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Zusammenfassung

Diese Arbeit befasst sich mit dem Entwurf und der mathematischen
Analyse von randomisierten Approximationsalgorithmen für das Hit-
ting Set Problem und das b-Matching Problem in Hypergraphen.
Zuerst präsentieren wir einen randomisierten Algorithmus für das
Hitting Set Problem, der auf linearer Programmierung basiert. Mit
diesem Verfahren und einer Analyse, die auf der probabilistischen
Methode fußt, erreichen wir für verschiedene Klassen von Instanzen
drei neue Approximationsgüten, die die bisher bekannten Ergebnisse
(Krevilevich [1997], Halperin [2001]) für das Problem verbessern. Die
Analysen beruhen auf Konzentrationsungleichungen für Summen von
unabhängigen Zufallsvariablen aber auch Martingal-basierten Unglei-
chungen, wie die aus der Azuma-Ungleichung abgeleitete Bounded
Difference-Inequality, in Kombination mit kombinatorischen Argu-
menten.
Für das b-Matching Problem in Hypergraphen analysieren wir zu-
nächst seine Komplexität und erhalten zwei neue Ergebnisse.
Wir geben eine polynomielle Reduktion von einer Instanz eines ge-
eigneten Problems zu einer Instanz des b-Matching-Problems an und
zeigen ein Nicht-Approximierbarkeitsresultat für das Problem in uni-
formen Hypergraphen. Dieses Resultat verallgemeinert das Ergebnis
von Safra et al. (2006) von b “ 1 auf b P O

(
l

ln l

)
. Safra et al. zeigten,

dass es für das 1-Matching Problem in uniformen Hypergraphen unter
der Annahme P ‰ N P keinen polynomiellen Approximationsalgo-
rithmus mit einer Ratio Op l

ln l q gibt.
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Weiterhin beweisen wir, dass es in uniformen Hypergraphen mit be-
schränktem Knoten-Grad kein PTAS für das Problem gibt, solange
P ‰ N P.
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Abstract

This thesis studies the design and mathematical analysis of random-
ized approximation algorithms for the hitting set and b-matching
problems in hypergraphs.
We present a randomized algorithm for the hitting set problem based
on linear programming. The analysis of the randomized algorithm
rests upon the probabilistic method, more precisely on some con-
centration inequalities for the sum of independent random variables
plus some martingale based inequalities, as the bounded difference
inequality, which is a derived from Azuma inequality.
In combination with combinatorial arguments we achieve some new
results for different instance classes that improve upon the known
approximation results for the problem (Krevilevich (1997), Halperin
(2001)).
We analyze the complexity of the b-matching problem in hypergraphs
and obtain two new results.
We give a polynomial time reduction from an instance of a suitable
problem to an instance of the b-matching problem and prove a non-
approximability ratio for the problem in l-uniform hypergraphs. This
generalizes the result of Safra et al. (2006) from b “ 1 to b P O

(
l

ln l

)
.

Safra et al. showed that the 1-matching problem in l-uniform hyper-
graphs can not be approximated in polynomial time within a ratio
Op l

ln l q, unless P “ N P.
Moreover, we show that the b-matching problem on l-uniform hyper-
graphs with bounded vertex degree has no polynomial time approxi-
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mation scheme (PTAS), unless P “ N P.
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Introduction

In this work we study the polynomial-time approximability of the b-
matching and the hitting set problem in hypergraphs. Both problems
are well explored in graph theory. For graphs, the hitting set problem
is known as the vertex cover problem and it is N P-hard [48], whereas
the b-matching problem is solvable in polynomial time [62]. On the
other hand, the b-matching problem in hypergraphs is a generalization
of the well-known set packing problem or simply 1-matching problem
in hypergraphs and it is N P-hard, too [48]. The terminology „vertex
cover“ and „hitting set“ is used for hypergraphs in a synonymous way.

The Hitting Set Problem

Let H “ pV, Eq be a hypergraph. A hitting set (or vertex cover) in
H is a set C Ď V in which all edges are incident. The hitting set
problem is to find a hitting set of minimum cardinality. The problem
is N P-hard, even for graphs [48]. Thus the research has focused on
polynomial-time approximation algorithms.
For graphs it is known that a 2-factor approximation can be achieved
in polynomial time, for example by the primal-dual method [41], but
an approximation better than factor of 2 is not possible, if we assume
the unique game conjecture [52]. For graphs with maximum degree
bounded by a constant ∆ several ρ-improvements with ρ ă 2 were
proved (Ghandi, Khuler, Srinivasan (2000), Halperin (2001)). For
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Introduction

hypergraphs with hyperedge size at most l, a greedy algorithm leads
to a factor l approximation, while an approximation better than l is
not possible, if we assume the unique game conjecture [52].

As hypergraphs are a generalization of graphs, a key question arises as
what extent the achieved approximation results for the vertex cover
problem in graphs can be generalized to hypergraphs.
Thus, it is an important problem to characterize classes of hypergraphs
for which the approximation barrier of l may be broken. Krivelevich
[55] proved an approximation ratio of lp1´cn

1´l
l q for l-uniform hyper-

graphs. Halperin [36] showed that the problem can be approximated
within a factor of l ´ p1´ op1qq lpl´1q ln lnn

lnn for l-uniform hypergraphs
with l3 “ op ln lnn

ln ln lnnq. Note that this condition enforces n “ 22l and
thus applies only to astronomically large sized hypergraphs.

We present a randomised algorithm of hybrid type that combines
LP-based randomised rounding, sparsening of the hypergraph and
greedy repairing. The randomized rounding technique computes an
initial integer solution which might be infeasible. We use a greedy
approach to make the solution feasible. The mathematical challenge
is to analyze the combination of randomized rounding and the greedy
repairing. With an elaborate analysis based on the probabilistic
method adapted to different instance classes, mainly characterized
by parameters like the maximal edge size l and the maximum vertex
degree ∆, we achieve three new results that improve the previous
approximations.

For hypergraphs with maximum hyperedge size l and maximum vertex
degree ∆ (not necessarily assumed to be constants) we show that our
algorithm achieves for l “ Op

√
nq and ∆ “ Opn

1
4 q an approximation

ratio of l
(
1´ c

∆
)
with constant probability, for some constant c ą 0,

vi



Introduction

improving the bounds obtained by Krivelevich [55].
For the class of uniform, quasi-regularisable hypergraphs, which are
known and useful in the combinatorics of hypergraphs (see definition in
Chapter 2, for more details see Berge [10]) we prove an approximation
ratio of l

(
1´ n

8m
)
under the assumption that ∆ “ Opn

1
3 q.

Moreover, we consider hypergraphs, where l and ∆ are constants,
and achieve a ratio of l

(
1´ l´1

4∆

)
, which is an improvement of the

bound of lp1´ c∆
1

1´l q presented by Krivelevich [55] and the bound of
l ´ p1´ op1qq lpl´1q ln ln ∆

ln ∆ for l3 “ op ln ln ∆
ln ln ln ∆q given by Halperin [36].

Table 1. Summary of the results for the hitting set problem

Hypergraph Previous Results Our Results
l “ Op

√
nq Krivelevich: lp1´ cn

1´l
l q l

(
1´ c{n

1
4
)

quasi-regularisable — l
(
1´ n

8m
)

l and ∆ constants Krivelevich: lp1´ c∆
1

1´l q l
(
1´ l´1

4∆

)
Halperin: l ´ p1´ op1qq lpl´1q ln ln ∆

ln ∆

Furthermore, we present a hybrid randomized algorithm for the partial
vertex cover problem for hypergraphs with constant maximum hyper-
edge degreeD and maximum hyperedge size l (not necessarily assumed
to be constant). A similar analysis as for the hitting set problem yields
a partial vertex cover of cardinality at most lp1´ Ωp1{pD ` 1qqqOpt.
To our best knowledge this is the first approximation ratio below the
approximation barrier of l.
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Table 2. Summary of the results for the partial vertex cover Problem

Hypergraph Previous Results Our Results
D constant Srinivasan et al. : l l (1´ Ωp1{pD ` 1qq)

k ě m
4 and ∆ constant — l

(
1´ Ωp 1

∆q
)

The b-Matching Problem in Hypergraphs

Let H “ pV, Eq be a hypergraph. For a given b P N we call a set
M Ď E a b-matching if no vertex in V is contained in more than
b edges of M . Maximum b-matching is the problem of finding a
b-matching with maximum cardinality. For graphs the problem is
solvable in polynomial-time [62]. But already for 3-uniform hyper-
graphs it becomes N P-hard, and there has been a large body of work
concerning polynomial-time approximation algorithms [57, 68, 74, 76].
We consider the question as to how the parameter b influences the
approximability of the problem. We give a polynomial-time reduction
from an instance of a suitable N P-hard problem to an instance of the
b-matching problem and prove that it is N P-hard to approximate
the b-matching problem in an l-uniform hypergraph within any ratio
smaller than Op l

b ln l q .
This shows that the approximation depends on b and the non-
approximability ratio tends towards a constant, if b tends to l

ln l .
In other words, if b is getting large, a much better approximation
ratio might be possible. This result is a generalization of the result
of Safra et al. [37], who showed that the 1-matching problem in
l-uniform hypergraphs can not be approximated in polynomial time
within a ratio of Op l

log l q, unless P “ N P . It is notable that the proof
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Introduction

of Safra et al. in [37] cannot be lifted to b ě 2. In fact some new
techniques and ingredients are required: e.g. the probabilistic proof
of the existence of a hypergraph with ’almost’ disjoint b-matchings,
where dependent events have to be decoupled (in contrast to Safra et
al.) and the generation of some sparse hypergraph.
Furthermore, we show that the b-matching problem in l-uniform hy-
pergraphs admits no polynomial-time approximation scheme, unless
P “ N P. This generalizes a result of Kann [47] for the 1-matching
problem in uniform hypergraphs. We also give a reduction that pre-
serves approximability between this problem and the set multicover
problem in ∆-regular hypergraphs. This means, if we can prove that
one of the problems has no PTAS, then the same holds for the other
problem.

Outline of the Thesis

The thesis is organized as follows:

In Chapter 1, we state some definitions and notations, describe some
techniques and methods that will be applied in further chapters in
this thesis.

In Chapter 2, we present a LP-based algorithm for the hitting set
problem in hypergraphs that we analyze in two different ways for
different classes of hypergraphs and derive three new results.

In Chapter 3, we study the inapproximability aspect of the b-
matching problem in uniform hypergraphs. First we introduce nota-
tions, give definitions and review some known results. Then, we give
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an N P-reduction to a b-matching instance proving an inapproxima-
bility result for this problem.

Chapter 4, treats a further aspect of the hardness of the b-matching
problem in uniform hypergraphs. We prove that the problem has
no polynomial-time approximation, unless P “ N P. To this end,
we first give the required notions and definitions and then present a
linear reduction that constructs a suitable instance of the problem
and prove its correctness.
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Chapter 1

Preliminaries about Definitions and
Concepts

Matching and covering problems in graphs and hypergraphs are fun-
damental tasks in combinatorial optimization. In this thesis we focus
on hypergraphs. In this chapter we will introduce some elementary
definitions and notions that we will frequently be used in the up-
coming chapters. More technical definitions and preliminaries will
be introduced in those chapters where they are required for results
and analysis, respectively. The definitions in this chapter can also
be found in the books of Korte [54], Wegener [32], Berge [10] and
Hromkovič [42].

1.1 Hypergraphs and Problems

A hypergraph H is an ordered pair pV, Eq where V “ {v1, ..., vn} is a
finite set and E “ {E1, ..., Em} is a collection of non-empty subsets
of V . The elements v1, ..., vn of V are called vertices and the sets
E1, ..., Em are called hyperedges. The size or the cardinality |E| of a
hyperedge E P E is the number of vertices in E. Hypergraphs are a
generalization of simple graphs, since a simple graph is a hypergraph
with all hyperedges having cardinality 2. A hypergraph can be
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1. Preliminaries about Definitions and Concepts

represented by its incidence matrix
A “ paijq P {0, 1}nˆm, where aij “ 1 if vi P Ej , and 0 otherwise,
so the columns of the incidence matrix represent the hyperedges
E1, ..., Em and the rows represent the vertices v1, ..., vn.
We say that a vertex u is a neighbor of a vertex v, if there exist a
hyperedge E P E that contains both u and v. The set of neighbors of
a vertex v is denoted by Npvq. More generally, for U Ď V , we denote
by NpUq the set of all neighbors in V zU of vertices in U . The formal
definition is:

Npvq “ {u P V z{v} : DE P E , {u, v} Ď E}

NpUq “ {v P V zU : Du P U, v P Npuq}.

Further, for a set U Ď V we denote by

ΓpUq :“ {F P E ; U X F ‰ H}

the set of hyperedges incident to the set U .
A hypergraph H has vertex- (resp. hyperedge) weights if to every
vertex (resp. hyperedge) a weight is assigned. Formally, a vertex-
weight (resp. hyperedge weight) of a hypergraph H “ pV, Eq is a
function w : V ÝÑ R (resp. w : E ÝÑ R). Let us define for U Ď V ,
wpUq :“

∑
vPU wpvq resp. for F Ď E wpFq :“

∑
EPF wpEq).

In this thesis we are essentially interested in the class of simple
hypergraphs, also called Sperner family [10], where all hyperedges
are distinct. We will study instances that are characterized by the
following three parameters:
The rank of a hypergraph. The rank rpHq of a hypergraph H “ pV, Eq
is the maximum hyperedge size, namely max{|E| : E P E}. A hyper-
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1.1. Hypergraphs and Problems

graph is called l-uniform if all hyperedges have the same cardinality
l. Thus a graph is a 2-uniform hypergraph. A further subclass are
hypergraphs with bounded rank where the size of every hyperedge is
at most a given constant l.

The vertex degree. For v P V define the (vertex-) degree degpvq of v as
the cardinality of Γp{v}q so degpvq “ |Γp{v}q|. We say, H is r-regular,
if degpvq “ r for all v P V .
The hyperedge degree. For hyperedge E P E we denote by degpEq the
hyperedge degree of E, defined by

degpEq :“ |ΓpEq| “ |{F P EzE;E X F ‰ H}|.

In the rest of the thesis we will denote by

∆pHq :“ max
vPV

degpvq

the maximum vertex degree, by

d̄pHq :“
∑
vPV degpvq
|V |

the average vertex degree and by

DpHq :“ max
EPE

degpEq

the maximum hyperedge degree.

The notion of the degree of a hypergraph allows us to define some
important hypergraph classes: hypergraphs with bounded vertex
degree (for a given constant ∆ P N, the degree of every vertex is at
most ∆), hypergraphs with bounded hyperedge degree (for a given

3



1. Preliminaries about Definitions and Concepts

v1

v2

E2

E5

v3
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v6 v8
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E3

v10

E1

v7

v11

Figure 1.1. An example of a hypergraph with rank 4: |E3| “ 4, maximum
degree 3: degpv3q “ 3 and maximum hyperedge-degree 3: degpE3q “ 3.

constant D P N, the degree of every hyperedge is at most D), regular
hypergraphs (all vertices have the same degree ∆).
We investigate the following three fundamental problems in combina-
torial optimization:

b- Matching Problem in Hypergraphs: For a given hypergraph H “

pV, Eq, b “ pb1, b2, ¨ ¨ ¨ , bnq P Nn and w : E ÝÑ Qě0, we call a set
M Ď E a b-matching in H, if no vertex i P V is contained in more
than bi hyperedges of M .
The b-matching problem in hypergraphs is the task of finding a
maximum weight b-matching in H.

An important special case of b-matching in hypergraphs is the l-
dimensional b-matching defined as follows:
l-Dimensional b-Matching Problem: This problem is a variant of b-
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1.2. The Notion of Approximation and Randomized Algorithms

matching in l-uniform hypergraphs, where the vertices of the input
hypergraph are a union of l disjoint sets, V “ V1

¨
Y V2...

¨
Y Vl, and

each hyperedge E contains exactly one vertex from each set such that
E Ď V1 ˆ V2 ˆ ...ˆ Vl and |E| “ l.
The l-dimensional b-matching problem is the task of finding a maxi-
mum weight l-dimensional b-matching in H.

We will mainly be concerned with the case that bi “ b for some scalar
value b ě 1 for all i P V .

Hitting Set Problem: For a given hypergraph H “ pV, Eq and w :
V ÝÑ Qě0, we call a set C Ď V a hitting set in H if for all hyperedges
it holds that they are incident in some vertex of C. The hitting set
problem is the task of finding a hitting set of minimum weight.

Set Multicover Problem: For a given hypergraph H “ pV, Eq and
k “ pk1, k2, ¨ ¨ ¨ , knq P Nn and w : V ÝÑ Qě0, we call a subset
SMC Ď E a set multicover in H if no vertex i P V is contained in less
than ki hyperedges of SMC. The set multicover problem is the task
of finding a set multicover of minimum weight.

1.2 The Notion of Approximation and Randomized Al-
gorithms

We briefly recall the concept of approximation algorithms.
Let Π be an optimization problem with feasible solutions in Qě0. For
an input instance I of Π we denote by OptpIq the value of an optimal
solution. We distinguish between two kinds of approximation algo-
rithms. The first kind returns solutions that differ from the optimal

5



1. Preliminaries about Definitions and Concepts

solution by a constant and is called an absolute approximation algo-
rithm or approximation algorithm with additive constant. Formally,
we have the following

1.1 Definition. An absolute approximation algorithm for an optimiza-
tion problem Π is a polynomial-time algorithm A for which there
exists a constant r ą 0 such that

|ApIq ´OptpIq| ď r

for all instances I of Π, where ApIq is the objective value of the
solution given by A. In this case we call r an additive approximation
error.

The second kind is called an algorithm with an approximation ratio
or multiplicative ratio and is defined as follows

1.2 Definition. Let r ě 1. An r-approximation algorithm for a maxi-
mization problem Π is a polynomial-time algorithm A such that

ApIq ě
1
r

OptpIq,

for all instances I of Π. 1
r is called approximation factor and r is

called the approximation ratio.

Analogously, we define an r-approximation algorithm for a minimiza-
tion problem Π to be a polynomial-time algorithm A such that

ApIq ď rOptpIq.

r is called approximation factor and 1
r is the approximation ratio.

Approximation Schemes. As mentioned above, problems that are N P-

6



1.2. The Notion of Approximation and Randomized Algorithms

complete cannot be solved in polynomial-time, unless P “ N P, but
some of them may admit a polynomial-time approximation algorithm
with a ratio of 1 ` ε for each ε ą 0. We call such an algorithm a
polynomial-time approximation scheme.

