to the firm concept on the non-optimality of repetition coding for the binary-input

AWGN channel, researchers are normally discouraged to use repetition codes for the

binary adder channel in the concern of losing coding optimality. The provided code design

examples so far clearly negates this way of thinking. By overlooking the importance of

repetition coding, successful applications of sparse-graph codes for BAC with a large

N have been rarely reported. This in turn explains the continuous research interest

on uniquely decodable codes, despite the fact that this type of codes are proved to be

non-capacity-achieving [107]. Easy to imagine, for N approaching the infinity, a pure

repetition code will be able to offer an optimal performance for the noiseless BAC.

7.5. CODE DESIGN EXAMPLES FOR THE NOISELESS BAC 191

0 0.2 0.4 0.6 0.8 1
I
A,SC

 I
E,PC

0.0

0.2

0.4

0.6

0.8

1.0

I E
,S

C
 I

A
,P

C

PC, regular, D = 6
SC, regular, N = 16
Decoding trajectory
VN + SC
VN + PC

(a) Rr = 1/3, Rp = 9/16.

0 0.2 0.4 0.6 0.8 1
I
A,SC

 I
E,PC

0.0

0.2

0.4

0.6

0.8

1.0

I E
,S

C
 I

A
,P

C

PC, regular, D = 6
SC, regular, N = 16
Decoding trajectory
VN + SC
VN + PC

(b) Rr = 1/3, Rp = 21/40.

0 2 4 6 8 10 12 14 16 18 20 22 24
E

b
/N

0
 in dB

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

Rr=1/3, Rp=9/16
Rr=1/3, Rp=21/40

(c) BER vs. Eb/N0.

Figure 7.45: LDHC-EPA, N = 16, K = 240000, RGB + RGB, 200 iterations.

192 CHAPTER 7. CHANNEL CODING FOR SUPERPOSITION MAPPING

7.6 Code Design Examples for the AWGN Channel

In the previous section, we have provided a selected collection of code designs for achieving

the capacity of the noiseless BAC, i.e., for SM-EPA transmission over a noiseless channel.

It is shown therein that the framework of LDHC coding is flexible and useful for various

system setups. In this section, we will provide code design examples for SM transmission

over the AWGN channel. Certainly, the focus will be on the achievable power efficiency

instead of the supportable bandwidth efficiency.

7.6.1 Preliminary Remarks

For data transmission over the AWGN channel, SM-GPA offers many practical benefits

w.r.t. SM-EPA. As introduced in Section 7.2.1, SM-GPA with a small group size has

the best information-to-complexity ratio among the others. Besides, SM-GPA shows less

non-bijectivity compared to SM-EPA, and meanwhile does not lose the optimality for

transmission over the AWGN channel. The code design examples in Section 7.5 actually

reveals one non-trivial drawback from SM-EPA. Given a large N , the convergence tunnel

needs to be wide in the left region, in order to achieve a good decoding performance with a

finite block length. Since any area between an EXIT curve pair leads to a rate loss relative

to the capacity, the above property from SM-EPA with a large N is in fact undesirable for

transmission over the AWGN channel. For combatting the non-bijectivity given a limited

block length, a considerable code space needs to be consumed, which can otherwise be

used to combat the additive noise. Therefore, given a short block length, the practically

achievable power efficiency from SM-EPA with a large N is usually much lower than that

promised by an optimal code design assuming an infinite block length. In comparison, SM-

GPA attains a good trade-off between bijective uniform signal mapping and non-bijective

nonuniform signal mapping. For data transmission over Gaussian channels, SM-GPA

is the preferable choice. Furthermore, SM-GPA with G = 2 gives the most practical

solution for high-rate data transmission. Revisiting Fig. 3.11 and Fig. 3.12, one finds that

the theoretical performance improvement by using a group size larger than 2 is in fact

marginal. Moreover, having a triangular symbol distribution instead of a Gaussian symbol

distribution is in fact an advantage from SM-GPA with G = 2, since this largely reduces

the receiver load in enabling a perfect data separation. Given the above statements, the

discussion within this section will mainly focus on SM-GPA with G = 2. The property of

SM-GPA with a large group size is very similar to that of SM-EPA with a large bit load,

and so is the corresponding code design approach. Naturally, for data transmission over

the AWGN channel, SM-GPA with a large group size is often inferior to SM-GPA with

G = 2, assuming a high data rate and an identical block length.

7.6. CODE DESIGN EXAMPLES FOR THE AWGN CHANNEL 193

0 0.2 0.4 0.6 0.8 1
I
A,SC

 I
E,VN

0.0

0.2

0.4

0.6

0.8

1.0
I E

,S
C
 I

A
,V

N
G = 2, L = 1
G = 2, L = 2
G = 2, L = 3
G = 2, L = 4
G = 2, L = 5
G = 2, L = 6
G = 2, L = 7

VN, D
=2

(a) EXIT chart, noiseless channel.

0 10 20 30 40 50 60
E

b
/N

0
 in dB

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

L = 1
L = 2
L = 3
L = 4
L = 5
L = 6
L = 7

(b) BER vs. Eb/N0.

Figure 7.46: LDSC-GPA, SF = 2, G = 2, K = 20000, PEG, 100 iterations.

According to the discussion in Section 7.1.2, choosing R = 1/G should principally enable

a decoding convergence for SM-GPA with an arbitrary number of power levels. However,

the simulation results in Fig. 5.10 clearly do not follow this conjecture. The reason for this

is simple, which is the sub-optimality of random interleaving given a limited block length.

As shown by Fig. 7.46(a), a rate 1/2 regular repetition code should already be able to

support SM-GPA with G = 2 and L = 7, given an optimized interleaver. This is in fact

the true situation when one adopts the framework of LDSC coding and applies the PEG

algorithm for the interleaver design, cf. Fig. 7.46(b). The BER results in Fig. 7.46(b)

vividly demonstrates the big advantage of SM-GPA w.r.t. SM-EPA for supporting high-

rate data transmission.

7.6.2 The Case of 1 bit/symbol

Since there are already plenty of successful code designs available in the literature for

a rate of 0.5 bits/symbol, we will directly start with a rate of 1 bits/symbol over the

AWGN channel. According to Fig. 3.7(b), SM-GPA with G = 2 and L = 1, i.e., SM-EPA

with N = 2, is almost capacity-achieving for a rate of 1 bit/symbol, if not exactly. To

achieve a rate of 1 bit/symbol, the coding rate should be R = 1/2. In order to get a

rough impression for the code design task, we first check the EXIT function of SM-GPA

demapping at an SNR given by the Shannon limit, which is about 1.8 dB for 1 bit/symbol.

Fig. 7.47(a) compares the EXIT curve of SM-GPA with G = 2 and L = 1 to that of 4-

ASK with Gray labeling. In the left region ASK outperforms SM-GPA, while in the right

region SM-GPA outperforms ASK. It is easy to find that area 2 is slightly larger than area

1. The difference between area 2 and area 1 in fact gives the potential power gain that

SM-GPA can ultimately achieve w.r.t. ASK. For a fair comparison, we first try to optimize

194 CHAPTER 7. CHANNEL CODING FOR SUPERPOSITION MAPPING

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
I
A

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

I
E

SM-GPA
ASK-Gray

Area 1

Area 2

(a) SISO demapping, Eb/N0 = 1.8 dB.

0 0.2 0.4 0.6 0.8 1
I
A,SC

 I
E,PC

0.0

0.2

0.4

0.6

0.8

1.0

I E
,S

C
 I

A
,P

C

PC, irregular
ASK-Gray, N = 2
Decoding trajectory
VN + ASK-Gray
VN + PC

(b) LDPC-coded ASK-Gray, Eb/N0 = 2.5 dB.

