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Abstract. In ransomware attacks, the actual target is the human, as
opposed to the classic attacks that abuse the infected devices (e.g., botnet
renting, information stealing). Mobile devices are by no means immune
to ransomware attacks. However, there is little research work on this mat-
ter and only traditional protections are available. Even state-of-the-art
mobile malware detection approaches are ineffective against ransomware
apps because of the subtle attack scheme. As a consequence, the ample
attack surface formed by the billion mobile devices is left unprotected.

First, in this work we summarize the results of our analysis of the exist-
ing mobile ransomware families, describing their common characteristics.
Second, we present HelDroid, a fast, efficient and fully automated app-
roach that recognizes known and unknown scareware and ransomware
samples from goodware. Our approach is based on detecting the “build-
ing blocks” that are typically needed to implement a mobile ransomware
application. Specifically, HelDroid detects, in a generic way, if an app
is attempting to lock or encrypt the device without the user’s consent,
and if ransom requests are displayed on the screen. Our technique works
without requiring that a sample of a certain family is available before-
hand.

We implemented HelDroid and tested it on real-world Android ran-
somware samples. On a large dataset comprising hundreds of thousands
of APKs including goodware, malware, scareware, and ransomware, Hel-
Droid exhibited nearly zero false positives and the capability of recog-
nizing unknown ransomware samples.

1 Introduction

Theorized back in 1996 [1], ransomware attacks have now become a reality.
A typical ransomware encrypts the files on the victim’s device and asks for a
ransom to release them. The miscreants implement various extortion tactics (as
explained in Sect. 2), which are both simple and extremely effective. In the “best”
case, the device is locked but data is actually left in place in untouched; in the
worst case, personal data is effectively encrypted. Therefore, even if the malware
is somehow removed, in absence of a fresh backup, the victims have no other
choice than paying the requested ransom to (hope to) regain access to their data.
McAfee Labs [2] and the FBI [3] recently concluded that the ransomware trend
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is on the rise and will be among the top 5 most dangerous threats in the near
future.
In parallel, mobile malware is expanding quickly and steadily: McAfee Labs

recently reported a 100% growth in Q42014 since Q42013 [2, p.28], VirusTotal
receives hundred of thousands of Android samples every week1, making them the
fourth most submitted file type. Unfortunately, mobile devices are not immune
by ransomware. A remarkable wave infected over 900,000 mobile devices in a
single month alone [4]. Moreover, Kaspersky Labs [5] tracked a another notable
mobile campaign, revealing a well-structured distribution network with more
than 90 hosts serving the malicious APKs, more than 400 URLs serving the
exploits, one controller host, and two traffic-driving networks. Alarmingly, the
cyber criminals are one step ahead of the defenders, already targeting mobile
users. Given the wide attack surface offered by mobile devices along with the
massive amount of sensitive data that users store on them (e.g., pictures, digital
wallets, contacts), we call for the need of mobile-specific ransomware counter-
measures. Our goal in this paper is to make a first step in this direction.

Current Solutions. To the best of our knowledge, current mitigations are com-
mercial cleanup utilities implementing a classic signature-based approach. For
example, SurfRight’s HitmanPro.Kickstart [6] is a bootable USB image that uses
a live-forensics approach to look for artifacts of known ransomware. Other tools
such as Avast’s Ransomware Removal [7] (for Android) release the ransomed files
by exploiting the näıve design of certain families (i.e., SimpLocker) to recover
the encryption key, which fortunately is not generated on a per-infection basis.
The research community knows very well that such approaches lack of generality.
Also, they are evidently limited to known samples, easy to evade, and ineffective
against new variants. From the users’ perspective, signature-based approaches
must be constantly updated with new definitions, and are rarely effective early.

Research Gap. To our knowledge, no research so far have tackled this emerg-
ing threat. Even state-of-the-art research approaches (e.g., [8]), which demon-
strated nearly-perfect detection and precision on non-ransomware Android
malware, recognized only 48.47% of our ransomware dataset (see Sect. 8). The
reason is because ransomware schemes are essentially mimicry attacks, where the
overall maliciousness is visible only as a combination of legitimate actions. For
instance, file encryption or screen locking alone are benign, while the combina-
tion of unsolicited encryption and screen locking is certainly malicious. Thus, it
is not surprising that generic malware-detection approaches exhibit a low recall.

Proposed Approach. After manually analyzing a number of samples of
Android ransomware variants from all the existing families, our key insight is
to recognize specific, distinctive features of the ransomware tactics with respect
to all other malware families — and, obviously, to goodware. Specifically, our
1 https://www.virustotal.com/en/statistics/.

https://www.virustotal.com/en/statistics/
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approach is to determine whether a mobile application attempts to threaten the
user, to lock the device, to encrypt data — or a combination of these actions.

We implemented HelDroid to analyze Android applications both statically
and dynamically. In particular, HelDroid uses static taint analysis and light-
weight emulation to find flows of function calls that indicate device-locking or
file-encryption behaviors. Our approach to detecting threatening behavior —
a core aspect of ransomware — is a learning-based, natural language process-
ing (NLP) technique that recognizes menacing phrases. Although most of our
analysis is static, the threatening-text detector does execute the sample in case
no threatening text is found in the static files. This allows to support off-band
text (e.g., fetched from a remote server).
Overall, HelDroid is specific to the ransomware schemes, but it does not rely

on any family in particular. Moreover, the detection features are parametric and
thus adaptable to future families. For instance, the taint-analysis module relies
on a single configuration file that lists interesting sources and sinks. Similarly,
the threatening-text detector supports several languages and new ones can be
added with little, automatic training.

Evaluation Results. We tested HelDroid on hundreds of thousands of sam-
ples including goodware, generic malware, and ransomware.HelDroid correctly
detected all the ransomware samples, and did not confused corner-case, benign
apps that resembled some of the typical ransomware features (e.g., screen locking,
adult apps repackaged with disarmed ransomware payload). Overall, HelDroid
outperformed the state-of-the-art approach for Android malware detection (see
Sect. 8). HelDroid performed well also against unknown ransomware samples,
missing only minority of cases where the language was not supported out of the
box. This was easily fixed with 30min of work (i.e., find a textbook in Spanish
and re-train the NLP classifier). The detection heuristics of HelDroid exhib-
ited only a dozen of false positives over hundreds of thousands non-ransomware
apps.