1.3 Definition. Let Π be an optimization problem with non-negative
weights. A polynomial-time approximation scheme (PTAS) for Π is
an algorithm A that takes as input an instance I of Π and an ε ą 0
such that, for each fixed ε, A is a p1 ` εq-approximation algorithm
for Π. The running time of A can be bounded by a function that is
polynomial in the instance size |I|.

Note that the running time of a PTAS may depend exponentially in
ε, e.g. Op|I|

1
ε q.

Hardness of Optimization Problems. For many problems it is possible to
prove that even the existence of an r-approximation algorithm with
small r is impossible, unless P “ N P. Such results are called non-
approximability results. The objective of this section is to introduce
some techniques that, under assumptions like P ‰ N P, prove the
non-approximability of optimization problems. We provide different
results for the different problems under consideration. On the one
hand, we ask for the non-existence of a PTAS. On the other hand, we
prove lower bounds for the approximation ratio of any polynomial-
time approximation algorithm. To obtain such hardness results there
are in general three methods:
Reduction to N P-hard decision problems. Let Π be the problem for
which we want to find a feasible solution within a fixed approximation
ratio r.
The aim of the technique is to reduce an N P-hard problem to the

7



1. Preliminaries about Definitions and Concepts

problem Π and show that Π does not admit any polynomial-time
algorithm with approximation ratio r, under the assumption P ‰ N P .
Approximation-preserving reduction. In general the approximation prop-
erties of a N P-hard problem will not be preserved under a N P-
reduction.
The concepts of N P-completeness and that of approximation-preserving
reduction are similar. While the first concept, under the assumption
P ‰ N P , provides a criterion to prove that a given problem does not
belong to the class P, the second concept provides under the same
assumption an argument to show that an optimization problem does
not admit a PTAS. Most of the approximation-preserving reductions
are based on the following idea: Let f be a approximation-preserving
reduction from an optimization problem Π1 to another optimization
problem Π2. Then, the two following criteria must be satisfied: first,
f must transform each instance of Π1 to an instance of Π2, secondly,
it must be possible to transform every solution of the constructed
instance of Π2 to a solution for the original instance.
In this thesis we will be concerned only with the so-called "linear re-
duction". A formal definition of a linear reduction is given in Chapter
4.
Application of the PCP-Theorem. Several inapproximability results are
based on one of the deepest and hardest results in the theory of
computation, the so called PCP1-Theorem [5, 6], which gave a new
characterization of the class N P.
In this thesis, we are essentially interested in the first two methods,
which we will explicitly describe and apply in Chapters 3 and 4.
Randomized Algorithms. A randomized algorithm is informally speaking

1the letters PCP stand for "probabilistically checkable proofs"
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1.2. The Notion of Approximation and Randomized Algorithms

an algorithm which uses random bits, e.g cast a coin or a dice etc.
during its execution. Algorithmic problems can often be solved very
simply and efficiently by a randomized algorithm. Thus, in contrast
to deterministic algorithms, the behaviour of a randomized algorithm
depends not only on its input, but also on random bits.
Consequently if we run a randomized algorithm A on the same input
several times, we will very likely get different results. The difference
may concern both the solution and the running time. Probability
theory is used to prove a typical performance of the algorithms with
(desirably) high probability.

1.2.1 Linear Programming and Randomized Rounding

Linear Programming. In this thesis we will frequently use linear pro-
gramming relaxations of integer linear programs. A linear program-
ming problem can be defined as the problem of optimizing (maxi-
mizing or minimizing) a linear function over Qn subject to a set of
feasible solutions that is described by finitely many linear inequality
and equality constraints.
Formally, let A P Qmˆn be a matrix and b P Qm, c P Qn be two
column vectors. A linear programming problem is the problem of
finding a vector x P Qn that maximizes (or minimizes) the function
cTx and satisfies Ax ď b (resp. Ax ě b).

A linear program (LP) is an instance of a linear programming problem.
If we replace the set Qn by Zn, we call the corresponding problem an
integer linear programming problem. An instance of this problem type
is called integer linear program (ILP). Formally, an ILP (maximization

9



1. Preliminaries about Definitions and Concepts

version) is given by

max{cTx : x P Zn, Ax ď b}.

By taking Qn instead of Zn, we relax the ILP and call this linear
program the LP-relaxation. A relaxed optimal solution can be found
in polynomial-time [46, 50], while solving ILPs is a N P-hard problem
[48]. An important case of an integer linear program is the 0{1-ILP
where the variables are binary, i. e. from {0, 1}.
Let us consider a maximization problem. One of the fundamental
results in the theory of mathematical programming is the duality
theorem due to von Neumann [78] and Gale, Kuhn and Tucker [29].

1.4 Theorem (The Duality Theorem). Let P “ {x P Qn
ě0 : Ax ď b} and

D “ {x P Qm
ě0 : ATx ě c} be nonempty sets. P is the primal and D

is its dual program. It holds that

max{cTx : x P P} “ min{bT y : y P D}

The direction max{cTx : x P P} ď min{bT y : y P D} of the equality
is easy to prove and is called the weak duality.
A large family of combinatorial optimisation problems, among them
problems on graphs and hypergraphs, can be expressed as covering
or packing integer programs.
Covering Problem. Covering problems are minimisation problems which
can be expressed by an integer linear program (CIP) as follows:

min cTx

(CIP) Ax ě b

x P Zně0

10



1.2. The Notion of Approximation and Randomized Algorithms

where A, b and c are as given above.

Among the problems that are treated in this thesis, the hitting set
problem, the partial vertex cover problem in hypergraphs can be
expressed as covering problems.
Packing Problems. Packing problems are maximization problems with
an integer linear program (PIP) formulation as follows: Let A, b and
c as above, then

max cTx

(PIP) Ax ď b

x P Zně0

The b-matching problem in hypergraphs treated in this thesis is a
packing problem.

Randomized Rounding. A technique introduced by Raghavan and
Thompson [68] that combines linear programming and randomized
algorithms is referred to as randomized rounding. It works roughly
as follows: After solving the LP relaxation of a binary ILP we aim
to round the optimal fractional variables to 0 or 1 in order to get
a feasible solution of the ILP which should be close to the integer
optimum. For an optimal fractional solution x “ px1, ¨ ¨ ¨ , xnq of
an LP, we generate a random variable X “ pX1, ..., Xnq by setting
Xi “ 1 with probability xi and Xi “ 0 with probability 1´xi for each
i, independently for all i. The idea of this technique is to consider
the optimal fractional values of a LP- solution as probabilities for
the rounding process. Clearly, if a fractional value is 1 (or 0) then
it will be picked (not picked) for the corresponding integer solution.
Depending on the optimization problem under consideration, the

11



1. Preliminaries about Definitions and Concepts

rounding process can be varied in a skilful manner (see Chapter 2).

1.3 Probabilistic Tools

For the one-sided deviation the Chebychev-Cantelli inequality will be
frequently used:

1.5 Theorem (see [1]). Let X be a non-negative random variable with
finite mean EpXq and variance VarpXq. Then for any a ą 0 we have

PrpX ě EpXq ` aq ď
VarpXq

VarpXq ` a2 ¨

A further useful concentration result is the independent bounded
differences inequality theorem:

1.6 Theorem (see [63]). Let X “ pX1, X2, ..., Xnq be a family of inde-
pendent random variables with Xk taking values in a set Ak for each k.
Suppose that the real-valued function f defined on A1ˆA2ˆ ¨ ¨ ¨ ˆAn

satisfies |fpxq´fpx1q| ď ck whenever the vector x and x1 differ only in
the k-th coordinate. Let EpfpXqq be the expected value of the random
variable fpXq. Then for any t ą 0 it holds

PrpfpXq ď EpfpXqq ´ tq ď exp
(
´2t2∑n
k“1 c

2
k

)
.

The following estimate on the variance of a sum of dependent random
variables can be proved as in the book of Alon and Spencer [3].

1.7 Lemma (see [3]). Let X be the sum of finitely many 0{1 random
variables, i. e., X “ X1 ` . . . ` Xn, and let pi “ EpXiq for all
i “ 1, . . . , n. For a pair i, j P {1, . . . , n} we write i „ j, if Xi and

12



1.3. Probabilistic Tools

Xj are dependent. Let Γ be the set of all unordered dependent pairs
i, j, i. e., 2-element sets {i, j}, and let γ “

∑
{i,j}PΓ EpXiXjq, then it

holds
VarpXq ď EpXq ` 2γ.

For a sum of independent random variables we will use the large
deviation inequality due to Angluin and Valiant [63]:

1.8 Theorem (see [63]). Let X1, . . . , Xn be independent 0/1-random
variables and EpXiq “ pi for all i “ 1, . . . , n. Let X “

∑n
i“1Xi and

µ “ EpXq. For any β ą 0 it holds

(i) PrpX ě p1` βq ¨ µq ď exp
(
´

β2µ
2p1`β{3q

)
and

(ii) PrpX ď p1´ βq ¨ µq ď exp
(
´
β2µ

2

)
.
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Chapter 2

The Hitting Set Problem

In this chapter1 we analyze the hitting set problem, which is a gener-
alization of the vertex cover problem in graphs.
The hitting set problem is one of Karp’s 21 N P-complete problems
[48]. It is known that an approximation ratio of l, where l is the
maximum edge size, can be easily achieved using a maximal matching.
On the other hand, for constant l, an approximation ratio better than
l cannot be achieved in polynomial time under the unique games
conjecture [52]. Thus, breaking the l-barrier for significant classes of
hypergraphs is a complexity-theoretically and algorithmically inter-
esting problem, which has been studied by several authors. Here we
will study the approximabilty aspect of the problem.
The chapter is organized as follows: In Section 2.1 we present the
problem and state some results from earlier works. In Section 2.2 we
propose a randomized hybrid algorithm for the hitting set problem,
which combines LP-based randomized rounding, graph sparsening
and greedy repairing. We analyze the algorithm for different instance
classes. In Section 2.3 we analyze the approximation ratio for hy-
pergraphs with non-constant hyperedge size and non-constant vertex
degree. In Section 2.4 we analyze the algorithm in a different way
and prove an approximation ratio for the subclass of uniform quasi-

1This chapter is mainly based on the papers [20, 21]
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2. The Hitting Set Problem

regularisable hypergraphs (Section 2.4.1) and uniform hypergraphs
with bounded vertex degree (Section 2.4.2). In Section 2.5 we give
a brief overview of the generalization of the hitting set problem and
cite some important results concerning this problem. In Section 2.6
we give a summary of the chapter and discuss future work.

2.1 The Hitting Set Problem and Previous Work

Let H “ pV, Eq be a hypergraph with n :“ |V | and m :“ |E |.
Approximability of the Problem. The vertex cover problem and the
well-known set cover problem are equivalent. This can be checked
by changing the roles of vertices and hyperedges. Both problems
have been explored extensively in the context of polynomial-time
approximations.
Concerning the hardness aspect, its known that under the unique
games conjecture (UGC) the problem cannot be approximated within
any constant factor better than 2 [52]. For general graphs the best
known algorithms are due to Monien and Speckenmeyer [64] and
Bar-Yehuda and Even [8]. They independently gave an algorithm
that achieves a ratio of p2 ´ ln lnn

2 lnn q. The bounded variant of the
vertex cover problem, i. e., where the graph has a bounded vertex
degree ∆, is known to admit approximation algorithms better than
their general versions, the quality of the approximation being a
function of ∆. Hochbaum [41] gave a p2 ´ 2

∆q-approximation and
later Halldorsson and Radhakrishnan [34] obtained an improved
p2 ´ ln ∆`Op1q

∆ q-approximation. Using semidefinite programming,
Halperin [36] showed that this problem can be approximated within
a factor of p2´ p1´ op1qq2 ln ln ∆

ln ∆ q.
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The earliest published approximation algorithms for the hitting
set problem achieve an approximation ratio of the order lnm ` 1
[14, 45, 57] by using a greedy heuristic, which gives a lnn` 1 approx-
imation for the set cover problem. A number of inapproximability
results are known for the hitting set problem in general hypergraphs.
Lund and Yannakakis [58] proved for the set cover problem that for
any α ă 1

4 , the existence of a polynomial-time (α lnn)-ratio approxi-
mation algorithm would imply that N P has a quasipolynomial, i. e.,
nOppolyplnnqq time deterministic algorithm. This result was improved
to p1 ´ εq lnn for ε P p0, 1q by Feige [23]. A c ¨ lnn-approximation
under the assumption that P ‰ N P was established by Safra and
Raz [70], where c is a constant. A similar result for larger values of c
was proved by Alon, Moshkovitz and Safra [2].
The hitting set problem remains hard for many hypergraph classes.
Most interesting are l-uniform hypergraphs with a constant l, because,
for them, under the unique game conjecture (UGC), it is N P-hard to
approximate the problem within a factor of l ´ ε, for any fixed ε ą 0,
see [52], while an approximation ratio of l can be easily achieved by
finding a maximal matching. Therefore, the problem of breaking the
l-barrier for significant and interesting classes of hypergraphs received
much attention.
For l-uniform hypergraphs, several authors achieved the ratio of
l using different techniques (see, e. g., [7, 30, 38, 41]). The first
and important result breaking the barrier of l for l-uniform hyper-
graphs is due to Krivelevich [55]. He proved an approximation ratio
of lp1 ´ cn

1´l
l q, for some constant c ą 0, using a combination of

the LP-based algorithm and the local ratio approach described by
Bar-Yehuda and Even [8]. Later, for l-uniform hypergraphs with
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2. The Hitting Set Problem

l3 “ op ln lnn
ln ln lnnq and ∆ “ Opnl´1q, Halperin [36] presented a semidefi-

nite programming based algorithm with an approximation ratio of
l ´ p1 ´ op1qq l ln lnn

lnn . Note that this condition enforces the doubly
exponential bound, n ě 22l2 , and already for l “ 3, the hypergraph
is very large and hardly suitable for practical purposes.
A further important class consists of hypergraphs with ∆ and l being
constants. In this case Krivelevich [55] gave an LP-based algorithm
that provides an approximation ratio of lp1´c∆

1
1´l q for some constant

c ą 0. An improved approximation ratio of l ´ p1´ op1qq lpl´1q ln ln ∆
ln ∆

was presented by Halperin [36], provided that l3 “ op ln ln ∆
ln ln ln ∆q.

For hypergraphs which are not necessarily uniform, but with edge size
bounded from above by a constant l, an improvement of the result
of Krivelevich was given by Okun [65]. He proved an approximation
ratio of lp1´ cpβ, lq∆´

1
βl q for β P p0, 1q and a constant cpβ, lq P p0, 1q

depending on β and l, by a modification of the algorithm presented
in [55].

2.2 The Randomized Algorithm

A linear programming formulation of hitting set is the following.

(ILP-VC) min
n∑
i“1

xi∑
iPE

xi ě 1 for all E P E ,

xi P {0, 1} for all i P rns :“ {1, . . . , n}.

Its linear programming relaxation, denoted by LP-VC, is given by
relaxing the integrality constraints to xi P r0, 1s @i P rns. Let Opt
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and Opt˚ be the value of an optimal solution to ILP-VC and LP-VC,
respectively. Clearly, Opt˚ ď Opt. Let x˚ be an optimal solution of
LP-VC. Let ε P r0, 1s, we set λ “ lp1´ εq.

Algorithm 1: VC-H
Input : A hypergraph H “ pV, Eq
Output : A hitting set C

1. Initialize C :“ H.

2. Solve the LP relaxation of ILP-VC

3. Set S0 :“ {i P rns | x˚i “ 0}, S1 :“ {i P rns | x˚i “ 1},
Są :“ {i P rns | 1 ­“ x˚i ě

1
λ} and Să :“ {i P rns | 0 ­“ x˚i ă

1
λ}.

4. Delete the vertices in S0 from H, and set V :“ V zS0 and
E :“ {E X V | E P E}.

5. Take all vertices of S1 and Są into the hitting set C.
Set V :“ V zS1 and E :“ EzΓpS1q.

6. (Randomized Rounding) For all vertices i P Să include i in the
hitting set C, independently for all such i, with probability x˚i λ.

7. (Repairing) Repair the Hitting Set C (if necessary) as follows:

a) If |{E P E | E X C ‰ H}| “ |E |, then return C.

b) If |{E P E | E X C ‰ H}| ă |E |, then pick at most |E | ´ |C|
additional vertices from arbitrary not covered edges in the
hitting set.

8. Return the hitting set C of H
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2. The Hitting Set Problem

Let us briefly explain the ingredients of the algorithm. Usually, as in
[24, 26, 30], the LP or semidefinite program is solved and randomized
rounding or random hyperplane techniques are used followed by a
repairing step. In our algorithm we thin out the hypergraph by
removing vertices and edges corresponding to LP-variables with zero
value, which will not be taken into the hitting set by randomized
rounding (Step 4), before entering randomized rounding and repairing.
This is an intuitively meaningful sparsening, and in fact will be
necessary in Section 2.4 where we estimate the expected size of the
repaired hitting set (one step analysis), while in Section 2.3 it is
sufficient to analyze randomized rounding and repairing separately.

2.3 Two-Step Analysis of the Algorithm

In this section we analyze the randomized rounding process and greedy
repairing separately and then combine the probability estimations
(two-step approach). Let X1, ..., Xn be 0{1-random variables defined
as follows:

Xj “

1 if the vertex vj was picked intoC after the rounding step

0 otherwise.

Note that the X1, ..., Xn are independent. For all i P rms we define
the 0{1- random variables Zi as follows

Zi “

1 if the edgeEi is covered after the rounding step

0 otherwise.
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2.3. Two-Step Analysis of the Algorithm

Then Y :“
∑n
j“1Xj is the cardinality of the hitting set after the

randomized rounding step in algorithm VC-H and W “
∑m
j“1 Zj is

the number of covered edges after this step.
For the expected size of the hitting set we have the following upper
bound:

Ep|C|q ď EpY q ` Epm´W q. (2.1)

For the computation of the expectation we need the following lemma
that gives the exact solution of a constrained optimization problem.

2.1 Lemma. For all n P N, λ ą 0 and x1, ¨ ¨ ¨ , xn, z P r0, 1s with∑n
i“1 xi ě z and λxi ă 1 for all i P N, we have

n∏
i“1
p1´ λxiq ď p1´ λ

z

n
qn,

and this bound is the tight maximum.

