
1

Integrated Detection of Attacks Against Browsers,
Web Applications and Databases

C. Criscione, G. Salvaneschi, F. Maggi, S. Zanero
Dipartimento di Elettronica e Informazione — Politecnico di Milano

Abstract—Anomaly-based techniques were exploited success-
fully to implement protection mechanisms for various systems.
Recently, these approaches have been ported to the web domain
under the name of “web application anomaly detectors” (or
firewalls) with promising results. In particular, those capable
of automatically building specifications, or models, of the pro-
tected application by observing its traffic (e.g., network packets,
system calls, or HTTP requests and responses) are particularly
interesting, since they can be deployed with little effort.

Typically, the detection accuracy of these systems is signif-
icantly influenced by the model building phase (often called
training), which clearly depends upon the quality of the observed
traffic, which should resemble the normal activity of the protected
application and must be also free from attacks. Otherwise,
detection may result in significant amounts of false positives
(i.e., benign events flagged as anomalous) and negatives (i.e.,
undetected threats).

In this work we describe Masibty, a web application anomaly
detector that have some interesting properties. First, it requires
the training data not to be attack-free. Secondly, not only it
protects the monitored application, it also detects and blocks
malicious client-side threats before they are sent to the browser.
Third, Masibty intercepts the queries before they are sent to the
database, correlates them with the corresponding HTTP requests
and blocks those deemed anomalous.

Both the accuracy and the performance have been evaluated on
real-world web applications with interesting results. The system
is almost not influenced by the presence of attacks in the training
data and shows only a negligible amount of false positives,
although this is paid in terms of a slight performance overhead.

I. INTRODUCTION

In the field of computer security, without doubts the pro-
tection of web applications against attacks is a critical and
current research issue. Web applications are gaining more and
more popularity, due to their ease of use and development
and to the ubiquity of the Internet — and in particular, the
Web — in every day’s life [1]. At the same time, they are
usually developed with less attention to security constraints,
due to different development models being employed; as a
result, they have become the prime source of vulnerabilities
in enterprise information systems. During 2006, the Web
Application Security Consortium reported 148,029 different
vulnerabilities affecting web applications: this translates to
roughly 85% of the audited applications having at least one
vulnerability [2]. Similarly, Symantec reported an increase
equal to 125% of web application vulnerabilities between 2007
and 2008 [3].

Various taxonomies have been proposed for web threats,
such as [4], [5], [6]. SQL injections seem to be the most

commonly exploited attack vector. The goal of such attacks
is usually either to control the server, or to obtain sensitive
data. However, the current trend in web application attacks is
the ever increasing rate of attacks carried out to compromise a
host and use it for the distribution of malware (e.g., spy-ware,
bots) or to deploy a phishing or spamming kit [7]. This does
not come as a surprise, considering that PhishTank.com, for
example, reports about 130,000 confirmed phishing websites
over the same year. This shows how prevalent client-side
attacks, such as the very common cross-site scripting, are
becoming.

This creates a need for protection mechanisms to prevent
the malicious content from being deployed on a host that runs
a vulnerable web application. In addition, such a mechanism
should avoid further spreading of the malicious content by
protecting the visitors of a site already compromised. In this
scenario, the challenge is that often attacks are not brought
against known, off-the-shelf targets, but against custom appli-
cations. As such, they are by any definition zero-day attacks
(i.e., that exploit vulnerabilities that are unknown before their
use). This makes substantially ineffective the traditional and
well developed concept of misuse detection, which is based
on the exhaustive enumeration of all the known threats. On
the other hand, anomaly-based techniques have the desirable
property of protecting also against totally novel attacks. In fact,
they model the normal behavior of the protected system (e.g.,
a web application) and detect deviations, called anomalies —
under the assumption that attacks always cause anomalies. In
this context, the term “normal behavior” typically refers to
the set of features (e.g., the frequency of certain bytes in
a network packet, the length of a string variable) extracted
from the traffic, and then combined in such a way to build
the models exploited to recognize anomalies (e.g., unexpected
bytes frequencies, an out of bounds string length).

In this work, we describe Masibty, a web application
anomaly detector that attempt to mitigate the two aforemen-
tioned major drawbacks (i.e., false positives due to inaccurate
models and false negatives due to the presence of attacks in the
training). Masibty is able to detect a real-world threats against
the clients (e.g., malicious JavaScript code, trying to exploit
browser vulnerabilities), the application (e.g., cross-site script-
ing, permanent content injection), and the database layer (e.g.,
SQL injection). A prototype of Masibty is evaluated on a set
of real-world attacks against publicly available applications,
using both simple and mutated versions of exploits, in order
to assess the resilience to evasion. We can identify three key
improvements in this paper:

2

• models are designed with the explicit goal of not requir-
ing an attack-free dataset for training, which is an irre-
alistic requirement in real-world applications. Even if in
[8] techniques are suggested to filter outliers (i.e., attacks)
from the training data, in absence of a ground truth there
can be no guarantee that the dataset will be effectively
free of attacks. Using such techniques before training
Masibty would surely improve its detection capabilities.

• Our approach intercepts and process both HTTP requests
and responses and protects against both server-side and
client-side attacks, an extremely important feature in the
upcoming “Web 2.0” era of highly interactive websites
based mainly on user contributed content. In particular,
we devised two novel anomaly detection models —
referred to as “engines” — based on the representation
of the responses as trees.

• Masibty incorporates an optional data protection compo-
nent, which extracts and parses the SQL queries sent to
the database server. This component is part of the analysis
of HTTP requests, and thus is not merely a reverse proxy
to the database. In fact, it allows to bind the requests to
the SQL queries that they generate, directly or indirectly.
Hence, queries can be modeled although are not explicitly
passed as a parameter of the HTTP requests.