Prototype Release. We provide access to HelDroid through an API (on top
of which we implemented a simple Android client), and release our dataset for
research purposes: http://ransom.mobi.

Original Contributions. In summary:
– We are the first at looking at the ransomware phenomenon against mobile
devices. We provide a retrospective view of the past two years and distill the
characteristics that distinguish mobile ransomware from goodware (and from
other malware).

– We propose three generic indicators of compromise for detecting Android ran-
somware activity by recognizing its distinguishing features. The novel aspects
of our approach include a text classifier based on NLP features, a lightweight
Smali emulation technique to detect locking strategies, and the application of
taint tracking for detecting file-encrypting flows.

http://ransom.mobi
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– We implement (and evaluate) our approaches for the Android platform and
open them to the community as a JSON-based API service over HTTP. This
is the first public research prototype of its kind.

2 Background and Motivation

Fascinatingly, the idea of abusing cryptography to create extortion-based attacks
was first theorized and demonstrated back in 1996 [1]. The authors defined the
concept of cryptovirus as a “[malware] that uses public key [...] to encrypt data
[...] that resides on the host system, in such a way that [...] can only be recovered
by the author of virus”.

Based on this definition, ransomware can be seen as an advanced, coercive
cryptovirus. Coercion techniques, also seen in various scareware families, include
threatening the victim of indictments (e.g., for the detention of pornographic con-
tent, child pornography), violation of copyright laws, or similar illegal behavior.
In pure scareware, the cyber crooks exploit the fear and do not necessarily lock
the device or encrypt any data. In pure ransomware, before or after the threat-
ening phase the malware actually locks the device and/or encrypts sensitive con-
tent until the ransom is paid, usually through money transfer (e.g., MoneyPak,
MoneyGram) or crypto currencies. Although digital currency was not used in
practice back in 1996, curiously, Young and Yung [1] foresaw that “information
extortion attacks could translate in the loss of U.S. dollars if electronic money
is implemented.” Notably, CryptoLocker’s main payment mechanism is, in fact,
Bitcoin [9,10].

2.1 Motivation

Noticing the rapid succession of new families of mobile ransomware, as summa-
rized in Table 1, we downloaded and manually reverse engineered a few samples
for each family, noticing three, common characteristics. From this manual analy-
sis we hypothesize that these independent characteristics are representative of
the typical mobile ransomware scheme and can be combined in various ways to
categorize a sample as scareware, ransomware, or none of the previous.

Device Locking. All families doing device locking use one among these three
techniques. The main one consists in asking for device-administration rights and
then locking the device. Another technique is to superimpose a full-screen alert
dialog or activity. The third technique consists in trapping key-pressure events
(e.g., home or back button), such that the victim cannot switch away from the
“lock” screen.

Data Encryption. Some samples do not actually have any encryption capa-
bility, even if they claim so; alternatively, they may include encryption routines
that are however never called. To our knowledge, only the SimpLocker family
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Table 1. Timeline of known Android ransomware or scareware families (we exclude
minor variants an aliases). E = Encrypt, L = Lock, T = Threaten.

First Seen Name Extort E L T Target and notes

May 2014 Koler (Reveton) [5] $300 ✗ ✓ ✓ Police-themed screen lock; local-
ized in 30 countries; spreads via
SMS

Jun 2014 Simplocker [12] $12.5a ✓ ✓ ✓ All files on SD card; uses hard-
coded, non-unique key

Jun 2014 Svpeng [13] $200 ✗ ✓ ✓ Police-themed screen lock

Aug 2014 ScarePackage [14] $100 ✗ ✓ ✓ Can take pictures and scan the
device for banking apps or finan-
cial details

Early 2015 New Simplocker [11] $200 ✓ ✓ ✓ Per-device keys; advanced C&C
aCorresponding to, approximately, 260 UAH.

currently implements file encryption. In the first version, the encryption key was
hardcoded, whereas the second version [11] generates a per-device key. Neverthe-
less, samples of this family never call any decryption routine, arguably leaving
data permanently unavailable even after payment (unless unlocking is performed
through a separate app).

Threatening Text. All current families display threatening messages of some
sort. We noticed that families localized in English rely on MoneyPak for pay-
ments, whereas families localized in Russian accept credit cards as well.

2.2 Goals and Challenges

Having considered the threat posed by ransomware, the potential attack surface
comprising billions of Internet-connected devices and the limitations of current
countermeasures, our high-level goal is to overcome the downsides of signature-
based approaches, and recognize both known and novel ransomware variants
robustly by generalizing the insights described in Sect. 2.1.

Achieving our goal is challenging. Recognizing variants requires a robust model
of their characterizing features that has both generalization and detection capa-
bilities, in order to catch both new and known ransomware implementations,
possibly in an adaptive way. For example, the task of modeling and recognizing
threatening text must account for localization, creating a model that can be
quickly re-adapted to new languages before new ransomware campaigns start
spreading. Similar observations apply to other characterizing features.

2.3 Scope and Assumptions

Although ransomware detection is by no means tied exclusively to the mobile
world, in this work we focus on Android ransomware. Mobile ransomware is
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Fig. 1. Android samples are statically analyzed for extracting “artifacts” that typical of
ransomware tactics (encryption, locking, threatening). If no threatening text is found,
off-band text is analyzed by collecting strings allocated by the sample while running
in an instrumented sandbox.

indeed evolving quickly, with 5 families in less than one year (May 2014–Jan
2015), and self-replicating capabilities since the first release.
We focus on challenges that are unique to the ransomware-detection problem

(i.e., detecting locking strategies, encryption operations and threatening mes-
sages). In this work, we set aside: related problems already tackled by current or
past research such as (anti-)evasion techniques, or other aspects that are typical
of malicious software in general). In Sect. 7 we discuss the impact of our choices.