0 0.2 0.4 0.6 0.8 1
I
A,SC

 I
E,PC

0.0

0.2

0.4

0.6

0.8

1.0

I E
,S

C
 I

A
,P

C

PC, irregular
SC, regular, N = 2
Decoding trajectory
VN + SC
VN + PC

(c) LDPC-coded SM-GPA, Eb/N0 = 2.1 dB.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
E

b
/N

0
 in dB

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

Shannon limit at 1 bit/symbol
4ASK-constrained capacity
Turbo-ASK-Gray, K=40000
LDPC-ASK-Gray, K=40000
LDPC-ASK-Gray, K=160000
LDPC-SM-GPA, K=40000
LDPC-SM-GPA, K=160000

0.6 dB

(d) BER performance.

Figure 7.47: LDPC-coded SM-GPA, R = 1/2, G = 2, L = 1, RGB, 100 iterations.

the code for ASK, by using the EXIT emulation technique proposed in this thesis. We

identify the following degree distribution pair:

λp(D) = 0.350D2 + 0.380D3 + 0.070D4 + 0.030D5 + 0.040D7 + 0.040D9

+0.040D14 + 0.020D17 + 0.010D24 + 0.010D60 + 0.010D85 (7.75)

ηp(D) = 0.100D8 + 0.800D11 + 0.100D14

with Rp = 1/2. Fig. 7.47(b) gives the corresponding EXIT chart. Assuming an infinite

block length, this code design should achieve a decoding threshold of 2.5 dB for ASK

with Gray labeling. As a matter of fact, given a block length of 160000, this decoding

threshold is almost achieved, cf. Fig. 7.47(d). Hence, the EXIT emulation technique orig-

inally derived for non-bijective superposition mapping turns out to be useful for bijective

mapping as well. To have a more direct impression on the performance improvement

achieved for ASK, we also provide the BER curve of rate 1/2 Turbo-coded 4-ASK as

a reference. Though by no means we are referring to this curve as the state-of-the-art

results, this curve serves as a good example for the performance of currently popular sys-

7.6. CODE DESIGN EXAMPLES FOR THE AWGN CHANNEL 195

tems. From Fig. 7.47(d) one observes that the distance between the Shannon limit and

the 4-ASK constrained capacity is about 0.37 dB. This value upper bounds the power

gain of SM-GPA over ASK. We apply the following degree distribution pair:

λp(D) = 0.620D2 + 0.330D3 + 0.020D12 + 0.010D20 + 0.010D33 + 0.010D50

ηp(D) = 0.120D5 + 0.040D6 + 0.560D7 + 0.280D8 , (7.76)

with Rp = 1/2, for SM-GPA. The theoretically achievable decoding threshold is at about

2.1 dB, as indicated by Fig. 7.47(c). Given an RGB-designed interleaver, this decod-

ing threshold is also almost achieved for a block length of 160000. Carefully checking

Fig. 7.47(d), one finds that the attained power gain of SM-GPA w.r.t. ASK is about

0.2 dB at a BER of 10−5.

7.6.3 The Case of 2 bits/symbol

The Shannon limit for 2 bits/symbol is at about Eb/N0 = 5.8 dB. We consider rate 1/G

LDPC-coded SM-GPA with G = 2 and G = 3. For G = 2, we apply the following degree

distribution pair with Rp = 1/2:

λp(D) = 0.780D2 + 0.080D3 + 0.040D4 + 0.020D5 + 0.020D7

+0.020D10 + 0.020D14 + 0.020D16

ηp(D) = 0.240D3 + 0.480D4 + 0.080D5 + 0.050D8 + 0.020D10

+0.020D12 + 0.030D14 + 0.020D17 + 0.040D20 + 0.020D28 . (7.77)

The corresponding EXIT chart is provided in Fig. 7.48(a), which predicts a decoding

threshold around 7 dB. For G = 3, we apply the following degree distribution pair:

λp(D) = 0.830D2 + 0.010D3 + 0.010D5 + 0.030D6 + 0.020D7

+0.061D8 + 0.019D11 + 0.010D25 + 0.010D34

ηp(D) = 0.350D3 + 0.350D4 + 0.160D5 + 0.040D7 + 0.010D12

+0.070D15 + 0.020D16 , (7.78)

with Rp = 1/2. As illustrated in Fig. 7.48(b), this code design promises a near-capacity

decoding threshold. Nevertheless, in reality the situation is just reversed, cf. Fig. 7.48(c).

The sub-optimal 7 dB code design significantly outperforms the 6 dB near-optimum code

design. One finds a similar situation in Fig. 7.38(a). Given G = 3, the EXIT curve of SM-

GPA demapping is similar to that of SM-EPA demapping, i.e., being convex in the whole

region. In this case, a good decoding convergence is only achievable if the convergence

tunnel has sufficient surplus area in the left region, which explains the difference between

the practically achieved performance and the theoretically predicted performance.

196 CHAPTER 7. CHANNEL CODING FOR SUPERPOSITION MAPPING

0 0.2 0.4 0.6 0.8 1
I
A,SC

 I
E,PC

0.0

0.2

0.4

0.6

0.8

1.0

I E
,S

C
 I

A
,P

C

PC, irregular

SC, G = 2, L = 2

Decoding trajectory

VN + SC
VN + PC

(a) EXIT chart, G = 2, Eb/N0 = 7 dB.

0 0.2 0.4 0.6 0.8 1
I
A,SC

 I
E,PC

0.0

0.2

0.4

0.6

0.8

1.0

I E
,S

C
 I

A
,P

C

PC, irregular

SC, G = 3, L = 2

Decoding trajectory

VN + SC
VN + PC

(b) EXIT chart, G = 3, Eb/N0 = 6 dB.

4 5 6 7 8 9 10 11 12
E

b
/N

0
 in dB

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

Shannon limit
G = 2
G = 3

(c) BER vs. Eb/N0.

Figure 7.48: LDPC-coded SM-GPA, R = 1/G, L = 2, K = 40000, RGB, 200 iterations.

7.6. CODE DESIGN EXAMPLES FOR THE AWGN CHANNEL 197

7.6.4 The Case of 4 bits/symbol

As the last code design example, we target at a data rate of 4 bits/symbol over the

AWGN channel. The corresponding Shannon limit is at about 15.1 dB. As well-known,

approaching the channel capacity becomes very challenging for such a high data rate. For

example, a rate 1/2 Turbo-coded 256-ASK transmission system is about 5 dB away from

the Shannon limit, at a BER of 10−5, cf. Fig. 7.49(c). Now, let us check if the situation

can be improved by using SM-GPA. We first consider a free-style4 code design, given by

λp(D) = 0.700D2 + 0.260D3 + 0.010D6 + 0.010D12 + 0.010D30 + 0.010D34

ηp(D) = 0.359D3 + 0.521D4 + 0.020D5 + 0.010D8 + 0.010D14 + 0.020D16 + 0.020D24

+0.010D25 + 0.020D26 + 0.005D53 + 0.004D120 + 0.001D204 (7.79)

which leads to Rp = 1/2. The resulting EXIT chart is as in Fig. 7.49(a), which predicts a

theoretically achievable decoding threshold as 16 dB. Note that parity checks of a degree

as high as 204 exists, and the parity check degree distribution is severely dispersed. Hence,

such a code design is not suitable for applications with a reasonable block length. The

BER result in Fig. 7.49(c) verifies this conjecture. The obtained performance happens

to be even worse than that of Turbo-coded ASK. To improve the performance, we make

a more realistic code design. Increasing the targeted decoding threshold to 17 dB, we

obtain the following degree distribution pair:

λp(D) = 0.800D2 + 0.160D3 + 0.010D6 + 0.010D12 + 0.010D30 + 0.010D44

ηp(D) = 0.360D3 + 0.380D4 + 0.160D5 + 0.010D7 + 0.010D14

+0.010D23 + 0.040D24 + 0.030D40 , (7.80)

which leads to a coding rate of Rp = 1/2 as well. Compared to the previous code design,

those very-high-degree parity checks are removed, which considerably relaxes the task of

interleaver design. Meanwhile, the highest degree of variable nodes is increased, so as to

achieve more surplus in the left section of the convergence tunnel. As demonstrated in

Fig. 7.49(c), this new code design achieves a significant performance improvement. The

resulting BER curve is about 2.8 dB away from the Shannon limit. Nevertheless, given a

data rate of 4 bits per symbol per signal dimension, this performance is already satisfying.