In addition, Masibty has the advantages of a highly modular
architecture, which easily allows to add additional detection
engines based on new techniques. A similar modular approach
was proposed in [9], however our architecture further explores
the possibility of modularity in decoupling not only the
engines aimed to anomaly identification, but also the modules
that implement possible reactions to an anomaly, and the way
in which information from the different engines is combined
together.

II. RELATED WORKS

Most of the traditional works on network intrusion detec-
tion focus on misuse-based or anomaly-based recognition of
attack signatures. However, traffic generated from an attack
to a web application — except for brute force attacks or
similar events — is likely to be very similar to normal traffic
because, since HTTP is a text based protocol, it is always
possible to encapsulate an attack at application layer without
creating a packet that is anomalous if inspected at network
layer. Writing generic network-layer signatures for web-based
attacks is thus troublesome, and a source of false positives.
On the other hand, host-based IDSs were typically designed
to monitor the processes on the protected system (e.g. the web
server daemon) rather than the web applications they run. A
successful example of protocol-aware anomaly detection based
on low level data is presented in [10].

A more effective approach to the specific problem of
anomaly detection for web applications is the inspection of
user-supplied parameters. This problem is similar to recent
developments in host-based anomaly detection on system calls,
taking into account their parameters content. In [11], [12] a
set of models were introduced to deal with various arguments
(e.g., strings, integers, tokens). Using some of the concepts

introduced in these seminal works, and extending them to in-
corporate sequence analysis and inter-argument relationships,
a prototype named S2A2DE was proposed in [13], [14]. The
concepts of [11] were ported to the web application context
in [15], [9], by replacing the concept of system call with the
URI of the requested resources, and the concept of system
call parameter with the parameters passed to the URI handler.
In other words, any web application is modeled as a set of
URIs, each with an associated array of attributes. For each
URI an ensemble of models is then generated. This approach,
however, makes the prototype unable to distinguish between
different behaviors of the same path, while it is common —
especially for small-sized web applications — to rely on a
single path to perform completely different tasks depending
on the parameters’ values. This issue can be mitigated through
the use of clustering on arguments, as shown in [14]. A system
based on a variation of this approach was proposed in [16],
where the anomaly detection was performed on a reverse
proxy — similarly to Masibty— and the application data was
distributed between many databases. Anomalous queries are
rerouted to databases containing information of lower sensitiv-
ity, accordingly to the degree of anomaly. The deployment of
this system in the real world, however, would require extensive
redesign to make the protected application resilient to missing
data and, in addition, data must be separated according to its
sensitivity. An interesting alternative to modeling parameters
is proposed in [17], where kernel methods are exploited to
model the features of the whole HTTP requests, not only of
the parameters.

More specialized works have targeted separately XSS and
SQL injection attacks. In [18] a client-side proxy was used
to detect harmful content (e.g., DOM nodes) supplied by the
user and sent back by the server, using a technique similar to
the one implemented in web vulnerability scanners [19]. This
technology, however, works only on reflected XSS attacks, and
not on persistent attacks where the injected malicious code is
permanently stored on the server-side and is delivered to the
browser at a later time. In [20] a client-side solution based
on the idea of data tainting is used to address the leakage of
sensitive data from the user browser to an aggressor through
the use of XSS attacks. Implementations of the same concept
are also proposed in [21], [22]. However, nowadays’ XSS
attacks can perform more sophisticated tasks. Examples are
the many attacks against social networking websites, which
perform queries on the site without actually moving sensitive
information around. The idea of a client side proxy was further
exploited in [23]. It must be noted that all these techniques
are client-side protections and, as such, they assume user
awareness to security. In addition, they are not really anomaly-
based as much as they are generalized misuse based system
with broad rules to block specific attacks.

In [24] a method to identify variations of SQL query
structures is proposed, by the means of a Java library which
validates user-supplied parameters and compares the structure
of each query before and after their insertion. The approach
is interesting although it requires to modify large portions of
code, since every line which contains SQL statements and
queries needs to be rewritten manually, making the effort

3

similar to a full code review for implementing proper filtering
in the application. In [25], [26], alternative learning-based
approaches to the problem of detection of SQL injections
are proposed. For instance, in [26] a server-side component
is embedded in the web server, and analyzes SQL queries
with techniques similar to [15], [12], generating models for
user supplied input. However, to decrease false positives the
developer must explicitly define database field types. This can
be a lengthy process for complex applications. The major
shortcoming of this architecture, however, is its inability to
generalize the structure of a query: while most of the queries
produced by web applications have a rather static look, thus
allowing for exact profiling, there are many examples where
the actual structure of a query is generated by user-supplied
parameters. Since there is no way to learn the whole input
space (as far as structure is concerned), no protection can
be expected for these queries. An alternative approach, using
static analysis, is presented in [27].

III. MASIBTY: A FRAMEWORK FOR WEB APPLICATION
INTRUSION PREVENTION

Besides the plus of being highly modular, Masibty is de-
signed to minimize the impact on any existing infrastructure.
More importantly, we specifically structured the system not
to require an attack-free dataset for training, as this is a
requirement not compatible with a real world deployment.

As depicted in Figure 1, Masibty is composed of two parts,
both easily portable to different languages and platforms:
• a reverse proxy, which is a standalone application cur-

rently developed on top of the Jetty HTTP server;
• an application database library that monitors SQL calls.

A proof-of-concept implementation was developed in
PHP for MySQL databases and can be easily reimple-
mented for any other language, or extended to support
other databases, since it consists in an extremely unob-
trusive procedure.