3 HELDROID’s Approach

In this section we describe how, at a conceptual level, HelDroid analyzes each
Android APK file to decide whether it is a ransomware sample.
As summarized in Fig. 1, we employ three, independent detectors, which can

be executed in parallel. Each detector looks for a specific indicator of compro-
mise typical of a ransomware malware. The Threatening Text Detector uses
text classification to detect coercion attempts (Sect. 3.1). If the result of this
classifier is positive, but the others are not, we label the sample as “scareware”.
This means that the application limits itself to displaying some threatening text
to convince the victim in doing some action. If also the Encryption Detector
(Sect. 3.2) and/or the Locking Detector (Sect. 3.3) are triggered, this means
that the application is actively performing either action on the infected device. In
this case, we label the sample as “ransomware”. We designed deterministic deci-
sion criteria based on static analysis to detect encryption or locking operations.
Note that if the Threatening Text Detector is not triggered, the sample is
discarded and cannot be considered as ransomware or scareware. Although these
three detectors could be combined in other ways (e.g., by including weighting),
in this work we consider the presence of threatening text as mandatory for a
ransomware author to reach her goal. This aspect is discussed thoroughly in
Sect. 7.
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3.1 Threatening Text Detector

The goal of this analysis is to recognize menacing phrases in statically and
dynamically allocated strings (i.e., sequences of printable characters).

Text Extraction. HelDroid first extracts and analyzes static strings by pars-
ing the disassembled code and resource files (e.g., assets, configuration files). If
HelDroid detects no threatening text, then it analyzes dynamically allocated
strings: It runs the sample in a sandbox, captures a network traffic dump (i.e.,
PCAP), decodes application-layer protocols (e.g., HTTP) and extracts strings
from the resulting data. The sandbox that we employ also extracts strings allo-
cated dynamically (e.g., as a result of a decryption), but none of the current
samples used these measures.

Text Classification. To estimate whether a string contains threatening sen-
tences, we use a natural language processing (NLP) supervised classifier. We
train it on generic threatening phrases, similar to (and including) those that
typically appear in ransomware or scareware samples. More precisely, we train
the classifier using phrases labeled by us as threat, law, copyright, porn, and
money, which typically appear in scareware or ransomware campaigns. Note
that no ransomware samples are actually needed to train our classifier: All we
need are the sentences. As opposed to being able to isolate a sample, knowing
the sentences early is easy (e.g., by taking a screenshot or by leveraging reports
given by the first victims).
This phase is further detailed in Sect. 4.1. Its output is a ternary decision:

“ransomware” threatening text (i.e., accusing the user and asking for payment),
“scareware” text (i.e., accusing the user), or “none”.

Localization. Our NLP classifier supports localization transparently: It tells
whether a given sentence is “threatening” in any of the languages on which it
has been trained on. In the unlucky case where localized training phrases are
unavailable for training, in Sect. 6.2 we show, as a proof of concept, that these
can be easily obtained by running automatic translators on existing sentences
found in known ransomware or scareware.

Other Sources of Text. From a technical point of view, the text can be
displayed via other means than strings (e.g., images). However, we focus on
the core problem, which is that of deciding whether a text contains threatening
phrases. As discussed in Sect. 7, extracting text from images and videos is easily
performed with off-the-shelf OCR software. Recall that, among the goals of the
attacker, the ransom-requesting message must be readable and understandable
by the victim: It is thus against his or her goals to try to evade OCRs, making
the text difficult to read as a side effect.
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3.2 Encryption Detector

We check whether the (disassembled) code of the sample under analysis contains
traces of unsolicited file-encryption operations.
Unsolicited file-encryption operations are usually implemented by reading the

storage (e.g., external storage), looping over the files, invoking encryption rou-
tines on each of them, and deleting the original files. Therefore, we are interested
in finding execution flows that originate from file-reading operations and termi-
nate into encryption routines. To this end, we rely on a fast, static taint-analysis
technique to track flows originating from functions that access the storage (e.g.,
getExternalStorageDirectory()), ending into functions that write encrypted
content and delete the original files (e.g., CipherOutputStream, delete()). We
are well aware that a malware author can embed cryptographic primitives rather
than using the Android API. Fortunately, recent research [15,16] has already
tackled this problem.
Details aside, the output of this phase is a binary decision on whether there

are significant traces of unsolicited file-encryption operations or not.

3.3 Locking Detector

We check if the application under analysis is able to lock the device (i.e., to
prevent navigation among activities). This can be achieved in many ways in
Android, including the use of the native screen locking functionality, dimming,
immortal dialogs, and so forth. Focusing on the most common techniques that we
encountered in real-world Android ransomware we designed a series of heuristics
based on lightweight emulation, which can be extended to include other locking
techniques in the future.
The most common technique to enact device locking consists in inhibiting nav-

igation among activities through the Home and Back buttons. This is achieved
by handling the events that originate when the user clicks on such buttons on
the phone and preventing their propagation. The net result is that the ran-
somware application effectively forces the device to display an arbitrary activity.
Another technique consists in asking the user to let the application become a
device administrator, thus allowing it to lock the device. This functionality is
part of Android and is normally used for benign purposes (e.g., remote device
administration in enterprise scenarios).
To detect if any of these locking technique is executed, we implemented a

static code-analysis technique, described in Sect. 4.3. Essentially, we track each
Dalvik instruction, including method calls, and check whether there exists an
execution path that matches a given heuristic. We created one heuristic per
locking strategy. For example, we verify whether the event handler associated
to the Home button returns always true, which means that the event handling
cannot propagate further, resulting in a locked screen.
Details aside, the output of this phase is a binary decision on whether there

are significant traces of device-locking implementations or not.
The overall final output of HelDroid, obtained by aggregating the outputs

of the three detectors, is a ternary decision: ransomware, scareware, or none.
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4 System Details

This section describes the details of HelDroid. The technical implementation
details are glanced in Sect. 5.

4.1 Threatening Text Detector Details

We use a supervised-classification approach that works on the text features
extracted as follows:

1. Language Detection: a simple frequency analysis determines the language
of the text (see Sect. 5.1 for the implementation details).