Up to this point, we may conclude that SM-GPA, as a non-bijective nonuniform mapping

scheme, is not only attractive from a theoretical point of view but also competitive for

practical applications.

4By “free-style” we mean the corresponding code design does not take into account the imperfectness

of practical systems.

198 CHAPTER 7. CHANNEL CODING FOR SUPERPOSITION MAPPING

0 0.2 0.4 0.6 0.8 1
I
A,SC

 I
E,PC

0.0

0.2

0.4

0.6

0.8

1.0

I E
,S

C
 I

A
,P

C

PC, irregular
SC, G = 2, L = 4
Decoding trajectory
VN + SC
VN + PC

(a) Rp = 1/2, Eb/N0 = 16 dB.

0 0.2 0.4 0.6 0.8 1
I
A,SC

 I
E,PC

0.0

0.2

0.4

0.6

0.8

1.0

I E
,S

C
 I

A
,P

C

PC, irregular
SC, G = 2, L = 4
Decoding trajectory
VN + SC
VN + PC

(b) Rp = 1/2, Eb/N0 = 17 dB.

14 15 16 17 18 19 20 21 22 23 24
E

b
/N

0
 in dB

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it

E
rr

or
 R

at
e

Shannon limit
Turbo-ASK
LDPC-SM-GPA, 16 dB design
LDPC-SM-GPA, 17 dB design

(c) BER vs. Eb/N0.

Figure 7.49: LDHC-GPA, R = 1/2, G = 2, L = 4, K = 40000, RGB, 200 iterations.

Chapter 8

Summary and Outlook

Mainly driven by Shannon’s suggestion [3] on transmitting Gaussian signals over linear

Gaussian channels, non-bijective nonuniform mapping is recently attaining more and more

attention in the research community [26–33, 41]. Among various possibilities, superposi-

tion mapping (SM) deserves to be an elegant solution. By linearly superimposing binary

antipodal component symbols, SM is able to deliver a symbol distribution as Gaussian

as desired, without the need of active signal shaping. Superposition mapping and su-

perposition demapping both operate in a symbol-wise manner. Hence, applying modern

iteratively decodable channel codes for SM is more or less straightforward. Addition-

ally, also due to linear superposition, low-complexity optimal SISO demapping can be

implemented via the tree-based BCJR algorithm. Given these adavantages, superposition

mapping has a good chance to be widely applied in future communication systems which

demand a high power efficiency and a high bandwidth efficiency.

This thesis studies several open issues of SM and tries to find practical solutions for them.

The first contribution is in clarifying the effects of power allocation for SM, both from the

aspect of achievable power efficiency and supportable bandwidth efficiency. It is found

that equal power allocation (EPA) provides an optimal power efficiency but is inefficient

in supporting a high bandwidth effciency. Unequal power allocation (UPA) is efficient in

supporting a high bandwidth efficiency but leads to a sub-optimal power efficiency. For

this reason, a grouped power allocation (GPA) strategy is proposed, which is a hybrid

of EPA and UPA. It maintains the advantages from EPA and UPA but considerably

mitigates the disadvantages from both. Compared to conventional mapping schemes, e.g.,

ASK with Gray labelling, SM-GPA offers not only a higher potential for the achievable

power efficiency but also a lower computational complexity for the demapping operation.

The second contribution is in breaking the limit of 2 bits per symbol per dimension

for the practically achievable bandwidth efficiency of coded SM-EPA. It is shown that an

199

200 CHAPTER 8. SUMMARY AND OUTLOOK

irregular repetition code is able to support a near-capacity rate for SM-EPA, when the bit

load is large. To facilitate the relevant system design, a novel concept called low-density

summation-check (LDSC) coding is proposed. Since SM-EPA is natively equivalent to the

binary adder channel (BAC), all coding techniques proposed in this thesis are inherently

applicable for the BAC. The third contribution is in designing optimal/near-optimal codes

for superposition mapping. Due to the fact that a superposition demapper is in general

strongly interactive with the channel decoder, a code design framework called low-density

hybrid-check (LDHC) coding is proposed, which treats superposition mapping operations

as a certain type of code constraints. Theoretically optimal/near-optimal channel codes

have been identified for SM with various configurations, and superior performances have

been achieved in practice. As an interesting result, it is found that LDHC coding is useful

for conventional mapping schemes as well. The fourth contribution is in inventing various

practical techniques for the code design. A randomized graph construction algorithm is

proposed for generating high-performance finite-length interleavers. An EXIT emulation

algorithm is proposed for an efficient optimization of degree distributions. These methods

pave the road for the practical applications of superposition mapping.

A mapping from binary digits to finite-alphabet symbols takes place in almost all modern

communication systems. Hence, the possible applications of SM are uncountable. Cur-

rently, orthogonal frequency-division multiplexing (OFDM) and multi-input multi-output

(MIMO) transmission are two hot topics. State-of-the-art mapping formats currently used

are PSK and QAM, which are uniform signaling methods. Checking the benefits of using

SM with these transmission techniques deserves to be an interesting research topic both

w.r.t. theory and practice. Naturally, the adoption of SM will create new aspects for the

code design, which is also necessary to be studied.

By its nature, coded superposition mapping can be interpreted as a generalization of

interleave-division multiplexing (IDM) and interleave-divison multiple access (IDMA) [28,

37, 39, 40, 54, 110–118]. Hence, coding techniques proposed in this thesis can be applied

in IDM and IDMA systems in a straightforward way. One basically only needs to adopt

multiple parallel channel encoders, which can be optimized via the code design approaches

proposed in this thesis, for multiple superimposed data streams. Using mutliple parallel

channel encoders offer some advantages as well as some disadvantages over using a single

channel encoder for superposition type of systems. The main advantage is in the fact

that cycles of length 2(2n + 1), n ∈ Z+, are implicitly avoided among the code checks

from multiple channel encoders. The main disadvantages are that some freedom in degree

distribution optimization is lost and one also loses some code word length due to sequence

splitting.

Bibliography

[1] J. G. Proakis, Digital Communications, 4th ed. McGraw-Hill, 2001.

[2] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed. John

Wiley & Sons, Inc., 2006.

[3] C. E. Shannon, “A mathematical theory of communication,” Bell System Technical

Journal, vol. 27, pp. 379–423, 623–656, Jul., Oct., 1948.

[4] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-correcting

coding and decoding: Turbo-codes,” in Proc. IEEE Int. Conf. Commun. (ICC ’93),

vol. 2, Geneva, Switzerland, May 23–26, 1993, pp. 1064–1070.

[5] R. G. Gallager, “Low-density parity-check codes,” IEEE Trans. Inf. Theory, vol. 8,

no. 1, pp. 21–28, Jan. 1962.

[6] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low-density

parity-check codes,” Electron. Lett., vol. 32, no. 18, pp. 1645–1646, Aug. 1996,

reprinted in vol. 33, no. 6, pp. 457–458, Mar. 1997.

