
Selecting and Improving System Call Models for

Anomaly Detection

Alessandro Frossi, Federico Maggi, Gian Luigi Rizzo, and Stefano Zanero

Politecnico di Milano, Dipartimento di Elettronica e Informazione
{alessandro.frossi,gian.rizzo}@mail.polimi.it,

{fmaggi,zanero}@elet.polimi.it

Abstract. We propose a syscall-based anomaly detection system that
incorporates both deterministic and stochastic models. We analyze in
detail two alternative approaches for anomaly detection over system call
sequences and arguments, and propose a number of modifications that
significantly improve their performance. We begin by comparing them
and analyzing their respective performance in terms of detection accu-
racy. Then, we outline their major shortcomings, and propose various
changes in the models that can address them: we show how targeted
modifications of their anomaly models, as opposed to the redesign of the
global system, can noticeably improve the overall detection accuracy.
Finally, the impact of these modifications are discussed by comparing
the performance of the two original implementations with two modified
versions complemented with our models.

Keywords: Anomaly Detection, System Call Models, Deterministic
Models, Stochastic Models, Self Organizing Map.

1 Introduction

Since the seminal work of Forrest et al. [1], system call-based anomaly detection
enjoyed immense popularity. The core of any anomaly detection system consists
of a composition of effective models to accurately capture the observed system
behavior.

While usually the approach is to re-design the whole system, we propose a
much more effective way of improving over previous results. We selectively iden-
tify well-performing models, and compose them in novel ways to create improved
detectors. To demonstrate our point, two alternative and quite complementary
techniques [2,3] are chosen, in order to have a rich set of models to analyze
and improve. In particular, we focus on incremental models improvements, and
on cross-pollination among different approaches. We show how this process of
analysis and improvement leads to globally improved detection accuracy with
minimal efforts, as opposed to the re-design of the global system structure. We
concentrate on the use of unsupervised learning algorithms, because this type
of learning uses rather complex models and representations, creating an ideal
testing ground for model improvement. Also, while most models are only based

U. Flegel and D. Bruschi (Eds.): DIMVA 2009, LNCS 5587, pp. 206–223, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Selecting and Improving System Call Models for Anomaly Detection 207

on the program control flow, we deem it important to analyze also the content
of the calls, as many attacks today are not exclusively based on control flow
deviations.

The first prototype we analyze is based on a Finite State Automaton (FSA)
augmented with dataflow information. We show that its promising capabilities
(e.g., precise modeling of the control flow and solid relationship) are paid dearly
in terms of low robustness. Indeed, several false detections are triggered by slight
differences between the actual parameters and the learned, crisp models. On the
opposite hand, we examine a model based on Markov chain modeling augmented
by statistical anomaly models. It is able to capture frequency information and
to infer relationships between different arguments of same system call, but has
a number of shortcomings in terms of false positives and negatives.

We propose a set of modifications that can address some of the shortcomings
of these prototypes. The impact of these modifications is analyzed by comparing
performance and detection accuracy of the two original prototypes versus two
modified, hybrid versions complemented with the new models. Without taking
into account arguments values, hybrid systems based on both syscall sequences
and control/data flows are not more accurate than pure control flow based ones
[4]. On the other hand, we empirically show how the accuracy of a data flow IDS
increases if call arguments are included in the models.

The remainder of this paper is organized as follows. In Section 2 we describe
the two different prototypes implemented in previous works, along with the
improvements we describe in Section 3. In Section 4 we evaluate the Detection
Rate (DR), the False Positive Rate (FPR), and speed of the original and modified
systems. In Section 5 we review the most relevant, recent host-based anomaly
detection proposed in the literature.

2 Two Existing Approaches to System Call Anomaly
Detection

In this section we describe the results of the analysis we conducted on the chosen
anomaly detection systems.

2.1 FSA-Based Implementation

The first prototype we analyzed is a deterministic IDS which builds an FSA
model of each monitored program [2], on top of which it creates a network of
relations (or properties) among the system call arguments encountered during
training. In the following, we call it “FSA-DF” as a shorthand. Such a network
of properties is the main difference w.r.t. other FSA based IDSes. Instead of a
pure control flow check, which focuses on the behavior of the software in terms
of sequences of system calls, it also performs a so called data flow check on the
internal variables of the program along their existing cycles.

This knowledge is exploited in terms of unary and binary relationships. For
instance, if an open system call always uses the same filename at the same point,

208 A. Frossi et al.

1 int foo(char∗ dir , char∗ f i l e) {
2 source dir = dir ; ta rget f i l e = f i l e ;
3 out = open(target f i l e , WR);
4 push(source dir) ;
5 while ((dir name = pop()) != NULL) {
6 d = opendir(dir name) ;
7 foreach (dir entry ∈ d) {
8 i f (isd i rectory (dir entry))
9 push(dir entry) ;

10 else {
11 in = open(dir entry , RD);
12 read(in , buf) ;
13 write (out , buf) ;
14 close (in) ;
15 }
16 }
17 }
18 close (out) ;
19 return 0;
20 }

1

3

6

8

11 12

13

14

18

1920

start(I, O)

FD3 = open(F3, M3)
M3elementOf{WR}

M3equal O

opendir(F6)

isWithinDirI

F8isWithinDir F6

isDirectory F8

F′
8

isWithinDir F6

isDirectory F′
8

FD11 = open(F11, M11)

F11equal F8

read(FD12)

FD12equal FD11

write(FD13)

FD13equal FD3

close(FD′
14

)

FD′
14

equal FD11

close(FD14)

FD14equal FD11

close(FD18)

FD′
18

equal FD3

return(0)

Fig. 1. A data flow example with both unary and binary relations

a unary property can be derived. Similarly, relationships among two arguments
are supported, by inference over the observed sequences of system calls, creating
constraints for the detection phase. Unary relationships include equal (the value
of a given argument is always constant), elementOf (an argument can take a lim-
ited set of values), subsetOf (a generalization of elementOf, indicating that an
argument can take multiple values, all of which drawn from a set), range (spec-
ifies boundaries for numeric arguments), isWithinDir (a file argument is always
contained within a specified directory), hasExtension (file extensions). Binary re-
lationships include: equal (equality between system call operands), isWithinDir
(file located in a specified directory; contains is the opposite), hasSameDirAs,
hasSameBaseAs, hasSameExtensionAs (two arguments have a common directory,
base directory or extension, respectively).

