
Journal of Computer Virology and Hacking Techniques
https://doi.org/10.1007/s11416-019-0329-2

ORIG INAL PAPER

Security of controlledmanufacturing systems in the connected factory:
the case of industrial robots

Marcello Pogliani1 · Davide Quarta1,2 ·Mario Polino1 ·Martino Vittone1 · Federico Maggi3 · Stefano Zanero1

Received: 18 September 2018 / Accepted: 4 January 2019
© Springer-Verlag France SAS, part of Springer Nature 2019

Abstract
In modern factories, “controlled” manufacturing systems, such as industrial robots, CNC machines, or 3D printers, are often
connected in a control network, together with a plethora of heterogeneous control devices. Despite the obvious advantages in
terms of production and ease of maintenance, this trend raises non-trivial cybersecurity concerns. Often, the devices employed
are not designed for an interconnected world, but cannot be promptly replaced: In fact, they have essentially become legacy
systems, embodying design patterns where components and networks are accounted as trusted elements. In this paper, we take
a holistic view of the security issues (and challenges) that arise in designing and securely deploying controlled manufacturing
systems, using industrial robots as a case study—indeed, robots are themost representative instance of a complex automatically
controlled industrial device. Following up to our previous experimental analysis, we take a broad look at the deployment of
industrial robots in a typical factory network and at the security challenges that arise from the interaction between operators
and machines; then, we propose actionable points to secure industrial cyber-physical systems, and we discuss the limitations
of the current standards in industrial robotics to account for active attackers.

Keywords Industrial robots · Cyberphysical systems · Industry 4.0 · Cybersecurity · Industrial internet of things

1 Introduction

The manufacturing industry is nowadays heavily automated
and integrated with business processes: The pervasive inter-
connection of IT systems is paving its way toward the
factory, where once-isolated operational technology (OT)
systems are now tightly integrated among themselves and

B Marcello Pogliani
marcello.pogliani@polimi.it

Davide Quarta
davide.quarta@eurecom.fr

Mario Polino
mario.polino@polimi.it

Martino Vittone
martino.vittone@mail.polimi.it

Federico Maggi
federico_maggi@trendmicro.com

Stefano Zanero
stefano.zanero@polimi.it

1 Politecnico di Milano, Milan, Italy

2 EURECOM, Biot, France

3 Trend Micro Inc., Milan, Italy

with IT systems [5]. Devices such as industrial robots and
programmable logic controllers are at the heart of the indus-
trial internet of things (IIoT), where once air-gapped devices
are now widely interconnected with factory IT systems and,
ultimately, with the Internet. With good reason, in the OT
ecosystem, the primary concern is the safety of the envi-
ronment and the operators, as well as the integrity of the
manufactured product—even when faults, human errors, or
other abnormal conditions occur. However, the behavior of
an active and smart adversary is different from the effect of
a fault: Focusing on safety does not necessarily improve the
security of IIoT systems, where, on the other hand, a security
breach may easily lead to a safety issue.

In the last decade, high-profile events highlighted the
importance of addressing security concerns in different
classes of safety-critical, cyber-physical systems such as in
the automotive [11,20] and medical industries [6,29]. In the
fields of industrial control systems and critical infrastruc-
ture, the most famous and studied targeted attack against a
industrial control system (ICS) was Stuxnet [8], followed
by other high-profile incidents: To name a few, in 2014, an
attack to a German steel mill caused the inability to shut
down a blast furnace; in December 2015, a cyberattack was

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11416-019-0329-2&domain=pdf
http://orcid.org/0000-0002-1806-8340

M. Pogliani et al.

allegedly responsible for power outages in Ukraine; more
recently, between August and December 2017, researchers
found in thewild instances of TRITON/TRISIS, an advanced
malware with an OT payload specifically targeted against a
safety instrumented system deployed in a Middle Eastern
critical infrastructure [25].

Industrial robots are a key, multi-purpose cyber-physical
system used in the manufacturing industry for various appli-
cations ranging fromwelding, pick-and-place tasks, painting,
to assembly. Industrial robots are extremely widespread in
industries of all sizes. Indeed, the International Federation
of Robotics forecasts that more than 3 million robots will
be deployed in factories all over the world by 2020, with a
14% yearly growth rate [19]. Industrial robots are complex
controlled devices, programmable in a flexible way, and are
evolving fast. They are now interconnected (e.g., formonitor-
ing and programming purposes), and the innovation trend is
moving them “closer” to humans. Indeed, while once robots
were physically separated from human workers with a metal
fence for safety reasons, smaller “collaborative” robots (or
“co-bots”) are now gaining traction. Co-bots are designed to
operate close to human workers, without any physical sepa-
ration of their respective working spaces.

This evolution is, on the one hand, increasing the robot’s
cyber-attack surface, and on the other hand, worsening the
consequences of an attack. In 2017, academic [26] and
industrial research [10,21] showed how even simple soft-
ware vulnerabilities in networked industrial robots create the
avenue for robot-specific attacks, with their impact ranging
from “stolen intellectual property” to “interrupted produc-
tion,” eventually creating a long-lasting negative impact on
the quality and availability of the manufactured goods or on
the safety.