[7] S.-Y. Chung, J. G. David Forney, T. J. Richardson, and R. Urbanke, “On the

design of low-density parity-check codes within 0.0045 db of the Shannon limit,”

IEEE Commun. Lett., vol. 5, no. 2, pp. 58–60, Feb. 2001.

[8] G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE Trans. Inf.

Theory, vol. IT-28, pp. 56–57, Jan. 1982.

[9] J. Leech and N. J. A. Sloane, “Sphere packing and error-correcting codes,” Canad.

J. Math., vol. 23, pp. 718–745, 1971.

[10] H. Imai and S. Hirakawa, “A new multilevel coding method using error correcting

codes,” IEEE Trans. Inf. Theory, vol. 23, pp. 371–377, May 1977.

[11] G. Caire, G. Taricco, and E. Biglieri, “Bit-interleaved coded modulation,” IEEE

Trans. Inf. Theory, vol. 44, no. 3, pp. 927–946, May 1998.

201

202 BIBLIOGRAPHY

[12] A. G. i Fabregas, A. Martinez, and G. Caire, Bit-Interleaved Coded Modulation.

Now Publishers Inc., 2008.

[13] G. D. Forney, Jr. and L.-F. Wei, “Multidimensional constellations–Part I: Intro-

duction, figures of merit, and generalized cross constellations,” IEEE J. Sel. Areas

Commun., vol. 7, pp. 877–892, Aug. 1989.

[14] A. R. Calderbank and L. H. Ozarow, “Nonequiprobable signaling on the Gaussian

channel,” IEEE Trans. Inf. Theory, vol. 36, pp. 726–740, Jul. 1990.

[15] G. D. Forney, Jr., “Trellis shaping,” IEEE Trans. Inf. Theory, vol. 38, pp. 281–300,

Mar. 1992.

[16] G. R. Lang and F. M. Longstaff, “A Leech lattice modem,” IEEE J. Sel. Areas

Commun., vol. 7, pp. 968–973, Aug. 1989.

[17] P. Fortier, A. Ruiz, and J. M. Cioffi, “Multidimensional signal sets through the shell

construction for parallel channels,” IEEE Trans. Commun., vol. 40, pp. 500–512,

Mar. 1992.

[18] A. K. Khandani and P. Kabal, “Shaping multidimensional signal spaces–Part I:

Optimum shaping, shell mapping,” IEEE Trans. Inf. Theory, vol. 39, pp. 1799–

1808, Nov. 1993.

[19] R. Laroia, N. Farvardin, and S. Tretter, “On optimal shaping of multidimensional

constellations,” IEEE Trans. Inf. Theory, vol. 40, pp. 1044–1056, Jul. 1994.

[20] G. D. Forney, Jr., L. Brown, M. V. Eyuboglu, and J. L. Moran, III, “The V.34

high-speed modem standard,” IEEE Commun. Mag., vol. 34, pp. 28–33, Dec. 1996.

[21] G. D. Forney, Jr. and G. Ungerboeck, “Modulation and coding for linear Gaussian

channels,” IEEE Trans. Inf. Theory, vol. 44, no. 6, pp. 2384–2415, Oct. 1998.

[22] R. F. H. Fischer, Precoding and Signal Shaping for Digital Transmission. New

York: John Wiley & Sons, Inc., 2002.

[23] F. R. Kschischang and S. Pasupathy, “Optimal nonuniform signaling for Gaussian

channels,” IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 913–929, May 1993.

[24] E. Schrödinger, Statistical Thermodynamics. Cambridge: Cambridge University

Press, 1962.

[25] R. K. Pathria, Statistical Mechanics. Elmsford, NY: Pergamon, 1972.

BIBLIOGRAPHY 203

[26] L. Duan, B. Rimoldi, and R. Urbanke, “Approaching the AWGN channel capacity

without active shaping,” in Proc. IEEE Int. Symp. Inform. Theory (ISIT’97), Ulm,

Germany, Jun./Jul. 1997, p. 374.

[27] X. Ma and Li Ping, “Coded modulation using superimposed binary codes,” IEEE

Trans. Inf. Theory, vol. 50, no. 12, pp. 3331–3343, Dec. 2004.

[28] H. Schoeneich and P. A. Hoeher, “Adaptive interleave-division multiple access -

A potential air interface for 4G bearer services and wireless LANs,” in Proc. In-

ternational Conference on Wireless and Optical Communications and Networks

(WOCN’04), Muscat, Oman, Jun. 2004.

[29] T. Wo and P. A. Hoeher, “Superposition mapping with application in bit-interleaved

coded modulation,” in Proc. 8th International ITG Conference on Source and Chan-

nel Coding (SCC’10), Siegen, Germany, Jan. 18–21, 2010.

[30] M. Noemm, T. Wo, and P. A. Hoeher, “Multilayer APP detection for IDM,” Elec-

tron. Lett., vol. 46, no. 1, pp. 96–97, Jan. 2010.

[31] F. Schreckenbach, “Iterative decoding of bit-interleaved coded modulation,” Ph.D.

dissertation, Technical University of Munich, Germany, 2007.

[32] C. Schlegel and D. Truhachev, “Generalized modulation and iterative demodu-

lation,” in Proc. IEEE International Zurich Seminar on Communications (IZS),

Zurich, Switzerland, Mar. 12–14, 2008.

[33] D. Zhao, A. Dauch, and T. Matsumoto, “Modulation doping for repetition coded

BICM-ID with irregular degree allocation,” in Proc. International ITG Workshop

on Smart Antennas (WSA), Berlin, Germany, Feb. 16–18, 2009.

[34] S.-C. Chang, “Coding for a T-user multiple-access channel,” Ph.D. dissertation,

University of Hawaii, USA, 1977.

[35] S.-C. Chang and E. J. Weldon, “Coding for T-user multiple-access channels,” IEEE

Trans. Inf. Theory, vol. 25, no. 6, pp. 684–691, Nov. 1979.

[36] B. L. Hughes and A. B. Cooper III, “Nearly optimal multiuser codes for the binary

adder channel,” IEEE Trans. Inf. Theory, vol. 42, no. 2, pp. 387–398, Mar. 1996.

[37] P. A. Hoeher and H. Schoeneich, “Interleave-division multiple access from a mul-

tiuser point of view,” in Proc. Int. Symp. on Turbo Codes & Related Topics in

conjunction with Int. ITG Conf. on Source and Channel Coding, Munich, Germany,

Apr. 2006.

204 BIBLIOGRAPHY

[38] H. Schoeneich, “Adaptiver Interleave-Division Mehrfachzugriff (IDMA) mit Anwen-

dung in der Mobilfunkkommunikation,” Ph.D. dissertation, University of Kiel, Ger-

many, 2007.

[39] P. A. Hoeher and W. Xu, “Multi-layer interleave-division multiple access for 3GPP

long term evolution,” in Proc. IEEE Int. Conf. Commun. (ICC’07), Glasgow, Scot-

tland, Jun. 2007.

[40] P. A. Hoeher, H. Schoeneich, and J. C. Fricke, “Multi-layer interleave-division mul-

tiple access: Theory and practice,” Europ. Trans. Telecomms., vol. 19, no. 5, Aug.

2008.

[41] J. Tong, Li Ping, and X. Ma, “Superposition coded modulation with peak-power

limitation,” IEEE Trans. Inf. Theory, vol. 55, no. 6, pp. 2562–2576, Jun. 2009.

[42] Li Ping, J. Tong, X. Yuan, and Q. Guo, “Superposition coded modulation and

iterative linear MMSE detection,” IEEE J. Sel. Areas Commun., vol. 27, no. 6, pp.