The behavior of each application is logged by storing Process IDentifier (PID),
Program Counter (PC), along with the system calls invoked, their arguments and
returned value. The use of the PC to identify the states in the FSA stands out
as an important difference from other approaches. The PC of each system call
is determined through stack unwinding (i.e., going back through the activation
records of the process stack until a valid PC is found). FSA-DF obviously handles
process cloning and forking.

The learning algorithm is rather simple: each time a new value is found, it is
checked against all the known values of the same type. Relations are inferred for
each execution of the monitored program and then pruned on a “set intersection”
basis. For instance, if relations R1 and R2 are learned from an execution trace
T1 but R1 only is satisfied in trace T2, the resulting model will not contain R2.
Such a process is obviously prone to false positives if the training phase is not
exhaustive, because invalid relations would be kept instead of being discarded.
Figure 1 shows an example (due to [2]) of the final result of this process. During
detection, missing transitions or violations of properties are flagged as alerts. The
detection engine keeps track of the execution over the learned FSA, comparing

Selecting and Improving System Call Models for Anomaly Detection 209

auditd

execve(args**)

<syscall>(args**)

...

exit()

Cluster
Manager

Markov
Model

Manager

syslogd

<IDMEF />

Kernel
Auditing

Syscall
Extraction

Syscall
Classification

Behavior
Modeling

Alerting

Fig. 2. The high-level architecture of our S2A2DE prototype

transitions and relations with what happens, and raising an alert if an edge is
missing or a constraint is violated.

The FSA approach is promising and has interesting features especially in
terms of detection capabilities. On the other hand, it only takes into account
relationships between different types of arguments. Also, the set of properties
is limited to pre-defined ones and totally deterministic. This leads to a possibly
incomplete detection model potentially prone to false alerts. In Section 3 we
detail how our approach improves the original FSA-DF implementation.

2.2 Markov Chains-Based Implementation

The second prototype we analyze is called S2A2DE (Syscall Sequence and Argu-
ment Anomaly Detection Engine) [3,5]. It exploits Markov chains to describe the
behavior of a process. More specifically, S2A2DE analyzes processes as sequences
of system calls S = [s1, s2, s3, . . .]. Each call si is characterized by a type (e.g.
read, write, exec, etc.), a list of arguments (e.g., the resource path passed to
open), a return value, and a timestamp. Neither the return value nor the absolute
timestamp are taken into account.

S2A2DE can be decomposed in the basic blocks shown in Figure 2. During
training, each application is profiled using a two-phase procedure applied to each
type of system call separately. Firstly, a single-linkage, bottom-up, agglomera-
tive, hierarchical clustering algorithm [6] is used to find sub-clusters of invoca-
tions with similar arguments. Anomaly models are created upon these clusters,
and not on the specific system call, in order to better capture normality and de-
viations on a more compact input space. This is important because some system
calls, most notably open, are used in very different ways. By exploiting effective
distance models between arguments of the same type, the agglomerate system
call is divided into sub-groups that are specific to a single function. For instance,
invocations of open in httpd differs from those in, say, login. Afterwards, the
system builds anomaly models of the parameters inside each cluster. It is impor-
tant to note that the models used for computing distance (for clustering) and
those used to build the “representation” of the cluster for anomaly detection are
not necessarily the same. More details on how the distance are defined, and on
the anomaly models used by S2A2DE, can be found in [3].

The second phase of training takes into account the execution context of each
call to build a behavioral profile of programs flow. Markov chains are constructed
on top of the various clusters output from the first phase: one cluster corresponds

210 A. Frossi et al.

to one state of the chain. For instance, with three clusters for the open syscall,
and two of the execve syscall, then the chain is constituted by five states: open1,
open2, open3, execve1, execve2. Each transition reflects the probability of pass-
ing from one of these groups to another through the program. This approach
was investigated in former literature [7,8,1,9,10], but never in conjunction with
the handling of parameters and with a clustering approach.

During training, each execution of the program in the training set is consid-
ered as a sequence of observations. Using the output of the clustering process,
each syscall is classified into the correct cluster, by computing the probability
value for each model and choosing the cluster whose models give out the maxi-
mum composite probability along all known models: max(

∏
i∈M Pi). The other

probabilities are then straightforward to compute. S2A2DE is resistant to the
presence of a limited number of outliers (e.g. abruptly terminated executions or
attacks) in the training set, because the resulting transition probabilities will
drop near zero. For the same reason, it is also resistant to the presence of any
cluster of anomalous invocations created by the clustering phase. Therefore, the
presence of a minority of attacks in the training set will not adversely affect the
learning phase, which in turn does not require an attack-free training set, and
thus it can be performed on the deployment machine.

At detection time, the cluster models are once again used to classify each
syscall into the correct cluster. The probability value for each model is com-
puted and the stored cluster whose models give out the maximum composite
probability Pc = max(

∏
i∈M Pi) is chosen as the correct “system call class”.

Anomaly thresholds are built upon two probabilities, the punctual probability
Pp and the sequence probability Ps. The former is Pp = Pc ·Pm, where Pc is the
probability of the system call to belong to the best-matching cluster and Pm is
the latest transition probability in the chain. Ps is the probability of the whole
execution sequence to fit the whole chain. To avoid Ps to quickly reach zero for

long sequences of system calls, the probability is scaled as Ps(l) = 2l

√
∏l

i=1 Pp(i)i,
where l is the sequence length).