2. Sentences Splitting: we use a language-specific segmenter that splits the
text into sentences.

3. Stop-word Removal: we remove all stop words (e.g., “to”, “the”, “an”,
“and”).

4. Stemming: we reduce words to their stems (e.g., “fishing,” “fished,” and
“fisher” become “fish”).

5. Stem Vectors: We map each sentence to a set of stem vectors, which are
binary vectors that encode which stems are in the sentence.

In training mode, each stem vector t is stored in a training set T . At runtime,
the stem vectors obtained from the app under analysis are used to query the
classifier, which answers “ransomware,” “scareware,” or “other,” based on the
following scoring algorithm.

Scoring. As suggested in the text-classification literature [17], scoring is based
on the cosine similarity s(x, t) ∈ [0, 1] between the query stem vector x and
every t ∈ T . Since we operate in a boolean space, it can be reduced to s(x̂, t̂) =

|x̂∩t̂|√
|x̂|·

√
|t̂|
, where x̂ and t̂ are the stem sets (i.e., the set data structures that

contain strings denoting each stem), which is computed in O(min(|x̂|, |t̂|)).
To score the entire text x, the classifier categorizes its sentences ∀c ∈ x by

maximizing the cosine similarity s(c, t) ∀t ∈ T . We denote the score of the
best-scoring sentence c⋆ as m(c⋆). The best score is calculated within each cate-
gory. We actually computes two scores,m(c⋆)money for the best-scoring sentences
about “money,” and m(c⋆)accusation for other “accusation” sentences (i.e., threat,
law, copyright, porn).

Decision. We label the text as “scareware” if maccusation exceeds a threshold,
and “ransomware” if also mmoney exceeds. The threshold is set adaptively based
on the minimum required score for a sentence to be considered relevant for our
analysis. The idea is that short sentences should have a higher threshold, since
it is easier to match a greater percentile of a short sentence; instead, longer
sentences should have a lower threshold, for the same reason.
Setting thresholds is typically a problematic, yet difficult-to-avoid part of any

heuristic-based detection approach. Setting one single threshold is easier, but
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makes the decision more sensitive to changes (i.e., one single unit above the
threshold could signify a false detection). Therefore, we set bounds rather than
single threshold values, which we believe leave more room for customization. By
no means we claim that such bounds are good for future ransomware samples.
As any heuristic-based system, they must be adjusted to keep up with the evolu-
tion of the threat under consideration. However, by setting them on the known
ransomware samples of our dataset, our experiments show that HelDroid can
detect also never-seen-before samples. More details are in Sect. 5.2.

4.2 Encryption Detector Details

Using a static taint-tracking technique, we detect file encryption operations as
flows from Environment.getExternalStorageDirectory() (1 source) to the
CipherOutputStream constructor, Cipher.doFinal methods, or its overloads
(8 sinks). Clearly, tracked flows can involve other, intermediate function calls
(e.g., copy data from filesystem to memory, then pass the reference to the buffer
to an encryption function, and finally write on the filesystem).
An explanatory example taken from a real-world ransomware sample2 follows:

The underlined lines mark the tracked flow. More sources and sinks can be
flexibly added by simple configuration changes, although our results show that
the aforementioned ones are enough for current families.

Listing 1.1. Flow source of an encryption operation
.class public final Lcom/free/xxx/player/d;

#...

.method public constructor <init>(Landroid/content/Context;)V ...

# getExternalStorageDirectory is invoked to get the SD card root

invoke-static {},Landroid/os/Environment;->getExternalStorageDirectory()Ljava/io/File;
move-result-object v0
invoke-virtual {v0}, Ljava/io/File;->toString()Ljava/lang/String;
move-result-object v0
new-instance v1, Ljava/io/File;
invoke-direct {v1, v0}, Ljava/io/File;-><init>(Ljava/lang/String;)V

# This invocation saves all files with given extensions in a list
# and then calls the next method

invoke-direct {p0, v1}, Lcom/free/xxx/player/d;->a(Ljava/io/File;)V
return-void

.end method

.method public final a()V
# ...

# A new object for encryption is instantiated with key
# 12345678901234567890

new-instance v2, Lcom/free/xxx/player/a;
const-string v0, "12345678901234567890"
invoke-direct {v2, v0}, Lcom/free/xxx/player/a;-><init>(Ljava/lang/String;)V ...

# If files were not encrypted, encrypt them now

const-string v3, "FILES_WERE_ENCRYPTED"
invoke-interface {v2, v3, v0}, Landroid/content/SharedPreferences;->getBoolean(Ljava/lang/String;Z)Z
move-result v2
if-nez v2, :cond_1
invoke-static {}, Landroid/os/Environment;->getExternalStorageState()Ljava/lang/String;
move-result-object v2
const-string v3, "mounted"

# ...

# Inside a loop, invoke the encryption routine a on file v0, and
# delete it afterward

invoke-virtual {v2, v0, v4}, Lcom/free/xxx/player/a;->a(Ljava/lang/String;Ljava/lang/String;)V

new-instance v4, Ljava/io/File;
invoke-direct {v4, v0}, Ljava/io/File;-><init>(Ljava/lang/String;)V
invoke-virtual {v4}, Ljava/io/File;->delete()Z

# ...
.end method

.end class

2 MD5: c83242bfd0e098d9d03c381aee1b4788.
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Listing 1.2. Flow sink of an encryption operation.