In this paper, we take in consideration this evolutionary
trend and propose a comprehensive analysis of the attack
surface ofmodern industrial robots, as a representative exam-
ple of a control system, in the context of a modern factory.
Particularly, we extend our previous experimental analy-
sis [26] with attacks and vulnerabilities originating from the
human-to-machine interaction, considering the attack sur-
face exposed by the human–machine interface (HMI) and
the programming capabilities of the machine. In summary,
this paper proposes the following contributions:

– We analyze the attack surface of modern industrial con-
trollers used for robots.We focus either on the networked
attack surface and on the physical attack surface that is
“digitally” exploitable through the interaction with the
operator;

– We analyze the role of domain-specific programming
languages in the security of industrial controllers, and
discuss how some “powerful” language features increase
the attack surface;

– To ground our analysis, we present case studies on the
control software by ABB and Universal Robots, and we
use such case studies to describe concrete attack vectors.

Note. This paper is an extension of a previous conference
paper [26], where we performed a security analysis of an
industrial robot, mainly looking at the exploitation of the
network attack surface through vulnerabilities in the robot
controller’s firmware. Here, we summarize and extend the
results by focusing on the broader attack surface not consid-
ered in our previous work, which includes (a) the physical
attack surface exploitable by digital means through the user
interaction; (b) security implications of the robot’s program-
ming languages; and (c) a generalization of our results with
a second case study on a controller by Universal Robots.

2 Industrial robots

An industrial robot, as defined by the ISO 8373 standard,
is an electro-mechanical system composed by a multi-axis
manipulator, a control system, a “operator interface,” and its
hardware and software communication interface. The robot
controller implements the core control functionality, ranging
from path planning, to the execution of the manufacturing
program, to the implementation of the control loops, as well
as executing the basic safety logic. While the manipulator
only contains actuators and sensors, the controller com-
prises one or more computer-based units that run a blend of
general-purpose and real-time operating systems: For exam-
ple, KUKA robots embed various versions of the Microsoft
Windows operating system, coupled with a VxWorks-based
co-processor; ABB robots use VxWorks; Universal Robots
co-bots are instead based on Linux. Besides this, the con-
troller usually includes units responsible for power supply,
electrical drive, and hardwired safety logic. The operator
interface, called teach pendant, is used by trained workers
to manually control the robot or reprogram it for new tasks.
The connection between the teach pendant and the controller
may be either via cable, or wireless, such as in some imple-
mentations of the COMAU WiTP [9].

Traditionally, robots are “caged”: They are physically
separated with a fence from the humans’ working space.
Recently, there is an increasing demand for collaborative
robots, where this separation does not exist, or is imple-
mented only virtually. In collaborative robotics, due to the
close proximity to humans, safety is the most important con-
cern. Due to the lack of a cage, safety is accomplished by
a mechanical design aimed at avoiding injuries, as well as
speed and power limits compared to traditional robots, cou-
pled with software-based controls (e.g., collision detection).
In the collaborative robotics context, software has an even

123

Security of controlled manufacturing systems in the connected factory: the case of…

more important role in managing and guaranteeing opera-
tional safety for human-robot collaboration [17,33].

2.1 The industrial robot ecosystem

Far from being stand-alone and “air-gapped” devices, mod-
ern industrial robots are deeply integrated with the fac-
tory and embedded in an ecosystem together with other
“smart” Industrial Internet-of-Things devices, which extend
their capabilities and provide network interconnection. This,
wider, ecosystem, exposes a large attack surface, which
increases the attack surface and the attractiveness as a tar-
get of manufacturing devices such as robots.

Networked Robots Modern industrial robots are intercon-
nected for purposes ranging from remote programming and
maintenance, as specified in the standard ISO 10218-2:2011,
to integration with other factory systems; more recently, the
ecosystem is expanding to the direct collection of produc-
tion and manteinance data from controlled manufacturing
systems to cloud-based data analytics systems. Thus, robots
are equipped with Ethernet ports for connectivity with the
factory’s local area network, and can be equipped with spe-
cialized devices, dubbed “industrial routers” or “industrial
control gateways” that—similarly to consumer embedded
Internet gateways—interconnect an industrial device (e.g., a
robot or PLC) with a VPN or a cellular network. Besides act-
ing as network gateways, industrial routers usually provide
programmable logging, monitoring and alerting services.
Industrial routers are also used to provide remote access to
the vendor as part of support contracts (e.g., ABB’s “service
boxes”).

Programming For Robots Industrial robots run complex task
programs written in a variety of proprietary vendor-specific
languages, or Domain Specific Language (DSL), such as:
RAPID by ABB, KRL by KUKA, PDL2 by COMAU, and
AS by Kawasaki. Task programs are written offline (i.e., on
a computer) and subsequently loaded to the robot controller,
or online, using the teach pendant to interactively develop the
program in a “teaching by showing” fashion. Despite being
specific to the industrial robotics domain, these languages
offer powerful features: They contain built-in or optional
primitives to access a wide range of resources and periph-
erals, usually with little or no intermediation and checks
performed by the runtime. Sometimes, robot controllers need
to exchange information between each other or with other
machines on the factory line. In fact, modern languages
include network socket functionalities, either by default or
through optional software packages sold separately. Some-
times, robot controllers are designed to communicate directly
over a network, evenwithout externalmiddleware or devices.
For example, COMAU’s PDL2 language includes docu-

mented e-mail primitives to send notifications or execute
authenticated commands [12].