For both the probabilities, threshold values are equal to the lowest probability
over all the training dataset, for each single application, scaled through a user-
defined sensitivity which allows to trade off between detection rate and false
positive rate. A process is flagged as malicious if either Ps or Pp = Pc · Pm are
lower than the corresponding thresholds.

3 Enhanced Detection Models

The improvements we made focus on path and execution arguments. String length
is now modeled using a Gaussian interval as detailed in Section 3.1. The new
edge frequency model described in Section 3.2 have been added to detect Denial
of Service (DoS) attacks. Also, in Section 3.3 we describe how we exploited Self
Organizing Maps (SOMs) to model the similarity among path arguments. The
resulting system, Hybrid IDS. incorporates the models of FSA-DF and S2A2DE
along with the aforementioned enhancements.

Selecting and Improving System Call Models for Anomaly Detection 211

3.1 Arguments Length Using Gaussian Intervals

The model for system call execution arguments implemented in S2A2DE takes
into account the minimum and maximum length of the parameters found during
training, and checks whether each string parameter falls into this range (model
probability 1) or not (model probability 0). This technique allows to detect
common attempts of buffer overflow through the command line, for instance,
as well as various other command line exploits. However, such criteria do not
model “how different” two arguments are to each others; a smoother function
is more desirable. Furthermore, the frequency of each argument in the training
set is not taken into account at all. Last but not least, the model is not resilient
to the presence of attacks in the training set; just one occurrence of a malicious
string would increase the length of the maximum interval allowing argument of
almost every length.

The improved version of the interval model uses a Gaussian distribution for
modeling the argument length Xargs = |args|, estimated from the data in terms
of sample mean and sample variance. The anomaly threshold is a percentile Targs

centered on the mean. Arguments which length is outside the stochastic interval
are flagged as anomalous. This model is resilient to the presence of outliers
in the dataset. The Gaussian distribution has been chosen since is the natural
stochastic extension of a range interval for the length. An example is shown in
Figure 3.

Model Validation. During detection the model self-assesses its precision by
calculating the kurtosis measure [11], defined as γX = E4(X)

Var(X)2 . Thin tailed dis-
tributions with a low peak around the mean exhibit γX < 0 while positive values
are typical of fat tailed distributions with an acute peak. We used γ̂X = μX,4

σ4
X

−3
to estimate γX . Thus, if γXargs < 0 means that the sample is spread on a big in-
terval, while positive the values indicates a less “fuzzy” set of values. It is indeed
straightforward that highly negative values indicates not significant estimations
as the interval would include almost all lengths. In this case, the model falls back
to a simple interval.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

-20 0 20 40 60 80

P(
X

)

x

Norm(29.8, 184.844)
Thresholds: [12.37, 47.22]

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 5 10 15 20 25 30

P(
X

)

x

Norm(19.25, 1.6875)
Thresholds: [16.25, 22.25]

Fig. 3. Estimated Gaussian intervals for string length. Training data of sudo (left)
and ftp (right) was used. N (29.8, 184.844), thresholds [12.37, 47.22] (left) and
N (19.25, 1.6875), thresholds [16.25, 22.25] (right).

212 A. Frossi et al.

3.2 DoS Detection Using Edge Traversal Frequency

DoS attacks which force the process to get stuck in a legal section of the normal
control flow could be detected by S2A2DE as violations of the Markov model,
but not by FSA-DF. On the other hand, the statistical models implemented in
S2A2DE are more robust but have higher False Negative Rates (FNR) than the
deterministic detection implemented in FSA-DF. However, as already stated in
Section 2.2, the cumulative probability of the traversed edges works well only
with execution traces of similar and fixed length, otherwise even the rescaled
score decreases to zero, generating false positives on long traces.

To solve these issues a stochastic model of the edge frequency traversal is
used. For each trace of the training set, our algorithm counts the number of edge
traversals (i.e., Markov model edge or FSA edge). The number is then normalized
w.r.t. all the edges obtaining frequencies. Each edge is then associated to the
sample Xedge = x1, x2, We show that the random samples Xedge is well
estimated using a Beta distribution. Figure 4 shows sample plots of this model
estimated using the mt-daapd training set; quantiles associated to the thresholds
are computed and shown as well. As we did for the Gaussian model (Section 3.1),
the detection thresholds are defined at configuration time as a percentile Tedge

centered on the mean (Figure 4). We chose the Beta for its high flexibility; a
Gaussian is unsuitable to model skewed phenomena.
Model Validation. Our implementation is optimized to avoid overfitting and
meaningless estimations. A model is valid only if the training set includes a sig-
nificant (|mini{xi} − maxi{xi}| ≥ δxmin = 0.04) amount (Nmin

edge = 6) of paths.
Otherwise it construct a simpler frequency range model. The model exhibits the
side effect of discarding the extreme values found in training and leads to erro-
neous decisions. More precisely, if the sample is Xedge = 1, 1, . . . , 0.9, 1, the right
boundary will never be exactly 1, and therefore legal values will be discarded. To
solve this issue, the quantiles close to 1 are approximated to 1 according to a con-
figuration parameter X̄cut. For instance, if X̄cut = 3 the quantile FX(·) = 0.999̄
is approximated to 1.

Fig. 4. Two different estimations of the edge frequency distribution. Namely,
Beta(178.445, 157.866) with thresholds [0.477199, 0.583649] (left) and
Beta(10.3529,181.647) with thresholds [0.0266882, 0.0899057] (right).

Selecting and Improving System Call Models for Anomaly Detection 213

3.3 Path Similarity Using Self Organizing Maps

Path argument models are already implemented in S2A2DE and FSA-DF. Sev-
eral, general-purpose string comparison techniques have been proposed so far,
especially in the field of database systems and data cleansing [12]. We propose
a solution based on Symbol-SOMs [13] to define an accurate distance metric
between paths. Symbol SOM implements a smooth similarity measure otherwise
unachievable using common, crisp distance functions among strings (e.g., edit
distance).