An important feature of Masibty is that the proxy, by only
interacting with the application in a black box fashion, can
detect and block attacks targeted at both servers and clients.
Although some client-side exploits can be identified just by
examining the HTTP requests, in many cases analysis of the
responses is needed to achieve decent levels of accuracy.

The application database library is optional and allows
deeper analysis of SQL queries generated by the application.
This is the only component of Masibty which is not language-
agnostic. We investigated the feasibility of a reverse SQL
proxy to avoid implementing a language-dependent compo-
nent, but this would only allow to analyze queries in an
isolated fashion, without binding them back to a specific
HTTP request or user interaction. This approach is prone to
false negatives whenever an aggressor is able to force the
application to produce a query which would be legal in a
different context, regardless of the anomaly detection model
in use (this can be seen as a mimicry-like evasion attempt).
Another possible alternative would have been to rewrite the
actual embedded libraries, but this was complex beyond our
purposes. It can certainly be done if the system is developed

for production use. However it would shift the burden from
modifying the applications to keeping up with a C code base
under constant development.

For the aforementioned reasons, we implemented this li-
brary as a wrapper for the MySQL libraries for PHP, namely
the MySQLi class and the mysql_* functions. A minimal
effort is required to the administrator to alter slightly the
application to be protected by modifying calls to mysql_*
functions into masibty_mysql_ invocations, and MySQLi
objects into MasibtyMySQLi objects. Since the interface
of every method has been respected, this changes can be ap-
plied through a trivial batch string replacement. Alternatively,
specific features of the language such as function overriding
or exception handling can be leveraged to achieve a fully
automated, unobtrusive deployment by rerouting the calls of
the functions in the original library to our library.

A. The concept of Entry Point

We modeled interactions between users and the protected
application within the bounds of the HTTP protocol. In
particular, our analysis is based on:
• URIs, e.g., /blog/add/, /blog/read/;
• parameters supplied, e.g., ?id=1&page=true;
• session context1, e.g., sequence of requests, cookies,

session identifiers.
In addition, other influencing factors can be considered. For

instance, multiple users might interact with the application in
such a way to impact the current user, and so on. However,
Masibty currently ignores such factors.

Starting from these observations, we defined the concept of
an Entry Point (EP) as the basic entity of an application. An EP
is basically a URI, further specialized depending on parameters
and session context. Therefore, the relationship between a EPs
and a URIs is not one-to-one, since in many applications use
the same scripts (or classes) perform different tasks, according
to the value of some parameters, of previous queries, sessions
or other factors. For instance, an application may rely on
a single controller that dispatches user interactions to
the various components of the application depending on a
command attribute in queries — while this is not a good
software engineering practice, is a quite common situation.
Clearly, this generates multiple EPs determined by the values
of the command.

For the aforementioned reasons, Masibty works on EPs.
The creation of EPs is therefore critical, and is delegated to
two different procedures. The simplest one directly associates
EPs to URIs. This is useful for small-sized applications, or
if it is known a priori that the association is one-to-one
(e.g., if URL rewriting is utilized). A more sophisticated
procedure can be used to group similar requests together, so
generating a set of EPs automatically. Its core is a clustering
algorithm that must be incremental, unsupervised, and able
to deal with categorical values. To this end, we used an
agglomerative, incremental online algorithm [28]. The distance

1meant as the synopsis of all the previous interactions between the user
and the application, encompassing all the data structures that have been built
(thus including database and file updates and so on)

4

Client HTTP inspection

AR

Web server SQL inspection

AR

DB server

PAnomaly: Token, Distribution,
Length, Presence, Order

XSSAnomaly: Crisp, JSEngine,
Template

QueryAnomaly: Structure

(ignored)

request request query query

responseresponse resultsresults

Figure 1. The logical structure of Masibty. Note that, the SQL inspection is visualized as a proxy just for clarity.

function between two URLs u and u′ is the normalization in
[0, 1] of d(u, u′) :=

∑3
i=1 di(u, u

′). In particular, d1(u, u′) :=
||u|p − |u′|p| accounts for the number of parameters, | · |p, in
the URLs; d2(u, u′) :=

∑|u|p+|u′|p
j=0 1j counts the presence

(i.e., 0) and absence (i.e., 1) of the j-th parameter; d3(u, u′)
is simple and accounts for the difference in length of each
parameter found in the URLs. In addition, the algorithm prunes
out clusters with limited support (e.g. those that contain a low
number of instances) to cut out any outlier — possibly, an
attack — in the training set.

B. Overall Architecture

The core component of Masibty is called Anomaly Brain
(AB). It routes the HTTP requests and responses, captured by
the proxy or the application database library, to a number of
Anomaly Reasoners (ARs); this is performed either at learning
time or during detection. Figure 1 shows the information flow
and the ARs implemented. Requests or responses marked as
anomalous are handled by specific Reaction Managers (RMs).
ARs can be configured to be executed before or after the event
is forwarded for processing. If no anomaly is detected by the
pre-forwarding ARs, the action is let through (e.g., the request
is forwarded to the web server, or the query is executed on
the database). Next, it is routed to the post-forwarding ARs.
If cleared, the responses are sent back to the client.

The ARs make use of different Anomaly Engines (AEs).
Each of them models HTTP messages by means different
features (i.e., string length, number of parameters, sequence
of parameters). Thus, an AR can be effective at detecting
anomalies in the parameters, whereas another may focus on
client-side attacks. However, each AR has full access to any
information available to all of the Masibty components (e.g.,
an AR working on SQL queries has access to the full session
history). Since AEs work on EPs, requests coming from the
reverse proxy are first passed through the aforementioned
EP creation procedure, which clusters them (during learning)
or classifies them (at detection time). Features learned on
parameters by means of the AEs and used later in detection
phase are stored in a model base.