Robots as a Platform Besides their ability to execute custom
task programs, modern robots are a complex platform that
can be extended and integrated with third-party hardware
and software. Vendors like ABB and Universal Robots pro-
vide full-fledged Software Development Kits (SDK) to allow
customers to build complex software applications, includ-
ing custom user interfaces and applications that run on the
teach pendant. Additionally, robots provide platforms that
allow third-party integration of hardware and software com-
ponents and add-ons. As an example, Universal Robots Plus1

consists of a range of third-party products that integrate
with the robot controller’s software and hardware. Those
add-ons range from classic accessories such as grippers and
end-effectors, toward intelligent products such as cameras
and “smart” wireless safety devices aimed at increasing the
interaction between workers and collaborative robots. For
instance, Alumotion’s YouRing is a third-party safety sys-
tem that integrates, through a Bluetooth connection, with
Universal Robots co-bots, and is aimed at increasing the
safety of a human operator interacting with the robot, pro-
viding immediate visual feedback into the actions of the
system. Both newer “IIoT” devices and components in the
standard robotic architecture such as position sensors and
joints are connected with the robot ecosystem and with the
external world, and equipped with their own firmware that
can increase the robot’s attack surface or create new avenues
for attacks.

3 Risks and threats to controlled
manufacturing systems

The effects of an attack involving the OT ecosystem are rad-
ically different than the goals of those against IT systems.
Indeed, devices in theOT ecosystemdirectly interactwith the
physicalworld and interferewith it. This holds true especially
when we consider attacks against controlled manufactur-
ing systems. In this context, the most important security
properties are not related to data confidentiality, integrity
and availability, but rather to the availability and integrity
of the physical process and safety of the environment. The
effect of a cyberattack can vary from halting the produc-
tion plant, to altering the production outcome (e.g., injecting
faults and micro-defects in the production to cause imme-
diate or delayed financial loss), to physical damage of the
system itself, or injuries to workers.

To reason on the impact of such an attack, we start from
the fact that a controlled manufacturing system is composed

1 https://www.universal-robots.com/plus/.

123

https://www.universal-robots.com/plus/

M. Pogliani et al.

by sensors, actuators, and a control system, and must satisfy,
at all times, three basic requirements:

– accuracy, i.e., the requirement to accurately “read” pre-
cise values from the physical world through sensors, and
“write” correct and accurate actuator commands);

– ensuring at all times safety for the operators working
with the robot;

– maintaining integrity of the machine, i.e., the controlled
manufacturing system should not perform actions with
self-damaging outcomes.

We consider an attack any violation of these requirements, if
initiated through a digital vector.

3.1 Threat scenarios

In this section, we outline four main representative threat
scenarios, which can be fulfilled through attacks against
accuracy, integrity and safety requirements.

Production Outcome Altering (accuracy): An attacker may
want to inject faults and microdefects in the production to
cause immediate or delayed financial loss, or damage the
company reputation, resulting in an advantage for competi-
tors. Depending on the manufactured goods, defects can
also cause fatalities (e.g., in automotive, transportation, or
military fields). For instance, researchers showed that, by
attacking the 3Dprintingprocess during themanufacturingof
drone components [4], it is possible to introduce a structural
and non-visible micro-defect in a drone’s propeller. Indeed,
theywere able to reduce the component’s robustness, causing
an early wear out of the propeller, with catastrophic conse-
quences on the drone’s flight. Similar attack consequences
can be devised for othermanufacturing systems, such asCNC
machines and robots.

A slight variation of this threat scenario involves the
concept of cyber-physical ransomware: According to the
thoroughness (e.g., cost) and nature of quality control imple-
mented in the manufacturing process, attackers can create a
ransom scheme that locks or degrades the production, or cre-
ates safety hazards, until a ransom is paid, similarly to what
has been envisioned for other classes of industrial control
systems, such as PLCs [16]. Besides this, more sophisticated
schemes tailored to the manufacturing industry are possible:
For instance, an attacker can sabotage part of the manufac-
tured goods by injecting small defects, while keeping track of
the sabotaged instances. Once the ransom is paid, the mali-
cious actor will disclose a way to recognize the damaged
goods, saving the company from recalling the whole produc-
tion batch—or decreasing their reputation.

Production Plant Halting (accuracy, safety and/or integrity):
After a cyber-physical attack, according to the extent of the

damages and to the time to repair, the production may be
promptly restarted or not. The downtime costs are difficult to
estimate, and vary greatly according to the type and size of
the targeted company. Indeed, the vice president of product
development at FANUC once stated that “unplanned down-
time can cost as much as $20,000 potential profit loss per
minute, and $2 million for a single incident” [13].

Physical Damage (integrity and/or safety): An attacker may
damage machinery (the robot itself or other factory equip-
ment), or, worse, cause injuries to people working in the
factory—for instance, by disabling or substantially alter-
ing safety devices. Causing safety hazards is by far the
most impactful scenario for a cyber-physical system, with
consequences far worse than production losses—and possi-
bly requiring a long production halt while the cause of the
safety hazard is being investigated and solved. For exam-
ple, industrial robots must adhere to strict safety standards2

and implement safeguards that limit the safety impact of
cyber-attacks, even though they were not originally thought
as countermeasures for active attacks. Nonetheless, and
non-standard-compliant deployments aside, in the case of
collaborative robots the physical separation from humans
simply does not exist. Although co-bots are designed to be
intrinsically safe even without the cage (and are actually safe
in their normal operating conditions), they are not necessarily
small: For instance, FANUCCR-35iA has a payload capacity
of up to 35 kg. Indeed, it has been shown [7] that some collab-
orative robots produce enough torque to hurt a human, and
researchers [3] demonstrated an attack against an Universal
Robots co-bot that remotely overrode safety parameters.

Unauthorized Access (data confidentiality): Even though a
manufacturing system is a cyber-physical system, its con-
troller contains sensitive data, such as the source code of
the control programs (e.g. robot’s task programs, or G-
code for additive manufacturing and CNC systems), which
can be reverse engineered to reveal industrial secrets, and
information about production schedules and volumes. Thus,
the usual data security threat scenarios (e.g., unauthorized
access to confidential data) apply: An attacker can simply
steal sensitive data from the controller’s storage, without
deep cyber-physical consequences, yet impacting the vic-
tim’s business.