The technique exploits Self Organizing Maps (SOMs), which are unsupervised
neural algorithms. A SOM produces a compressed, multidimensional represen-
tation (usually a bi-dimensional map) of the input space by preserving the main
topological properties. It is initialized randomly, and then adapted via a compet-
itive and cooperative learning process. At each cycle, a new input is compared
to the known models, and the Best Matching Unit (BMU) node is selected.
The BMU and its neighborhood models are then updated to make them better
resemble future inputs.

We use the technique described in [14] to map strings onto SOMs. Formally,
let St = [st(1) · · · st(L)] denote the t-th string over the alphabet A of size |A|.
Each symbol st(i), i = 1 . . . L, is then encoded into a vector st(i) of size |A|
initialized with zeroes except at the w-th position which corresponds to the
index of the encoded symbol (e.g., st(i) = ‘b′ would be st(i) = [0 1 0 0 · · · 0]T ,
w = 2). Thus, each string St is represented with sequence of L vectors like st(i),
i.e. a L × |A|-matrix: S

t
.

Let S
t
and M

k
denote two vector-encoded strings, where M

k
is the model as-

sociated with SOM node k. The distance between the two strings is D′(St, Mk) =
D(S

t
, M

k
). D(·, ·) is also defined in the case of LSt = |St| �= |Mk| = LMk

re-
lying on dynamic time warping techniques to find the best alignment between
the two sequences before computing the distance. Without going into details,
the algorithm [13] aligns the two sequences st(i) ∈ S

t
, mk(j) ∈ M

k
using a

mapping [st(i), mk(j)] �→ [st(i(p)), mk(j(p))] defined through the warping func-
tion F : [i, j] �→ [i(p), j(p)]: F = [[i(1), j(1)], . . . , [i(p), j(p)], . . . , [i(P), j(P)]].
The distance function D is defined over the warping alignment of size P ,
D(S

t
, M

k
) =

∑P
p=1 d(i, j), which is P = LSt = LMk

if the two strings have
equal lengths. d(i, j) = d(i(p), j(p))||st(i(p)) − mk(j(p))||.

The distance is defined upon gi,j = g(i, j), the variable which stores the
cumulative distance in each trellis point (i, j) = (i(p), i(p)). The trellis is first
initialized to 0 in (0, 0), to +∞ for both (0, ·) and (·, 0), otherwise:

g(i, j) = min

⎧
⎨

⎩

g(i, j − 1) + d(i, j)
g(i − 1, j − 1) + d(i, j)
g(i − 1, j) + d(i, j)

Note that i ∈ [1, LSt] and j ∈ [1, LMk
] thus the total distance is D(S

t
, M

k
) =

g(LSt , LMk
). A simple example of distance computation is show in Figure 5 (A is

the English alphabet plus extra characters). The overall distance is D′(St, Mk) =
8.485. We used a symmetric Gaussian neighborhood function h whose center is

214 A. Frossi et al.

D(S
t
, M

k
) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

/ b i n / s h

0 +∞ +∞ +∞ +∞ +∞ +∞ +∞
/ +∞ 0 1.414 2.828 4.242 4.242 5.656 7.071
v +∞ 1.414 1.414 2.828 4.242 5.656 5.656 7.071
a +∞ 2.828 2.828 2.828 4.242 5.656 7.071 7.071
r +∞ 4.242 5.656 5.656 5.656 4.242 5.656 7.071
/ +∞ 4.242 4.242 4.242 4.242 5.656 7.071 8.485
l +∞ 5.656 5.656 7.071 7.071 5.656 5.656 7.071
o +∞ 7.071 7.071 7.071 8.485 7.071 7.071 7.071
g +∞ 8.485 8.485 8.485 8.485 8.485 8.485 8.485

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Fig. 5. Distance computation example between /bin/sh an /var/log

located at the BMU c(t). More precisely, h(k, c(t), t) = α(t)e−
d(c(t),k)
2σ2(t) , where

α(t) controls the learning rate and σ(t) is the actual width of the neighborhood
function. The SOM algorithm uses two training cycles. During (1) adaptation
the map is more flexible, while during (2) tuning the learning rate α(·) and the
width of the neighborhood σ(·) are decreased. On each phase such parameters
are denoted as α1, α2, σ1, σ2.

Symbol SOMs are “plugged” into FSA-DF by associating each transition with
the set of BMUs learned during training. At detection, an alert occurs whenever
a path argument falls into neighborhood of a non-existing BMU. Similarly, in the
case of S2A2DE, the neighborhood function is used to decide whether the string
is anomalous or not, according to a proper threshold which is the minimum value
of the neighborhood function encountered during training, for each node.

4 Experimental Evaluation

In this section we describe our efforts to cope with the lack of reliable testing
datasets for intrusion detections. The testing methodology is here detailed along
with the experiments we designed. Both detection accuracy and performance
overhead are subjects of our tests.

4.1 Testing Methodology and Data Generation

Comparing and benchmarking IDSes is a well known problem [15]. Since the
commonly used DARPA evaluation datasets exhibit well known shortcomings,
we decided to generate a new dataset. We chose a number of recent exploits
from CVE, including different types of vulnerabilities (code injections, file writes,
denial of service attacks) as well as attacks that easily evade existing IDSes by
slightly modifying the data flows and not the control flows. Clean training data
was obtained by collecting benign system calls sequences during the normal
execution of the target applications. We used attacks against sing, mt-daapd,
proftpd, sudo, and BitchX. We refer to the vulnerabilities by their Common
Vulnerabilities Exposures (CVE) ID.