During training, each AE self-assesses its reliability by
calculating a trust level. During detection, the AEs generate
an anomaly score in [0, 1] for each handled action. These
outputs for AEs in the same AR are then combined to obtain
a single anomaly score. Each AR can use a different policy to
aggregate these values and can optionally take into account the
trust level. The final anomaly score is then compared against
an user-configured threshold to identify which events to flag

as anomalies. Although it may seem reasonable to combine
the output of all the AEs to obtain an overall anomaly value,
it must be noted that each reasoner captures only a narrow
subset of the information. Thus, an attack could be effectively
recognized by a single AR. Instead, a combination could lead
to the anomaly value being negatively balanced by another
AR. For this reason, we use Reaction Managers (RMs) to
handle independent actions to be performed after the detection
of an anomaly by a single AE. These action may range from
stopping the requests deemed malicious or simply reporting
alerts.

Each AR can have multiple RMs, each with a different
priority to allow handling of concurrent reactions. In partic-
ular, a RM can temporarily suspend any other RM with a
lower priority, effectively blocking execution of lower priority
reactions. Also, multiple different methods of reaction can be
activated depending on different thresholds of the anomaly
value.

IV. REASONERS AND ENGINES

We have currently implemented three anomaly reasoners.
PAnomaly and XSSAnomaly are built and used by the proxy
component, while QueryAnomaly is built and used by the
application database library. PAnomaly and QueryAnomaly
are pre-forwarding AR, whereas XSSAnomaly is executed on
HTTP responses.

A. PAnomaly

This AR detects anomalies in each request parameters and rely
on different AEs.

1) Order Engine: Since requests in web applications are
usually hard coded, whenever an EP is queried, the ordering of
the attributes will usually be the same, even if not all of them
are present. The Order Engine builds a probabilistic model
using a directed graph that represents the order in which the
parameters have been seen. Edges are labeled with the number
of times the origin precedes the other node, P , and the number
of times both nodes appeared in examined requests, T . As
example is in Figure 2(a)

At detection, the active edges for every incoming request
are identified. For instance, using the model in Figure 2(a), a
request containing parameters A, C, D activates of the edges
highlighted in Figure 2(b). The anomaly score is then com-
puted by identifying the edge with the lowest ratio between the
first and the second label. If an edge is completely missing, an
anomaly score of 1 is returned, otherwise the anomaly score is

5

F A E B C D
1/1 1/1

8/8

10/10

9/9

2/2

8/8

8/9

1/9 1/8

7/8

(a) Model at the end of the learning phase.

F A E B C D
1/1 1/1

8/8

10/10

9/9

2/2

8/8

8/9

1/9 1/8

7/8

(b) Active edges (non-dashed) on a request that contain the
parameters A, C, and D.Figure 2. Two sample models generated by the Order Engine.

1−min(
{
P
T

}
). This algorithm has complexity O

(
N ·(N−1)

2

)
,

since every edge of the induced subgraph has to be generated
and evaluated. The worst case is a request with N elements.

The trust level takes into account how many infrequent
couples are present, because if a couple has been seen a very
small number of times there is too much variability to rely
on the results of this engine. Therefore, we compute the trust
level as avg

({
P
T

})
.

2) Presence Engine: Web applications usually handle a
small set of parameters associated with a certain EP and it
is unlikely that they will change, unless the client is trying
to perform some unwanted interaction. This AE checks for
expected or unknown parameters in each request. During
training, the presence of each parameter is recorded, along
with its appearance ratio across all the requests associated to
the same EP.

Detection leverages the relative sample distribution of
such ratios. The anomaly score is calculated as 1 −
min((MT ,min(

{
P
T

}
))), where M and P , respectively, indi-

cates the number of missing and present parameters, while
T is the total number of requests to the same EP. Thus, the
presence of an unknown attribute or of a very rare attribute
turns into a very high anomaly score.

The trust level is high if the presence of parameters is fairly
constant, while decreases if an application exhibits variations.
Thus, we calculate the trust level as 1− M

T .
3) Numbers Engine: Identifying those parameters that con-

tain only numbers, which are extremely common, can stop
a large share of injection-based attacks. To this end, during
training, we store two values for each parameter: A, the
number of times the attribute value was not a number, and
the number of observations of the attribute T . If X = A

T is
close to zero, the value is likely numerical. Obviously attacks
or application errors might have polluted the training set, so
an exact zero is rare.

This engine leverages the Yule-Simon (YS) distribution [29]
to associate a high anomaly score to very low values. We
generate the anomaly score S using S = YS(ρ,X) so that
only those parameters that are very likely to take numeric
values can actually generate high anomaly scores. In our
experiments we set ρ = 200.

The trust level, relies on how the anomaly score is calcu-
lated.

4) Token Engine: Sometimes a parameter only takes a
limited set of values, usually referred to as tokens. This engine
stores the admitted values and marks as anomalous any request
containing parameters with out-of-the-enumeration values.

Token identification is performed using the algorithm de-

scribed in [9]. Without going into the details, for each attribute
a function is initialized to 0 and incremented by 1 whenever
a new value for the attribute is seen, and is decremented
otherwise. The procedure then estimates the correlation of this
function vs. y = x, which models the fact that each item is a
new, unseen value. Negative correlation indicates non-random
values, i.e., tokens. The algorithm was trivially adapted to on-
line usage, by updating the sample mean and variance on-line
as opposed to in a batch fashion. In addition to the original
algorithm, we count the relative occurrences of each different
value.