Proof . Let fpx1, . . . , xnq :“
∏n
i“1p1´ λxiq and

gpx1, . . . , xnq “ x1 ` . . . ` xn, λ P p0, 1q. We consider the following
maximization problem

pMAXq max fpx1, . . . , xnq

s.t. gpx1, . . . , xnq ě z

z, xi P r0, 1s @i “ 1, . . . , n

The lemma is proved, if we can show that the maximum of (MAX) is
attained for xi “ z{n for all i “ 1, . . . , n. Let pMAX˚q be the problem
where we take the equality constraint gpx1, . . . , xnq “ z in (MAX).
Then pMAX˚q and (MAX) are equivalent. In fact, if we assume
that gpx1, . . . , xnq ą z, then some variable xi can be decreased and
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2. The Hitting Set Problem

in consequence the objective function fpx1, . . . , xnq increases. Thus
a maximum of (MAX) satisfies gpx1, . . . , xnq “ z. We continue by
induction on n. For n “ 1 the assertion is obviously true. Assume
that x1 has been chosen in an optimal way. Then we have to solve
the problem

pMAXqn´1 max fpx1, . . . , xnq

1´ λx1
s.t. gpx1, . . . , xnq ´ x1 “ z ´ x1

x2, . . . , xn, z P r0, 1s

By the induction hypothesis, a solution for pMAXqn´1 is

x2 “ x3 “ . . . “ xn “
z ´ x1
n´ 1 .

For this solution we have

fpx1, . . . , xnq “ p1´ λx1q

(
1´ λz ´ x1

n´ 1

)n´1
“: hpx1q

Furthermore, the derivative of h is

h1px1q “
dhpx1q

dx1
“ ´λp1´λz ´ x1

n´ 1 q
n´1`p1´λx1qλ

(
1´ λz ´ x1

n´ 1

)n´2
.

For x˚1 “ z{n, h1px˚1q “ 0, so x˚1 “ z{n is the only extreme point
(maximum or minimum) of h in r0, 1s.

If for some a P r0, 1s, hpaq ă hpx˚1q, then hpx˚1q must be the global
maximum. We show

hp0q “
(

1´ λz

n´ 1

)n´1
ă

(
1´ λz

n

)(
1´ λz ´ z{n

n´ 1

)n´1
“ hpx˚1q
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2.3. Two-Step Analysis of the Algorithm

This inequality is equivalent to

n

n´ λz
ă

(
1` λz

npn´ 1´ λzq

)n´1
(2.2)

We prove (2.2) by using the inequality p1 ` aqn ą 1 ` an for any
n P Ną1 and a ą 0. Note that the assertion of Lemma ?? holds
trivialy for n “ 1.
Thus (2.2) is true, if

1` λz

n´ λz
ă 1`pn´1q λz

npn´ 1´ λzq

(
ă

(
1` λz

npn´ 1´ λzq

)n´1)
,

which is equivalent to

1
n´ λz

ă
n´ 1
n

¨
1

n´ 1´ λz . (2.3)

Since λz ą 0, (2.3) holds. Hence hp0q ă hpx˚1q and we proved the
lemma. �

For the analysis of the algorithm we need also the following lemma

2.2 Lemma. Let H “ pV, Eq be a hypergraph with maximum size of
edge l and maximum vertex degree ∆, not necessarily constant. Let
ε ą 0.

piq EpW q ě p1´ ε2qm.

piiq Opt˚ ě m
∆ .

piiiq If x˚j ą 0 for all j P rns, then it holds Opt˚ ě n
l .

pivq For λ ě 1 we have Opt˚ ď EpY q ď λOpt˚.
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2. The Hitting Set Problem

Proof. (i) Let i P rms, |Ei| “ r and z˚i :“
∑
jPEi x

˚
j pě 1q. If there is a

j P Ei with λx˚j ě 1 then PrpZi “ 0q “ 0, else we have

PrpZi “ 0q “
∏
jPEi

p1´ λx˚j q ď
Lem 2.1

(
1´ λz˚i

r

)r
ď

z˚ě1

(
1´ λ

l

)r
“ p1´ p1´ εqqr

ď
rě2

ε2

and we get

EpW q “
m∑
i“1

PrpZi “ 1q “
m∑
i“1
p1´ PrpZi “ 0qq

ě

m∑
i“1
p1´ ε2q

“ p1´ ε2qm.

Note that because of the ILP-VC constraints, the hyperedges with a
single vertex are automatically covered by the set S1.

(ii) Let dpvjq the degree of the vertex vj . With the ILP constraints
we have

m “

m∑
i“1

1 ď
m∑
i“1

∑
jPEi

x˚j “
n∑
j“1

dpvjqx
˚
j ď ∆

n∑
j“1

x˚j “ ∆ ¨Opt˚

(iii) Let us consider the dual LP for the hitting set LP problem

(D-VC) max
∑
jPE

yj
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∑
jPE, iPj

yj ď 1 for every i P V,

yj P r0, 1s for all j P E .

Let py˚j qjPrms resp. Opt˚pDq be an optimal solution of D-VC resp.
the value of the optimal solution, than the duality theorem of linear
programming applied to (LP-VC) and (D-VC) implies:

(a) Opt˚ “ Opt˚pDq

(b) If x˚i ą 0 ñ
∑
jPE, iPj y

˚
j “ 1.

Therefore, we have

n “
∑
iPV

1 “
∑
iPV

∑
jPE, iPj

y˚j “
∑
jPE

y˚j |j| ď l
∑
jPE

y˚j “(a)
lOpt˚.

(iv) Let S Ď V and set Opt˚pSq :“
∑

jPS x˚j . By the definition of the
sets S1, Są and Să, and since every vertex in Să is picked in the
hitting set with probability λx˚j , we get

Ep|Y |q “ |S1| ` |Są| `
∑
jPSă

λx˚j

ě
λě1

|S1| `
∑
jPSą

1`
∑
jPSă

x˚j

ě
x˚j ď1

|S1| `
∑
jPSą

x˚j `
∑
jPSă

x˚j “ Opt˚

On the other hand we have

Ep|Y |q “ |S1| ` |Są| `
∑
jPSă

λx˚j

“ |S1| `
∑
jPSą

1` λOpt˚pSăq,
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2. The Hitting Set Problem

since for every j P Są we have λx˚j ě 1, it holds

Ep|Y |q ď |S1| `
∑
jPSą

λx˚j ` λOpt˚pSăq

ď
λě1

λ|S1| ` λOpt˚pSąq ` λOpt˚pSăq

“ λ (|S1| `Opt˚pSąq `Opt˚pSă) “ λOpt˚.

�

We proceed to the analysis of the algorithm for hypergraphs with
maximum degree and maximum edge size that are not necessarily
constant, but are functions of n. The main result for this situation is:

2.3 Theorem. Let H be a hypergraph with maximum edge size l ď
√

n
2

and maximum vertex degree ∆ ď 1
4n

1
4 . The algorithm VC-H returns

a hitting set C such that |C| ď l
(
1´ 1

8∆

)
Opt with probability at

least 3
5 .

Proof. Case 1 : S0 “ H.
Let

ε :“ lOpt˚p1` βq
4m for β “

√
2l√
n
. (2.4)

We can assume that

ε ď
1` β
4´ η , for all η P p0, 1q, (2.5)

because otherwise it follows from the definition of ε in (2.4) that
lOpt˚ ě 4m

4´η , hence lp1´
η
4 qOpt˚ ě m. Since a hitting set of size m

can be trivially found by picking m arbitrary edges and taking one
vertex from each of them, pairwise distinct, we can get a lp1 ´ η

4 q-
approximation —i.e. a constant factor strictly better than l— in this
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case.
It is straightforward to check that (2.5) implies ε ď 2

3 , so

λ “ lp1´ εq ą
lě3

1 (2.6)

.

Claim 1. Pr
(
W ď mp1´ ε2q ´

√∑n
i“1 d

2pviq
)
ď 1

5 .

Proof of Claim 1. First we consider the function: fpX1, ..., Xnq “∑m
j“1 Zj . f satisfies:

|fpX1, .., Xk, .., Xnq ´ fpX1, .., X
1

k, .., Xnq| ď dpvkq,

with X 1

k P {0, 1} and Xk ‰ X
1

k.
Since the X1, ..., Xn are chosen independently at random, by Theorem
1.6 we get for any t ą 0

PrpfpXq ´ EpfpXqq ď ´tq ď exp
(

´2t2∑n
i“1 d

2pviq

)
. (2.7)

Let us choose t “
√∑n

i“1 d
2pviq. By Lemma 2.2 (i)

Pr

W ď mp1´ ε2q ´

√√√√ n∑
i“1

d2pviq

 ď Pr

W ď EpW q ´

√√√√ n∑
i“1

d2pviq


ď

Ineq p2.7q
exp

(
´2
∑n
i“1 d

2pviq∑n
i“1 d

2pviq

)
ă

1
5 .

This concludes the proof of Claim 1.
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Claim 2. For β “
√

2l√
n
it holds that

Pr (Y ě l ¨Opt˚p1´ εqp1` βq) ă 1
5 .

Proof of Claim 2. The random variables X1, ..., Xn in the rounding
step are independent. Moreover, since l ď

√
n
2 we have β P p0, 1q.

Thus the Angluin-Valliant form of the Chernoff bound ([63], Theorem
2.3 (b), p. 200) shows

Pr (Y ě lp1´ εqp1` βqOpt˚) ď
Lem2.2pivq

Pr (Y ě EpY qp1` βq)

ď exp
(
´
β2EpY q

3

)
.

On the other hand we have:

EpY qβ2

3 ě
Lem2.2pivq

Opt˚β2

3

ě
Lem 2.2piiiq

nβ2

3l

ě
2l2n
3ln

ě
lě3

2.

Finally we get:

Pr (Y ě lp1´ εqp1` βqOpt˚) ď exp p´2q ă 1
5 .

This concludes the proof of Claim 2.
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By Claims 1 and 2 we get with probability at least 1´ p1
5 `

1
5q ě

3
5

an upper bound for the final hitting set:

|C| ď lp1´ εqp1` βqOpt˚ `mε2︸ ︷︷ ︸
p˚q

`

√√√√ n∑
i“1

d2pviq︸ ︷︷ ︸
p˚˚q

.

By Lemma 2.2(iii) and the condition ∆ ď 1
4n

1
4 we can continue the

estimation:

p˚˚q ď ∆
√
n “

√
n

l

√
l∆

ď
Lem (2.2) (iii)

l
√

Opt˚∆2
√
l

1
∆

ď l
√

Opt˚
√
n

l

1
16∆

ď lOpt˚ 1
16∆ .

Furthermore we have

p˚q “
Eq p2.4q

l

(
p1` βqp1´ εq ` lOpt˚p1` βq2

16m

)
Opt˚

ď
Lem 2.2piiq

lp1` βq
(

1´ 3lp1` βq
16∆

)
Opt˚

“ l

(
1` β ´ 3lp1` βq2

16∆

)
Opt˚.

On the other hand one can easily check, that

3lp1` βq2

16∆ ´ β ě
3

16∆ (2.8)
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2. The Hitting Set Problem

Let n ě 64. Otherwise we can solve the problem by enumeration.
Then we have

3lp1` βq2

16∆ ´ β “
3lp1` βq2 ´ 16β∆

16∆

“
β“

√
2l√
n

l

16∆

(
3p1` βq2 ´ 16

√
2∆√
n

)
.

For n ě 64, we have n
1
4 ě 2

√
2. By the assumption, ∆ ď 1

4n
1
4 , we

get ∆ ď 2
√

2n
1
4

8
√

2 ď
√
n

8
√

2 . Hence

3lp1` βq2

16∆ ´ β ě
l

16∆p3p1` βq
2 ´ 2q

ě
lě3

3
16∆ .

The inequality (2.8) leads to

lp1´ εqp1` βqOpt˚ `mε2 ď l

(
1´ 3

16∆

)
Opt˚.

Finally

p˚q ` p˚˚q ď l

(
1´ 3

16∆ `
1

16∆

)
Opt˚ “ l

(
1´ 1

8∆

)
Opt˚.

The randomised algorithm returns with probability at least 3
5 a hitting

set C with cardinality at most l
(
1´ 1

8∆

)
Opt˚.

Case 2: If S0 is not empty, we can consider the sub-hypergraph H
constructed in step 4 of algorithm VC-H. Let ∆̃ resp. l̃ be the
maximum vertex degree resp. the maximum edge size of this sub-
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2.4. One-Step Analysis of the Algorithm

hypergraph. Now for this hypergraph we have S0 “ H and with Case
1 we get a hitting set of cardinality at most l̃p1´ c

∆̃qOpt. Since l̃ ď l

and ∆̃ ď ∆, the assertion of Theorem 2.3 holds. �

Remark 1. For hypergraphs addressed in Theorem 2.3 we have an
improvement over the result of Krivelevich [55], for any function
fpnq satisfying fpnq “ Opn

1
4 q, since n

1
4 ă n1´ 1

l for l ě 2, and our
approximation is the better the smaller fpnq becomes. For ∆ ď

ln pnq
ln ln pnq

we obtain a better approximation then Halperin [36].

2.4 One-Step Analysis of the Algorithm

Instead bounding the error probability of the randomized rounding
step and the repairing step separately as in section 2.3, in this section
we analyze the expected size of the hitting set including repairing,
and then use concentration inequalities. This approach will lead to
new forms of approximations.
For a set S Ă {1, ..., n} let Opt˚pSq :“

∑
jPS x

˚
j . By (2.1) it holds

Ep|C|q ď Opt˚pS1q ` lp1´ εqpOpt˚pSěq `Opt˚pSďqq `mε2 (2.9)

Namely, since every j P Să is picked with probability Prpj P Cq “ λx˚

we have

Ep|C|q “ |S1|` |Są|`
∑
jPSă

Prpj P Cq `mε2

“ |S1|`
∑
jPSą

1`
∑
jPSă

λx˚j `mε
2,
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2. The Hitting Set Problem

by the defintion of Să, it holds

Ep|C|q ď |S1|`
∑
jPSą

λx˚j `
∑
jPSă

λx˚j `mε
2

“ Opt˚pS1q ` λ (Opt˚pSąq `Opt˚pSăq)`mε2

“ Opt˚pS1q ` lp1´ εq (Opt˚pSąq `Opt˚pSăq)`mε2.

We consider the function

f : r0, 1s Ñ R, ε ÞÑ Opt˚pS1q` lp1´ εqpOpt˚ (Sąq `Opt˚pSă)`mε2.

f is convex and attains its minimum for

ε̃ “
lpOpt˚ (Sąq `Opt˚pSăq)

2m . (2.10)

Moreover we can assume that l(Opt˚pSąq`Opt˚pSăq)
2m P r0, 1s. Other-

wise, if
l (Opt˚pSąq `Opt˚pSăq)

2m ą 1

then
l

2Opt˚ ě l

2 (pOpt˚pSąq `Opt˚pSąq) ą m.

Since any hitting set of cardinality m can be found trivially, this
approximates the optimum within a factor of l

2 ă l.
Let Sf :“ Są Y Să. Plugging in ε̃ from (2.10) into (2.9), we get

Ep|C|q ď Opt˚pS1q ` l

(
1´ lOpt˚pSf q

4m

)
Opt˚pSf q. (2.11)

We observe here that the LP-based sparsening of the instance becomes
relevant.
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2.4. One-Step Analysis of the Algorithm

At next we compute the variance of the size of the hitting set. We
get,

2.4 Lemma. Let X1, . . . , Xn be the 0/1-random variables returned by
algorithm VC-H. Then we have Varp|C|q ď l∆Ep|C|q.

Proof. Let Γ and γ like in Lemma 1.7. Furthermore for every vi, vj P
V,Xi, Xj are dependent iff they belong to the same edge. Thus, for
a fixed vi, there are at the most pl ´ 1qdpviq random variables Xj

depending on Xi. Furthermore it holds for every vi, vj P V :

EpXiXjq “ PrpXi “ 1^Xj “ 1q

ď min{PrpXi “ 1q,PrpXj “ 1q}

ď
PrpXi “ 1q ` PrpXj “ 1q

2 .

Moreover

γ “
∑

{vi,vj}PΓ
EpXiXjq

ď
∑

{vi,vj}PΓ

PrpXi “ 1q ` PrpXj “ 1q
2

ď

n∑
i“1

pl ´ 1qdpviq
2 PrpXi “ 1q

“
pl ´ 1qdpviq

2

n∑
i“1

PrpXi “ 1q

“
pl ´ 1q∆

2 Ep|C|q
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2. The Hitting Set Problem

so with Lemma 1.7

Varp|C|q ď Ep|C|q ` 2γ

ď Ep|C|q ` pl ´ 1qdpviqEp|C|q

“ ppl ´ 1qdpviq ` 1qEp|C|q

ď l∆Ep|C|q.

�

Quasi-Regularisable l-Uniform Hypergraphs. First we give the definition
of the Quasi-Regularisable hypergraphs

2.5 Definition. For an integer k ě 0, multiplying the edge Ei by k

means replacing the edge Ei in H by k identical copies of Ei. If k “ 0,
this operation is the deletion of the edge Ei. A hypergraph H is
called regularisable if a regular hypergraph can be obtained from H by
multiplying each edge Ei by an integer ki ě 1. Finally, a hypergraph
H is called quasi-regularisable if a regular hypergraph is obtained
by multiplying each edge ei by an integer ki ě 0 where

∑m
i ki ą 0.

Regular implies regularisable and this implies quasi-regularisable (see
[10]). Note that quasi-regularisable hypergraphs play an important
role in the study of matching and covering in hypergraphs, e. g., [27].

Recall that S1 is the set S1 “ {j P rns | x˚j “ 1}, containing those
vertices for which the LP-optimal solution is tight (see algorithm
VC-H, step 3).
The next theorem is the main result of this section and it is proved
using the above stated estimation (2.11) of Ep|C|q and the Chebychev-
Cantelli inequality.
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2.4. One-Step Analysis of the Algorithm

2.6 Theorem. Let H be a l-uniform, quasi-regularisable hypergraph
with arbitrary l and maximum vertex degree ∆ “ Opn

1
3 q, then the

algorithm VC-H returns a hitting set C such that

|C| ď l

(
1´ n

8m

)
Opt˚

with probability at least 3
4 .

We need the following theorem of Berge [10].

2.7 Theorem. For an l-uniform hypergraph H, the following properties
are equivalent:

1. H is quasi-regularisable;

2. Opt˚ “ n
l (i. e., the vector x˚ “ p1

l , ...,
1
l q is an optimal solution

for the LP relaxation and l is the size of the edges).