Selecting and Improving System Call Models for Anomaly Detection 215

Table 1. Parameters used to train the IDSes. Values includes the number of traces
used, the amount of paths encountered and the number of paths per cycle.

sing mt-daapd proftpd sudo BitchX mcweject bsdtar

SOM size 15 × 15 15 × 15 15 × 15 15 × 15 10 × 10 15 × 15 15 × 15
Traces 18 18 18 18 14 10 240

Syscalls 5808 194879 64640 52034 103148 84 12983
Paths 2700 2700 23632 1316 14921 48 3477

Paths/cycle% 2 2 1 8 1 50 2

Specifically, sing is affected by CVE-2007-6211, a vulnerability which allows
to write arbitrary text on arbitrary files by exploiting a combination of parame-
ters. This attack is meaningful because it does not alter the control flow, but just
the data flow, with an open which writes on unusual files. Training datasets con-
tain traces of regular usage of the program invoked with large sets of command
line options.

mt-daapd is affected by a format string vulnerability (CVE-2007-5825) in ws -
addarg(). It allows remote execution of arbitrary code by including the format
specifiers in the username or password portion of the base64-encoded data on
the Authorization: Basic HTTP header sent to /xml-rpc. The mod ctrls
module of proftpd let local attackers to fully control the integer regarglen
(CVE-2006-6563) and exploit a stack overflow to gain root privileges.

sudo does not properly sanitize data supplied through SHELLOPTS and PS4
environment variables, which are passed on to the invoked program (CVE-2005-
2959). This leads to the execution of arbitrary commands as privileged user, and
it can be exploited by users who have been granted limited superuser privileges.
The training set includes a number of execution of programs commonly run
through sudo (e.g., passwd, adduser, editing of /etc/ files) by various users
with different, limited superuser privileges, along with benign traces similar to
the attacks, invoked using several permutations of option flags.

BitchX is affected by CVE-2007-3360, which allows a remote attacker to exe-
cute arbitrary commands by overfilling a hash table and injecting an EXEC hook
function which receives and executes shell commands. Moreover, failed exploit
attempts can cause DoS. The training set includes several IRC client sessions
and a legal IRC session to a server having the same address of the malicious one.

In order to evaluate and highlight the impact of each specific model, we per-
formed targeted tests rather than reporting general DRs and FPRs only. Also, we
ensured that all possible alerts types are inspected (i.e., true/false positive/neg-
ative). In particular, for each IDS, we included one legal trace in which file
operations are performed on files never seen during training but with a similar
name (e.g., training on /tmp/log, testing on /tmp/log2); secondly, we inserted
a trace which mimics an attack.

216 A. Frossi et al.

4.2 Comparison of Detection Accuracy

The detection accuracy of Hybrid IDS (H), FSA-DF (F) and S2A2DE (S) is
here analyzed and compared. Both training parameters and detection results
are summarized in Table 1. The parameters used to train the SOM are fixed
except for σ1(t): α1(t) = 0.5÷0.01, σ2(t) = 3 and α2(t) = 0.1÷0.01. Percentiles
for both Xargs and Xedge are detailed. The “paths/cycle%” (paths per cycle) row
indicates the amount of paths arguments used for training the SOM. The settings
for clustering stage of S2A2DE are constant: minimum number of clusters (3, or
2 in the case of the open); maximum merging distance (6, or 10 in the case of
the open); the “null” and the “don’t care” probability values are fixed at 0.1 and
10, respectively, while 10 is the maximum number of leaf clusters. In order to
give a better understanding of how each prototype works, we analyzed by hand
the detection results on each target application.

sing: Hybrid IDS is not tricked by the false positive mimic trace inserted. The
Symbol SOM model recognizes the similarity of /tmp/log3 with the other
paths inserted in the training. Instead, both FSA-DF and S2A2DE raise
false alarms; the former has never seen the path during training while the
latter recognizes the string in the tree path model but an alarm is raised
because of threshold violation. S2A2DE recognizes the attack containing the
longer subsequent invocations of mmap2; FSA-DF also raises a violation in
the file name because it has never been trained against /etc/passwd nor
/etc/shadow; and Hybrid IDS is triggered because the paths are placed in
a different SOM region w.r.t. the training.

mt-daapd: The legit traces violate the binary and unary relations causing several
false alarms on FSA-DF. On the other hand, the smoother path similarity
model allows Hybrid IDS and S2A2DE to pass the test with no false positives.
The changes in the control flow caused by the attacks are recognized by all
the IDSes. In particular, the DoS attack (special-crafted request sent fifty
times) triggers an anomaly in the edge frequency model.

proftpd: The legit trace is correctly handled by all the IDSes as well as the
anomalous root shell that causes unexpected calls (setuid, setgid and
execve) to be invoked. Howerver, FSA-DF flags more than 1000 benign
system calls as anomalous because of temporary files path not present in the
training.

sudo: Legit traces are correctly recognized by all the engines and attacks are
detected without errors. S2A2DE fires an alert because of a missing edge
in the Markov model (i.e., the unexpected execution of chown root:root
script and chmod +s script). Also, the absence of the script string in the
training triggers a unary relation violation in FSA-DF and a SOM violation
in Hybrid IDS. The traces which mimic the attack are erroneously flagged
as anomalous, because the system call sequences are strictly similar to the
attack.

Selecting and Improving System Call Models for Anomaly Detection 217

BitchX: The exploit is easily detected by all the IDSes as a control flow vi-
olation through extra execve system calls are invoked to execute injected
commands. Furthermore, the Hybrid IDS anomaly engine is triggered by
three edge frequency violations due to paths passed to the FSA when the
attack is performed which are different w.r.t. the expected ones.

4.3 Specific Comparison of SOM-S2A2DE and S2A2DE

We also specifically tested how the introduction of a Symbol SOM improves over
the original probabilistic tree used for modeling the path arguments in S2A2DE.
As summarized in right side of Table 2, the FPR decreases in the second test.
However, the first test exhibits a lower FNR as detailed in the following.

The mcweject utility is affected by a stack overflow CVE-2007-1719 caused by
improper bounds checking. Root privileges can be gained if mcweject is setuid.
The exploit is as easy as eject -t illegal payload, but we performed it through
userland exec [16] to make it more silent avoiding the execve that obviously trig-
gers an alert in the S2A2DE for a missing edge in the Markov chain. Instead, we
are interested in comparing the string models only. SOM-S2A2DE detects it with
no issues because of the use of different “types” of paths in the opens.