Detection takes into account only those parameters iden-
tified as tokens. A high anomaly score is assigned to token
values that have never, or seldom, been seen during learning.
This is needed to minimize the influence of attacks in the
training set. In fact, the engine could have observed an attack
and included a malicious value in the allowed values for the
token. However, such values are just a minority and can then
be identified as the less frequent values a token has taken
during training, and label them as anomalous anyways. To this
end we resort again to the YS distribution, which is calculated
for each observed value v ∈ V leading to the anomaly score
S = YS(ρ, Nv·|V |

N), where Nv is the number of observations
of v, N =

∑
Nv is the total number of observations and V

is the set of all possible values.
Basically, the expected rate of appearance of each parameter

is estimated as the total number of observations for a certain
parameter divided by the number of different values observed.
Next, the ratio between the actual observation rate of a
parameter and its expected rate is calculated as a value in
[0, |V |].

As we previously explained, high anomaly values are as-
signed only if the ratio between the expected and the observed
rate of appearance is very low, according to the YS distribu-
tion.

The trust level is set to min (1, |max(−1, p)|). In other
words, if the correlation parameter p is p < −1 (thus the
attribute is very likely to be a token), we assign a value of 1 to
the trust level. Otherwise, we assign a linearly decreasing value
corresponding to the absolute value of the (linearly decreasing)
correlation parameter.

5) Distribution Engine: The distribution of symbols is
significant to distinguish the actual content of parameters that
are expected to contain strings. For instance, a parameter may
be designed to receive 10/14/2008 01:11AM while an
attacker could attempt to inject ’ and t=t;, which clearly
have a different set of symbols. This engine captures such devi-
ations by building a model of characters distribution through a

6

representation of the relative frequencies of occurrence. To this
end, we adapted to online use the algorithm proposed in [9] to
perform a variant of the Pearson χ2-test to determine whether
an observed value can be generated by the learned distribution.
The anomaly score is 1− p, where p is the p-value of the χ2-
test. The algorithm requires a single scan of the input and a
constant-time calculation, its complexity being thus O(n+k).
An appropriate trust level of this model is planned as a future
improvement. At the moment, this engine’s trust level is 1.

6) Length Engine: Most of the parameters of a web appli-
cation are not random in length. Some have fixed length (e.g.,
tokens, numeric identifiers), while some have a certain degree
of variance. Only a few are completely random in length,
most notably injection attempts. Long attributes are commonly
associated with overflows, and also XSS attacks can be quite
long. For instance, the shortest known XSS is 161 byte long
[30]. This engine estimates the unknown length distribution
for a given parameter in order to assess the anomaly of a
parameter of length l in the detection phase.

Once again, we adapted the algorithm described in [9]
to work online. No assumptions is made on the underlying
distribution, which is specified by means of the sample mean
µ and variance σ2, calculated from training data. Detection
is performed through the Chebyshev inequality, which deter-
mines an upper bound on the probability that the difference
between the value of a random variable x and the mean of the
distribution exceeds a certain threshold. Let t be the threshold
P(|x−µ| > t) < σ2

t2 . Therefore, the probability of a string of
size greater than l is P(|x−µ| > |l−µ|) < σ2

(l−µ)2 . Similarly
to the previous engine, the trust level is fixed at 1 and an
appropriate trust model is planned as a future work.

B. XSSAnomaly

This AR is aimed at detecting client side attacks. For
example, JavaScript-based manipulation of the DOM or simple
injection of contents into a web page, can be leveraged to
completely change the client’s perception of a page. A web
site could be defaced on the client side, or a phishing site
could overlap the original site, and so on. This reasoner detects
anomalies in the embedded (i.e., not included as a separate file)
code, and in the DOM. This allows to mitigate also more subtle
threats such as client-side page defacement. This reasoner has
to evaluate server response, thus is implemented as a post-
query reasoner.

The DOM tree is constructed from the response using
Gecko, a fast, open source parser and layout engine im-
plemented in C++, and accessible through XPCOM APIs,
wrapped by the Mozilla Parser Java library. The tree is then
decorated with the JavaScript content of each node, while
textual or otherwise non-JavaScript attributes are removed,
keeping only structural information. The resulting structures,
called Anomaly Tree, are used for both training and detection,
which are detailed for each of the two engines described below.
Depending on the AE adopted, two Anomaly Trees may be
identical or different with a certain, numerical degree.

1) Crisp Engine: This engine detects anomalies in both
DOM and JavaScript code. It utilizes the Anomaly Trees to

html
head title

body div p em

p em

html
head title

body div
p em

p em

p em

Figure 3. Two DOMs of two requests that only differ by the number of
repetitions.

learn the normal structure of pages associated with a given EP,
assuming that requests to a single EP will be very similar to
each other (e.g. a template filled in with variable information).

In general, two DOM nodes are deemed as equal if and
only if both they match and their inline JavaScript code
is identical, if any. This may arise issues with JavaScript
generated dynamically (e.g., after a certain event), but makes
the engine resilient to mimicry attacks.

During learning, the first Anomaly Tree is simply recorded.
Subsequent trees are compared against the known ones. If
a perfect match (i.e., identical tree) is found, a counter
associated to each tree is incremented, otherwise the new
tree is recorded. A peculiar characteristic of this engine is
that it takes into account recurring content, frequent in data-
centric web pages (e.g., search results or items in an online
store). More precisely, trees are traversed in parallel and
whenever a mismatch is found, the largest sub-tree is checked
for descendants with identical structure. If a node causes a
mismatch and such a node is not equal to the next one in the
smaller tree — thus marking the end of the repetitions, the
trees are deemed different and stored separately. Otherwise, the
trees are considered identical, with a different set of repetitions
as shown in Figure 3. This single-pass algorithm is linear with
respect to the number of nodes of the largest tree.