.class public final Lcom/free/xxx/player/a;

# ...

.method public final a(Ljava/lang/String;Ljava/lang/String;)V
.locals 6

# A CipherOutputStream is initialized and used to encrypt the file
# passed as argument, which derives from an invocation to

new-instance v0, Ljava/io/FileInputStream;
invoke-direct {v0, p1}, Ljava/io/FileInputStream;-><init>(Ljava/lang/String;)V
new-instance v1, Ljava/io/FileOutputStream;

invoke-direct {v1, p2}, Ljava/io/FileOutputStream;-><init>(Ljava/lang/String;)V
iget-object v2, p0, Lcom/free/xxx/player/a;->a:Ljavax/crypto/Cipher;

const/4 v3, 0x1
iget-object v4, p0, Lcom/free/xxx/player/a;->b:Ljavax/crypto/spec/SecretKeySpec;

iget-object v5, p0, Lcom/free/xxx/player/a;->c:Ljava/security/spec/AlgorithmParameterSpec;

invoke-virtual {v2, v3, v4, v5}, Ljavax/crypto/Cipher;>init(ILjava/security/Key;Ljava/security/spec/AlgorithmParameterSpec;)V

new-instance v2, Ljavax/crypto/CipherOutputStream;
iget-object v3, p0, Lcom/free/xxx/player/a;->a:Ljavax/crypto/Cipher;
invoke-direct {v2, v1, v3}, Ljavax/crypto/CipherOutputStream;-><init>(Ljava/io/OutputStream;Ljavax/crypto/Cipher;)V

# ...
.end method

.end class

If any of these flows are found, HelDroid marks the sample accordingly.

4.3 Locking Detector Details

As a proof of concept, we implement a detection heuristic for each of the three
most common screen-locking techniques found in Android ransomware.
– Require administration privileges and call DevicePolicyManager.

lockNow(), which forces the device to act as if the lock screen timeout expired.
– Immortal Activity. Fill the screen with an activity and inhibit naviga-
tion through back and home buttons by overriding the calls to onKeyUp and
onKeyDown. Optionally, the activity cover the software-implemented naviga-
tion buttons if the application declares the SYSTEM_ALERT_WINDOW permission.

– Immortal Dialog. Show an alert dialog that is impossible to close and set a
flag in the window parameters.

Detecting whether an app calls the lockNow method is easy. We start from
searching for the specific permission bit (BIND_DEVICE_ADMIN) in the manifest.
If found, we parse the Smali assembler code of the application until we find a
call to the lockNow method.
For the immortal activity technique we are interested in the handling of the

onKeyDown and onKeyUp methods, which are called when a key is pressed or
released. They accept as first argument a parameter p1 containing the numeric
code of target key; their return value determines whether the event is considered
handled or not (i.e., whether to pass the same event to other underlying View
components). An example3 follows.

3 MD5 b31ce7e8e63fb9eb78b8ac934ad5a2ec.
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Listing 1.3. Locking operation example.

.method public onKeyDown(ILandroid/view/KeyEvent;)Z
.locals 1

# p1 = integer with the key code associated to the pressed key.

const/4 v0, 0x4 # 4 = back button
if-ne p1, v0, :cond_0
iget-object v0, p0, Lcom/android/x5a807058/ZActivity;->q:Lcom/android/zics/ZModuleInterface;

if-nez v0, :cond_0
iget-object v0, p0, Lcom/android/x5a807058/ZActivity;->a:Lcom/android/x5a807058/ae;

# we track function calls as well invoke-virtual {v0},

Lcom/android/x5a807058/ae;->c()Z :cond_0

const/4 v0, 0x1 # True = event handled -> do not forward
return v0

.end method

We first locate the onKeyDown and onKeyUp methods and parse their Smali
code. Then we proceed by performing a lightweight Smali emulation. Essentially,
we parse each statement and “execute” it according to its semantic. The goal is
to verify the existence of an execution path in which the return value is true.
We examine those if statements that compare p1 with constant integer values.
Our emulation technique tracks function calls as well.
Similarly, we detect immortal dialogs by checking if FLAG_SHOW_WHEN_LOCKED

is set when calling Landroid/view/Window;->setFlags in an any AlertDialog
method, usually in the constructor, and that the same dialog is marked as
uncancelable via setCancelable(false).
The immortal activity and dialog techniques can be implemented with a Win-

dow instead of an Activity or Dialog object, but we consider this extension
exercise for the reader.

5 Implementation and Technical Details

This section describes the relevant technical details of HelDroid.

5.1 Natural Language Processing

We implement the Threatening Text Detector on top of OpenNLP, a generic,
extensible, multi-language NLP library. The sentence splitter and the stem-
mer [18] are language specific: Adding new languages simply requires training on
an arbitrary set of texts provided by the user. For example, we added Russian
by training it on a transcript of the XXVI Congress of the CPSU and Challenges
of Social Psychology4 and a Wikipedia article about law5. In addition, Sect. 6.2
we show how to add new languages to the threatening text classifier.
Our stop-words lists come from the Stop-words Project6. The language iden-

tification is performed with the Cybozu open-source library [19], released and
maintained since 2010.

4 http://www.voppsy.ru/issues/1981/816/816005.htm.
5 https://ru.wikipedia.org/wiki/.
6 https://code.google.com/p/stop-words/.

http://www.voppsy.ru/issues/1981/816/816005.htm
https://ru.wikipedia.org/wiki/
https://code.google.com/p/stop-words/
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5.2 Text Classification Thresholding

To determine whether the score m of a sentence with respect to the accusation
or money categories we proceed as follows. More formally, we want to determine
whether maccusation or mmoney exceed a threshold. In doing this, we account for
the contribution of all sentences (and not only the best scoring ones).
For example, consider the sentences: “To unlock the device you need” (m =

0.775), m = “to pay 1,000 rubles” (m = 0.632), and “Within 24 h we’ll unlock
your phone” (m = 0.612). The maximum score is 0.775, but since there are other
relevant sentences this value should be increased to take them into account. To
this end, we increase the score m as follows:

m̂ = m+ (1 − m) ·
(
1 − e

−
n∑

i=1
(s(ci)−t(ci))