By this theorem, the condition S1 “ H has a graph-theoretical
meaning.
Proof of Theorem 2.6. By (2.11) and Theorem 2.7 we get for quasi-
regularisable l-uniform hypergraphs with arbitrary l and bounded
degree ∆ the approximation

Ep|C|q ď l

(
1´ n

4m

)
Opt˚. (2.12)

Hence

Pr
(
|C| ě l

(
1´ n

8m

)
Opt˚

)
“ Pr

(
|C| ě l

(
1´ n

4m

)
Opt˚ ` nlOpt˚

8m

)
ď

Th 2.9
Pr
(
|C| ě Ep|C|q `

nlOpt˚

8m

)
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2. The Hitting Set Problem

ď
Th 1.5

1

1`

(
nlOpt˚

8m

)2

Varp|C|q

For n ě 82∆3 we get with a straightforward calculation that(
lnOpt˚

8m

)2

Varp|C|q ě l ě 3.

So we obtain a hitting set C of size at most l
(
1´ n

8m
)

Opt˚ with
probability at least 3

4 . �

Remark 2. In Theorem 2.6, we can assume that n ă 8m, because
otherwise we have Opt˚ “ n

l ě
8m
l thus m ď l

8Opt˚. By taking one
vertex for each edge we obtain a hitting set of cardinality l

8Opt˚,
which gives an approximation ratio of l{8. For hypergraphs addressed
in Theorem 2.6 we have an improvement over the ratio of Krivelevich
if m ď cn

2l´1
l and the ratio of Halperin if m ď

p1´op1qq´1 ln pnqn
ln ln pnq .

l-Uniform Hypergraphs with Bounded Vertex Degree.
In this section l and ∆ are constants and H is an l-uniform hypergraph.
Let H̃ “ pṼ , Ẽq be the sub-hypergraph of H constructed in step 5 of
the algorithm VC-H with |Ṽ | “ ñ and |Ẽ | “ m̃. We denote by l̃ and
∆̃ the maximum size of all edges and the maximum vertex degree
in H̃. We consider the LP relaxation of the ILP formulation of the
hitting set problem in H̃ which we denote by LP(H̃). By Opt˚pH̃q
we denote the value of the optimal solution of LP(H̃). The optimal
LP solution for H is Opt˚. Then the following holds.

2.8 Lemma. Opt˚pH̃q “ Opt˚ ´ |S1| and Ep|C|q ď |S1| ` Ep|C̃|q.
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2.4. One-Step Analysis of the Algorithm

2.9 Lemma. Let l and ∆ be constants, and let H be a l-uniform
hypergraph with maximum vertex degree ∆ such that 3 ď l ď 8

3∆.
Then: Ep|C|q ď l

(
1´ l

4∆

)
Opt˚.

Proof . Since there are no 1’s in the solution px̃1, . . . , x̃ñq, there is no
tight LP(H̃)-variable. By plugging ε̃ in (2.9) for H̃, we get

Ep|C̃|q ď l

(
1´ lOpt˚pH̃q

2m

)
Opt˚pH̃q ` m̃

(
lOpt˚pH̃q

2m

)2

ď
měm̃

l

(
1´ lOpt˚pH̃q

2m

)
Opt˚pH̃q `m

(
lOpt˚pH̃q

2m

)2

“ l

(
1´ lOpt˚pH̃q

4m

)
Opt˚pH̃q.

Let λ̄ :“ l
(
1´ l

4∆

)
. It is straightforward to check that for 3 ď l ď

8
3∆, λ̄ ě 1. Thus

Ep|C|q “ |S1|` Ep|C̃|q

ď |S1|` l
(

1´ lOpt˚pH̃q
4m

)
Opt˚pH̃q

ď
λ̄ě1

l

(
1´ l

4∆

)
|S1|` l

(
1´ lOpt˚pH̃q

4m

)
Opt˚pH̃q

ď
měm̃,Lem 2.2 piiq

l

(
1´ l

4∆

)
|S1|` l

(
1´ l

4∆̃

)
Opt˚pH̃q.

Because ∆ ě ∆̃, we have: Ep|C|q ď l
(
1´ l

4∆

)
Opt˚. �

Lemma 2.9 and Lemma 2.4 imply the following theorem using the
Chebyshev-Cantelli inequality and standard calculations.
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2. The Hitting Set Problem

2.10 Theorem. Let H be an l-uniform hypergraph with bounded vertex
degree with 3 ď l ď 8

3∆, then the algorithm VC-H returns a hitting
set C such that

|C| ď l

(
1´ l ´ 1

4∆

)
Opt˚

with probability at least 3
4 .

Proof. W.l.o.g. we may assume that m ě 16∆5. Otherwise, we can
solve the problem by enumeration. We have

Pr
(
|C| ě l

(
1´ l ´ 1

4∆

)
Opt˚

)
“ Pr

(
|C| ě l

(
1´ l

4∆

)
Opt˚ ` lOpt˚

4∆

)
ď

Lem 2.9
Pr
(
|C| ě Ep|C|q `

lOpt˚

4∆

)
ď

Th 1.5

1

1`

(
lOpt˚

4∆

)2

Varp|C|q

.

And m ě 16∆5 may continue,(
lOpt˚

4∆

)2

Varp|C|q ě
Lem 2.4

(
l
pOpt˚q2

16∆3Ep|C|q

)

ě
Ep|C|qďlOpt˚

Opt˚

16∆3

ě
Lem 2.2piiiq

∆m
16∆5 ě ∆.

Therefore we get

Pr
(
|C| ě l

(
1´ l ´ 1

4∆

)
Opt˚

)
ď

1
1`∆ ď

∆ě3

1
4 .
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Hence the theorem holds. �

This improves over the result of Krivelevich [55] for ∆ smaller then
pl ´ 1q1`

1
l´2 and of Okun [65] for ∆ smaller then pl ´ 1q1`

1
βl´1 . The

approximation ratio in this result is little weaker than the ratio of
Halperin [36]. But the advantage here is that l and ∆ are not coupled
anymore, so a significantly larger class of hypergraphs than in [36] is
covered.

2.5 Partial Vertex Cover in Hypergraphs

The k-partial vertex cover in hypergraphs is a generalization of the
hitting set problem.
A set X Ď V is called k-partial vertex cover for H if at least k edges of
H are incident in X. The (unweighted) k-partial vertex cover problem
for hypergraphs is to find a k-vertex cover of minimum cardinality.
If k is equal to the number of hyperedges, we have the hitting set
problem (or vertex cover problem) in hypergraphs. For graphs it is the
classical vertex cover problem in combinatorial optimization, whose
approximation complexity has been studied for nearly 4 decades. The
partial vertex cover problem in graphs is known to be N P-hard and it
has been a long standing open problem to beat the 2-approximation.
For general graphs, the first 2-approximation algorithm for the partial
vertex cover problem was given by Bshouty and Burroughs [12]. A
faster approximation algorithm achieving the same factor 2 was later
given by Hochbaum [39] and Bar-Yehuda [9].
For graphs with maximum vertex degree at most ∆, Gandhi, Khuller
and Srinivasan [30] gave the first algorithm with approximation ratio
smaller than 2. They presented an algorithm based on the randomized
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2. The Hitting Set Problem

rounding procedure that achieves a factor of 2
(
1´ Ω

(
1
∆

))
. Improve-

ments have been obtained by Halperin and Srinivasan [35].
For hypergraphs the partial vertex cover problem was first studied
by Kearns [49] who gave an approximation ratio of OpHpnqq. For
hypergraphs with bounded degree ∆, Slavák [72] achieved an approx-
imation ratio of OpHp∆qq. For hypergraphs with edge size at most l,
Bar-Yehuda [9] gave an algorithm based on the local-ratio method
with approximation guarantee l. Later, Gandhi, Khuller and Srini-
vasan [30] achieved the same approximation ratio using a primal/dual
approach. But the problem of breaking the l-ratio remaind open. In
this section we will resolve this problem.
An integer linear programming formulation of the k-partial vertex
cover in H is the following:

pILP´k´VCq min
n∑
i“1

xi∑
iPj

xi ě zj for all j P rms :“ {1, . . . ,m}

m∑
j“1

zj ě k

xi, zj P {0, 1} for all j P rms, i P rns.

We apply the randomized algorithm VC-H without step 3 to the
partial vertex cover problem in hypergraphs. We will show that it
achieves approximation ratios below l for hypergraphs with hyperedge
degree at most a constant D and for hypergraphs with vertex degree
at most a constant ∆.
We consider hypergraphs with hyperedge size at most l, l ě 3, not
necessarily constant. In the case that the maximum hyperedge degree
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is at most a constant D we have

2.11 Theorem. Let H be a hypergraph with edge size at most l, l P
N, l ě 3, and hyperedge degree at most a constant D, D P N. The
algorithm k-VC returns a k-partial vertex cover C such that

|C| ď l

(
1´ Ω

( 1
D ` 1

))
Opt with probability at least 3

5 .

In the case that the vertex degree is at most a constant ∆, we will
prove

2.12 Theorem. Let H be a hypergraph with hyperedge size at most l,
l P N, l ě 3, and vertex degree at most a constant ∆, ∆ P N. For
k ě m

4 the algorithm k-VC returns a k-partial vertex cover C such
that

|C| ď l

(
1´ Ω

( 1
∆

))
Opt with probability at least 3

5 .

To our best knowledge, the presented results for the partial vertex
cover problem in hypergraphs are the first that break the barrier of l.

Both theorems are proved in the same manner as Theorem 2.3.
Namely, as above, we consider two kinds of {0, 1}-random variables.
We define X1, ..., Xn by

Xi “

1 if viwas picked into the cover after the rounding step

0 otherwise.

Note that the X1, ..., Xn are independent. For all j P rms we define
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the {0, 1}- random variables Zj as follows

Zj “

1 if the hyperedgeEj is covered after the rounding step

0 otherwise.

Then X :“
∑n
i“1Xi is the cardinality of the cover after the ran-

domised rounding step in the algorithm and Z “
∑m
j“1 Zj is the

number of covered hyperedges after this step. For the expected size
of the cover we have the following upper bound:

Ep|C|q ď EpXq ` Epmax{k ´ Z, 0}q (2.13)

For the computation of the expectation of X and Z we get with the
same argument as in Lemma (2.2):

EpZq ě p1´ ε2qk,

Opt˚ ď EpXq ď λOpt˚.

Hence (2.13) becomes

Ep|C|q ď λOpt˚ ` ε2k. (2.14)

The idea of the proof is to find a suitable ε that satisfies the Equation
(2.14) and separately estimate the size of the covers X and k ´ Z

returned by the randomized algorithm and greedy repair, respectively.
This will be obtained by the following claim,
Claim 1. For ε :“ Opt˚p1`βq

k with β “ 1
3pD`1q we have

(i) Pr (X ě l ¨Opt˚p1´ εqp1` βq) ă 1
5 .

(ii) Pr
(
W ď kp1´ ε2q ´ 2

√
kpD ` 1q

)
ď 1

5 .
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To prove assertion piq we use the Chernoff bound, since the random
variables returned by the randomized rounding step are independent.
For the assertion piiq we cannot use the Chernoff bound because of the
dependency of the random variables returned by the greedy repairing
step are no longer independent. We use the Chebychev-Cantelli
inequality. Finally, by the union bound one can finish the proof of
Theorem 2.11.

�

The proof of Theorem 2.12 is similar to the proof of Theorem 2.3.
Note that the results for the hitting set problem are better than those
for the partial vertex cover problem. For more details see [20].

2.6 Summary and Further Work

In chapter 2 we discussed the hitting set problem and its generaliza-
tion, the partial vertex cover problem in hypergraphs. We proposed
and analyzed an approximation algorithm for both problems on sub-
classes of hypergraphs that are mainly governed by three parameters
- maximal edge size l, maximum vertex degree ∆ and the maximum
edge degree D.
The presented randomized algorithm combines LP-based randomized
rounding, sparsening of the hypergraph and greedy repairing. Such a
hybrid approach is frequently used in practice and it has been been
analyzed for many problems, e. g., maximum graph bisection [26],
maximum graph partitioning problems [24, 44] and the (full) vertex
cover problem and partial vertex cover problem in graphs [30, 36].
We analyzed the algorithm in two different ways that lead to three
new results:
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For the hitting set problem, we considered hypergraphs with maximum
edge size l and maximum vertex degree ∆, for the moment not
necessarily assumed to be constants.

We have shown that our algorithm achieves for l “ Op
√
nq and ∆ “

Opn
1
4 q an approximation ratio of l

(
1´ c

∆
)
, for some constant c ą 0,

with constant probability. In this case, our result improves the result
of Krivelevich, for any function fpnq satisfying fpnq “ Opn

1
4 q, since

n
1
4 ă n1´ 1

l for l ě 2, and the approximation is the better the smaller
fpnq becomes. For ∆ ď lnn

ln lnn we obtain a better approximation than
Halperin. In Section 2.4.1 we analyzed the algorithm for the class of
uniform, quasi-regularisable hypergraphs, which are known and useful
in the combinatorics of hypergraphs (see Berge [10]). We proved an
approximation ratio of l

(
1´ n

8m
)
provided that ∆ “ Opn

1
3 q. This

result improves the approximation ratio given by Krivelevich and
Halperin for sparse hypergraphs (where, roughly speaking, sparseness
means m ď nα, α ď 2). In Section 2.4.2 we considered l-uniform
hypergraphs, where l and ∆ are constants, and achieved a ratio of
l
(
1´ l´1

4∆

)
. This improves the result of Krivelevich for ∆ smaller

than pl ´ 1q1`
1
l´2 and of Okun for ∆ smaller than pl ´ 1q1`

1
βl´1 ,

respectively.

For the partial vertex cover problem we considered hypergraphs with
constant maximum edge degree D and maximum edge size l not
necessarily assumed to be constant and yielded an approximation
ratio of lp1´ Ωp1{pD ` 1qqq. To our knowledge this result is the first
one that breaks the barrier of l.

We believe that the analysis presented in this paper can incorporate
other hypergraph parameters in a natural way, like bounded VC-
dimension, uncrowdedness, or exclusion of subhypergraphs. We hope

44



2.6. Summary and Further Work

that this may lead to new and better approximation results for the
hitting set problem in such hypergraphs. Another challenge is the
derandomization of our hybrid algorithm.

45





Chapter 3

Inapproximability of b-Matching in
l-Uniform Hypergraphs

Let b P Nn where for every i P V , bi “ b (a positive integer). The b-
matching problem is a prototype of packing integer programs. It has
been studied intensively in combinatorics and optimization and has
several applications, for example in medicine [25] and combinatorial
auctions [31].

In the following we study the complexity of the maximum cardinality
b-matching problem in l-uniform hypergraphs with focus on its ap-
proximability.
An outline of this chapter1 is as follows. In Section 3.1 we present
the problem, cite some related works and previous results and then
we introduce definitions and useful tools. In Section 3.3 we state a
fundamental existence theorem that we call the Structure Theorem
and give its proof. Section 3.4 contains the reduction from an in-
stance of the problem Max-E3-Lin-q problem to an instance of the
b-matching problem and we prove the inapproximability result. We
finally briefly discuss the main topics of the chapter in section 3.5
and give an overview of future works.

1This chapter is mainly based on the paper [19]
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3.1 Problem and Related Work.

For the readers convenience we briefly recall the definition of the
b-matching problem in hypergraphs.
Let H “ pV, Eq be a hypergraph, where E “ {e1, e2, ..., em} Let
w : E ÝÑ r0, 1s X Q be a weight function on the hyperedges. We
call wpeq the weight of an hyperedge e P E For a given b P N, the
b-matching problem in H is task of finding a subset M Ď E , such
that no vertex is contained in more than b hyperedges of M and with
maximum weight, .i.e, wpMq “ max

∑m
j“1wpejq.

The b-matching problem in hypergraphs is N P-hard, even for l “ 3
[48] [59]. Its integer linear programs can be written in the form:

max
m∑
j“1

wjxj

∑
jPrms

aijxj ď b for all i P rns,

xj P {0, 1} for all j P rms.

Here, aij P {0, 1} is the vertex-edge incidence matrix of the hyper-
graphs, that is aij “ 1 if and only if vertex i is contained in hyperedge
j; and xj “ 1 if and only if hyperedge j is chosen for the b-matching.
The b-matching problem in hypergraphs is a prominent problem in
combinatorics and optimization, and on its algorithmic and complexity
aspect has been intensively explored.

Approximability of the Problem

b-Matching in Graphs. In the case b “ 1 (1 “ p1, 1, . . . , 1q), the
problem is solvable in polynomial time [18]. The same holds also if
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bv ě 1 for all v P V , by extending Edmonds algorithm for matching
in graphs (see Marsh [62]).

b-Matching in Hypergraphs. For b “ 1, the problem is known also
as the set packing problem. The approximability of the problem
has been intensively studied under various aspects (See [4, 28, 40,
43, 61, 68, 71, 73]. For the weighted problem, the currently best
known algorithm was presented by Berman [11]. He proved that the
problem can be approximated within l`1`ε

2 for any ε ą 0, where l is
the maximum hyperedge size. For the unweighted case Hurkens and
Schrijver [43] showed that the problem is approximable within l

2 ` ε

for any ε ą 0.
In case of b “ pb, b, . . . , bq for b P Ně1 several results are known.
The most important of these are based on the randomized rounding
technique.
A randomized algorithm for b-matching in hypergraphs was first
proposed by Raghavan and Thompson [68]. The analysis of their
algorithm relies on the application of Chernoff bounds to sums of
independent Bernoulli random variables [13]. Later, using the same
technique, Srivastav and Stangier [76] extended the result from the
unweighted problem to the weighted problem. Both works are based
on the assumption that b “ Ωplnnq. For b-matching problems with
arbitrary vector b “ pb1, b2, ¨ ¨ ¨ , bnq the best approximation ratio of
O

(
min{n

1
bmin`1 , l

1
bmin }

)
where

bmin “ minvPV bv, was obtained by Srinivasan [74] who used the
randomized rounding technique as in [76]. For the derandomization
of the algorithm Srinivasan used positive correlation of the PIPs
which allowed the application of the FKG inequality and leads to an
improved pessimistic estimator. Recently, Krysta [56] presented an
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3. Inapproximability of b-Matching in l-Uniform Hypergraphs

analysis of a primal-dual based greedy approach that achieves a ratio
of Oplq.
There is a large body of work on the non-approximability of the
1-matching problem. Håstad [33] proved that the 1-matching prob-
lem cannot be approximated within any ratio of Opn1´εq unless
N P Ď ZPP. Three years later Gonen and Lehmann [31] showed by
reduction from the clique problem that no polynomial-time approx-
imation better than a ratio of

√
n is possible unless N P “ ZPP2.