995–1004, Aug. 2009.

[43] T. Wo, M. Noemm, D. Hao, and P. A. Hoeher, “Iterative processing for superposi-

tion mapping,” Hindawi Journal of Electrical and Computer Engineering – Special

Issue on Iterative Signal Processing in Communications, vol. 2010, 2010.

[44] G. E. P. Box, J. S. Hunter, and W. G. Hunter, Statistics for Experimenters: Design,

Innovation, and Discovery, 2nd ed. John Wiley & Sons, Inc., 2005.

[45] J. L. Devore, Probability and Statistics for Engineering and the Sciences, 5th ed.

Duxbury, 1999.

[46] A. Papoulis and S. U. Pillai, Probability, Random Variables, and Stochastic Pro-

cesses, 4th ed. McGraw-Hill, Inc., 2006.

[47] D. Stirzaker, Probability and Random Variables: A Beginner’s Guide. Cambridge

University Press, 1999.

[48] P. Jacquet and W. Szpankowski, “Entropy computations via analytic depoissoniza-

tion,” IEEE Trans. Inf. Theory, vol. 45, no. 4, pp. 1072–1081, May 1999.

[49] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes

for minimizing symbol error rate,” IEEE Trans. Inf. Theory, vol. 20, no. 2, pp.

284–287, Mar. 1974.

[50] J. Stewart, Calculus, 6th ed. Brooks Cole, 2007.

BIBLIOGRAPHY 205

[51] P. Robertson, P. Hoeher, and E. Villebrun, “Optimal and sub-optimal maximum

a posteriori algorithms suitable for turbo-decoding,” Europ. Trans. Telecomms.,

vol. 8, no. 2, pp. 119–125, Mar./Apr., 1997.

[52] W. J. Gross and P. G. Gulak, “Simplified MAP algorithm suitable for implementa-

tion of turbo decoders,” Electron. Lett., vol. 34, no. 16, pp. 1577–1578, Aug. 1998.

[53] H. Schoeneich and P. A. Hoeher, “A hybrid multiple access scheme delivering re-

liability information,” in Proc. 5th International ITG Conference on Source and

Channel Coding (SCC’04), Erlangen-Nürnberg, Germany, Jan. 2004.

[54] Li Ping, L. Liu, and K. Y. Leung, “A unified approach to multiuser detection and

space-time coding with low complexity and nearly optimal performance,” in Proc.

40th Allerton Conference on Communication, Control, and Computing, Monticelli,

Illinois, Oct. 2002.

[55] D. Divsalar, H. Jin, and R. McEliece, “Coding theorems for Turbo-like codes,”

in Proc. 36th Allerton Conference on Communication, Control, and Computing,

Monticelli, Illinois, USA, Sep. 1998, pp. 201–210.

[56] T. J. Richardson and R. L. Urbanke, “The capacity of LDPC codes under message-

passing decoding,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 599–618, Feb. 2001.

[57] T. J. Richardson, M. A. Shokrollahi, and R. Urbanke, “Design of capacity-

approaching irregular LDPC codes,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp.

619–637, Feb. 2001.

[58] W. E. Ryan and S. Lin, Channel Codes: Classical and Modern. Cambridge Uni-

versity Press, 2009.

[59] T. Tian, C. R. Jones, J. D. Villasenor, and R. D. Wesel, “Selective avoidance of

cycles in irregular LDPC code construction,” IEEE Trans. Commun., vol. 52, no. 8,

pp. 1242–1247, Aug. 2004.

[60] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible In-

ference. Morgan Kaufmann, 1988.

[61] R. D. Shachter, “Probabilistic inference and influence diagrams,” Operations Re-

search, vol. 36, no. 4, pp. 589–604, Aug. 1988.

[62] G. Shafer and P. Shenoy, “Probability propagation,” Ann. Mat. Art. Intell., vol. 2,

pp. 327–352, 1990.

206 BIBLIOGRAPHY

[63] J. Yedidia, W. Freeman, and Y. Weiss, “Generalized belief propagation,” Advances

Neural Information Processing Systems (NIPS), vol. 13, pp. 689–695, Dec. 2000.

[64] D. J. C. MacKay, Information Theory, Inference, and Learning Algorithms. Cam-

bridge University Press, 2003.

[65] N. Wiberg, “Codes and decoding on general graphs,” Ph.D. dissertation, Linköping

University, Sweden, 1996.

[66] S. M. Aji and R. J. McEliece, “The generalized distributive law,” IEEE Trans. Inf.

Theory, vol. 46, no. 2, pp. 325–343, Mar. 2000.

[67] G. D. Forney, “Codes on graphs: Normal realizations,” IEEE Trans. Inf. Theory,

vol. 47, pp. 520–548, Feb. 2001.

[68] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and the sum-

product algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 498–519, Feb.

2001.

[69] H.-A. Loeliger, “An introduction to factor graphs,” IEEE Signal Process. Mag., pp.

28–41, Jan. 2004.

[70] D. J. C. MacKay, “Good error correcting codes based on very sparse matrices,”

IEEE Trans. Inf. Theory, vol. 45, no. 3, pp. 399–431, Mar. 1999.

[71] X.-Y. Hu, E. Eleftheriou, and D. M. Arnold, “Progressive edge-growth Tanner

graphs,” in Proc. IEEE Global Telecommunications Conf. (GLOBECOM’01), San

Antonio, Texas, USA, Nov. 2001, pp. 995–1001.

[72] T. Tian, C. R. Jones, J. D. Villasenor, and R. D. Wesel, “Construction of irregular

LDPC codes with low error floors,” in Proc. IEEE Int. Conf. Commun. (ICC’03),

Anchorage, Alaska, USA, May 11–15, 2003.

[73] H. Xiao and A. H. Banihashemi, “Improved progressive-edge-growth (PEG) con-

struction of irregular LDPC codes,” IEEE Commun. Lett., vol. 8, no. 12, pp. 715–

717, Dec. 2004.

[74] J. Thorpe, “Low density parity check (LDPC) codes constructed from protographs,”

Jet Propulsion Laboratory (JPL), IPN Progess Report 42-154, Aug. 15, 2003.

[75] Y. Kou, S. Lin, and M. Fossorier, “Low-density parity-check codes based on finite

geometries: a rediscovery and new results,” IEEE Trans. Inf. Theory, vol. 47, no. 7,

pp. 2711–2736, Nov. 2001.

BIBLIOGRAPHY 207

[76] H. Tang, J. Xu, S. Lin, and K. A. S. Abdel-Ghaffar, “Codes on finite geometries,”

IEEE Trans. Inf. Theory, vol. 51, no. 2, pp. 572–596, Feb. 2005.

[77] L. Chen, J. Xu, I. Djurdjevic, and S. Lin, “Near-Shannon-limit quasi-cyclic low-

density parity-check codes,” IEEE Trans. Commun., vol. 52, no. 7, pp. 1038–1042,

Jul. 2004.

[78] L. Lan, L. Zeng, Y. Y. Tai, L. Chen, S. Lin, and K. Abdel-Ghaffar, “Construction

of quasi-cyclic LDPC codes for AWGN and binary erasure channels: A finite field

approach,” IEEE Trans. Inf. Theory, vol. 53, no. 7, pp. 2429–2458, Jul. 2007.

[79] B. Vasic and O. Milenkovic, “Combinatorial constructions of low-density parity-

check codes for iterative decoding,” IEEE Trans. Inf. Theory, vol. 50, no. 6, pp.

1156–1176, Jun. 2004.

[80] B. Ammar, B. Honary, Y. Kou, J. Xu, and S. Lin, “Construction of low-density

parity-check codes based on balanced incomplete block designs,” IEEE Trans. Inf.