3.2 Controller subsystems and vectors

Extending on one of the main contributions of our previous
work [26] (a set of “templates” of industrial-robot-specific
attacks), in this paper we observe that industrial robots
are just an instance of a controlled manufacturing device,

2 ISO 10218-1:2001 and ISO 13849-1:2008 for “caged” robots, and
ISO/TS 15066:2016 for collaborative ones.

123

Security of controlled manufacturing systems in the connected factory: the case of…

Table 1 Elements to consider when performing risk and security analysis of an industrial control system, with concrete examples drawn from the
industrial robot case

Subsystem Attack example Attack vectors

High-level Control Manipulating the production logic executed by the machine to
introduce flaws into the workpiece, by changing the executed code or
exploiting the DSL primitives

Compromise of a DSL program or library;
Substitution of the control program

Low-level control Altering the parameters of the PID control system, so the controlled
actuators moves unexpectedly or inaccurately

Configuration file tampering

Calibration Changing the calibration information to make the controlled actuators
move unexpectedly or inaccurately

Calibration configuration tampering

Controller Status Manipulating the status of the controller, for example by placing the
control system in automatic mode rather than manual mode, so the
operators loses control, or can get injured

HMI or controller compromise

User Interface Manipulating the status information displayed to the user, so the
operator is not aware of the true status of the controlled system (e.g.,
the operator thinks that the motors are off when instead they are
turned on)

HMI compromise

characterized by sensors, actuators and a control system.
Abstracting the set of robot-specific attacks in the more gen-
eral context of a control software for smart manufacturing,
Table 1 summarizes the main subsystems of a manufactur-
ing system, alongside with examples of attacks and attack
vectors.

4 Attack surface analysis

In this section, we analyze the attack surface of a modern
controlled manufacturing system, and we present, with the
help of case studies from industrial robots, how it can be
leveraged to gain the level of access required to compromise
the assets summarized inTable 1 and carry out cyber-physical
threats.

We consider a knowledgeable, resourceful attacker inter-
ested in carrying out attacks targeted to a specificmanufactur-
ing system.Weconsider that the attacker has unlimited access
to the control system’s documentation and software, and has
at least a partial knowledge of the processes implemented by
their target. These conditions are reasonable, given that some-
times such documentation is easy to access if not publicly
available online, and that prominent attacks against industrial
control systems, such as TRITON, already demonstrated that
sophisticated attackers are able to obtain or reverse-engineer
proprietary systems, process and protocols, or to leverage
insider knowledge to develop advanced malware for critical
industrial systems.

To analyze the attack surface, we refer to a generic and
vendor-agnostic schema of controlled manufacturing system
(Figure 1), where we emphasize the input and output inter-
faces and protocols, as well as the interaction with human
users and other cyber-physical systems. The actuation sub-

end effectors
tools

controller

DSL
Interpreter

Apps teach pendant

LAN

Apps

industrial gateway
+ GPRS

PCother
factory CPS

programmer
/ operator

status LEDs
stop, auto/man

Network Attack Surface

Physical Process

Ph
ys

ic
al

 A
tta

ck
 S

ur
fa

ce

actuation
subsystem

Fig. 1 Attack surface of a generic controlled manufacturing system.
We emphasise the communication interfaces and interactions with the
human operator and other controllers and factory cyber-physical sys-
tems

system controls the physical process directly or by means of
devices such as robot end effectors and tools, and is connected
to its controller that provides the electrical drive. The con-
troller is equipped with an operator interface or HMI (e.g., a
teach pendant in the case of industrial robots), and optionally
manages the devices connected to the actuation subsystem
through dedicated proprietary connections. The controller,
together with the HMI, manages the execution of the con-
trol program, and provides status LEDs and safety features
such as electrical stops and the switch between automatic
(high speed) and manual-controlled (lower speed) modes.
Themanufacturing system is integrated into a factory ecosys-
tem and “connected” (for maintenance, programming, and to
centrally control and coordinate the production) via multiple
hardware communication interfaces and multiple communi-
cation protocols that allow a controller to exchange data with
other controllers, factory systems, workstations, and remote

123

M. Pogliani et al.

systems. Here, we consider two main classes of attack sur-
face:

– a network attack surface, where a malicious actor
accesses the control system, directly or indirectly, from
the corporate network or from the Internet;

– a physical attack surface, where a operator physically
interacts with the control system to carry out unautho-
rized operations, either via the HMI or by physically
connecting devices (e.g., a USB device) to the control
system. In particular, for physical access, the attacker
may be either an “insider” (i.e., a factory worker with
limited access to the controller) or an unauthorized per-
son who breaks the physical security of the factory.

However, even in case of physical access, our scope includes
only attacks implemented via digital vectors, or by interact-
ing with the robot’s external interface. Our attacker model
does not include tampering with the physical security of the
control system (i.e., picking the lock of the controller case).

4.1 The network attack surface

In a modern factory, industrial manufacturing systems are
connected primarily for remote programming and mainte-
nance purposes, as mentioned by the ISO standards (ISO
10218-1 and ISO 10218-2), and ultimately for centralizing
control and coordinating the production; thus, they expose a
large network attack surface, both to the local area network
and, sometimes, remotely.

Local Area Network Controllers of industrial machines are
connected in a factory TCP/IP network, for programming
purpose (e.g., via a workstation connected to the factory
LAN), as well as integration with other factory and infor-
mation systems.