Hazan, Safra and Schwartz [37] proved for l-uniform hypergraphs
that there is no polynomial-time algorithm that approximates the
1-matching problem to within any ratio smaller than Op l

ln l q, unless
P “ N P, improving the result of Trevisan [77], who showed that
l-independent set cannot be approximated to within l

2Op
√

ln lq . But to
our knowledge, no such results are known for the b-matching problem
for b ě 2 and l-uniform hypergraphs. Recent work of Bansal and
Khot [53] to prove non-approximability results apply to the vertex
cover problem in hypergraphs and 2-variable problems, like max-cut,
but to our knowledge its impact to the b-matching or general packing
problems has not been explored yet.

3.2 Definitions and complexity-theoretic Tools

In this section we state some special definitions and theorems needed
in this chapter.
Many non-approximability results have been derived via the so-called
gap technique. This means a N P-hard reduction will be used to

2ZPP is the class of problems for which there exists a randomized algorithm
with polynomially runtime and that makes no failure (i. e., such an algorithm
either provides the correct result or fails by producing the output
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create a gap in the objective function of the constructed instances.
We start with the definition of a gap problem:

3.1 Definition. Let P be an optimization problem with cost function
w and let S be the set of all feasible solutions of P and a, b P R with
a ă b. Then the pa, bq-gap-problem of P is the following decision
problem:
For a given instance I of P decide, whether

(i) there exists an s P SpIq with wpI, sq ě b, or (Completeness)

(ii) every s P SpIq satisfies wpI, sq ď a (Soundness)

3.2 Corollary. Let P be an optimization problem such that its pa, bq-gap-
problem is N P-hard. Then it is N P-hard to approximate P within
any ratio smaller than b

a .

Proof: Let P be a maximization problem and assume for a moment
that there exists a polynomial time approximation algorithm A such
that

ApIq ą
a

b
OptpIq for all instances I of P.

Let I be an instance of P and s P SpIq a feasible solution with
ApIq “ wpI, sq. We differ between two cases:

1. I is an instance of the first type, i. e., the value of each solution is
at most a.
Then we have also OptpIq ď a and we have

ApIq ď OptpIq ď a.

The algorithm A returns in this case a solution of value at most a
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3. Inapproximability of b-Matching in l-Uniform Hypergraphs

2. There exists a solution for I of value at least b.

Than it holds OptpIq ě b and we have:

ApIq ą
a

b
OptpIq ě a.

In this case the algorithm A returns a solution of value strictly greater
than a. With the gap property it follows that it must be a solution
of value at least b. So the algorithm solves the decision problem
pa, bq-gap-P in polynomial time, in contradiction to its N P-hardness.
�

The aim is to prove for some adequate a, b P Q that the pa, bq-
gap problem corresponding to the b-matching problem in uniform
hypergraphs is N P-hard. Therefore we have to transform an instance
of a suitable N P-hard optimization problem P to an in instance
of our treated problem and to map the gap of P to a gap of the
b-matching.
Let us now consider the Max-E3-Lin-q problem.

3.3 Definition. Let q P N. Max-E3-Lin-q problem is the following
optimization problem:
Input: A system Φ of linear equations over Zq with exactly 3 (distinct)
variables in each equation.
Goal: Find an assignment that satisfies the maximal number of equa-
tions of Φ.

The following fundamental theorem is due to Håstad [33].

3.4 Theorem. For every q P N and ε ą 0 p1
q ` ε, 1´ εq-gap-problem of

Max-E3-Lin-q is N P-hard. Furthermore the result holds for instances
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3.3. The Construction and the Inapproximability Result.

of Max-E3-Lin-q in which each variable occurs exactly a constant
number of times.

The following definitions are specially adapted to the b-matching
problem in hypergraphs.

3.5 Definition. (Concentrated pk, δq-Partition b-Matching) Let H “ pV, Eq
be an l-uniform hypergraph. We say that H possesses the concen-
trated pk, δq-partition b-matching property, if there exists a partition
E1, ..., Ek of E with |E1| “ ... “ |Ek| such that for every b-matching
M in H there is an i P rks, such that

|MzEi| ď δ|E |.

In the rest of this chapter we will abbreviate the term concentrated
pk, δq-partition b-matching to: pk, δq-(P.b-MC) property.

3.6 Definition. (pq, bq-hyperedge coloring.) Put rqs :“ {1, ..., q}. We say
a hypergraph H “ pV, Eq is pq, bq-hyperedge colorable, if there exists
a coloring function f : E ÝÑ rqs such that every vertex is contained
in at most b hyperedges of the same color.

In the next section we give a polynomial-time transformation from
Max-E3-Lin-q to the b-matching problem for l-uniform hypergraphs.

3.3 The Construction and the Inapproximability Result.

The reduction presented in this section is based on the existence
of a class of hypergraphs with particular properties. The theorem
presented below shows under which conditions such hypergraphs
exists.

53



3. Inapproximability of b-Matching in l-Uniform Hypergraphs

3.7 Theorem. pStructure Theoremq For every q ą 1, for every b ě 1
there exists a constant cpq, bq pcpq, bq may depend on q and bq and for
every t ą cpq, bq there exists a hypergraph H “ pV, EpHqq such that
the following holds:

1. V “ rts ˆ rds, where d “ Θpq ln qq.

2. H has the concentrated pq, 1
q2 q-partition b-matching property.

3. H is d-uniform.

4. H is bq-regular.

5. H is pq, bq-hyperedge colorable.

Because of the complexity of the proof of the structure theorem and
for the convenience of the reader, we prefer to state it in the last
section (Section 3.4) of the chapter.
Let us denote a hypergraph satisfying the properties of Theorem
3.7 by Hb,q. Due to the uniformity, regularity and pq, bq-hyperedge
colorability of Hb,q, its set of hyperedges is of cardinality bqt and it
may be partitioned corresponding to the pq, bq-hyperedge colorability
into q color sets where every vertex in Hb,q is contained in exactly b
hyperedges of the same color.

a) The Construction of the Instance.
In the current section we transform in polynomial time an instance of
Max-3-LIN -q problem into an instance of the b-matching problem.
The construction of the b-matching instance will be carried out in
two steps. In the first step we build a hypergraph with the properties
in Theorem 3.7. In the second step we will, under some conditions,
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3.3. The Construction and the Inapproximability Result.

connect the already constructed hypergraphs using a solution of Max-
E3-Lin-q to obtain the final instance.
Let q P Ną1 and Φ “ {ϕ1, ¨ ¨ ¨ , ϕm} be an instance of the Max-E3-
Lin-q over the set of variables X “ {x1, ¨ ¨ ¨ , xn}. For every variable
x P X we denote by cpxq the occurrence of the variable x in Φ .i.e, the
number of equations in which x occurs. Furthermore we denote by
Φpxq the set of all equations in Φ depending on x i. e., cpxq “ |Φpxq|.
According to Theorem 3.4 we may assume that cpxq is constant.

First step: For every variable x P X we construct a hypergraph,
denoted by Hx

b,q, with the properties as in Theorem 3.7, where the
set of vertices is given as follows:

V pHx
b,qq “ {pix, rq|ix P rcpxqs, r P rds}

Each vertex in V pHx
b,qq corresponds to the appearance-index ix P

rcpxqs, and a number r in rds, where d “ Θpq ln qq.
The set of hyperedges is defined by:

EpHx
b,qq “ {Epix, j, sq|pix, jq P rcpxqs ˆ rqs, s P rbs}

Each hyperedge in EpHx
b,qq is a tuple of three components. The

first two of them correspond as in [37] to the number of appearance
ix P rcpxqs and a number a P rqs appropriate to the pq, bq-hyperedge
coloring of Hx

b,q, while for the third component we introduce a new
index in rbs which we call the connection-regulator.

Second step: After having constructed the n hypergraphs according
to the variables x P X, we construct the desired hypergraph which
will be our instance of the b-matching as follows:
The set of vertices is the union of the sets of vertices of the hypergraphs
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3. Inapproximability of b-Matching in l-Uniform Hypergraphs

Hx
b,q for x P X constructed in the first step, so the set of vertices

V pHΦq is be given by:

V pHΦq “
⋃
xPX

V pHx
b,qq

Let us define the hyperedges of HΦ: Let B P rqs|X| be an assignment.
Then we denote by Bpxq the value in rqs that will be attributed to
the variable x P X in the assignment B. Let ϕ P Φ be an equation
on three variables x, y, z P X and let B P rqs|X| be an assignment to
the variables that satisfies ϕ.
Finally, the hyperedges that correspond to ϕ and B will be given as
the union of three hyperedges from the hypergraphs Hx

b,q, H
y
b,q and

Hz
b,q corresponding to the occurrence index of the three variables and

having the same connection-regulator s P rbs:

Epϕ,B, sq “ Epx, ix, Bpxq, sq
¨
YEpy, iy, Bpyq, sq

¨
YEpz, iz, Bpzq, sq @s P rbs.

In conclusion, the set of hyperedges in HΦ is:

EpHΦq “ {Epϕ,B, sq|ϕ P Φ, B P rqs3 assignment that satisfyϕ, s P rbs}

Example. It is difficult to give an explicit illustration of the constructed
instance. In the following example we only try to make the idea of
the construction more clear.
Let b “ 2, q “ 2 then d “ Θp2 ln 2q and for every x P X with the
occurrence number cpxq the above construction gives a hypergraph
Hpxq with: V pHpxqq :“ rcpxqs ˆ rds,
EpHpxqq :“ {epix, 1, 1q, epix, 1, 2q, epix, 2, 1q, epix, 2, 2q, ¨ ¨ ¨ } and the
suited properties of the structure Theorem.
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. .
. ‚

‚
vpix, jq

d

Hpxq

Figure 3.1. In the first phase we construct a hypergraph Hpxq which
is: d-uniform, 4-regular, p2, 2q-hyperedge colorable and p2, 1

4 q-Partition
2-Matching Concentrated

‚

epix1, 2, 1q

Hpx1q

‚

epix2, 2, 1q

Hpx2q

‚

epix3, 1, 1q

Hpx3q

Figure 3.2. In the second phase, we connect the hyperedges of the hypergraphs
corresponding to each assignment satisfying ϕ1 : For example corresponding
to the assignment p1, 1, 2q we get the hyperedge:
Epϕ1, p1, 1, 2q, 1q “ epix1, 1, 1q Y epix2, 1, 1q Y epix3, 2, 1q.

57



3. Inapproximability of b-Matching in l-Uniform Hypergraphs

This reduction returns the instance HΦ of the b-matching problem
in l-uniform hypergraphs where l “ 3d. According to the Structure
Theorem 3.7, for given b ě 1 and q ě 2, since every variable x occurs
in Φ a constant number of times, we shall construct all possible hyper-
graphs with the suitable size in constant time. We enumerate them
and verify which of them have the mentioned properties of Theorem
3.7. Therefore, we can construct the instance HΦ in polynomial time.

b) Proof of the Non-Approximability Result.
Let ε ą 0. By Theorem 3.4 we know that the p1

q ` ε, 1 ´ εq-gap-
problem of Max-E3-Lin-q is N P-hard for the instances considered in
the Theorem 3.4.
By the reduction presented in section 3.3 we determine out of the
interval p1

q ` ε, 1´ εq an interval pa, bq for that the pa, bq-gap-problem
corresponding to the b-matching problem in uniform hypergraphs is
N P-hard. Then, by applying Corollary 3.2 we get an inapproxima-
bility factor for the treated problem.

Next, we will show how to obtain a b-matching from an assignment
of the variables. Then we give the relation between a maximal
b-matching and the maximal number of simultaneously satisfied
equations from Φ.
Let us denote by SatpΦ, Bq the set of all equations in Φ that are
satisfied by the assignment B.
The following Lemma proves that each assignment B that satisfies
a subsystem in Φ corresponds to a b-matching in the constructed
hypergraph HΦ.

3.8 Lemma. Let B : X ÝÑ rqs be an assignment. The set M Ă EpHΦq
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defined by:

M “ {Epϕ,B, sq|ϕ P SatpΦ, Bq, s P rbs}

is a b-matching in HΦ

Proof. We consider b ` 1 hyperedges e1, ..., eb`1 of M and their
corresponding equations ϕ1, ϕ2, ..., ϕb`1. Then we can distinguish
between the following cases:

Ź For every x P X there are at most b equations ϕ P {ϕ1, ..., ϕb`1}
with ϕ P Φpxq. Then every vertex in V pMq XHx

b,q is contained in
at most b hyperedges of M .

Ź The equations corresponding to the b` 1 hyperedges have a com-
mon variable x P X. This means that the hyperedges e1, ..., eb`1

contain vertices from the hypergraph Hx
b,q. In Hx

b,q each value Bpxq
is assigned to a color and an index i P rqs. The hyperedges cor-
responding to Bpxq have the same color, furthermore we connect
in HΦ only these hyperedges with the same connection regulator
index s. Hence we know that each vertex in Hx

b,q belongs to at
most b hyperedges of the same color. So we can assert that if all
the b`1 hyperedges have the same color, then at least one of them
must have an appearance index different from the others.

The two cases show that no vertex in V pMq is contained in more
then b hyperedges of M . This is the definition of a b-matching. �

3.9 Lemma. If there is an assignment B that satisfies p1´ εq|Φ| equa-
tions, then there exists a b-matching in HΦ with at least 1´ε

q2 |EpHΦq|

hyperedges.
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Proof. Recall that for every equation ϕ P Φ there are q2 satisfying
assignments. By the construction of the hypergraph HΦ to every
assignment satisfying an equation ϕ P Φ correspond b hyperedges
(because of the connection regulator index s P rbs), So it follows:

|Φ| “ 1
bq2 |EpHΦq|.

Let B P rqs|X| be an assignment that satisfies p1 ´ εq|Φ| equations.
Let us consider the subset M Ă E that consists of hyperedges corre-
sponding to the assignment B

M “ {Epϕ,B, sq|ϕ P SatpΦ, Bq, s P rbs}

As proved in Lemma 3.8, M is a b-matching in HΦ. Furthermore we
know that to each equation satisfied by B belong b hyperedges in M .
So we conclude that:

|M | “ bp1´ εq|Φ|

“
1´ ε
q2 |EpHΦq|

�

3.10 Lemma. If every assignment satisfies at most p1
q `εq|Φ| equations,

then every b-matching in Hφ contains at most p3b`1
q3 ` εq|EpHΦq|

hyperedges.

Proof. The main idea in this proof can be described as follows: Let
M be a given b-matching. We define a global-assignment globpBq
for the set of variables X, by giving every variable the value which
agrees with the maximal number of hyperedges of M (the values are
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represented with a color (appropriate to the pq, bq-hyperedge coloring).
In this way we partition M into two parts: the first set corresponds
to globpBq and its cardinality can be estimated with help of the
construction. The second set consists of the remaining hyperedges
in M and its cardinality can be estimated by the (P.b-MC) property.
We denote the first part by globpMq and the second by restpMq.
For every x P X we denote by Ex the set of hyperedges of HΦ

corresponding to the equations Φpxq and by the set Ex“a a subset of
Ex in which the assignment of x is a.

Ex “ {Epϕ,B, sq|ϕ P Φpxq, Epϕ,B, sq P EpHΦq}

Ex“a “ {Epϕ,B, sq|Epϕ,B, sq P Ex, Bpxq “ a}

Let M be a maximum b-matching in HΦ. We define the assignment
globpBq according to the matching M as follows: for every x P X,
let globpBpxqq be the value a P rqs, so that |Ex“a XM | is maximal.
Then globpMq is the subset of M that corresponds to globpBq and
restpMq is the set of the remaining hyperedges in M :

globpMq “ M X {Epϕ, globpBq, sq|ϕ P Φ, s P rbs}

restpMq “ MzglobpMq

Since the number of equations satisfied by globpBq is at most
p1
q ` εq|Φ|, and for every equation there are bq2 hyperedges that
correspond to all satisfying assignments for this equation, then it
holds:

|globpMq| ď bp
1
q
` εq|Φ|
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Lem 3.8
“ p

1
q
` εq

|EpHΦq|

q2

It remains to estimate |restpMq|. We will use the (P.b-MC) property.
Let us consider an equation ϕ consisting of the three variables x, y, z.
We know that the corresponding hypergraphs Hx

b,q, H
y
b,q and Hz

b,q

have the pq, 1
q2 q-(P.b-MC) property.

First we observe that M XHx
b,q is also a b-matching (as every vertex

v in Hx
b,q is incident with at most b hyperedges). Let Epϕ,B, sq P

restpMq be an hyperedge assigned to the equation ϕ, depending on
x, y and z, s P rbs and the assignment B. By definition Epϕ,B, sq is
the union of three hyperedges Epx, ix, Bpxq, sq, Epy, iy, Bpyq, sq and
Epz, iz, Bpzq, sq from Hx

b,q, H
y
b,qand Hz

b,q:

Epϕ,B, sq “ Epx, ix, Bpxq, sq Y Epy, iy, Bpyq, sq Y Epz, iz, Bpzq, sq

At least one hyperedge of the three is assigned to a value that is not
in globpBq. We assume this is the hyperedge Epx, ix, Bpxq, sq from
Hx
b,q. Then the following holds:

∑
a‰globpBpxqq

|restpMq X Ex“a| ď
1
q2 |EpH

x
b,qq| (3.1)

On the other hand, we know that each hyperedge Epx, ix, a, sq in
Hx
b,q is used in q hyperedges from HΦ, but in a b-matching it is not

allowed to take more than b hyperedges from the q hyperedges. Then
by inequality (3.1), we obtain:

∑
a‰globpBpxqq

|restpMq X Ex“a| ď
b

q3 |Ex| (3.2)
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Furthermore this estimate holds for all x P X. This means

|restpMq| ď
∑

xPX,a‰globpBpxqq

|restpMq X Ex“a|

ď
b

q3

∑
xPX

|Ex|

“
3b
q3 |EpHΦq|

and therefore

|M | “ |globpMq| ` |restpMq|

ď p
1
q
` εq

|EpHΦq|

q2 `
3b
q3 |EpHΦq|

ď p
3b` 1
q3 ` εq|EpHΦq|

�

3.11 Theorem. For every integer b ě 1 and since l “ 3d “ Θpq ln qq it
is N P-hard to approximate b-matching on l-uniform hypergraphs to
within any ratio of Op l

b ln l q.