An erroneous computation of a buffer length is exploited to execute code via
a specially crafted PAX archives passed to bsdtar (CVE-2007-3641). A heap
overflow allows to overwrite a structure pointer containing itself another pointer
to a function called right after the overflow. The custom exploit [16] basically
redirects that pointer to the injected shellcode. Both the original string model
and the Symbol SOM models detect the attack when the unexpected special
file /dev/tty is opened. However, the original model raises many false positives
when significantly different paths are encountered. This situation is instead han-
dled with no false positives by the smooth Symbol SOM model.

4.4 Performance Evaluation and Complexity Discussion

We performed both empirical measurements and theoretical analysis of the per-
formance of the various proposed prototypes. Detection speed results are sum-
marized in Table 3. The datasets for detection accuracy were reused: we selected

Table 2. Comparison of the FPR of S2A2DE vs. FSA-DF vs. Hybrid IDS and S2A2DE
vs. SOM-S2A2DE. Values include the number of traces used. Accurate description of
the impact of each individual model is in Section 4.2 (first five columns) and 4.3 (last
two columns).

sing mt-daapd profdtpd sudo BitchX mcweject bsdtar

Traces 22 18 21 22 15 12 2
Syscalls 1528 9832 18114 3157 107784 75 102

S2A2DE 10.0% 0% 0% 10.0% 0.0%
0.0% 8.7% S2A2DE

FSA-DS 5.0% 16.7% 28% 15.0% 0.0%
0.0% 0.0% SOM-S2A2DE

Hybrid IDS 0.0% 0% 0% 10.0% 0.0%

218 A. Frossi et al.

Table 3. Detection performance measured in µsec/syscall. The average speed is mea-
sured in syscall/sec (last column).

sing sudo BitchX mcweject bsdtar Avg. speed

System calls 3470 15308 12319 97 705

S2A2DE 115.3 52.26 154.2 1030 141.8 8463
FSA-DF 374.6 97.98 97.41 - - 7713

Hybrid IDS 7492 378.8 2167 - - 1067
SOM-S2A2DE - - - 90721 26950 25

the five test applications on which the IDSes performed worst. Hybrid IDS is
slow because the BMU algorithm for the symbol SOM is invoked for each sys-
tem call with a path argument (opens are quite frequent), slowing down the
detection phase. Also, we recall that the current prototype relies on a system
call interceptor based on ptrace which introduces high runtime overheads, as
shown in [2]. To obtain better performance, an in-kernel interceptor could be
used. The theoretical performance of each engine can be estimated by analyzing
the bottleneck algorithm.

Complexity of FSA-DF. During training, the bottleneck is the binary relation
learning algorithm. T train

F = O(S · M + N), where M is the total number of
system calls, S = |Q| is the number of states of the automaton, and N is the
sum of the length of all the string arguments in the training set. At detection
T det

FSA−DF = O(M + N).
Assuming that each system call has O(1) arguments, the training algorithm

is invoked O(M) times. The time complexity of each i-th iteration is Yi + |Xi|,
where Yi is the time required to compute all the unary and binary relations
and |Xi| indicates the time required to process the i − th system call X . Thus,
the overall complexity is bounded by

∑M
i=1 Y + |Xi| = M · Y +

∑M
i=1 |Xi|. The

second factor
∑M

i=1 |Xi| can be simplified to N because strings are represented
as a tree; it can be shown [2] that the total time required to keep the longest
common prefix information is bounded by the total length of all input strings.
Furthermore, Y is bounded by the number of unique arguments, which in turn is
bounded by S; thus, T train

F = O(S ·M +N). This also prove the time complexity
of the detection algorithm which, at each state and for each input, requires unary
and binary checks to be performed; thus, its cost is bounded by M + N . �

Complexity of Hybrid IDS. In the training phase, the bottleneck is the
Symbol SOM creation time: T train

H = O(C ·D · (L2 +L)), where C is the number
of learning cycles, D is the number of nodes, and L is the maximum length of
an input string. At detection time T det

H = O(M · D · L2).
T train

H depends on both the number of training cycles, the BMU algorithm
and node updating. The input is randomized at each training session and
a constant amount of paths is used, thus the input size is O(1). The BMU
algorithm depends on both the SOM size and the distance computation,

Selecting and Improving System Call Models for Anomaly Detection 219

bounded by Linput · Lnode = L2, where Linput and Lnode are the lengths
of the input string and the node string, respectively. More precisely, the
distance between strings is performed by comparing all the vectors representing,
respectively, each character of the input string and each character of the node
string. The char-by-char comparison is performed in O(1) because the size of
each character vector is fixed. Thus, the distance computation is bounded by
L2 � Linput ·Lnode. The node updating algorithm depends on both the number
of nodes D, the length of the node string Lnode and the training cycles C,
hence each cycle requires O(D · (L2 + L)), where L is the length of the longest
string. The creation of the FSA is similar to the FSA-DF training, except
for the computation of the relations between strings which time is no longer
O(N) but it is bounded by M · D · L2 (i.e., the time required to find the Best
Matching Unit for one string). Thus, according to Proof 1, this phase requires
O(S ·M +M ·D ·L2) < O(C ·D · (L2 +L)). The detection time T det

H is bounded
by the BMU algorithm, that is O(M · D · L2). �

The clustering phase of S2A2DE is O(N2) while with SOM-S2A2DE it
grows to O(N2L2).

In the worst case, the clustering algorithm used in [3] is known to be O(N2),
where N is the number of system calls: the distance function is O(1) and the
distance matrix is searched for the two closest clusters. In the case of SOM-
S2A2DE, the distance function is instead O(L2) as it requires one run of the
BMU algorithm. �

5 Related Work

Due to space limitations we focus on the subset of literature which uses unsu-
pervised learning algorithms for anomaly detection over system calls. We refer
the reader to [17] for a more comprehensive and taxonomic review.