In more modern architectures, the integration with exter-
nal systems is realized by means of Application Program-
ming Interface (APIs) and middleware. In fact, modern
industrial machines are equipped with rich HMI and com-
plex APIs, essential to integrate them with the factory IT
ecosystem. For instance, controllers of ABB robots expose
the Robot Web Service APIs [2], a set of HTTP REST inter-
faces to integrate third-party programs with the controller;
products by Universal Robots expose several services acces-
sible over TCP/IP that allow to execute various actions:
For instance, the “Dashboard Server” supports various com-
mands, such as the ones to load, start and stop programs,
shut down the controller, and query the robot status; the
“Remote Control” interface receives URScript commands,
and exposes data representing the status of the robot.

Usually, such APIs are protected by authentication and
authorization mechanisms: For example, ABB implements

a mechanism, dubbed User Authentication System (UAS),
whereby authorized users are assigned a usernameand apass-
word, and can be granted a set of permissions (grants). This
system is used to authenticate access to the Web Services
APIs, as well as to the proprietary protocol (RobAPI) used
for the communication between the teach pendant and the
controller, between the computer running RobotStudio and
the controller, and to the teach pendant user interface.

The authentication and authorization mechanisms are a
critical point in protecting the robot if the APIs are meant
to be externally exposed, or if they are exposed behind
a weakly secured LAN or a vulnerable industrial router.
In general, industrial machines are directly connected to a
dedicated factory network that, in the best case, is sepa-
rated from non-production-critical endpoints and from the
Internet, and connected only to other production-critical
machinery (e.g., robots and manufacturing systems, hard-
ened workstations for programming and control). Although
directly exposing critical systems to the Internet may seem
unrealistic at a first glance, during our research [26], we
found a few instances of directly Internet-exposed indus-
trial robots through searches on services that index data from
Internet-wide scans (e.g., Shodan, ZoomEye, Censys). More
in general, projects such as Shodan’s ICS radar3 provide
insights on the non-trivial amount of industrial control sys-
tems and PLCs directly exposed to the Internet. As shown
by [15], a significant amount of probing activities targeted
at cyber-physical systems is happening in the wild, both for
research and for nefarious purposes.

MiddlewareMiddleware platforms simplify the development
of complex multi-device applications involving multiple het-
erogeneous components (e.g., sensors, robots, actuators).
The most prominent robotics-oriented middleware is Robot
Operating System (ROS) [27], a publish-subscribe dis-
tributed middleware originally developed within the
autonomous robotics community, and widely used for both
research and real-world deployments.

A recent Internet-wide scan performed between Decem-
ber 2017 and January 2018 [14] revealed that over 100
instances of ROSmaster nodes are accessible from the public
Internet, and that the majority (over 70%) belong to research
or university networks, confirming the use of ROS mostly as
a research platform. However, ROS is gaining traction also
in industrial robotics, with projects such as ROS-Industrial4

and variousminor open-source tools available throughout the
Internet to integrate commercial, industrial robots with ROS
(e.g., open_abb5).

3 https://ics-radar.shodan.io/.
4 http://rosindustrial.org.
5 https://github.com/robotics/open_abb.

123

https://ics-radar.shodan.io/
http://rosindustrial.org
https://github.com/robotics/open_abb

Security of controlled manufacturing systems in the connected factory: the case of…

Born as a research platform, ROS did not originally
include built-in transport security, encryption or authentica-
tion, instead assuming that the network where ROS nodes
are connected is completely trusted. However, guarantee-
ing that a network, albeit internal, is trusted, is challenging:
Thus, while security was explicitly not considered in the
original design ofROS, this “middleware-exposed attack sur-
face” should be considered in future in the roadmap of ROS.
Indeed, approaches to provide authentication and encryption
of the communication between ROS nodes are under active
development (e.g., Rosbridge, SROS, SROS2). Furthermore,
ROS2 is built on top of the DDS middleware, which recently
included a specification for data security [24].

Remote Networks Controlled manufacturing systems are
often connectedwith remote networks bymeans of dedicated
remote access devices (“industrial router”, “industrial con-
trol gateway”, or “service box”). Such devices enable remote
monitoring and manteinance, and are often provided as part
of the machine vendor’s support contract for remote assis-
tance and troubleshooting services. In this case, industrial
routers connect to the vendor’s network through a VPN or
a cellular network, using vendor-specific or carrier-provided
mobile Access Point Names (APNs). The convenience of
remote management could make robots accessible through
the service network, even if isolated. Indeed, the results of
our Internet-wide scans show that industrial routers are easily
found exposed to the Internet (more than 80,000 instances),
even without authentication (more than 5,000 instances) as
of late March 2017 [21]. The results of this scan are con-
servative, as they consider only routers that expose an easily
“fingerprintable” web-based interface to the public Internet
on the standard HTTP port. There may be more devices
exposed indirectly or on non-standard ports. It is not sur-
prising to find exposed industrial routers, as their purpose is
to provide secure remote access to industrial devices. How-
ever, these devices offer a considerable remote attack surface:
If vulnerabilities are present, they can be exploited to gain
access to robots, PLCs, and other industrial control systems.
Indeed, a superficial security analysis of 12 different indus-
trial routers by means of static analysis [21] revealed that
vulnerabilities and misconfigurations in industrial routers
are still easily found (e.g., outdated software components
with known vulnerabilities, default credentials, poor authen-
tication and transport encryption, vulnerabilities in the web
interface).