)

where s(c)− t(c) is capped to zero, n is the number of sentences in that category
set, ci the i-th sentence in the stem vector c, and t : c %→ [0, 1] is an adaptive
threshold function.
Let us pretend for a moment that t(c) is not adaptive, but set to 0.6. Then

the sum of s(c) − t(c) is 0.032 + 0.012 = 0.044. As you can see, m̂ is not very
different from m because the scores of second and third sentence are just slightly
above their detection threshold.
Instead, the idea behind t(c) is that short sentences should have a higher

threshold, since it is easier to match a greater percentile of a short sentence;
instead, longer sentences should have a lower threshold, for the dual reason:

t(c) = τmax − γ(c) · (τmax − τmin), γ(c) =

∑
ci∈c

ci−σmin

σmax−σmin

with γ(c) capped in [0, 1]. The summation yields the number of 1 s in the stem
vector of sentence c. σmin and σmax are constants that represent the minimum
and maximum number of stems that we want to consider: sentences containing
less stems than σmin will have the highest threshold, while sentences containing
more stems than σmax will have the lowest threshold. Highest and lowest thresh-
old values are represented by τmin and τmax, which form a threshold bound.
These parameters can be set by first calculating the score of all the sentences

in the training set. Then, the values are set such that the classifier distinguishes
the ransomware in the training set from generic malware or goodware in the
training set. Following this simple, empirical procedure, we obtained: τmin =
0.35, τmax = 0.63, σmin = 3, and σmax = 6.

5.3 Dynamic Analysis

If no threatening text is found in statically allocated strings, we attempt a last-
resort analysis. In an emulator, we install, run and let the sample run for 5’.
After launching the app, our emulator follows an approach similar to the one
adopted by TraceDroid [20]: It generates events that simulate user interaction,
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rebooting, in/out SMS or calls, etc. Aiming for comprehensive and precise user-
activity simulation and anti evasion is out from our scope. From our experience,
if the C&C server is active, in a few seconds the sniffer captures the data required
to extract the threatening text, which is displayed almost immediately.
From the decoded application-layer traffic (e.g., HTTP), HelDroid parses

printable strings. In addition to parsing plaintext protocols from network dumps,
every modern sandbox (including the one that we are using) allows to extract
strings passed as arguments to functions, which are another source of threat-
ening text. Although we do not implement OCR-text extraction in our current
version of HelDroid, we run a quick pilot study on the screenshots collected
by TraceDroid. Using the default configuration of tesseract we were able to
extract all the sentences displayed on the screenshots.

5.4 Static Code Analysis

We extract part of the features for the Threatening Text Detector by parsing
the manifest and other configuration files found in the APK once uncompressed
with akptool7. We compute the remaining ones by enumerating count, type or
size of files contained in the same application package.
However, the most interesting data requires an analysis of the app’s Dalvik

code in its Smali8 text representation generated by apktool. For the Lock-
ing Detector, instead of using SAAF [21], which we found unstable in multi-
threaded scenarios, we wrote a simple emulator that “runs” Smali code, tailored
for our needs. To keep it fast, we implemented the minimum subset of instruc-
tions required by our detector.
For the Encryption Detector we need precise flows information across the

entire Smali instruction set. For this, we leveraged FlowDroid [22], a very robust,
context-, flow-, field-, object-sensitive and lifecycle-aware static taint-analysis
tool with great recall and precision. Source and sink APIs are configurable.

6 Experimental Validation

We tested HelDroid, running on server-grade hardware, against real-world
datasets to verify if it detected known and new ransomware variants and samples.
In summary, as discussed further in Sect. 8, it outperformed the state-of-the-art
research tool for Android malware detection.

6.1 Datasets

We used a diverse set of datasets (Table 2), available at http://ransom.mobi.

7 https://code.google.com/p/android-apktool/.
8 https://code.google.com/p/smali/.

http://ransom.mobi
https://code.google.com/p/android-apktool/
https://code.google.com/p/smali/
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Table 2. Summary of our datasets. VT 5+ indicates that samples that are marked
according to VirusTotal’s positive results. VT top 400 are on Dec 24th, 2014.

Name Size Labelling Apriori content Use

AR 172,174 VT 5+ 55.3% malware + 44.7% goodware FP eval.

AT 12,842 VT 5+ 68.2% malware + 31.8% goodware FP eval.

MG 1,260 Implicit 100% malware FP eval.

R1 207 VT 5+ 100% ransomware + scareware NLP training

R2 443 VT 5+ 100% ransomware + scareware Detection

M1 400 VT top 400 100% malware FP eval.

Goodware and Generic Malware. We obtained access to the AndRadar
(AR) [23] dataset, containing apps from independent markets (Blackmart,
Opera, Camangi, PandaApp, Slideme, and GetJar) between Feb 2011 and Oct
2013. Moreover, we used the publicAndroTotal (AT) API [24] to fetch the apps
submitted in Jun 2014–Dec 2014. Also, we used the MalGenome (MG) [25]
dataset, which contains malware appeared in Aug 2010–Oct 2011.
We labeled each sample using VirusTotal, flagging as malware those with

5+/56 positives. The AR and AT datasets do not contain any ransomware
samples. The MG dataset contains only malware (not ransomware).
Last, the Malware 1 (M1) dataset contains the top 400 malicious Android

applications as of Dec 2014, excluding those already present in the rest of our
datasets and any known ransomware.

Known Ransomware (sentences for Text-Classifier Training). We need
a small portion of sentences obtained from true ransomware samples. During the
early stages of a malware campaign, samples are not always readily available for
analysis or training. Interestingly, our text-classifier can be trained regardless
of the availability of the sample: All it needs is the threatening text, which is
usually easy to obtain (e.g., from early reports from victims).
We built the Ransomware 1 (R1) dataset through the VirusTotal Intelli-

gence API by searching for positive (5+) Android samples labeled or tagged as
ransomware, koler, locker, fbilocker, scarepackage, and similar, in Sep–Nov 2014.
We manually verified that at least 5 distinct AV programs agreed on the same
labels in R1 (allowing slight lexical variations). In this way, we excluded outliers
caused by naming inconsistencies, and could be reasonably safe that the resulting
207 samples were true ransomware. The training is performed only once, offline,
but can be repeated over time as needed. We manually labeled sentences (e.g.,
threat, porn, copyright) from the R1 dataset, totaling 51 English sentences and
31 Russian sentences.