Proof. By Lemma 3.9 and Lemma 3.10 the
(3b`1
q3 ` ε, 1

q2 ´ ε
)
-b-

matching is N P-hard. On the other hand we remark that the given
interval becomes larger if ε is smaller (closer to 0). Let us assume
that ε ď 1

q3 . By Corollary 3.2 we have

1
q2 ´ ε

3b`1
q3 ` ε

ě

1
q2 ´

1
2q2

3b`1
q3 ` 1

q3
“

1
2q2

3b`2
q3

ě
bě1

1
2q2

5b
q3
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ě
1

10bq

Further we know that l “ 3d “ Θpq ln qq, it means there exist two
constants c1, c2 P Rě0 such that

c1q ln q ď l ď c2q ln q

The proof of Theorem 3.7 (see next section) provides that c1 ě 8,
than left side of the inequality gives that

l ě
c1
2 q ùñ ln l ě ln q ` ln

(
c1
2

)
ùñ
c1ě8

ln l ě ln q

Using the right side of the inequality we get:

1
q2 ´ ε

3b`1
q3 ` ε

ě
1

10bq ě
l

10bc2 ln q ě
l

10bc2 ln l

Therefore we conclude that it is N P-hard to approximate the b-
matching problem in a l-uniform hypergraph within any ratio of
Op l

b ln l q. �

3.4 Proof of the Structure Theorem

For the proof of the structure theorem we follow the strategy as in
[37], but we emphasize that essential new ingredients have to be
invoked. The proof is divided into two parts. First we randomly gen-
erate a hypergraph and in the second part we estimate the probability
that the generated hypergraph has the five properties as in Theorem
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3.7. The main difficulty in the existence proof is to check whether
the generated hypergraph possesses the (P.b-MC) property or not.

Proof of Theorem 3.7. Let t, d P N (arbitrary). Put V :“ rts ˆ rds and
Vi :“ rts ˆ {i} for all i P rds.
We choose the hyperedges of Hb,q randomly, so that the hypergraph
is d-uniform and bq-regular.
Let St be the set of all permutations on t elements. We choose
uniformly at random for every pair pj, lq P rbqs ˆ rds a permutation
πj,l from St. The hyperedges are defined as follows:

eri, js “ {pπj,1piq, 1q, ..., pπj,dpiq, dq}

for all i P rts, j P rbqs. Finally, the hypergraph is:

V :“ V pHt
b,qq, EpHt

b,qq :“ {eri, js; pi, jq P rts ˆ rbqs}

It is easy to check, that for every given q, b P N there exists a
constant cpq, bq so that for every t P N with t ě cpq, bq the generated
hypergraph Hb,q has a set of hyperedges of cardinality bqt and the
three last properties of the structure theorem hold. We claim:

3.12 Claim. For t ě bq the above construction returns with positive
probability a hypergraph with exactly bqt hyperedges.

Proof: Let t ě bq. We consider the subgroup of St generated by
p1 2 ... tq. Letπ P 〈p1 2 ... tq〉. Then there exists a l P {0, ..., t´1} with

π “ p1 2 ... tql
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and for all x P rts it holds:

πpxq “ p1 2 ... tqlpxq “ x` l mod t.

If π, σ P 〈p1 2 ... tq〉 with π ‰ σ, so there exists l,m P {0, ..., t ´ 1}
with l ‰ m, π “ p1 2 ... tql and σ “ p1 2 ... tqm. For all x P rts it holds:

πpxq “ x` l mod t

and
σpxq “ x`m mod t.

Because of that l ‰ m and l,m P {0, ..., t´ 1} the following holds:

x` l ı x`m mod t,

this means

πpxq ‰ σpxq for all x P rts. p˚q

We consider the following event: For each pair pj, kq P rbqs ˆ rds let

πj,k “

p1 2 ... tqj´1 , if k “ 1

id , otherwise

be the at random choosing permutation from St. The probability
that this event occurs is strict greater than 0. Now we prove that, if
this event occurs then it holds |E| “ bqt.
It is clear that |E | ď btq (definition of E). Let pi, jq, p̃i, j̃q P rts ˆ rbqs
with pi, jq ‰ p̃i, j̃q. If we prove that eri, js ‰ er̃i, j̃s, than |E | “ btq

holds, too.
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3.4. Proof of the Structure Theorem

case 1: i ‰ ĩ

It holds:
pi, 2q “ pidpiq, 2q “ pπj,2piq, 2q P eri, js

and
p̃i, 2q “ pidp̃iq, 2q “ pπj̃,2p̃iq, 2q P er̃i, j̃s.

As i ‰ ĩ, it follows pi, 2q ‰ p̃i, 2q. By the definition of the hyperedges
, we obtain that

pi, 2q R er̃i, j̃s

and
p̃i, 2q R eri, js.

Therewith it follows eri, js ‰ er̃i, j̃s.

case 2: i “ ĩ

It follows j ‰ j̃ and it holds:

pπj,1piq, 1q P eri, js

and
pπj̃,1piq, 1q P er̃i, j̃s.

By the fact that j ‰ j̃, for j, j̃ P rbqs and bq ď t it follows:

πj,1 “ p1 2 ... tqj´1 ‰ p1 2 ... tqj̃´1 “ πj̃,1.

By (˚) follows therewith

πj,1piq ‰ πj̃,1piq,
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this gives
pπj,1piq, 1q ‰ pπj̃,1piq, 1q

by the definition of the hyperedges and according to eri, js ‰ er̃i, j̃s

follows that |E | “ bqt. This concludes the proof of Claim 3.12

Now we are able to prove the remaining properties of the hypergraph
Hb,q.

1. Uniformity and regularity of Hb,q:

Each hyperedge of EpHb,qq has exactly d vertices. This implies the
d-uniformity of Hb,q.

2. Regularity of Hb,q:

Since EpHb,qq “ bqt, define the sets
Ei :“ {epj, iq; j P rts} for all i P rbqs. Thus |E1| “ ... “ |Ebq| “ t

and every hyperedge of a set Ei covers exactly one vertex v P Vi.
That leads to the bq-regularity of the hypergraph.

3. pq, bq-hyperedge colorability of Hb,q:

For the pq, bq-hyperedge colorability of Hb,q we may color the
hyperedges as follows:
Since we have bq disjoint sets and every hyperedge covers exactly
one vertex, than for every i P rbqs we pick from every set Ei one
hyperedge and include it in a new set Ẽr for r P rqs. It is obvious
that the set Ẽr is of cardinality bt. Finally we color all hyperegdes
in a set Ẽr with the color r.

In this way we obtain a partition of EpHb,qq into q subsets:
EpHb,qq “ Ẽ1

¨
Y ...

¨
Y Ẽq with |Ẽk| “ bt for k P rqs.
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3.4. Proof of the Structure Theorem

Also we obtain a function (coloration) f : E ÝÑ rqs such that
every vertex is contained in exactly b hyperedges of the same color
which yields the pq, bq-coloring property of the hyperedges.

4. The (P.b-MC) property:

We now prove the (P.b-MC) property with the probabilistic meth-
ods. We claim

3.13 Claim. With high probability the hypergraph Hb,q possesses
the (P.b-MC) property.

Proof. Before we start with the proof of the above claim, we need
to state some useful facts.
Define for all k P rqs the set Mk as follows:

Mk “ {M Ă E ; |MXEk| ď
bt

q
, |MzEk| “

bt

q
, @i P rqs |MXEk| ě |MXEi|}

3.14 Proposition. If the hypergraph Hb,q does not have the (P.b-MC)
property, then there exists a k P rqs and a set M P Mk that is a
b-matching.

Proof. If Hb,q does not have the (P.b-MC) property, then there
exists a b-matching M 1 Ă E that is not concentrated in one of the
Ẽj . Formally: |M 1zEj | ą 1

q2 |E | “ bt
q for all j P rqs . Let k P rqs,

such that |M 1 X Ek| is maximal. We know that a subset of a
b-matching is a b-matching, so this allows us to delete enough
hyperedges until there remain exactly bt

q in M 1zEj for all i ‰ k

and M 1 X Ek contains at most bt
q . We denote this new set by M
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3. Inapproximability of b-Matching in l-Uniform Hypergraphs

and we claim that for all j P rqs the inequality

|M X Ek| ě |M X Ej |

holds.

Case 1: |M 1 X Ek| ď bt
q

Then we will delete no hyperedges from M 1 X Ek and it follows
that:

|M X Ek| “ |M 1 X Ek|

ě |M 1 X Ej |

ě |M X Ej | for all j P rqs

Case 2: |M 1 X Ek| ą bt
q

Then we have
|M X Ek| “

bt

q

and it follows that:

|MzEk| “ |M | ´ |M X Ek|

“

 q∑
j“1
|M X Ej |

´ |M X Ek| since E “ E1
¨
Y ...

¨
Y Eq

“
∑
rqsz{k}

|M X Ej |

therefore we obtain

∑
rqsz{k}

|M X Ej | “ |MzEk| “
bt

q
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3.4. Proof of the Structure Theorem

and finally it holds:

|M X Ej | ď
bt

q
“ |M X Ek| for all j P rqs.

This implies that M is in Mk.

This concludes the proof of the Proposition 3.14

3.15 Claim. For every k P rqs let Mk be defined as above. It holds:

|Mk| ď
bt

q
q

3bt
q e

2bt
q (3.3)

Proof. The set Mk is bounded above by the number of possibilities
to choose at most bt

q hyperedges from Ẽk and the remainder bt
q

hyperedges from the remaining sets. This means:

|Mk| ď

(
bpq ´ 1qt

bt
q

) bt
q∑

j“1

(
bt

j

)

on the other hand we know that(
n

s

)
ď p

en

s
qs.

holds and that the function

f : {0, ..., n2 } ÝÑ Q

s ÞÝÑ

(
n

s

)

is monoton increasing, hence |Mk| ď
bt
q pqq

3bt
q e

2bt
q .
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3. Inapproximability of b-Matching in l-Uniform Hypergraphs

This concludes the proof of Claim 3.15.

Now we continue the proof of Theorem 3.7. Let P be the probability
that Hb,q does not have the (P.b-MC) property. In the following
we consider only the set M1. Then due to the symmetry of Mk

according to k we have:

P ď PrpDk P rqs : DM P Mk,M is a b-matchingq

ď q
∑

MPM1

PrpM is a b-matchingq

ď q|M1|PrpM̃q (3.4)

where M̃ P M1 with PrpM̃q “ maxMPM1 PrpM is a b-matchingq.
According to Claim 3.15 we know how large is M1. It remains to
estimate the term PrpM̃q.
For all i P rds we denote by AipM̃q the event that for every
v P M̃ X Vi (the set of vertices of M̃ restricted to Vi) there are at
most b incident hyperedges in M̃ . Due to the independence of the
choice of the permutations in the construction of the hypergraph
Hb,q the events AipM̃q are independent so

PrpM̃q “ Πd
i“1 PrpAipM̃qq (3.5)

Since the events AipM̃q are identically distributed, it suffices to
estimate the probability of one of the AipM̃q, for example A1pM̃q.
Therewith we obtain

Πd
i“1 PrpAipM̃qq “

(
A1pM̃q

)d
.

It is not trivial for us to estimate the probability of the event

72



3.4. Proof of the Structure Theorem

A1pM̃q. Namely if we consider only the case of b “ 2, then for
every vertex v P V1 we get two events that depend on each other:

(a) v belongs to two hyperedges of M of different colors, or

(b) v belongs to two hyperedges of M of the same color.

To solve this problem we modify slightly the resulting instance in
the following way:

Algorithm 2: Instance Modification
1. initialise M̂ :“ M̃ , V̂ :“ V1, j :“ 0.

2. for every v P M̂ X V1 and i P rqs.
Make a copy v1 and pick arbitrary an hyperedge
Ei P M̂ X Γpvq

3. set e1 :“ (eiz{v}), M̂ :“
(
M̂z{ei}

)
Y {e1i}, V̂ :“ V1 Y {v}

and j :“ j ` 1.

4. if j ă b´ 1 and |M̂ X Γpvq| ą 1 then goto 2.

5. return M̂ and V̂ .

Description: Let us consider the set of vertices V1. For every vertex
v P M̃ X V1 we consider the set of hyperedges that contain v i.e,
{ei P M̃ X Γpvq : v P ei}. We make a copy v

1 of v, delete the
hyperedge ei and add a new hyperedge e1i “ peiz{v}qY {v1}, which
gets the same color as ei (i.e, the same index i P rqs).

For every vertex v P V1 the procedure will be b´ 1 times repeated
if the number of the incidence hyperedges to v in the new set of
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3. Inapproximability of b-Matching in l-Uniform Hypergraphs

hyperedges M̂ not earlier becomes equal to one.
For both sets provided by the above modification, we have |M̂ | “
|M̃ | and |V̂ | ď b|V1|, so we could claim that, if M̂ restricted to V̂
is a 1-matching, then M̃ is a b-matching restricted to V1 and vice
versa.

If ApM̂q is the event, that M̂ restricted to V̂ is a 1-matching, then

PrpA1pM̃qq ď PrpApM̂qq

Now let us consider the set of vertices from V̂ that belong to the
hyperedges from M̂ X Ei. Formally:

M̂i “
(⋃

pM̂ X Ei
)
X V̂ for all i P rqs

For every i P rqs, let now Ai be the event that the sets of hyperedges
{M̂j |j ď i} are disjoint i. e., for i P rqs, Ai is the event that the
sets M̂1, ¨ ¨ ¨ , M̂i are pairwise disjoint. Then the following holds:

PrpApM̂qq “ PrpXqi“2Aiq “ Πq
i“2 PrpAi|Ai´1q (3.6)

Moreover for every i P {2, ¨ ¨ ¨ , q} the probability that the event
Ai|Ai´1 occurs, is equal to the probability of choosing |M̂i| different
vertices from V̂ at random without the set Yi´1

l“1M̂l.

On the other hand we know that the probability to choose |M̂i|

different vertices from V̂ without the set Yi´1
l“1M̂l is smaller than the

probability to choose |M̂i| vertices with repetition. Furthermore
the occurrence of Ai implies that the sets M̂l are disjoint for all
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3.4. Proof of the Structure Theorem

l ă i , and this implies that | Yi´1
l“1 M̂l| “

∑i´1
l“1 |M̂l|. So we have:

PrpAi|Ai´1q ď

(
1´

∑
lăi |M̂l|

|V̂ |

)|M̂i|

ď

(
1´

∑
lăi |M̂l|

bt

)|M̂i|

ď exp
(
´

1
bt
|M̂i|

∑
lăi

|M̂l|

)
(3.7)

and we have

PrpM̃q ď exp

´ d

bt

q∑
i“2
|M̂i|

i´1∑
j“1
|M̂j |


“ exp

´ d

bt

∑
jăi

|M̂i||M̂j |

 (3.8)

We know that under the condition M̃ P M1 the following holds:

|M̂1| “ |M̃1| ě
qmax
i“2

|M̃i|

and
q∑
i“2
|M̂i| “

q∑
i“2
|M̃i| “ |M̃zẼk| “

bt

q
.

We invoke the following claim:

3.16 Claim. Let q P N, x1, ¨ ¨ ¨ , xq ě 0, x1 ě maxqi“2 xi and
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3. Inapproximability of b-Matching in l-Uniform Hypergraphs

T :“
∑q
i“2 xi. Then it holds that:

∑
0ďiăjďq

xixj ě
1
4T

2.

Proof. We distinguish the two following cases:

Ź If x1 ě
T
2 , we get

∑
1ďiăjďq

xixj “
∑

1ăjďq
x1xj `

∑
1ăiăjďq

xixj

ě
∑

1ăjďq
x1xj “ x1

∑
1ăjďq

xj

ě
T

2 Ṫ

ě
T 2

2 .

Ź If x1 ď
T
2 then it holds:

∑
1ďiăjďq

xixj ě
px1,¨¨¨ ,xqě0q

∑
2ďiăjďq

xixj

“
binom. formula

1
2

( q∑
i“2

xi

)2

´
1
2

q∑
i“2

x2
i

ě
T 2

2 ´

q∑
i“2

x2
i ,

Further we consider the following function:

f : Rq´1 Ñ R, py2, ¨ ¨ ¨ , yq´1q “
q∑
i“2

y2
i .
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and the set

S :“ {y P Rq´1 :
q∑
i“2

yi “ T and qmax
i“2

yi ď
T

2 }

By the method of Lagrange multipliers, we get that the function
f restricted to the set S achieves its maximum in

y2 “ y3 “
T

2 and y4 “ ¨ ¨ ¨ , yq “ 0.

Therefore we obtain:

q´1∑
i“1

x2
i ď

1
4T

2,

hence we have, ∑
1ďiăjďq

xixj ě
1
4T

2.

This concludes the Claim 3.16.

By Claim 3.16 we have:

∑
jăi

|M̂i||M̂j | ě
pbtq2

4pqq2 . (3.9)

Applying (3.9) to inequality (3.8) we obtain:

PrpM̃q ď exp
(
´
d

bt

pbtq2

4q2

)
(3.10)
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By the inequalities (3.3), (3.4) and (3.10) it follows:

P ď bt ¨ pqq
3bt
q exp

(
2bt
q
´
d

bt

pbtq2

4pqq2

)

“ bt ¨ exp
(3bt
q

ln q ` 2bt
q
´
dbt

4q2

)
For every d, that satisfies the inequality

bt ¨ exp
(3bt
q

ln q ` 2bt
q
´
dbt

4q2

)
ă 1

the hypergraph has property (P.b-MC) with positive probability.

For example for d ą 32q ln q, we have

d ą 32q ln q “ 4q ln q ` 16q ln q ` 12q ln q

ě 4q2 ln q
q
` 16q ln q ` 12q ln q

ě
qě2, 2 ln qě1

4q2 ln q
q
` 8q ` 12q ln q,

since the function x ÝÑ lnx
x is monotone decreasing for all x P

Rěe, we get

d ą 4q2 ln bt
bt

` 8q ` 12q ln q

“
4q2

bt

(
ln bt` 2bt

q
` 3bt

q
ln q

)
,

and it follows
dbt

4q2 ą ln bt` 2bt
q
` 3bt

q
ln q,
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this yields
0 ą ln bt` 2bt

q
` 3bt

q
ln q ´ dbt

4q2 ,

and finally we get

bt ¨ exp
(3bt
q

ln q ` 2bt
q
´
dbt

4q2

)
ă 1

�

3.5 Summary and Future Work

The main contribution of this chapter is the proof that it is N P-hard
to approximate the b-matching problem in a l-uniform hypergraph
within any ratio smaller than Op l

b ln l q (Theorem 3.7).
This shows that the approximation depends on b and the non-
approximability ratio tends towards a constant if b tends to l

ln l .
In other words if b is getting larger, much better approximation ratios
might be possible compared to the case of b “ 1. It is known that
an approximation ratio of Oplq for the b-matching problem can be
achieved [56]. This is still far from our inapproximability lower bound,
but we now know the interval in which improvements of the Oplq-
approximation can happen. Our lower bound indicates that better
approximation algorithms should invoke b in the approximation ratio.
The structure of the proof consists of two parts:

(a) first, we prove the existence of a uniform hypergraph with some
partition properties of b-matching hyperedges,

(b) secondly, taking hypergraphs from (a), a final instance for b-
matching from a solution to the Max-E3-Lin-q problem must be
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3. Inapproximability of b-Matching in l-Uniform Hypergraphs

build.