The first mention of intrusion detection through the analysis of the sequence
of syscalls from system processes is in [18], where “normal sequences” of system
calls (similar to N -grams) are considered (ignoring the parameters of each invo-
cation). Variants of [18] have been proposed in [19,7,1]; this type of techniques
can also be used a reactive, IPS-like fashion [20]. The core assumption is that
intrusions generate sequences of system calls that are unusual during normal
application usage. Each sequence of system calls is tokenized in substrings using
a sliding window of N elements. All the substrings seen in training are stored;
during detection, any N -gram never seen before raises an alarm. The precision
of this method depends on the value chosen for N . A low value of N tends to
generate false negatives (the worst-case scenario, N = 1, only checks if a system
call was already seen during training).

FSA have also been used to express the language of the system calls of a
program, using either deterministic [21] or non-deterministic [22] automata. The
issue when using FSA is how to define the states of the machine: at the highest

220 A. Frossi et al.

level of detail, each state is linked to a specific instruction of the program, while
transitions are usually identified with system calls. An FSA improves over the
N -gram model with better efficiency and, in addition, it does not suffer from the
choice of arbitrary parameter N .

A static analysis approach to extract a call graph was proposed in [23]. Giffin
et al. [24] developed a different version of this approach, based on the anal-
ysis of the binaries, integrating the execution environment as a model con-
straint. However, static analysis approaches such as these follow all possible
execution paths, therefore they are conservative and may include additional, ex-
traneous control flows; they may also leave more way for mimicry attacks. On
the other hand, automatically generating a compact FSA representation from
system call traces is not an easy task. A similar method [25] uses pushdown
automata to enrich the model with a “stack” structure, which is used to choose
each next transition to take, and can be manipulated as part of the transi-
tion. In Section 2.1 we described more in depth an IDS based on this approach
[2] which uses the program counter to define states and syscalls as transitions,
but complements them with dataflow information. However, all these meth-
ods suffer from an inherent brittleness: if the training is insufficient, a number
of false positives could be generated because the models are extremely nar-
row. The use of Hidden Markov Models (HMMs) has also been proposed to
model sequences of system calls [9]. In [26] HMMs are compared with the mod-
els used in [19,20] and shown to perform considerably better, even if with an
added computational overhead; unfortunately, the datasets used for the com-
parative evaluation are no longer available for comparison. Using Markov chains
instead of hidden models decreases this overhead, as observed in [27]. In [28]
HMMs are observed to perform considerably better than FSA and similar mod-
els. The main difference of these models stochastic part: the transitions are
not deterministic but linked to a probability and this could allow a reduc-
tion of the FPR. In Section 2.2 we analyzed S2A2DE [3], a HIDS based on
this approach, but which complements it with anomaly models built on syscall
arguments.

The two systems analyzed in Section 2 also take into account the parame-
ters of the system calls. Even if this is an inherently complex task, it has been
already proven to yield a lot of potential. For instance, mimicry attacks [29]
can evade the detection of syscall sequence anomalies, but it is much harder
to devise ways to cheat both the analysis of sequence and arguments. Besides
the ones we discuss in the following, two other recent research works focused on
this problem. Another example is [30] in which a number of models are intro-
duced to deal with the most common arguments, even if without caring for the
sequence of system calls. In [31] the LERAD algorithm (Learning Rules for Ano-
maly Detection) is used to mine rules expressing “normal” values of arguments,
normal sequences of system calls, or both. However, no relationship among the
values of different arguments is learned; sequences and argument values are han-
dled separately; the evaluation is quite poor however, and uses non-standard
metrics.

Selecting and Improving System Call Models for Anomaly Detection 221

6 Conclusions

We have presented two alternative, state-of-the-art approaches for anomaly de-
tection over system call sequences and arguments: a deterministic IDS which
builds an FSA model complemented by a network of dataflow relationships
among the system call arguments (which we nicknamed FSA-DF), and a proto-
type named S2A2DE which builds a Markov chain of the system calls, comple-
menting it with several models for detecting anomalies in the parameters and
clustering system calls according to their content. We showed how the model
for system call execution arguments implemented in S2A2DE can be improved
by using better statistical models. We also proposed a new model for counting
the frequency of traversal of edges on the FSA prototype, to make it able to de-
tect denial-of-service attacks. Both systems needed an improved model for string
(path) similarity. We adapted the Symbol SOM algorithm to make it suitable
for computing a “distance” between two paths. We believe that this is the core
contribution of the work.

We tested and compared the original prototypes with an hybrid solution where
the Symbol SOM and the edge traversal models are applied to the FSA, and a
version of S2A2DE enhanced with the Symbol SOM and the correction to the
execution arguments model. Both the new prototypes have the same detection
rates of the original ones, but significantly lower false positive rates. This is
paid in terms of a non-negligible limit to detection speed, at least in our proof
of concept implementation.

Future extensions of this work will re-engineer the prototypes to use an in-
kernel system call interceptor, and generically improve their performance. We
are studying how to speed up the Symbol SOM node search algorithm, in order
to bring the throughput to a rate suitable for online use.

References

1. Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion detection using sequences of
system calls. Journal of Computer Security 6(3), 151–180 (1998)

2. Bhatkar, S., Chaturvedi, A., Sekar, R.: Dataflow anomaly detection. In: IEEE
Symposium on Security and Privacy, May 2006, pp. 15–62 (May 2006)

3. Maggi, F., Matteucci, M., Zanero, S.: Detecting intrusions through system call
sequence and argument analysis. IEEE Transactions on Dependable and Secure
Computing (accepted for publication)

4. Sharif, M.I., Singh, K., Giffin, J.T., Lee, W.: Understanding precision in host based
intrusion detection. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007.
LNCS, vol. 4637, pp. 21–41. Springer, Heidelberg (2007)

5. Zanero, S.: Unsupervised Learning Algorithms for Intrusion Detection. PhD thesis,
Politecnico di Milano T.U., Milano, Italy (May 2006)