Since any XSS injection is obtained by adding at least one
element to the DOM, any Anomaly Tree with no matching
learned trees is flagged as anomalous, with an anomaly score
of 1.

The trust level for a given Anomaly Tree and EP is
calculated during training as 1 − D

T , where D is the number
of different Anomaly Trees and T is the total number of
responses processed. If the ratio is low, and thus the number
of total queries is far greater in comparison to the number of
different Anomaly Trees, the AE can be trusted and thus it
returns a value which is very close to 1.

2) Template Engine: This engine is meant to be adopted on
highly-dynamic pages (e.g., forums, blogs, news aggregators).

During learning, Anomaly Trees are pruned by removing
nodes with no JavaScript content, including their descendants.
Then, a maximum number w of wild-card nodes are inserted;
higher values of w lead to better accuracy on complex pages.
This must be traded-off with a higher computational complex-
ity. The algorithm works as follows: it substitutes one node a
time (and its sub-tree) with a wild-card. Thus, if w = 1 wild-
card is allowed, a number of templates equal to the number
of nodes n is generated, one with each node substituted by a
wild-card. With w = 2 this grows to n ·(n−1) templates, with
all the possible combinations of 2 wild-cards. During learning,
this is done for each new Anomaly Tree. In case of a match
with a previously known template, a counter associated to the
template is incremented.

The learning algorithm is rather expensive as for each new

7

AND
=

AND =
=

OR
=

=

Figure 4. Two pruned trees used by the application database library to model
an SQL query. The one on the right side is deemed anomalous.

tree is O(n2 + K · n), with w = 2, where n is the number
of nodes of the pruned Anomaly Tree and K is the number
of known templates (the n2 member is due to the template
generation routine, whereas the K · n term is due to the
comparisons against all the templates). The algorithm will
always generate some fundamental templates (e.g. a template
with just an <html /> node plus a wild-card) that match all,
or almost all, the response pages.

Detection is performed by testing the Anomaly Tree of any
generated result for compatibility against all the templates
built; the wild-card nodes validate any sub-tree starting at their
positions. If a tree matches every template, as is the case for
an EP with static content, a null anomaly score is returned.
Otherwise, a numeric value is calculated using the observation
rate of the highest non-matching template. The trust level is
the frequency of the highest matching template, or 0 in case
of EPs with no templates (i.e. no JavaScript code).

3) JS Engine: This AE uses a very simple technique to
model JavaScript code. To this end, the MD5 of each code
snippet extracted during the learning phase is stored. Although
this approach may lead to false positives, it is effective for
pages that reuse the same JavaScript code. For the same
reason, it does not account for the code generated at runtime,
also because this would require an excessive overhead due to
the need of interpreting the JavaScript.

Learning is straightforward, and its complexity is linear with
the number of JavaScript found in the new pages. During
detection, we once again leverage the YS distribution to assign
high anomaly scores to the MD5s that are infrequent in the
training sets (i.e., those that are suspected of being outliers),
as previously explained. In this case, the anomaly score is
X = YS(ρ, |F |T) where F is the set of MD5s extracted
from total number T of training responses that contain scripts.
Clearly, the JavaScript that generate unknown MD5s is flagged
as anomalous regardless of its rate of appearance in the
training set.

The trust level is measured as avg
{
|F |
T

}
.

C. Application Database Library

This library analyzes the SQL queries before they are sent to
the database and is implemented within the web application’s
scope. Hence, it has full access to the application data, e.g.,
which script was invoked, which script generated the query.

Currently, the only implemented AE is the Structure Engine,
which relies on the parse tree of the queries. Contrarily to what
was done in [24], no modification to the queries is required.
In addition, as opposed to the method described in [27] based
on static analysis, our technique is dynamic.

Constants or user-supplied data are filtered from the trees,
while logical and arithmetic operators are kept. This may
allow mimicry evasions (e.g., a query where only the names
of the tables have been altered not detected as anomalous).

However, SQL injections often alter the structure of the query
dramatically.

Learning is performed by storing the trees corresponding
to each EP along with their frequency. Detection is performed
by comparing the tree obtained from the submitted query with
the stored ones. If the tree does not match any of the known
ones, the AE returns an anomaly score equal to 1; otherwise
it is R

R
, where R is the number of times the matching tree has

been observed, and R is the average number of appearance
calculated over all the trees belonging to the same EP.

V. EXPERIMENTAL RESULTS

We evaluated both the detection capabilities and the process-
ing overhead of Masibty on four real-world, PHP applications:
Artmedic Weblog, SineCMS, PHP-Nuke, and JAF. The MySQL
databases were manually populated with fake yet reasonable
data that resemble as close as possible a real-world deploy-
ment. We used the Apache web server protected by Masibty,
on Linux Ubuntu 8.10 running on a 2.50GHz machine with
4GB of RAM. In a real deployment, Masibty can be installed
on dedicated machines.

Masibty was trained on the HTTP messages and SQL
queries (PHP-Nuke only) generated during many interactions
between clients and the application. More precisely: 6647
requests to Artmedic Weblog, 324 to SineCMS, 1310 to PHP-
Nuke, and 902 to JAF. During training, we have tried to emu-
late both regular users and administrators. To test the resilience
to outliers, 1% of the requests were actually attacks that were
generated as follows. The exploits for the vulnerabilities were
selected by carefully monitoring the bugtraq mailing list during
late 2008. In addition, mutated versions of the attacks were
generated manually. Attacks included XSS attempts (e.g., we
used CVE-2006-0676 for PHP-Nuke), remote file inclusions
(e.g., we used CVE-2006-7128/6142 for JAF-CMS) and SQL
injections (e.g., we used CVE-2006-5525 for PHP-Nuke). The
large majority of these attacks were used to build the testing
dataset.