Both steps require some new ideas to cope with b ě 2.
In Section 3.3 we describe a reduction from an instance of Max-E3-
Lin-q to a b-matching problem instance. The basis for the reduction
is: to each variable x in the instance of Max-E3-Lin-q we assign a hy-
pergraph with some suitable properties. The existence of such hyper-
graphs is proved by the probabilistic method. Afterwards depending
on each equation in Φ with a given assignment, some hyperedges of
the three hypergraphs are connected to achieve the desired instance.
In the case b “ 1 one hyperedge is obtained for every equation ϕ

and a satisfying assignment to ϕ and for every assignment B to Φ
the set of hyperedges corresponding to B is a 1-matching. If we
would construct the hyperedges of the hypergraph in the case b ě 2
in the same manner as Hazan, Safra and Schwartz, then for a given
assignment to Φ the set corresponding to this assignment would not
be a b-matching, because there are b3 incident hyperedges to every
vertex. To avoid this infeasibility we introduce a new hyperedge
parameter s P rbs called connection-regulator : only the hyperedges
with the same connection-regulator will be connected. In this way
the hypergraph is sparse enough.
For the probabilistic proof of the existence of hypergraphs with the
required properties we follow the strategy as in [37], but with some
essential modifications to cope with the b-matching structure. After
generating a hypergraph at random in the same way as in [37] we wish
to color the hypergraph in such a way that every vertex is contained
in at most b hyperedges of the same color.
The 1-matching condition and the property that no vertex is covered
by two hyperedges of the same color implies that for a subset M
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of the hyperedges with the same color are disjoint. Thus, M is a
1-matching if and only if each pair of differently colored hyperedges
of M do not intersect (according to the strong hyperedge colorability,
see [37]). Such a nice characterization is not possible for b ě 2. The
deeper reason is that in contrast to b “ 1 events have to be considered
which are highly dependent on each other. For example in the case of
b “ 2 we have two dependent events i. e.,: M is a 2-matching if and
only if every vertex is contained in at most

Ź two hyperedges of M of different colors or

Ź in two hyperedges of M of the same color.

To estimate the probability of the above events is difficult. We resolve
this problem by dispersing the b-matching in a deterministic way
so that the b-matching case is reduced to 1-matching. Now the
probabilistic method works.
There remain interesting open questions concerning the b-matching
problem in l-uniform hypergraphs. According to our inapproximabil-
ity result we see two main directions for research:

Ź The range from b P r l
ln l , lnns is almost unexplored.

Ź The gap between the recently best approximation ratio of Oplq
due to Krysta [56] and our inapproximation ratio of Op l

b ln l q is still
large. This motivates us to look for a tighter approximation ratio
which would involve b.

81





Chapter 4

The b-Matching Problem in l-Uniform
Hypergraphs is Max-Snp-Hard

In this chapter we denote by x “ px1, ¨ ¨ ¨ , xnq a tuple in P Nn where
for every i P rns, xi “ x (a positiv integer). Our goal is to prove
that the restriction of the b-matching problem to a certain class of
hypergraphs has no polynomial-time approximation scheme PTAS,
unless P “ N P. We utilize the concept of L-reduction (see [60])
instead of directly using a PTAS-reduction, because it is often easier
to show that a reduction is an L-reduction than a PTAS-reduction.
The main part of this chapter1 deals with the b-matching problem
on the subclass of l-uniform hypergraphs with vertex degree at most
a constant ∆.
However, concerning its algorithmic complexity, the problem has still
not been investigated extensively, which motivated our study. The
only known result of the problem related to the class Max-Snp is
due to Kann [47], who proved that there is no approximation scheme
for the case b “ 1, unless P “ N P.

The chapter is organized as follows. Section 4.1 contains some defini-
tions and preliminaries. In Section 4.2 we present our results and give
an L-reduction from an instance of the Max-3-Sat to an instance

1This chapter is mainly based on the paper [22]
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of the b-matching problem. In Section 4.3 we analyze the presented
reduction. In Section 4.4 we give a reduction of the constructed
instance to a l-uniform hypergraph. In Section 4.5 we give further
example of L-reductions in the esperance to clarify better the termi-
nology of the L-reductions and the Max-Snp class. In Section 4.6
we give a summary of the chapter and cite some future works.

4.1 Tools and Definitions

For the convenience of the reader, we recall some definitions from
previous chapters.

Formulation of the Treated Problems

b-Matching Problem: For given b “ pb1, ¨ ¨ ¨ , bnq P Nn we call a set
Mb Ď E a b-matching if no i P V vertex is contained in more than
bi edges of Mb. b-matching Problem is the problem of finding a
b-matching with maximum cardinality. We denote the b-matching
problem in hypergraphs with bounded degree ∆ by pb,∆q-matching.
Remark. In this chapter we are interested of the case where, for every
vertex i P V , bi “ b (b is a positiv integer)
l-Dimensional b-Matching Problem: This problem is a variant of b-
matching in l-uniform hypergraphs, where the vertices of the input
hypergraph are a union of l disjoint sets, V “ V1

¨
YV2...

¨
YVl, and each

hyperedge contains exactly one vertex from each set such that we have
E Ď V1 ˆ V2 ˆ ...ˆ Vl. We will denote this problem in hypergraphs
with bounded degree ∆ by l-dimensional pb,∆q-matching problem
Set d-Multicover Problem: For given d “ pd1, ¨ ¨ ¨ , dnq P Nn we call
Sd Ď E a set multicover if no vertex i P V is contained in less than di
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hyperedges of Sd. Set multicover problem is the problem of finding a
set multicover with minimum cardinality.
Remark. In this chapter we are interested in the case where for every
vertex i P V , di “ d (d is a positiv integer)
The following reduction was introduced by Papadimitriou and Yan-
nakakis [60].

4.1 Definition. Let P “ pX, pSxqxPX , wq and P 1 “ pX 1, pS1xqxPX , w1q be
two optimization problems with non-negative weights. An L-reduction
from P to P 1 is a pair of functions f and g, both computable in
polynomial-time, and two constants α, β P R` such that it holds for
any instance x of P :

1. fpxq is an instance of P 1 with Optpfpxqq ď α ¨Optpxq,

2. For any feasible solution y1 of fpxq, gpx, y1q is a feasible solution
of x such that |wpgpx, y1q ´Optpxqq| ď β ¨ |w1py1q ´Optpfpxqq|.

We say that P is L-reducible to P 1 if there is an L-reduction from P

to P 1.

Note that “L” stands for “linear”. The L-reduction can be composed
as follows:

4.2 Proposition. Let P1, P2, P3 be optimization problems with non-
negative weights. If pf1, g1, α1, β1q is an L-reduction from P1 to P2 and
pf2, g2, α2, β2q is an L-reduction from P2 to P3, then their composition
pf3, g3, α1α2, β1β2q is an L-reduction from P1 to P3, where f3pxq “

f2pf1pxqq and g3px, y3q “ g1px, g2pf1pxq, y3qq.

To introduce the Max-Snp-hardness of an optimization problem we
have to define the maximum 3-satisfiability problem:
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4.3 Definition. Consider a set X “ {x1, ..., xn} of variables and a
family C “ {c1, ..., cm} of different clauses, each involving exactly
three literals (a variable or a negated variable) over X.

a) Maximum 3-satisfiability (in short Max-3-Sat) is the problem of
finding an assignment A of X so that the number of clauses in C
satisfied by A is maximum.

b) Maximum bounded 3-satisfiability-∆ (in short Max-3-Sat-∆) is
a variant of Max 3-Sat, where the number of occurrences of each
variable is bounded by a constant ∆ P N.

The following fundamental theorem is due to Papadimitriou and
Yannakakis [60]

4.4 Definition. An optimization problem P with non-negative weights
is called Max-Snp-hard if Max-3-Sat is L-reducible to P .

4.5 Corollary. No PTAS for any Max-Snp-hard problem exists, unless
P “ N P.

4.6 Theorem. Maximum bounded 3-satisfiability-∆ problem is Max-
Snp-hard.

The following theorem due to Ray-Chaudhuri [69] is very important
for the reduction from the minimum set multicover problem to the
b-matching problem.

4.7 Theorem (Ray-Chaudhuri, 1960). Consider a hypergraph H with
maximum vertex degree ∆ not necessary bounded and b,d P Nn such
that bi ` di “ deg i, where degpiq is the degree of the vertex i. A
subset of hyperedges Mb is a b-matching in H if and only if the subset
Sd :“ EzMb is a set d-multicover in H. Furthermore Mb is maximal
if and only if Sd is minimal.
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4.2 Main Result

In the following we will list the main results of this chapter. The
next theorem will be shown by an L-reduction from Max-3-Sat-∆
to 3-dimensional pb,∆q-matching.

4.8 Theorem. For every b P Nn with b ď ∆
3 , the 3-dimensional pb,∆q-

matching problem is Max-Snp-hard.

Proof. To prove Theorem 4.8, we will describe an L-reduction
pf, g, α, βq from a Max-3-Sat-∆ problem to 3-dimensional pb,∆q-
matching problem. This is an extension of the reduction used to
prove that 3-dimensional p1,∆q-matching problem is Max-Snp-hard
in [47]. The reduction consists of two steps. We consider an instance
I of Max-3-Sat-∆ with a set of variables X “ {x1, ..., xn} and a set
of clauses C “ {c1, ..., cm}.

First step: We make b´ 1 copies of C in a way to obtain b identical
sets of clauses C1, ..., Cb. For every set of clauses Cj , j P rbs, this part
of the construction remains the same as in [47] and can be described
as follows:
We consider a set of clauses Cj “ {cj1, ..., cjm}. We assume that every
variable xi P X appears cpxiq times in Cj (either as xi or as x̄i).
Moreover, let K “ 2blog2

3
2 b∆`1c be the largest power of 2 such that

K ď 3
2b∆` 1. For every variable xi we construct K identical rings

of triples (in a triangle form) that we denote by Rpxi, k, jq, k P rKs.
Each ring contains 2cpxiq triples. The free vertices in the ring triples
(the apices of the triangles) are denoted by xpρ, λ, jq and x̄pρ, λ, jq,
where pρ, λ, jq P rcpxiqs ˆ rKs ˆ rbs(see Figure 4.1).
The K rings Rpxi, 1, jq, ..., Rpxi,K, jq are connected by tree triples
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‚

‚
xip1, 1, jq

‚

‚

x̄ip1, 1, jq

‚‚
xip2, 1, jq

‚

‚
x̄ip2, 1, jq

‚

‚

xip3, 1, jq

‚ ‚
x̄ip3, 1, jq

Figure 4.1. The ring Rpxi, 1, jq, the first of K rings for the set of clauses Cj
for a variable xi with cpxiq “ 3 occurrences.

xipρ, jq

x̄ipρ, jq

T

T
T

R
R
R
R

Figure 4.2. An example of binary trees of triples with cpxiq “ 3 and K “ 4.
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in 2cpxiq binary trees, denoted by Txipρ,jq and Tx̄ipρ,jq, (ρ P rcpxiqsq in
such a way that xipρ, 1, jq, xipρ, 2, jq, ..., xipρ,K, jq are leaves in the
tree Txipρ,jq and x̄ipρ, 1, jq, x̄ipρ, 2, jq, ..., x̄ipρ,K, jq are leaves in the
tree Tx̄ipρ,jq (see Figure 4.2).
The root of Txipρ,jq is xipρ, jq and the root of Tx̄ipρ,jq is x̄ipρ, jq. We
denote by T̂xipρ,jq and T̂x̄ipρ,jq the binary tree consisting of Txipρ,jq
and Tx̄ipρ,jq, respectively, and the K ring triples with the nodes
xipρ, 1, jq, ¨ ¨ ¨ , xipρ,K, jq and x̄ipρ, 1, jq, ¨ ¨ ¨ , x̄ipρ,K, jq.
Finally, the clause triples connect some of the roots. For each clause
cjl , l P rms, we introduce two new elements s1pl, jq and s2pl, jq. If
the variable xi occurs in this clause and this is its ρ-th occurrence in
Cj , then we connect s1pl, jq, s2pl, jq with the root element xipρ, jq or
x̄ipρ, jq, depending on whether the occurrence is xi or x̄i. (see Figure
4.3).

‚‚
C
‚

‚

‚

‚ ‚

‚

‚ ‚

‚

‚

‚ ‚

‚

‚ ‚

s2p5, jq s1p5, jq

xip1, jq

TT

T

RRR R

‚

‚

‚

‚ ‚

‚

‚ ‚

‚

‚

‚ ‚

‚

‚ ‚

x̄ip1, jq

TT

T

R RR R

Figure 4.3. An example of binary trees for xi and the adjacent clause
triple and ring triples, where the first occurrence of xi in Cj is in the 5-th
clause. The triples are marked with R, T and C for ring, tree and clause,
respectively.

Second step: The construction in the first step holds for every set of
clauses Cj for all j P rbs.
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Let us now consider two constructed binary trees T̂xipρ,jq and T̂xipρ,j1q
corresponding to the same variable xi P X and the same occurrence
number ρ P rcpxiqs, but belonging to two different sets of clauses
Cj and Cj1 , analogously for trees T̂x̄ipρ,jq and T̂x̄ipρ,j1q. Furthermore
let L be the number of levels of T̂xipρ,jq and T̂xipρ,j1q. We consider a
triple (triangle) T in T̂xipρ,jq. Then the apex of T belongs to levels r
for an r P {0, . . . , L´ 1} and the two vertices from the base belong
to level r ` 1. In the tree T̂xipρ,j1q we have exactly one triangle T 1

between levels r and r ` 1 corresponding to T . We connect the
apex of T with two vertices of T 1 in level r ` 1 and the apex of T 1

with two vertices of T in level r ` 1 to obtain two new triangles.
The same will be done for the clause triples ps1pl, jq, s2pl, jq, xipρ, jqq

and ps1pl, j
1q, s2pl, j

1q, xipρ, j
1qq in order to obtain two new clause

triples ps1pl, jq, s2pl, jq, xipρ, j
1qq and ps1pl, j

1q, s2pl, j
1q, xipρ, jqq. This

process is applied to every pair of symmetric triangles for every pair
of symmetric trees T̂xipρ,jq and T̂xipρ,j1q. Finally, we obtain two new
binary trees T̂xipρ,jÑj1q and T̂xipρ,j1Ñjq between each pair of binary
trees such that the set of their vertices alternates between the sets of
vertices of the trees T̂xipρ,jq and T̂xipρ,j1q (or T̂x̄ipρ,jq and T̂x̄ipρ,j1q) (see
Figure 4.4).

‚

‚

‚ ‚

‚

xip1, j1q

xip1, 1, j1q xip1, 2, j1q

‚

‚

‚ ‚

‚

xip1, jq

xip1, 1, jq xip1, 2, jq

T

TT

T

Figure 4.4. An example of connecting the elements between two symmetric
trees, namely T̂xipρ,jq and T̂xipρ,j1q in two different sets of clauses Cj and Cj1 .

The constructed instance contains b2
∑
xPX cpxq clause triples,
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2Kb2
∑
xPX cpxq ring triples and 2b2pK ´ 1q

∑
xPX cpxq tree triples.

To obtain the final instance, namely a 3-dimensional hypergraph,
we label the vertices of the constructed instance. This will be done
first separately for every clause set Cj , j P rbs. In order to define
EjpHq Ď Zj ˆU j ˆY j for ring, tree and clause triples corresponding
to a Cj we have to label elements of Zj , U j or Y j . It suffices to label
the ring, tree and clause triples obtained in the first step since the
rest of triples will be automatically labelled.
All trees T̂xipρ,jq and T̂x̄ipρ,jq are labelled identically as follows. Start
with the root and label it with Zj and label the elements in every
tree triple Zj , U j and Y j anti-clockwise. The ring triples are labelled
anti-clockwise in xi-trees and clockwise in x̄i-trees. The elements
s1pl, jq and s2pl, jq are labelled with U j and Y j , respectively (see
Figure 4.5).

‚

‚

‚

‚ ‚

‚

‚ ‚

‚

‚

‚ ‚

‚

‚ ‚

z

u y y z

z u

yu

z u u y

y z
T T

T

R R R R

‚

‚

‚

‚ ‚

‚

‚ ‚

‚

‚

‚ ‚

‚

‚ ‚

z

y u z y

z u

yu

u z y u

y z
TT

T

RRR R

Figure 4.5. An example of element labelling in a tree with two levels. Dots
which represent identical elements are connected with arcs.

For the final instance we set X :“
⋃
jPrbsX

j , Y :“
⋃
jPrbs Y

j and
Z :“

⋃
jPrbs Z

j and EpHq Ď Z ˆ U ˆ Y contains all triples obtained
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at the end of second step.
Explanations to the constructed instance.

xipρ, jq xipρ, j
1q

T

T

T

R

R

R

R

Figure 4.6. An example of binary trees and rings of triples with K “ 4. The
tree on the left side of the figure is the tree T̂xipρ,jq corresponding to the
variable xi and the set of clauses Cj . The tree on the right side is the tree
T̂xipρ,j1q corresponding to the same variable and the set of clauses Cj1 . The
tree in the middle is the tree Txipρ,jÑj1q that alternates between T̂xipρ,jq and
T̂xipρ,j1q starting from the root xipρ, jq.

Before proceeding we give a summary of the somewhat complicated
construction. Every vertex xipρ, jq appropriate to its occurrence in
a set of clauses Cj represents a root of b binary trees T̂xipρ,jq and
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T̂xipρ,jÑj1q for j1 P rbsz{j}, where T̂xipρ,jq is the tree defined above and
T̂xipρ,jÑj1q are the b´ 1 binary trees that leave the root xipρ, jq and
alternate between T̂xipρ,jq and T̂xipρ,j1q in a zick-zack fashion from the
level r in T̂xipρ,jq to the level r ` 1 in T̂xipρ,j1q and return to the level
r ` 2 in T̂xipρ,jq (see Figure 4.6). We note that for every j P rbs the
sets of binary trees(
T̂xipρ,jq Y

⋃
j1Prbsz{j} T̂xipρ,jÑj1q

)
and

(
T̂xipρ,j1q Y

⋃
jPrbsz{j1} T̂xipρ,j1Ñjq

)
are symmetric. Therefore, it suffices to focus our analysis on an arbi-
trary set of clauses Cj . To depict the following analysis, we define for
every xi P X, ρ P rcpxiqs and k P rKs the sets Txi,j , T̂xi,j and Rxi,j as
follows:

Txi,j “
⋃

ρPrcpxiqs

Txipρ,jq Y ⋃
j1Prbsz{j}

Txipρ,jÑj1q


T̂xi,j “

⋃
ρPrcpxiqs

T̂xipρ,jq Y ⋃
j1Prbsz{j}

T̂xipρ,jÑj1q


Rxi,j “ T̂xi,jzTxi,j

By Rxi,jpkq we denote the set Rxi,j restricted to the k-th set of ring
triples.