4.1.1 Case studies

Our previous conference paper [26] and various industrial
research reports [3,10] thoroughly analyzed the security of
modern industrial robots from a network attacker standpoint,
concluding that critical software vulnerabilities in network

services running on robot controllers are far from being
rare, including memory corruption issues, and logical vul-
nerabilities introduced at design time, especially in critical
functionalities such as auto-configuration, update, or the
interaction with plug-ins.

ABB RobotWare As shown in [26], ABB RobotWare (ver-
sion 5.x) did not check FTP credentials during the controller
boot to allow the FlexPendant to download software and
configuration data; they also included a fixed hard-coded
password to implement auto-configuration of the service box,
by allowing it to execute a set of commands once connected.
Combining together these vulnerabilities, along with some
non-authenticated exploitable buffer overflows, allowed to
bypass the robot’s user authentication, execute malicious
code, and create powerful robot-specific attacks. To make
things worse, various vulnerabilities found in popular indus-
trial network gateways demonstrated the feasibility of fully
remote attacks to manufacturing systems.

Universal Robots: “DSL Request Forgery” As a second
case study, we present an attack on Univeral Robot co-
bots, caused by logical design issues in the design of the
controller (e.g., lack of privilege separation) coupled with
powerful capabilities of the robotics programming language.
We perform the experiment described in this paragraph, and
the other experiments on Universal-Robots described in the
remainder of this paper, by analyzing the firmware images
available for download from the support website. We used
the CB 3.1 (USB stick version) 3.4.5-100 software image
that we executed in a virtualized environment.

Controllers byUniversal Robots interpret programs devel-
oped in a proprietary language, URScript. Among the
capabilities of this language, programmers are free to use
low-level network sockets or higher level remote proce-
dure calls (XML-RPC) for network communication. Those
features are widely used in both standard controller com-
ponents and URCap plugins; furthermore, it is a common
pattern to exchange URScript commands directly over non-
authenticated network sockets.

The software architecture of a controller by Universal
Robots exposes various networked services accessible over
TCP/IP, including a “dashboard server” and a control pro-
gram, URControl, that accept network connections. All the
software running on the controller is executed by a highly
privileged operating system-level user (root), violating the
principle of least privilege. As discovered previously [3],
these services allow to execute several actions without
authentication (e.g., stopping and starting a program, and
loading a specific program) according to various protocols.
By using this feature, an attacker can cause denial of service,
load an arbitrary program already present on the controller,
or exfiltrate confidential data.

123

M. Pogliani et al.

One of the protocols exposed by URControl on the TCP
port 30002 listens by design for arbitrary URScript code and
executes it. URScript programs are limited in functionality.
Thus, apparently, this “code execution by design” does not
allow the attacker to gain full control of the controller. This
feature is used, for instance, by URCap plugins. For exam-
ple, Listing 1 shows how a URCap plugin sends URScript
commands to the robot via a network socket, and how the
commands, in turn, uses XML-RPC functionalities to make
the robot execute an action (i.e., blink LEDs on the product
associated to the URCap). The capability of executing unau-
thenticated URScript commands that can initiate network
requests allows to communicatewith any service andnetwork
reachable from the controller—but not from the attacker’s
network—increasing the attack surface.

Listing 1 Simplified example of “secondary socket” client present in a
URCap plugin

def go_freedrive():

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.connect((cfg.ROBOT_HOST, 30002))

s.send(’def set_freedrive():\n’)

s.send(’uring = rpc_factory("xmlrpc",

"http://127.0.0.1:33000")\n’)

s.send(’uring.set_leds_mode(2,0,100,0,100,150,150,150,0,-1)\n’)

s.send(’end\n’)

s.close()

Furthermore, the controller runs a default installation of
Apache Felix that exposes a management console on TCP
port 6666, which listens only on connections from localhost,
i.e., the controller itself.6 This console allows clients to install
and run arbitraryOSGI bundles (i.e., Java packages). Exploit-
ing this, a network attacker can use the arbitrary URScript
execution allowed by the URControl interface to execute a
script that connects to the controller from the perspective of
the controller itself, i.e., to localhost, and sends commands to
the Apache Felix console, which is not otherwise network-
accessible. As Apache Felix is running with the privileges of
the root user, this grants the attacker unauthenticated arbi-
trary and privileged code execution on the robot controller,
using an attack similar to a “server-side request forgery”
(SSRF), which we call DSL Request Forgery attack, as it
is initiated through commands in the robot’s programming
language.

Apache Felix is not the only service vulnerable to this
issue. We analyzed publicly available URCap plugins, and
found instances that install a daemon, and an associated net-
work service, bound to localhost, and not directly reachable
from the network—unless the attacker uses the above attack.

As all of the features we employed are also employed
by URCap plugins, mitigations are hard to implement, mak-

6 https://felix.apache.org/documentation/subprojects/apache-felix-re
mote-shell.html.

ing our attack extremely powerful: Any change made to the
management interfaces to fix this vulnerability will have
to involve not only Universal Robots, but also third-party
URCap plugin developers, as well as any customer leverag-
ing those functionalities. Indeed, as the code execution is by
design, this vulnerabilitywas not fixed, andUniversal Robots
recommends as remedial actions to “only allow trusted users
physical access to the robot control box and teach pendant,”
not to “connect the robot to a network unless it is required
by the application”, and using “a secure network with proper
firewall configuration” [32], suggesting that the underlying
threat model of the robot considers a trusted network and
trusted-only physical access as the only line of defense.