Results are summarized in Table I. On simple applications,
such as Artmedic Weblog and SineCMS, all the attacks inserted
were identified, with no false positives. Suspecting overfitting,
the results were manually inspected, and further mutated
versions of the attacks were inserted. Surprisingly, no evasion
attempt succeeded. On PHP-Nuke Masibty reported no false
positives and a non-negligible amount of false negatives on
some XSS attacks. Since JAF stores data on a flat file, the
SQL module was disabled. Nevertheless, the proxy module has
successfully recognized all 16 attacks. In JAF, an administrator
can include external HTML pages created. We exploited
this feature and submitted some rather complex pages also
containing JavaScript — obviously, training and testing dataset
contained a different set of pages. This caused 0.38% of false
positives. In all the cases but PHP-Nuke the attacks were
all detected by the XSSAnomaly and PAnomaly reasoners,
which both contributed to create an anomaly score beyond the
thresholds. In addition, the SQL injections against PHP-Nuke
were detected by the QueryAnomaly reasoner.

Globally, Masibty detected 95.75% of the attacks with
0.095% of false positives. For comparison with systems that

8

APPLICATION TOTAL REQ. ATTACK REQ. DR FPR

Artmedic 3357 16 100% 0.0%
SineCMS 442 4 100% 0.0%
PHP-Nuke 1200 24 83% 0.0%
JAF 800 16 100% 0.38%

Overall 5799 60 95.75% 0.095%

Table I
DETECTION CAPABILITIES FOR EACH APPLICATION. THE TOTAL

REQUESTS INCLUDE THE MALICIOUS REQUESTS.

were tested with a an attack-free training, we also ran an
additional test using a filtered training dataset and with no
evasion attempts. Under such rather irrealistic hypotheses,
Masibty detected 100% of the attacks with no false positives.

We also measured the throughput and the processing over-
head introduced by Masibty. To this end we first recorded an 8-
step navigation session so that each virtual client resembled a
human user. This generated 4 HTTP requests including HTML
content and images, making 32 HTTP requests overall. The
users were idle for between each interaction for a random
small amount of time. This resulted in 34s of idle time per
session. Then, we reproduced a closed queuing system with
an increasing number of customers, using HP LoadRunner
with the following workload profile: a gradually increasing
number of clients from 0 to 30 for the first 3 minutes.
Then, a constant number of clients for 5 minutes, and zero
during the last 2 minutes. The averages response time of the
base system is 0.01s per request. We measured an average
0.02s overhead introduced by Masibty. Not surprisingly, the
detection capabilities of the prototype are paid at the price of
a non-negligible overhead. However, a significant part of the
overhead can be reduced by re-implementing the tool using a
lower-level language, such as ANSI C, and by decoupling the
detection phase from the blocking phase, and make the former
working in passive mode.

VI. CONCLUSIONS

In this work we described Masibty, a prototype web ap-
plication firewall that has some interesting features and show
significant improvements with respect to other existing tools. It
can work under realistic assumptions (i.e., attack-free training
data) and can deal with applications with a complex structure
because of its sophisticated URL modeling algorithm. We
described and implemented an extensible, modular architecture
for the prototype, as well as a number of anomaly detection
models. We described a proxy module which is able to
identify both anomalies in parameters passed to the web
application, and anomalies in the structure of the resulting
pages, thus protecting the clients from malicious content. Also,
we implemented a PHP library that contains a set of models
for detecting anomalies in SQL queries through structural
analysis.

Some of the techniques for server-side analysis of both web
pages and SQL queries described in this paper are innovative
contributions. Also, we improved previous works and pro-
posed simplified but effective learning algorithms. We have
performed preliminary testing of our solution on four real-
world applications, obtaining promising results and confirming

the effectiveness of our approach. The overhead introduced is,
however, non-negligible but we believe it is mostly due to the
poorly-optimized prototype.

Future works include extensive testing and recording of
each model’s contribution to the anomaly score, which are
missing in our preliminary experiments. Furthermore, we are
devising an automatic mechanism for choosing between one-
to-one and many-to-many association between URIs and EPs.
We are also currently working on a reasoner able to perform
anomaly detection on headers and cookies, and a session-
tracking mechanism which would allow to take into account
the sequence of pages and queries performed by a single user.
Finally, we are testing the negotiation techniques we proposed
in [31] as an aggregation policy for the anomaly score.

REFERENCES

[1] Miniwatts Marketing Grp., “World Internet Usage Statistics,” http:
//www.internetworldstats.com/stats.htm, January 2009.

[2] M. Sutton, J. Grossman, S. Gordeychik, and M. Khera, “Web appli-
cation security consortium statistics,” Available online at http://www.
webappsec.org/projects/statistics/.

[3] D. Turner, M. Fossi, E. Johnson, T. Mark, J. Blackbird,
S. Entwise, M. K. Low, D. McKinney, and C. Wueest,
“Symantec Global Internet Security Threat Report – Trends for
2008,” http://eval.symantec.com/mktginfo/enterprise/white papers/
b-whitepaper internet security threat report xiv 04-2009.en-us.pdf,
Symantec Corporation, Tech. Rep. XIV, April 2009.

[4] J. Grossman and O. Shezaf, “Threat classification,” Web Application
Security Consortium, Tech. Rep., 2005.

[5] The Open Web Application Security Project, “The ten most critical web
application security vulnerabilities,” Available online at www.owasp.org.

[6] O. S. et al., “The web hacking incidents database annual report,” Web
Application Security Consortium, Tech. Rep., 2007.