Theory, vol. 50, no. 6, pp. 1257–1268, Jun. 2004.

[81] X.-Y. Hu, E. Eleftheriou, and D. M. Arnold, “Regular and irregular progressive

edge-growth Tanner graphs,” IEEE Trans. Inf. Theory, vol. 51, no. 1, pp. 386–398,

Jan. 2005.

[82] C. Di, D. Proietti, I. E. Telatar, T. J. Richardson, and R. L. Urbanke, “Finite-

length analysis of low-density parity-check codes on the binary erasure channel,”

IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1570–1579, Jun. 2002.

[83] T. J. Richardson, “Error floors of LDPC codes,” in Proc. 41st Annual Allerton

Conference on Communication, Control, and Computing, Monticello, IL, Oct. 2003,

pp. 1426–1435.

[84] S. ten Brink, “Convergence of iterative decoding,” Electron. Lett., vol. 35, no. 10,

pp. 806–808, May 1999, reprinted in vol. 35, no. 13, pp. 1117–1118, Jun. 1999.

[85] ——, “Convergence behavior of iteratively decoded parallel concatenated codes,”

IEEE Trans. Commun., vol. 49, pp. 1727–1737, Oct. 2001.

[86] S. ten Brink, G. Kramer, and A. Ashikhmin, “Design of low-density parity-check

codes for modulation and detection,” IEEE Trans. Commun., vol. 52, no. 4, pp.

670–678, Apr. 2004.

[87] I. Land, P. A. Hoeher, and S. Gligorević, “Computation of symbol-wise mutual in-

formation in transmission systems with LogAPP decoders and application to EXIT

208 BIBLIOGRAPHY

charts,” in Proc. 5th International ITG Conference on Source and Channel Coding

(SCC’04), Erlangen-Nürnberg, Germany, Jan. 14–16, 2004.

[88] I. Land, P. A. Hoeher, and J. Sayir, “Bounds on information combining for the

accumulator of repeat-accumulate codes without Gaussian assumption,” in Proc.

IEEE Int. Symp. on Inform. Theory (ISIT’04), Chicago, USA, Jun. 27 – Jul. 2,

2004.

[89] I. Land, S. Huettinger, P. A. Hoeher, and J. B. Huber, “Bounds on information

combining,” IEEE Trans. Inf. Theory, vol. 51, no. 2, pp. 612–619, Feb. 2005.

[90] A. Ashikhmin, G. Kramer, and S. ten Brink, “Extrinsic information transfer func-

tions: Model and erasure channel properties,” IEEE Trans. Inf. Theory, vol. 50,

no. 11, pp. 2657–2673, Nov. 2004.

[91] C. Measson, A. Montanari, and R. Urbanke, “Why we cannot surpass capacity:

The matching condition,” in Proc. 43rd Allerton Conference on Communication,

Control, and Computing, Monticello, Illinois, USA, Sep. 28–30, 2005.

[92] K. Bhattad and K. Narayanan, “An MSE based transfer chart to analyze iterative

decoding schemes,” IEEE Trans. Inf. Theory, vol. 53, no. 1, pp. 22–38, Jan. 2007.

[93] N. T. Gaarder and J. K. Wolf, “The capacity region of a multiple-access discrete

memoryless channel can increase with feedback,” IEEE Trans. Inf. Theory, vol. 21,

no. 1, pp. 100–102, 1975.

[94] T. Kasami and S. Lin, “Coding for a multiple-access channel,” IEEE Trans. Inf.

Theory, vol. 22, no. 2, pp. 129–137, Mar. 1976.

[95] ——, “Bounds on the achievable rates of block coding for a memoryless multiple-

access channel,” IEEE Trans. Inf. Theory, vol. 24, no. 2, pp. 187–197, Mar. 1978.

[96] H. C. A. V. Tilborg, “An upper bound for codes in a two-access binary erasure

channel,” IEEE Trans. Inf. Theory, vol. 24, no. 1, pp. 112–116, Jan. 1978.

[97] A. J. Viterbi, CDMA: Principles of Spread Spectrum Communication. Addison-

Wesley, 1995.

[98] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge

University Press, 2005.

[99] P. Wang, J. Xiao, and Li Ping, “Comparison of orthogonal and non-orthogonal

approaches to future wireless cellular systems,” IEEE Veh. Technol. Mag., vol. 1,

no. 3, pp. 4–11, Sep. 2006, correction in vol. 1, no. 4, pp. 42–42, Dec. 2006.

BIBLIOGRAPHY 209

[100] A. Sanderovich, M. Peleg, and S. Shamai, “LDPC coded MIMO multiple access with

iterative joint decoding,” IEEE Trans. Inf. Theory, vol. 51, no. 4, pp. 1437–1450,

Apr. 2005.

[101] X. Wang, G. Yue, and K. R. Narayanan, “Optimization of LDPC-coded Turbo

CDMA systems,” IEEE Trans. Signal Process., vol. 53, no. 4, pp. 1500–1510, Apr.

2005.

[102] A. Chakrabarti, A. de Baynast, A. Sabharwal, and B. Aazhang, “Low density parity

check codes for the relay channel,” IEEE J. Sel. Areas Commun., vol. 25, no. 2, pp.

280–291, Feb. 2007.

[103] M. Mattas and P. R. J. Österg̊ard, “A new bound for the zero-error capacity region

of the two-user binary adder channel,” IEEE Trans. Inf. Theory, vol. 51, no. 9, pp.

3289–3291, Sep. 2005.

[104] M. Bossert, Channel Coding for Telecommunications. John Wiley & Sons, Ltd.,

1999.

[105] E. Sharon, A. Ashikhmin, and S. Litsyn, “EXIT functions for the Gaussian chan-

nel,” in Proc. 40th Annu. Allerton Conf. on Communication, Control, Computers,

Allerton, IL, Oct. 2003, pp. 972–981.

[106] ——, “EXIT functions for binary input memoryless symmetric channels,” IEEE

Trans. Commun., vol. 54, no. 7, pp. 1207–1214, Jul. 2006.

[107] R. L. Urbanke and Q. Li, “The zero-error capacity region of the 2-user synchronous

BAC is strictly smaller than its Shannon capacity region,” in Proc. IEEE Informa-

tion Theory Workshop, Killarney, Ireland, Jun. 22–26, 1998.

[108] A. Amraoui, S. Dusad, and R. L. Urbanke, “Achieving general points in the 2-

user Gaussian MAC without time-sharing or rate-splitting by means of iterative

coding,” in Proc. IEEE International Symposium on Information Theory, Lausanne,

Switzerland, Jun. 30 – Jul. 5, 2002.

[109] A. Roumy and D. Declercq, “Characterization and optimization of LDPC codes for

the 2-user Gaussian multiple access channel,” EURASIP J. Wirel. Commun. Netw.,

vol. 2007, 2007.

[110] H. A. Cirpan and M. K. Tsatsanis, “Chip interleaving in direct sequence CDMA

systems,” in Proc. IEEE International Conference on Acoustics, Speech, and Signal

Processing, Munich, Germany, Apr. 21–24, 1997, pp. 3877–3880.

210 BIBLIOGRAPHY

[111] P. Frenger, P. Orten, and T. Ottosson, “Code-spread CDMA using maximum free

distance low-rate convolutional codes,” IEEE Trans. Commun., vol. 48, no. 1, pp.

135–144, Jan. 2000.

[112] S. Brück, U. Sorger, S. Gligorevic, and N. Stolte, “Interleaving for outer convolu-

tional codes in DS-CDMA systems,” IEEE Trans. Commun., vol. 48, no. 7, pp.

1100–1107, Jul. 2000.