4.2 The“interaction” attack surface

The development of user interfaces resilient to a malicious
user, including the interaction between operators and the
HMI, as well as external ports (e.g., USB, LAN) that can be
used to gain unauthorized access to the industrial controller’s
software, is an aspect often overlooked or not considered
altogether in the threat model for controlled manufacturing
systems. The consequences of malicious physical access to a
controller can be overwhelming, ranging from stopping the
machine or issuing malicious commands, to subverting the
software running on the controller: For instance, if the con-
troller does not properly verify the authenticity and integrity
of the firmware upon every boot and during updates, a mali-
cious operator can substitute the firmware with a tampered
version; if the user interface access control isweak, a physical
attacker can run malicious commands.

Physical access can also be used as an indirect vec-
tor: Attackers can leverage a legitimate user’s physical
access by luring them to carry out malicious operations via
social engineering or technical means. For instance, infected
USB devices can be a threat used to compromise even
network-disconnected controllers: Research has shown that
the handling of untrusted USB devices by users is particu-
larly dangerous [30], and, as an anecdote, during our research
we found that one of the robot controllers we had access
to (a 2011 controller by KUKA based on Microsoft Win-
dows XP Embedded, and disconnected from any network)
was inadvertently infected by a USB-spreading malware.
The robot was infected even though it was equipped with
an antivirus software, a precaution suggested in the product
documentation: antiviruses may be difficult to keep up-to-
date, especially if the robot is not connected to any network,
and they may be easily bypassed by unknown or targeted
malware. The malware sample we found7 was a typical and
non-targeted information stealer spyware forMicrosoftWin-

7 SHA256hash:78d9b449e64b4b2bb40ad30b2033420599b5
923 af5ae1c00b7eb5f4447acc772.

123

https://felix.apache.org/documentation/subprojects/apache-felix-remote-shell.html
https://felix.apache.org/documentation/subprojects/apache-felix-remote-shell.html

Security of controlled manufacturing systems in the connected factory: the case of…

dows, aimed at harvesting password for online games; despite
it was a generic malware rather than a robot-specific targeted
threat, this incident shows the effectiveness of theUSB attack
vector to target industrial robots.

Furthermore, the extensibility of the smart manufacturing
ecosystem allows to envision a future in which re-purposed
and second-hand end effectors can become threat vec-
tors using techniques such as BadUSB [23]: Indeed, some
end-effectors and products such as Alumotion’s YouRing8

already require the user to connect a USB device to the
controller (e.g., to communicate via a serial or Bluetooth
adapter).

4.2.1 Case studies

In this section, we consider the digital attack vectors used
by a physical attacker. In this scenario, often overlooked by
the robot vendors’ threat models, there are multiple attack
vectors: Every possible user interaction could be used to
compromise the controller, be it through the teach pendant’s
interface, or a custom USB device, as highlighted in the fol-
lowing case studies.

Weak Interface Hardening Sometimes, weak applicative
access control or user interface hardening allows users to
bypass the intended functionality of the interface, often
resulting in full access to the underlying operating system.
For example, Universal Robot’s PolyScope interface (ver-
sion 3.4.4.412) features a calibration interface, which can be
accessed from the login screen using a pre-defined password,
mentioned in the servicemanual [31]—meant as aweak safe-
guard for unintentional tampering by unauthorized operators,
rather than for securing the interface against a determined
attacker.We also found other hardcoded credentials not men-
tioned in publicly available manuals: Notably, one of these
credentials enables a Low Level Controller that, among the
various functionalities, allows to implement a custom con-
trol logic; another one allows to reset the passwords set by
the user. These passwords are hardcoded, are the same for
all the robots, and cannot be changed or disabled. Using the
above passwords, users can access a text editor running with
root privileges, which allows to edit arbitrary text files with
only limited sanitization (e.g. some characters like a dot can-
not be used, supposedly to prevent path traversal). This will
not stop a malicious operator from accessing important files
like /etc/passwd/ and change the Unix root password
hash (Figure 2), leading to complete access to the operating
system.

Bad Magic In Universal Robot controllers, magic files are
in charge of executing maintenance and management tasks,

8 http://tools.alumotion.eu/it/youring/.

Fig. 2 The text editor running in the Universal Robot’s PolyScope
interface, editing arbitrary files as the root user

such as backing up log files and configurations [31]. Tech-
nically, they are simple shell scripts. The implementation of
magic files allows for an automatic execution: when such a
file is copied to the robot controller, it automatically executes
as the root user with no integrity or validity check, just like
the old and deprecated “autorun” functionality of Microsoft
Windows. As a side effect, getting full code execution on a
controller with this functionality is, currently, only a mat-
ter of plugging in a malicious or infected USB mass storage
device.

5 Impact of domain-specific programming
languages

The defining feature of controlled manufacturing systems is
their ability to be quickly reconfigured for different appli-
cations, i.e., their ability to run some kind of “program”,
written in a specific language. Although different from
general-purpose programming languages used to develop
applications for general-purpose computers, such languages
are relatively powerful, as they expose a rich set of APIs to
ease common automation tasks.

In particular, among the various manufacturing systems,
industrial robots sport one of the most complex and flexible
programming environment. There, “task programs” are usu-
ally written in proprietary domain-specific languages (DSL)
and interpreted by the robot controller. Task programs can be
written either offline—i.e., developed in a computer-based
environment, tested in a simulator and uploaded to the robot
at a second stage—or online, i.e., developed interactively
with the use of the teach pendant according to a paradigm
known as “teach programming” (ISO 8373). Besides the
basic functionalities needed to move the robot’s joints, many

123

http://tools.alumotion.eu/it/youring/

M. Pogliani et al.

driving
power = ?

initial position target weight = w2

weight = w1

driving
power = f(w1, w2, ...)

missed target

wrong
weight config.

configuration file
loaded by robot
wrong or tampered with

Fig. 3 “Implicit parameters” and their effect in the execution of robotics task programs

language allow to perform system-related tasks, such as
acquiring input from (and displaying output to) the teach pen-
dant, reading and writing files, and opening network sockets,
either with features available out-of-the-box or by means of
plug-ins sold separately.