6. Han, J., Kamber, M.: Data Mining: concepts and techniques. Morgan-Kauffman,
San Francisco (2000)

7. Cabrera, J.B.D., Lewis, L., Mehara, R.: Detection and classification of intrusion
and faults using sequences of system calls. ACM SIGMOD Record 30(4) (2001)

222 A. Frossi et al.

8. Casas-Garriga, G., Dı́az, P., Balcázar, J.: ISSA: An integrated system for sequence
analysis. Technical Report DELIS-TR-0103, Universitat Paderborn (2005)

9. Ourston, D., Matzner, S., Stump, W., Hopkins, B.: Applications of hidden markov
models to detecting multi-stage network attacks. In: HICSS, p. 334 (2003)

10. Jha, S., Tan, K., Maxion, R.A.: Markov chains, classifiers, and intrusion detection.
In: Proceedings of the 14th IEEE Workshop on Computer Security Foundations
(CSFW 2001), Washington, DC, USA, June 2001, pp. 206–219. IEEE Computer
Society Press, Los Alamitos (2001)

11. Joanes, D., Gill, C.: Comparing Measures of Sample Skewness and Kurtosis. The
Statistician 47(1), 183–189 (1998)

12. Elmagarmid, A., Ipeirotis, P., Verykios, V.: Duplicate Record Detection: A Survey.
IEEE Transactions on Knowledge and Data Engineering 19(1), 1–16 (2007)

13. Somervuo, P.J.: Online algorithm for the self-organizing map of symbol strings.
Neural Netw. 17(8-9), 1231–1239 (2004)

14. Kohonen, T., Somervuo, P.: Self-organizing maps of symbol strings. Neurocomput-
ing 21(1-3), 19–30 (1998)

15. Zanero, S.: Flaws and frauds in the evaluation of IDS/IPS technologies. In: Proc.
of FIRST 2007 - Forum of Incident Response and Security Teams, Sevilla, Spain
(June 2007)

16. Maggi, F., Zanero, S., Iozzo, V.: Seeing the invisible - forensic uses of anomaly
detection and machine learning. ACM Operating Systems Review (April 2008)

17. Bace, R.G.: Intrusion detection. Macmillan Publishing Co., Inc., Indianapolis
(2000)

18. Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A sense of self for Unix
processes. In: Proceedings of the 1996 IEEE Symposium on Security and Privacy,
Washington, DC, USA. IEEE Computer Society, Los Alamitos (1996)

19. Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-nonself discrimination in
a computer. In: SP 1994: Proceedings of the 1994 IEEE Symposium on Security
and Privacy, Washington, DC, USA, p. 202. IEEE Computer Society, Los Alamitos
(1994)

20. Somayaji, A., Forrest, S.: Automated response using system–call delays. In: Pro-
ceedings of the 9th USENIX Security Symposium, Denver, CO (August 2000)

21. Michael, C.C., Ghosh, A.: Simple, state-based approaches to program-based ano-
maly detection. ACM Trans. Inf. Syst. Secur. 5(3), 203–237 (2002)

22. Sekar, R., Bendre, M., Dhurjati, D., Bollineni, P.: A fast automaton-based method
for detecting anomalous program behaviors. In: Proceedings of the 2001 IEEE Sym-
posium on Security and Privacy, Washington, DC, USA. IEEE Computer Society
Press, Los Alamitos (2001)

23. Wagner, D., Dean, D.: Intrusion detection via static analysis. In: SP 2001: Pro-
ceedings of the 2001 IEEE Symposium on Security and Privacy, Washington, DC,
USA, pp. 156–168. IEEE Computer Society Press, Los Alamitos (2001)

24. Giffin, J.T., Dagon, D., Jha, S., Lee, W., Miller, B.P.: Environment-sensitive in-
trusion detection. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS, vol. 3858,
pp. 185–206. Springer, Heidelberg (2006)

25. Feng, H., Kolesnikov, O., Fogla, P., Lee, W., Gong, W.: Anomaly detection using
call stack information. In: Proceedings. 2003 Symposium on Security and Privacy,
2003, May 11-14, pp. 62–75 (2003)

26. Warrender, C., Forrest, S., Pearlmutter, B.A.: Detecting intrusions using system
calls: Alternative data models. In: IEEE Symposium on Security and Privacy, pp.
133–145 (1999)

Selecting and Improving System Call Models for Anomaly Detection 223

27. Jha, S., Tan, K., Maxion, R.A.: Markov chains, classifiers, and intrusion detection.
In: CSFW 2001: Proceedings of the 14th IEEE Workshop on Computer Security
Foundations, pp. 206–219. IEEE Computer Society, Washington (2001)

28. Yeung, D.Y., Ding, Y.: Host-based intrusion detection using dynamic and static
behavioral models. Pattern Recognition 36, 229–243 (2003)

29. Wagner, D., Soto, P.: Mimicry attacks on host-based intrusion detection systems.
In: CCS 2002: Proceedings of the 9th ACM conference on Computer and commu-
nications security, pp. 255–264. ACM, New York (2002)

30. Krügel, C., Mutz, D., Valeur, F., Vigna, G.: On the detection of anomalous system
call arguments. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS,
vol. 2808, pp. 326–343. Springer, Heidelberg (2003)

31. Tandon, G., Chan, P.: Learning rules from system call arguments and sequences
for anomaly detection. In: ICDM Workshop on Data Mining for Computer Security
(DMSEC), pp. 20–29 (2003)

	Selecting and Improving System Call Models for Anomaly Detection
	Introduction
	Two Existing Approaches to System Call Anomaly Detection
	FSA-Based Implementation
	Markov Chains-Based Implementation

	Enhanced Detection Models
	Arguments Length Using Gaussian Intervals
	DoS Detection Using Edge Traversal Frequency
	Path Similarity Using Self Organizing Maps

	Experimental Evaluation
	Testing Methodology and Data Generation
	Comparison of Detection Accuracy
	Specific Comparison of SOM-S^{2}A^{2}DE and S^{2}A^{2}DE
	Performance Evaluation and Complexity Discussion

	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