[7] J. E. Dunn, “Do-it-yourself phishing kit found online,” Available on-
line at http://www.pcworld.com/article/128524/doityourself phishing
kit found online.html, Jan 2007.

[8] G. F. Cretu, A. Stavrou, M. E. Locasto, S. J. Stolfo, and A. D. Keromytis,
“Casting out demons: Sanitizing training data for anomaly sensors,”
Security and Privacy, IEEE Symposium on, vol. 0, pp. 81–95, 2008.

[9] C. Kruegel, G. Vigna, and W. Robertson, “A Multi-model Approach
to the Detection of Web-based Attacks,” Computer Networks, vol. 48,
no. 5, pp. 717–738, August 2005.

[10] Y. Song, S. J. Stolfo, and A. D. Keromytis, “Spectrogram: A mixture-
of-markov-chains model for anomaly detection in web traffic,” in Proc.
of the 16th Annual Network & Distributed System Security Symposium,
San Diego, CA, USA, February 2009.

[11] C. Kruegel, D. Mutz, F. Valeur, and G. Vigna, “On the Detection of
Anomalous System Call Arguments,” in Proceedings of the 2003 Euro-
pean Symposium on Research in Computer Security, Gjøvik, Norway,
October 2003.

[12] D. Mutz, F. Valeur, G. Vigna, and C. Kruegel, “Anomalous system call
detection,” in ACM Transactions on Information and System Security,
vol. 9, 2006, pp. 61–93.

[13] S. Zanero, “Unsupervised learning algorithms for intrusion detection,”
Ph.D. dissertation, Politecnico di Milano T.U., Milano, Italy, May 2006.

[14] F. Maggi, M. Matteucci, and S. Zanero, “Detecting intrusions through
system call sequence and argument analysis (preprint),” IEEE Transac-
tions on Dependable and Secure Computing, vol. 99, no. 1, 2009.

[15] C. Kruegel and G. Vigna, “Anomaly Detection of Web-based Attacks,”
in Proceedings of the 10th ACM Conference on Computer and Com-
munication Security (CCS ’03). Washington, DC: ACM Press, October
2003, pp. 251–261.

[16] F. Valeur, G. Vigna, C. Kruegel, and E. Kirda, “An Anomaly-driven
Reverse Proxy for Web Applications,” in Proceedings of the ACM
Symposium on Applied Computing (SAC), Dijon, France, April 2006.

[17] P. Düssel, C. Gehl, P. Laskov, and K. Rieck, “Incorporation of ap-
plication layer protocol syntax into anomaly detection,” in ICISS ’08:
Proceedings of the 4th International Conference on Information Systems
Security. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 188–202.

9

[18] O. Ismail, M. Etoh, Y. Kadobayashi, and S. Yamaguchi, “A Proposal and
Implementation of Automatic Detection/Collection System for Cross-
Site Scripting Vulnerability,” in International Conference on Advanced
Information Networking and Applications, 2004, p. 145.

[19] T. Gallagher, “Automated detection of cross site scripting vulnerabili-
ties,” European Patent Application EP1420562 (pending), October 2003.

[20] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna,
“Cross-Site Scripting Prevention with Dynamic Data Tainting and Static
Analysis,” in Proceeding of the Network and Distributed System Security
Symposium (NDSS), San Diego, CA, February 2007.

[21] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans,
“Automatically Hardening Web Applications Using Precise Tainting,”
in 20th IFIP International Information Security Conference, Makuhari-
Messe, Chiba, Japan, June 2005.

[22] T. Pietraszek and C. Berghe, “Defending against Injection Attacks
through Context-Sensitive String Evaluation,” in Recent Advances in
Intrusion Detection (RAID), 2005.

[23] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic, “Noxes: A client-
side solution for mitigating cross-site scripting attacks,” in Proceedings
of the 12th ACM Symposium on Applied Computing, 2006.

[24] G. Buehrer, B. W. Weide, and P. A. G. Sivilotti, “Using parse tree
validation to prevent sql injection attacks,” in SEM ’05: Proceedings of
the 5th international workshop on Software engineering and middleware.
New York, NY, USA: ACM, 2005, pp. 106–113.

[25] C. Bockermann, M. Apel, and M. Meier, “Learning sql for database
intrusion detection using context-sensitive modelling,” in Detection of
Intrusions and Malware, and Vulnerability Assessment, vol. Volume
5587/2009. Springer Berlin / Heidelberg, 2009, pp. 196–205.

[26] F. Valeur, D. Mutz, and G. Vigna, “A Learning-Based Approach to
the Detection of SQL Attacks,” in Proceedings of the Conference on
Detection of Intrusions and Malware and Vulnerability Assessment
(DIMVA), Vienna, Austria, July 2005, pp. 123–140.

[27] W. G. J. Halfond and A. Orso, “Amnesia: analysis and monitoring
for neutralizing sql-injection attacks,” in ASE ’05: Proceedings of
the 20th IEEE/ACM international Conference on Automated software
engineering. New York, NY, USA: ACM, 2005, pp. 174–183.

[28] J. Han and M. Kamber, Data Mining: concepts and techniques. Morgan-
Kauffman, 2000.

[29] H. Simon, “On a class of skew distribution functions,” Biometrika,
vol. 42, no. 3-4, pp. 425–440, 1955.

[30] Sla.ckers, “Diminutive xss worm replication contest,” Available online
at http://sla.ckers.org/forum/read.php?2,18790,18790, 2008.

[31] F. Amigoni, F. Basilico, N. Basilico, and S. Zanero, “Integrating partial
models of network normality via cooperative negotiation: An approach
to development of multiagent intrusion detection systems,” pp. 531–537,
2008.