UnknownRansomware. Similarly, we built theRansomware 2 (R2) dataset
for samples appeared inDec 2014–Jan 2015. This dataset is to evaluateHelDroid
on an arbitrary, never-seen-before, dataset comprising ransomware—andpossibly
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other categories of malware. Aposteriori, we discovered that this datasets contains
interesting corner-case apps that resemble some of the typical ransomware features
(e.g., screen locking, adult apps repackaged with disarmed ransomware payload),
making this a particularly challenging test case.

6.2 Experiment 1: Detection Capability

HelDroid detected all of the 207 ransomware samples in R1: 194 with static
text extraction, and the remaining 13 by extracting the text in live-captured web
responses from the C&C server. However, this was expected, since we used R1
for training. Thus, this experiment showed only the correctness of the approach.
We tested the true predictive capabilities of HelDroid on R2, which is dis-

joint from R1. Among the 443 total samples in R2, 375 were correctly detected
as ransomware or scareware, and 49 were correctly flagged as neither. Precisely,
the following ones were actually true negatives:

– 14 Badoink + 15 PornDroid clones (see below);
– 6 lock-screen applications to modify the system’s look &feel;
– 14 benign, adware, spyware, or other non-ransomware threats.

Badoink and PornDroid are benign applications sometimes used as hosts of ran-
somware payload. HelDroid correctly only flagged the locking behavior. We
installed and used such samples on a real device and verified that they were not
performing any malicious operation apart from locking the device screen (behav-
ior that was correctly detected). An analysis of network traffic revealed that the
remote endpoint of all web requests issued during execution was unreachable,
resulting in the application being unable to display the threatening web page.
The last 19 samples are known to AV companies as ransomware, but:

– 11 samples use languages on which HelDroid was not trained (see below).
– 4 samples contain no static or dynamically generated text, thus they were
disarmed, bogus or simply incorrectly flagged by the commercial AVs.

– 4 failed downloading their threatening text because the C&C server was down.
Strictly speaking, these samples can be safely considered as being disarmed.
Manual analysis revealed that these samples belong to an unknown family
(probably based on repackaged PornDroid versions).

False Negative Analysis. We focused on the samples that were not detected
because of the missing language models. As a proof of concept we trained
HelDroid on Spanish, by translating known threatening text from English to
Spanish using Google Translator, adding known non-threatening Spanish text,
and running the training procedure. The whole process took less than 30min.
After this, all previously undetected samples localized in Spanish were success-
fully flagged as ransomware.
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Fig. 2. Lock-detection (left) and text-classification (right) time as function of Smali
class size (whiskers at the 9th and 91st percentiles).

6.3 Experiment 2: False Positive Evaluation

A false positive is a generic malware or a goodware sample flagged as ran-
somware. We first evaluated HelDroid on M1 (generic malware, no ran-
somware). No sample in M1 was flagged by HelDroid as ransomware.

We extended this experiment to the other datasets containing goodware and
generic malware (i.e., AR, AT, MG). In the AR dataset, which contained
both malware and goodware, HelDroid correctly reported zero ransomware
samples, whereas in the AT dataset only 2 and 7 samples out of 12,842 were
incorrectly flagged as ransomware and scareware, respectively. Manual investiga-
tion revealed that the 2 false ransomware samples were actually a benign sample
and a generic trojan, respectively. Actually, both samples had a locking behav-
ior that was correctly caught by HelDroid. The reason why these were flagged
as ransomware is because they contained text localized in all major languages
(most of which were different than those currently implemented in HelDroid),
which brought the text classifier in a corner case. The 7 false scareware com-
prised 6 benign apps and 1 Leadbolt adware sample. In all cases, the source
of error was an significant amount of text containing threatening-, porn-, law-
or copyright-related keywords. Last, in the MG dataset, none of the malware
samples was incorrectly flagged as ransomware or scareware.
However, we can conclude that the rate of false positives is minuscule compared

to the size of the datasets. Moreover, the majority of false positives are actually
known goodware, which can be pre-filtered easily with whitelisting.

6.4 Experiment 3: Detection Speed

We measured the speed of each detector component on 50 distinct random splits
of AR with 1,000 samples each. Figure 2(a) and (b) show that text classifica-
tion is extremely fast in all cases, while locking strategies detection is the main
bottleneck, yet under 4 s on average. The encryption-detection module always
took milliseconds.
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If HelDroid must invoke the external sandbox to extract dynamically gener-
ated text, this takes up to 5min in our implementation, but this is unavoidable
for dynamic analysis. As we showed, however, this happens for a very limited
number of samples.

7 Limitations and Future Work

Our results show that HelDroid has raised the bar for ransomware authors.
However, there are limitations, which we describe in this section, that we hope
will stimulate further research.

Portability. Although we focus on the mobile case, ransomware is a general
problem. Porting the HelDroid approach to the non-mobile world is non-trivial
but feasible. The Threatening Text Detector would be straightforward to
port, as it only assumes the availability of text. For example, it could be applied
as it is for filtering scareware emails. The toughest parts to port are those that
assume the use of a well-defined API (e.g., for encryption or locking opera-
tions). Indeed, a malware author could evade our system by using native code
or embedding cryptographic primitives, making porting much more complex.
However, the progress on static program analysis (e.g., [26,27]) and reverse engi-
neering (e.g., [28]) of native binary code have produced advanced analysis tools
that would ease porting HelDroid to other settings, including the detection
of cryptographic primitives in binary code [15,16]. The principles behind our
detection modules do not change; only their implementation does.
One last discussion point regards the inspection site. For mobile applications,

which are typically vetted prior or upon installation (e.g., by the distributing
marketplace, on the device using call-home services such as Google App Ver-
ify), HelDroid works “as is.” For non-mobile applications that do not follow
this distribution model, HelDroid should be integrated into the operating sys-
tem, in a trusted domain (e.g., kernel, driver). In this application scenario it is
crucial that the system is allowed to block the currently executing code to pre-
vent the malicious actions to continue. In HelDroid’s terms, this means that
the encryption and locking indicators of compromise should have high priority,
to avoid cases in which the malware first silently encrypts every file and then
displays the threatening text (when it is already too late).