[113] F. Brännström, T. M. Aulin, and L. K. Rasmussen, “Iterative detectors for trellis-

code multiple-access,” IEEE Trans. Commun., vol. 50, no. 9, pp. 1478–1485, Sep.

2002.

[114] R. H. Mahadevappa and J. G. Proakis, “Mitigating multiple access interference and

intersymbol interference in uncoded CDMA systems with chip-level interleaving,”

IEEE Trans. Wireless Commun., vol. 1, no. 4, pp. 781–792, Oct. 2002.

[115] H. Schoeneich and P. A. Hoeher, “A hybrid multiple access scheme approaching

single user performance,” in Proc. Sixth Baiona Workshop on Signal Processing in

Communications, Baiona, Spain, Sep. 2003, pp. 163–168.

[116] Li Ping, “Interleave-division multiple access and chip-by-chip iterative multi-user

detection,” IEEE Commun. Mag., vol. 43, no. 6, pp. S19–S23, Jun. 2005.

[117] Li Ping, L. Liu, K. Wu, and W. K. Leung, “Interleave-division multiple-access,”

IEEE Trans. Wireless Commun., vol. 5, no. 4, pp. 938–947, Apr. 2006.

[118] H. Schoeneich and P. A. Hoeher, “Iterative pilot-layer aided channel estimation

with emphasis on interleave-division multiple access systems,” EURASIP J. Applied

Signal Process., vol. 2006, pp. 1–15, 2006.

[119] T. M. Apostol, Mathematical Analysis, 2nd ed. Addison Wesley, 1974.

[120] G. E. Shilov, B. L. Gurevich, and R. A. Silverman, Integral, Measure, and Deriva-

tive: A Unified Approach. New York: Dover Publications, 1977.

Appendix A

Acronyms and Abbreviations

A.1 Acronyms

AEP Asymptotic equipartition property

APP A posteriori probability

ASK Amplitude-shift keying

AWGN Additive white Gaussian noise

BAC Binary adder channel

BCJR Bahl-Cocke-Jelinek-Raviv algorithm

BER Bit error rate

BICM Bit-interleaved coded modulation

BICM-SM Bit-interleaved coded modulation with superposition mapping

BPSK Binary phase-shift keying

CDM Code-division multiplexing

CDMA Code-division multiple access

DEM Demapping/Demodulation

EBL Effective bit load

EMD Extrinsic message degree

EPA Equal power allocation

EXIT Extrinsic information transfer

FPM Fraction of positive messages

211

212 APPENDIX A. ACRONYMS AND ABBREVIATIONS

GA Gaussian approximation

GF Galois field

GPA Grouped power allocation

ICR Information-to-complexity ratio

ID Iterative decoding

IDM Interleave-division multiplexing

IDMA Interleave-division multiple access

ISI Inter-symbol interference

ITU International Telecommunication Union

LDHC Low-density hybrid-check

LLR Log-likelihood ratio

LDPC Low-density parity-check

LDSC Low-density summation-check

MAP Maximum-a-posteriori

MI Mutual information

MIMO Multi-input multi-output

MLD Maximum-likelihood decoding

ML-IDMA Multi-layer interleave-division multiple access

MLSE Maximum-likelihood sequence estimator

OFDM Orthogonal frequency-division multiplexing

PC Parity check

PDF Probability density function

PEG Progressive edge growth

PMF Probability mass function

PSK Phase-shift keying

PSM Phase-shifted superposition mapping

QAM Quadrature amplitude modulation

REP Repetition

SC Summation check

A.2. ABBREVIATIONS 213

SCE Summation check extrinsic message degree

SCR Scrambling

SD Superposition demapping

SIC Successive interference cancellation

SISO Soft-input soft-output

SM Superposition mapping/modulation

SM-EPA Superposition mapping with equal power allocation

SM-GPA Superposition mapping with grouped power allocation

SM-UPA Superposition mapping with unequal power allocation

SNR Signal-to-noise ratio

UPA Unequal power allocation

VA Viterbi algorithm

VN Variable node

A.2 Abbreviations

et al. et alii (= and others)

etc. et cetra (= and so on)

i.i.d. independent and identically distributed

i.i.f. if and only if

i.u.d. independent and uniformly distributed

vs. versus

w.r.t. with respect to

214 APPENDIX A. ACRONYMS AND ABBREVIATIONS

Appendix B

Mathematical Notations

bn nth bit

cn nth chip

C Channel capacity

Eb Energy per info bit

Es Energy per symbol

Pb Bit error probability

H(·) Entropy

h(·) Differential entropy

I(·, ·) Mutual information

N Bit load

X Symbol alphabet

Pr {·} Probability of an event

p(·) Probability density function

P (·) Probability mass function

F2 Galois field GF(2)

R Field of real numbers

φ Mapping rule

N (µ, σ2) Normal distribution with mean µ and variance σ2

B(n, p) Binomial distribution of n independent Bernoulli(p) experiments

dH(x,y) Hamming distance between x and y

dE(x,y) Euclidean distance between x and y

λs(D) Variable node degree distribution of an LDSC code

ηs(D) Check node degree distribution of an LDSC code

λp(D) Variable node degree distribution of an LDPC code

ηp(D) Check node degree distribution of an LDPC code

215

216 APPENDIX B. MATHEMATICAL NOTATIONS

Appendix C

Mathematical Definitions &

Derivations

C.1 Definition of LLRs

Define the a posteriori LLR of the nth code bit as

LLRa(bn)
.
= ln

P (bn = 0|y)

P (bn = 1|y)
, (C.1)

and the extrinsic LLR of the nth code bit as

LLRe(bn)
.
= ln

p(y|bn = 0)

p(y|bn = 1)
, (C.2)

which is extrinsic w.r.t. the a priori information from the decoder. Correspondingly, define

the intrinsic LLR of the nth code bit as

LLRi(bn)
.
= ln

P (bn = 0)

P (bn = 1)
. (C.3)

Using Bayes’ rule, one attains the following relationship:

LLRa(bn) = LLRe(bn) + LLRi(bn) . (C.4)

According to the principle of Bayesian inference, the messages being passed over a fac-

tor graph should always be extrinsic. In this thesis, by the notation LLR without any

subscript, we always mean the extrinsic log-likelihood ratio.

217

218 APPENDIX C. MATHEMATICAL DEFINITIONS & DERIVATIONS

C.2 Entropy of Gaussian Variable

The entropy formula for Gaussian distribution is one of the well-known results from Shan-

non’s original work [3]. The corresponding mathematical derivation is given below.

Let u be a Gaussian variable with probability density function:

p(u) =
1√

2πσ2
u

exp

(
− u2

2σ2
u

)
.

To derive the entropy formula, it is easier to start by using natural logarithm:

h(u) = −
∫
p(u) ln p(u)du

= −
∫
p(u)(−1

2
ln 2πσ2

u −
u2

2σ2
u

)du

=
1

2
ln 2πσ2

u

∫
p(u)du+

1

2σ2
u

∫
u2p(u)du

=
1

2
ln 2πσ2

u +
1

2σ2
u

· σ2
u

=
1

2
ln 2πσ2

u +
1

2

=
1

2
ln 2πσ2

u +
1

2
ln e

=
1

2
ln 2πeσ2

u nats.

Changing the base of the logarithm, we obtain

h(u) =
1

2
log 2πeσ2

u bits. (C.5)

This formula is a stepping-stone for the derivation of Gaussian channel capacity.

C.3. QUANTIZATION OF GAUSSIAN VARIABLE 219

u

p(u) ∆

Figure C.1: Quantization of a Gaussian variable.