4.3 Analysis of the Reduction

The presented reduction is of polynomial-time since the returned in-
stance H has a set of hyperedges of cardinality at most 9b2m` 6b3∆2n:

|EpHq| “

clause triples︷ ︸︸ ︷
b2
∑
xPX

cpxq`

ring triples︷ ︸︸ ︷
2Kb2

∑
xPX

cpxq`

tree triples︷ ︸︸ ︷
2b2pK ´ 1q

∑
xPX

cpxq,
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furthermore we have
n∑
i“1

cpxiq ď 3m. (4.1)

Than

|EpHq|
Eq p4.1q
ď 3b2m` b2

n∑
i“1

2cpxiqpK `K ´ 1q

Kď 3
2 b∆`1
ď 3b2m` b2

n∑
i“1

2cpxiqp3b∆` 1q

ď 3b2m` b2
(

6b∆
n∑
i“1

cpxiq ` 2
n∑
i“1

cpxiq

)
cpxqď∆
ď 3b2m` b2

(
6b∆2n` 2

n∑
i“1

cpxiq

)
Eq p4.1q
ď 3b2m` b26b∆2n` 6b2m “ b2p9m` 6b∆2nq.

We conclude that f can be computed in time polynomial in m and
n. Moreover, expect for half of the root elements that occur b times,
every element in a ring or tree triples occur exactly 2b times in H. The
elements are s1pl, jq and s2pl, jq in the clause triples occur at most
3b times each, because a clause contains at most three literals and is
connected with b root elements in the b sets of clauses. Thus, fpIq is
an instance of the Max 3-dimensional pb,∆q-matching problem for
∆ ě 3b.
To compute the parameters α and β from the definition of L-reduction,
we introduce the so-called standard b-matching:

4.9 Definition. A b-matching M in fpIq is called standard b-matching if
its ring and tree triples are matched in an even distance. We denote
it by standpMq. Moreover, for every i P rns an optimal standard
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b-matching contains either all ring triples corresponding to xi or all
corresponding to x̄i (see Figure 4.7).

‚

‚
xip1, 1, jq‚

‚
x̄ip1, 1, jq

‚‚
xip2, 1, jq

‚

‚
x̄ip2, 1, jq ‚

‚
xip3, 1, jq

‚ ‚
x̄ip3, 1, jq

Figure 4.7. An example of matched ring triples (with dashed edges) in an
optimal standard 1-matching for cpxiq “ 3.

The following assertions are useful to understand the subsequent
analysis.
Assertion 1. In an optimal b-matching of the structure of ring triples,
all ring triples belonging to the same variable are matched in the
same way. Moreover, any maximum b-matching of the whole problem
contains a maximum b-matching of this structure.

Proof: Let M be a given 3-dimensional b-matching in fpIq. For
every variable xi we consider the sets M XRxi,jp1q and M XRxi,jp2q.
Suppose that the first set has cardinality t1 and the second set has
cardinality t2 and w.l.o.g., t1 ě t2. Since the two sets of ring triples
have an empty cut (Rxi,jp1qXRxi,jp2q “ H), we are able to construct
on Rxi,jp1qYRxi,jp2q a new b-matching that is larger than the original
one by matching the triples in Rxi,jp2q like Rxi,jp1q– this depends on
how the neighbour sets of tree triples Rx̄i,jp1q respectively Rx̄i,jp2q on
left and right of the setRxi,jp1q respectively Rxi,jp1q–. This increases
its cardinality to t1 and also increases the b-matching. This will
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be done for every adjacent set of ring triples in the matching. for
every set of tree triples in the lowest level, we pick some triples in
the matching while the b-matching constraints are not violate
Once this is done, we consider now two adjacent pairs of sets of
rings pM XRxi,jp1q,M XRxi,jp2qq and pM XRxi,jp3q,M XRxi,jp4qq
and its connecting tree triples situated in the lowest level of Txi,j .
We suppose as above that the cardinality of the first pair and its
connecting tree triples is t1 and of the second pair and its connecting
tree triples is t2 with t1 ě t2. In this way along the K rings, we
can gain a b-matching from the sets of rings that is larger than the
original one.
We can continue on T̂xi,j with the same procedure as described above.
In each iteration we go one level up and continue in log2K ´ 1 steps
in the same manner.
Now we are done with constructing a new b-matching M 1 from the
given b-matching M on the structure of ring triples and tree triples
T̂xi,j , and we want to extend the constructed new b-matching over
the entire instance. Therefore, we have to carefully include some
triples from the clause triples. We suppose that we cannot include
all the p clause triples belonging to the b-matching M in the new b-
matching M 1. This case occurs if in M 1 there are some roots xipρ1, jq
for ρ1 P rcpxiqs with b incident tree triples.
The easiest way to include all the p clause triples is by sacrificing
some other tree or ring triples. W.l.o.g., sacrifice δ ring triples to
include the p clauses triples in the b-matching.
Moreover, the cardinality of the b-matching on the structure of ring
and tree triples is the cardinality of the matched ring triples plus the
cardinality of the tree triples in the tree connected to the matched
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ring plus the cardinality of the matched tree triples in trees connected
to non-matched ring triples. In the case of an odd number of levels
this cardinality is smaller than

ppbcpxiq ´ δq ¨K ` ppbcpxiq ´ δq ¨
K ´ 2

3 ` pbcpxiq ` δq ¨
2K ´ 1

3

“ bcpxiqp2K ´ 1q ´ δ ¨ 2K ´ 1
3 .

In the case of an even number of levels this cardinality is less than

ppbcpxiq ´ δq ¨K ` ppbcpxiq ´ δq ¨
K ´ 1

3 ` pbcpxiq ` δq ¨
2K ´ 2

3

“ bcpxiqp2K ´ 1q ´ δ ¨ 2K ` 1
3 .

This estimations show how many triples compared with a maximum b-
matching we can lose if we sacrifice δ ring triples. If we don’t sacrifice
any ring triples, i.e., δ “ 0, we obtain a maximum b-matching of
cardinality bcpxiq ¨ p2K ´ 1q.
It is obvious that every ring triple included in the b-matching is
more valuable than the inclusion of some clause triples. Therefore we
conclude that any maximum b-matching of the whole instance fpIq
contains a maximum b-matching in fpIq without clause triples.
To extend a given maximum b-matching of T̂xi,j over the set of clause
triples in order to gain a large b-matching over the whole instance,
we have to include as many of the clause triples as possible. For every
clause in Cj at most b triples can be included. Depending on how the
substructure T̂xipρ,jq is matched, we include b ´ rpρq with rpρq ď b

clause triples if rpρq triples of T̂xipρ,jq are included that contain the
root xipρ, jq. �
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Assertion 2. To every maximum b-matching M on the structure of
ring and tree triples we can construct a corresponding standard b-
matching StandpMq in polynomial time.

Proof: A standard matching of cardinality bcpxiqp2K ´ 1q on T̂xi,j
is easy to construct, depending of the given b-matching and can be
described as follows:

Let M be a b-matching in fpIq without clause triples. For every
xi P X we consider the restriction of M on the ring triples. If
|M XRxi,j | ě |M XRx̄i,j |, then we include for every vertex xipρ, λ, jq
for pρ, λ, jq P rcpxiqsˆrKsˆrbs, b incident triples from the sets of ring
triples Rxi,j and delete all ring triples in M XRx̄i,j . Otherwise the
same is applied to x̄i. This will be done for every j P rbs separately.
Thereafter, let nxi be the number of rings within which all matching
triples belong to xi and nx̄i the number of rings within which all
matching triples belong to x̄i. If nxi ě nx̄i we match all rings that
belong to x̄i similar to those rings that belong to xi. Otherwise, we
match all rings that belong to xi similar to those rings that belong
to x̄i. W.l.o.g assume that we deal with the first case than for every
j P rbs we continue as follows.
Suppose that the set of tree triples Txi,j (i.e., binary tree corresponding
to xi without ring and clause triples), and Tx̄i,j , respectively, has
L levels. Then we include from Txi,j all triples in level L ´ 1 and
from Tx̄i,j all triples in level L. This procedure is applied along
both sets of trees by going two levels up in each step. As K and
the occurrence for every xi are constants (K, cpxiq “ Op1q), the
construction of standpMq can be done in deterministic polynomial-
time. As a property of the standard b-matching is that both ways of
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including triples (whether xi or x̄i) correspond to the truth values of
xi, we are done. �

4.10 Lemma. The transformation

f : Max-3-Sat-∆ ÝÑ Max-3-dimensional pb,∆q-matching,

is an L-reduction, where α “ b2p18b∆` 7q and β “ 1.

Proof: Let I be an instance of Max-3-Sat-∆. Then it is always
possible to satisfy at least m

2 clauses of I. On the other hand we
can construct for every optimal b-matching in fpIq a corresponding
standard b-matching that is optimal. Thus the following holds

OptpfpIqq ď b2
n∑
i“1
pcpxiqp2K ´ 1qq ` b2OptpIq

“ b2p2K ´ 1q
n∑
i“1

cpxiq ` b
2OptpIq

Kď 3
2 b∆`1
ď b2

((
2
(3

2b∆` 1
)
´ 1

) n∑
i“1

cpxiq `OptpIq
)

Eq p4.1q
ď b2 (3m (3b∆` 1)`OptpIq)

ď b2
(

6m2 (3b∆` 1)`OptpIq
)

OptpIqěm
2

ď b2 (6 (3b∆` 1) OptpIq `OptpIq)

ď b2p18b∆` 7qOptpIq.

Therefore, α “ b2p18b∆ ` 7q satisfies the first constraint of an L-
reduction.
Furthermore, for every b-matching M of the cardinality c2 we can
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construct in polynomial-time a solution of I with c1 satisfied clauses
and OptpfpIqq ´ c2 ě β´1pOptpIq ´ c1q, where β´1 “ 1. As explained
above, if a given b-matching M restricted on T̂xi,j is not optimal,
we can make it optimal on this substructure. We presume that the
b-matching M

|T̂xi,j
is optimal. We construct a standard optimal

b-matching StandpM
|T̂xi,j

q over T̂xi,j corresponding to M . Thus it
follows:

OptpfpIqq ´ |M
|T̂xi,j

| “ OptpfpIqq ´ |StandpM
|T̂xi,j

q|.

We set the variables of I, as the b-matching StandpM
|T̂xi,j

q indicates.
By looking at the ring triples in the b-matching, we obtain an ap-
proximate solution to I that satisfies c1 clauses and OptpfpIqq ´ c2 ě

pOptpIq ´ c1q. �

4.4 The Extension to l-uniform hypergraphs

From the construction and Lemma 4.3, Theorem 4.8 follows.

4.11 Theorem. There exists an L-Reduction from the 3-dimensional
pb,∆q-matching problem to the pb,∆q-matching problem in l-uniform
hypergraphs with α “ β “ 1.

Proof: It is easy to transform a 3-dimensional pb,∆q-matching in-
stance to an instance of b-matching in a 3-uniform hypergraph, where
the set of vertices is the union of the three sets of the partition, and
the set of hyperedges is still the same. This transformation is an
L-reduction with α “ 1 and β “ 1. If we compose the above two
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transformations, we obtain an L-reduction f 1 from the bounded Max-
3-Sat-∆ to the bounded pb,∆q-matching restricted to 3-uniform
hypergraphs with the same α and β as given in the first reduction.
So we conclude that b-matching restricted to 3-uniform hypergraphs
is also Max-Snp-hard.
For l ą 3, by extending all hyperedges of the constructed 3-uniform
hypergraph to l elements and by introducing extra dummy elements,
we obtain also an L-reduction with α “ 1 and β “ 1. With the same
argument, by composing this transformation and f 1, we obtain a new
L-reduction with α and β like for f . �

The following corollary can easily conclude from Theorems 4.8 and
4.11:

4.12 Corollary. The pb,∆q-matching problem in l-uniform hypergraphs
is Max-Snp-hard.

Proof. By Theorem 4.8, Theorem 4.11 and Proposition 4.2 we get an
L-reduction from Max-3-Sat-∆ to the pb,∆q-matching problem in
l-uniform hypergraphs with α “ b2p18∆` 7q and β “ 1. Therefore
by Theorem 4.6 we conclude that the pb,∆q-matching problem in
l-uniform hypergraphs for b ď ∆

3 is Max-Snp-hard. �

4.5 Further L-reduction

Let ∆ “ p∆1, ¨ ¨ ¨ ,∆nq P Nn where for every i P rns, ∆i “ ∆ a
positive integer. In this section we show the existence of an L-
reduction from the set multicover problem to the p∆´ dq-matching
problem for regular hypergraphs with vertex degree ∆ not necessary
bounded and of an L-reduction from the b-matching problem to
the set p∆´ bq-multicover problem in ∆-regular hypergraphs with

101



4. The b-Matching Problem in l-Uniform Hypergraphs is
Max-Snp-Hard

maximum size of all hyperedges at most a constant l. Hence, if we
prove that one of the problems does not have a PTAS, then this
holds also for the second one.

4.13 Theorem. For a regular hypergraph with vertex degree ∆ and d P N
with d ě ∆

2 , there is an L-reduction from the set d-multicover problem
to the p∆´ dq-matching problem.

Proof: Let H “ pV, Eq be a regular hypergraph of order n with degree
∆, and let d P N with d ě ∆

2 . Consider the transformation from the
set multicover problem with fpHq :“ H and gpH, Xq :“ EpHqzX for
all X Ď EpHq. Set b :“ ∆´d, and denote by νb and ρd the maximum
cardinality of a b-matching in H and the minimum cardinality of a set
multicover in H, respectively. Furthermore, let Mb be a b-matching
of cardinality |Mb| and let Sd be a set d-multicover of cardinality
|Sd|. By Theorem 4.7, we have

νb “ |E | ´ ρd “ |EzSd| ` |Sd| ´ ρd “ |Mb| ` |Sd| ´ ρd.

and it follows νb ´ |Mb| “ |Sd| ´ ρd.
On the other hand, it is clear that νb ď ρd since d ě ∆

2 . This
shows that the given transformation is an L-reduction from the set
d-multicover problem in H to the b-matching problem in H with
β1 “ α1 “ 1. �

4.14 Theorem. Let H be a ∆-regular hypergraph with maximum size of
all hyperedges at most a constant l and b P N with b ď ∆

2 . Then there
is an L-reduction from the b-matching problem to the set p∆´ bq-
multicover problem.

Proof. It remains to find an α such that ρd ď ανp∆´dq, since the
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Algorithm 3: b-Matching Greedy
Input : A hypergraph H “ pV, Eq and b “ pb, ¨ ¨ ¨ , bq P Nn
Output : A b-matching set Mb

1. Initialize M0 :“ H, E0 :“ E “ {E1, ..., Em}, i :“ 0.

2. Choose Ei`1 P Ei and set M i`1 :“M i Y {Ei`1}.

3. Set Ei`1 :“ EizpCpM i`1q Y {Ei`1}q.

4. If |Ei`1| ą 0, then increment i and goto 2.

5. Return Mb :“M i`1 and the number of iterations t :“ i` 1.

way to find β is the same as in Theorem 4.13 holds.
Let us consider the Algorithm 4, which returns a b-matching set.
Before proceeding, we define some notations that we need for our
analysis.
For each Z Ď E define the set of conflicting edges to Z by

CpZq :“ {E P E ; Dv P E : degpv, Z Y {E}q ą b} .

Thus, for a b-matchingMb we have that CpMbq is the set of edges that
cannot be added to Mb without violating its b-matching property.
Claim 3: Algorithm b-Matching Greedy constructs a b-matching Mb

with |Mb| ě
1

lp∆´b`1q`1 |E |.

Proof of Claim 3: It is clear by construction that Mb is a b-matching
(of cardinality t). In each iteration j “ 1, . . . , t, the set DEj :“
pCpM jq Y {Ej}q X Ej´1 is removed from Ej´1 to form the new set of
remaining edges Ej . The sets DE1 , . . . , DEt form a partition of E . Let
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j P rts be an iteration of the algorithm above. We have

|CpM jq Y {Ej}| ď
∑
vPEj

max{degpvq ´ pb` 1q, 0}` 1

ď |Ej | ¨ p∆´ bq ` 1

ď l ¨ p∆´ bq ` 1

We conclude that 1 ě
|DEj |

lp∆´b`1q`1 , and hence, DE1 , . . . , DEt is a
partition of E . It follows

|M | “
t∑
i“1

1 ě
t∑
i“1

|DEi |

lp∆´ b` 1q ` 1 “
|E |

lp∆´ b` 1q ` 1 .

This proves Claim 3. Since |E | ´ νb “ ρp∆´bq, by Claim 3 we get

plp∆´ b` 1q ` 1q|Mb| ´ νb ě ρp∆´bq.

This implies that ρp∆´bq ď lp∆´ b` 1qνb, since νb is the cardinality
of a maximum b-matching in H. This shows that the given transfor-
mation pf, gq is an L-reduction from the b-matching problem in H
to the set d-multicover problem in H with a covering factor ∆´ b,
where β2 “ 1, α2 “ lp∆´ b` 1q since b, ∆ and l are constants. �

4.6 Summary and Further Work.

In this chapter we study the (unweighted) maximum b-matching
problem in hypergraphs in the aspect of efficient algorithm design.
On the negative side, it is shown that, assuming P ‰ N P, there
does not exist polynomial-time approximation scheme for finding
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maximum b-matching in l-uniform hypergraphs with degrees bound
above by constant ∆pě 3bq. Further we present L-reduction from
the b-matching to the set d-multicover in regular hypergraphs. The
b-matching and set d-multicover problems under consideration have
interesting application in practice. The main results in this chapter
are of theoretical interest in algorithm design for both problems.
There remain interesting open questions concerning the b-matching
problem restricted to l-uniform hypergraphs. According to our results,
we see that the range b ą ∆

3 for the b-matching problem restricted
to l-uniform hypergraphs with respect to the class of complexity
Max-Snp is almost unexplored.
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