Internationalization. As we proved in Experiment 1 by quickly adding
Spanish support, we designedHelDroid such that supporting other languages is
a trivial task. Languages such as Chinese or Japanese, however, would be trickier
than others to implement, due to significant differences in stemming and phrase
structure. Fortunately, research prototypes such as Stanford’s CoreNLP [29] that
support (for instance) Chinese NLP makes this extension feasible with just some
engineering work.
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Evasion. In addition to the use of native machine code, which we already
mentioned above, a simple yet näıve evasion to the static-analysis part of our
approach (Encryption Detector and Locking Detector) consists of a benign
APK that dynamically loads the code carrying out the actual attacks [30]. First,
we note that this technique can be counter evaded by intercepting the loaded
payload and analyzing it in a second round, as previous research have demon-
strated [31]. Second, we note that this evasion mechanism is common to any
static-based approach, and thus is not specific to HelDroid.
A more interesting discussion regards the threatening text. Text can be dis-

played via other means than strings (e.g., images, videos, audio), delivered out
of band (e.g, e-mail) or obfuscated. A first mitigation, that we partially address,
consists in using a sandbox that dumps dynamically allocated text, thus coping
with obfuscated strings as well as encrypted application protocols (e.g., HTTPS).
For example, Andrubis tracks decryption routines and allow the analyst to access
the decrypted content.
Regarding image- or video-rendered text, state-of-the-art optical character

recognition (OCR) techniques could be used. Although evasion techniques —
such as those used in CAPTCHAs — can be mounted against OCR, the goal of
the attacker is to make the text clear and easy to read for the victim, setting a
limit to them; also, previous research demonstrated the fallacy of even the most
extreme text-distortion techniques adopted by CAPTCHAs [32]. Regarding out-
of-band text, our current implementation of HelDroid does not cope with it,
although applying our text classifier to incoming email messages is trivial. In
general, this strategy may be in contrast with the attacker’s goal, that is to
ensure that the victim receives the ransom-requesting message. Displaying this
message synchronously is an advantage for the attacker, whereas out-of-band
communication alone is ill suited to the task. For example, the victim may not
read email or junk-mail filters could block such messages.
An even more interesting evasion technique is a mimicry attack on our text

classifier, which we think is possible. In a nutshell, the attacker must be able
to write a text containing a disproportionally large number of unknown words,
unusual punctuation or many grammar errors. Unusual punctuation and gram-
mar errors could be mitigated with some lexical pre-processing an advanced cor-
rector. Interestingly, the most recent families (e.g., CBT-Locker) show that the
attackers tend to write “perfect” messages, arguably prepared by native speak-
ers, in order to sound more legitimate. After all, careful wording of threatening
messages is essential to all social engineering-based attacks.

Future Work. In addition to addressing the aforementioned limitations, future
research could focus on designing ransomware-resistant OSs. For example, in the
case of Android, calls to encryption routines should be explicitly authorized by
the users on a per-file basis. This is not trivial from a usability viewpoint, espe-
cially for long sequences of calls. Moreover, many applications may use encryp-
tion for benign purposes, making this goal even more challenging.
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8 Related Work

Malware Detection. There exist several malware detection approaches,
including static [8,33], dynamic [34], and hybrid [25] techniques. DREBIN [8]
and MAST [33] are particularly related to our work. DREBIN aims at detecting
malware statically, with a 94% accuracy and 1% false positives: It gathers fea-
tures such as permissions, intents, used APIs, network addresses, etc., embeds
them in a vector space and trains a support vector machine to recognize malware.
MAST relies on multiple correspondence analysis and statically ranks applica-
tions by suspiciousness. Thanks to this ranking, it detects 95% of malware at
the cost of analyzing 13% of goodware.
Unfortunately, generic approaches to malware detection seem unsuitable

for ransomware. We tested DREBIN on our R2 dataset of ransomware.
Although DREBIN outperformed AVs, HelDroid outperformed DREBIN
(which detected only 48.47% of the ransomware samples). Even the authors of
DREBIN, which we have contacted, in their paper state that their approach is
vulnerable to mimicry attacks. Ransomware is a type of mimicry attack, because
it composes benign actions (i.e., encryption, text rendering) toward a malicious
goal.

Ransomware Detection. To the best of our knowledge, our paper is the first
research work on mobile ransomware. The work by Kharraz et al. [35], pub-
lished after the submission of HelDroid, is the first to present a thorough
study on Windows ransomware. After analyzing 1,359 belonging to 15 distinct
ransomware families, they present a series of indicators of compromise that char-
acterize ransomware activity at the filesystem layer. This approach, in addition
to being focused entirely on the Windows operating system, is complementary
to ours. Indeed, we look at how ransomware behaves at the application level,
whereas [35] focuses on the low level behavior.
Previous work focused on the malicious use of cryptography for implement-

ing ransomware attacks [1,36]. However, no approaches exist for the explicit
detection of this class of malware.

9 Conclusions

A single mobile ransomware family has already affected nearly one million of
users [4] in one month. Judging by the most recent families [11] and their rapid
evolution pace, this threat will arguably become more and more dangerous, and
difficult to deal with. Before HelDroid, the only available tools were signa-
ture based, with all of the disadvantages this entails. Instead, we showed that
our approach, after being trained on recent ransomware samples, is able to effi-
ciently detect new variants and families. Even with mixed datasets including
benign, malicious, scareware, and ransomware apps, HelDroid correctly recog-
nized 99% never-seen-before samples (375 + 11 + 4 over 394, in a dataset con-
taining also 49 corner-case apps). Interestingly, the remainder 4 were incorrectly
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flagged by commercial AVs as ransomware. Thus, it is a first, significant step
toward designing proactive detectors that provide an effective line of defense.
HelDroid could be integrated in mobile AVs, which would submit files to

our JSON API, as recently proposed in [37]. Alternatively, HelDroid shall
be deployed in one or more of the many checkpoints offered by modern app-
distribution ecosystems. For instance,HelDroid could be part o the app-vetting
processes performed by the online marketplaces, or upon installation (e.g., the
Google App Verify service scans apps right before proceeding with installation).
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