C.3 Quantization of Gaussian Variable

In classical information theory, the quantization of continuous variable is often utilized to

build up a link between differential entropy and discrete entropy [2]. For superposition

mapping, the quantization of Gaussian variable is of special interest, as it helps to obtain a

nice approximation for the calculation of SM symbol entropy. In the following, we briefly

elaborate the relevant mathematical derivation.

Consider a Gaussian variable u with zero mean and variance σ2
u. We divide the range of

u into bins of size ∆, as illustrated in Fig. C.1. Collecting the center of each bin into a

discrete alphabet X , one may define a discrete variable x with distribution

P (x) =

∫ x+∆/2

x−∆/2

p(u) du =

∫ x+∆/2

x−∆/2

1√
2πσ2

u

e−u
2/(2σ2

u) du , x ∈ X ,

which gives a linear quantization of Gaussian variable u. Clearly, the following equality

∑

x∈X
P (x) =

∑

x∈X

∫ x+∆/2

x−∆/2

p(u) du =

∫ +∞

−∞
p(u) du = 1

holds always. Hence, P (x) is a valid probability mass function (PMF). According to the

definition of discrete entropy, we have

H(x) = −
∑

x∈X
P (x) logP (x)

= −
∑

x∈X

(∫ x+∆/2

x−∆/2

p(u) du

)
log

(∫ x+∆/2

x−∆/2

p(u) du

)
, (C.6)

which is difficult to be directly evaluated. Note that the Gaussian function p(u) is con-

tinuous and differentiable over the whole support. Following the mean value theorem, for

each quantization bin there exists a value u′ such that

p(u′)∆ =

∫ x+∆/2

x−∆/2

p(u) du , x ∈ X . (C.7)

220 APPENDIX C. MATHEMATICAL DEFINITIONS & DERIVATIONS

Substituting (C.7) into (C.6), we obtain

H(x) = −
∑

u′

p(u′)∆ log(p(u′)∆)

= −
∑

u′

p(u′)∆ log p(u′)−
(∑

u′

p(u′)∆

)
· log ∆

= −
∑

u′

p(u′) log p(u′)∆− log ∆ . (C.8)

where the last equality comes from the fact that
∑

u′ p(u
′)∆ = 1. It is easy to prove that

p(u) log p(u) is Riemann integrable [119,120], i.e.,

−
∑

u′

p(u′) log p(u′)∆ = −
∫
p(u) log p(u)du for ∆→ 0 . (C.9)

Sequentially, for ∆→ 0 we have

H(x) = −
∫
p(u) log p(u)du− log ∆

=
1

2
log(2πeσ2

u)− log ∆

=
1

2
log(2πeσ2

u/∆
2) (C.10)

where the second equality follows from the property of Gaussian distribution, cf. App. C.2.

As long as the quatization step ∆ is not so large, we may safely use the approximation

H(x) ≈ 1

2
log(2πeσ2

u/∆
2) (C.11)

for some perceptual analysis, e.g., the entropy calcuation of SM symbols. Worthwhile to

be noted, the above approximation might also be written as

H(x) ≈ h(N (0, σ2
u/∆

2) , (C.12)

which tells that the entropy of the quantization of a Gaussian distribution is approxi-

mately the entropy of another Gaussian distribution with the variance being 1/∆2 times

that of the original one. Naturally, as one reduces the quantization step ∆, the discrete

entropy H(x) increases. This property is used in Section. 3.5 to improve the supportable

bandwidth efficiency of SM while maintaining an optimal achievable power efficiency.

Appendix D

Own Publications Related to the

Thesis

[1] P. A. Hoeher and T. Wo, “Superposition modulation: Myths and facts”, IEEE Com-

mun. Mag., vol. 49, no. 12, pp. 110–116, Dec. 2011.

[2] T. Wo, M. Noemm, D. Hao, and P. A. Hoeher, “Iterative processing for superposition

mapping”, Hindawi Journal of Electrical and Computer Engineering – Special Issue

on Iterative Signal Processing in Communications, vol. 2010, 2010.

[3] T. Wo and P. A. Hoeher, “Low-complexity Gaussian detection for MIMO systems”,

Hindawi Journal of Electrical and Computer Engineering – Special Issue on Iterative

Signal Processing in Communications, vol. 2010, 2010.

[4] M. Noemm, T. Wo, and P. A. Hoeher, “Multilayer APP detection for IDM”, Electron.

Lett., vol. 46, no. 1, pp. 96–97, Jan. 2010.

[5] Z. Shi, T. Wo, P. A. Hoeher, and G. Auer, “Graph-based soft iterative receiver for

higher-order modulation”, in Proc. IEEE 12th International Conference on Commu-

nication Technology (ICCT), Nanjing, China, Nov. 2010.

[6] T. Wo and P. A. Hoeher, “A universal coding approach for superposition mapping”,

in Proc. IEEE 6th International Symposium on Turbo Codes & Iterative Information

Processing (ISTC), Brest, France, Sep. 2010.

[7] Z. Shi, T. Wo, and P. A. Hoeher, “Superposition mapping with adaptive bit loading

for BICM-OFDM systems”, in Proc. IEEE 6th International Symposium on Turbo

Codes & Iterative Information Processing (ISTC), Brest, France, Sep. 2010.

221

222 APPENDIX D. OWN PUBLICATIONS RELATED TO THE THESIS

[8] T. Wo and P. A. Hoeher, “Superposition mapping with application in bit-interleaved

coded modulation”, in Proc. IEEE 8th International ITG Conference on Source and

Channel Coding (SCC), Siegen, Germany, Jan. 2010.

[9] T. Wo, C. Liu, and P. A. Hoeher, “Graph-based soft channel and data estimation for

MIMO systems with asymmetric LDPC codes”, in Proc. IEEE International Confer-

ence on Communications (ICC), Beijing, China, May 2008.

[10] T. Wo, C. Liu, and P. A. Hoeher, “Graph-based iterative Gaussian detection with soft

channel estimation for MIMO systems”, in Proc. 7th International ITG Conference

on Source and Channel Coding (SCC), Ulm, Germany, Jan. 2008.

[11] T. Wo and P. A. Hoeher, “A simple iterative Gaussian detector for severely delay-

spread MIMO channels”, in Proc. IEEE International Conference on Communications

(ICC), Glasgow, Scotland, Jun. 2007.

[12] A. Scherb, K.-D. Kammeyer, T. Wo, and P. A. Hoeher, “Blind equalization of fre-

quency selective MIMO systems via statistical and trellis-based methods”, in Proc.

40th Asilomar Conference on Signals, Systems, and Computers (ACSSC), Asilomar,

USA, Oct. 2006.

[13] T. Wo, J. Ch. Fricke, and P. A. Hoeher, “A graph-based iterative Gaussian detector for

frequency-selective MIMO channels”, in Proc. IEEE Information Theory Workshop

(ITW), Chengdu, China, Oct. 2006.

[14] T. Wo, P. A. Hoeher, A. Scherb, and K.-D. Kammeyer, “Performance analysis of

maximum-likelihood semiblind estimation of MIMO channels”, in Proc. IEEE 63rd

Vehicular Technology Conference (VTC), Melbourne, Australia, May 2006.

[15] T. Wo, A. Scherb, P. A. Hoeher, and K.-D. Kammeyer, “Analysis of semiblind channel

estimation for FIR-MIMO systems”, in Proc. 4th International Symposium on Turbo

Codes & Related Topics (ISTC) in conjunction with 6th International ITG Conference

on Source and Channel Coding (SCC), Munich, Germany, Apr. 2006.

[16] T. Wo and P. A. Hoeher, “Semi-blind channel estimation for frequency-selective MIMO

systems”, in Proc. 14th IST Mobile & Wireless Communications Summit, Dresden,

Germany, Jun. 2005.