Task Programs and Implicit Parameters The execution of
a task program requires some implicit parameters that influ-
ence the program’s execution behavior: in fact, the program’s
source code does not contain all the parameters and informa-
tion needed for a deterministic execution, as the interpreter
needs to take into consideration the parameters of the specific
robot to correctly perform tasks such as path planning, and to
move the robot correctly. For instance, as shown in Figure 3,
to correctly compute the driving force for the mechanical
arm, the controller must know the weight of the arm itself;
otherwise the robot will miss the target (in case of a pick and
place application). This makes the interpretation and exe-
cution of a task program more complex than the one of a
program written in a common programming language.

“Appification” of Industrial Programs In the field of con-
sumer robotics, “app stores” for robots, such as the Robot
App Store9 opened in 2011, are becoming increasingly
available. This “appification” of robotics, fueled by the
availability of easy-to-use APIs, is moving to industrial
robotics. For example, ABB hosts the RobotApps forum10,
where users can exchange 3D models, videos, add-ins and
applications; Universal Robots offers Universal Robots+,
a vendor-vetted “online showroom” of third-party hard-
ware and software products that can be integrated with UR
robots.11

9 http://www.robotappstore.com/.
10 https://robotapps.robotstudio.com.
11 https://www.universal-robots.com/plus.

Security Challenges This context raises two important secu-
rity challenges: First, the security of the interpreter and of the
environment where task programs are executed; and second,
the security of task programs written in robotics DSLs. Both
issues contribute to the attack surface of the robot, for what
concerns the “network” attack surface, and for what concerns
the “physical interaction” attack surface.

5.1 Vulnerable task programs

Task programs are, ultimately, software products: As such,
they can (and do) contain software vulnerabilities. Modern
roboticDSLs are equippedwith features to programmatically
access sensitive system resources, such as configuration files,
and to issue cyber-physical commands to control the robot’s
movement. Furthermore, they can process untrusted input
both from the robot’s network- and physical- attack surface.
These features result in taint-style vulnerabilities, when data
from untrusted sources, such as network sockets or user input
from the teach pendant interface, is sent without sanitization
or security checks to sensitive sinks, such as file system oper-
ations or robotmovement commands. This isworsenedby the
fact that task programs arewritten by automation and robotics
experts, rather than software development teams with infor-
mation security awareness and knowledge.

Networking The ability to use network sockets is an inte-
grated or optional feature in most robotics DSLs. Task
programs can be designed to be parameterized at runtime:
They take input data from a source external to the controller
and act according to this data. Such input may either come
from the network, or from operators physically interacting
with the robot by means of the teach pendant.

To implement network functionalities, most programming
languages provide only basic and low-level socket-like prim-
itives, that may be difficult to securely use, especially by

123

http://www.robotappstore.com/
https://robotapps.robotstudio.com
https://www.universal-robots.com/plus

Security of controlled manufacturing systems in the connected factory: the case of…

robotics experts who lack specific knowledge in security
and in secure software development, and easily lead, for
instance, to unauthenticated and encrypted communication.
This can result in safety- and production- critical informa-
tion (e.g., joint positions) being exchanged over an unsecured
network channel that can be possibly tampered with by an
attacker with local network access. Moreover, the use of data
from network sockets without sanitization easily leads to
taint-style vulnerabilities.

Runtime Symbol Resolution Modern robots call for dynamic
production: For example, it is possible that, when an external
computer connected with a vision system detects a shape for
the next part to be processed, it chooses the correct procedure
to execute. This is common when the robot processes objects
that are heterogeneous in shape or weight. This is technically
enabled by calling dynamically procedures in the robotics
DSL according to network- or operator-provided data, and
many robotics languages provide support for this feature. For
example, ABB’s RAPID includes the functionality known as
“late binding”, and COMAU’S PDL2 include the keyword
CALLS.

Listing 2 provides a simplified example of an unsafe use
of network sockets and of the late binding functionality in
RAPID. In the example, an external source sends the name
of the function to call through a network socket (or, alter-
natively, through input acquired from the teach pendant).
Without proper sanitization, an attacker may connect to the
task program and call routines other than the intended ones.
Not only the routines defined in the program by the program-
mer can be called, but also a small set of “system” functions
can be called providing the attacker an interesting vector to
carry out other attacks (i.e., performing a denial of service
by executing repeatedly aWarmRestart, or disruptingpro-
duction by using ClearPath).

Furthermore, ABB’s RAPID also provides ways to per-
formdynamic code loadingof an entiremodule froma remote
resource. This is a useful feature with robots working in par-
allel and reproducing the same production steps, but presents
security challenges.

Listing 2 Example of use of unsafe functionalities in RAPID: sockets
and late binding. The code will receive a string through socket and will
call a predefined routine for retrieving the current robot status.

PROC getCommand()

ReceivedData := stEmpty;

!Receive the data

SocketReceive clientSocket\Str:=

ReceivedData\Time:=WAIT_MAX;

%ReceivedData%;

ERROR

IF ERRNO = ERR_SOCK_CLOSED THEN

TPWrite "reconnecting...";

ConnectionRoutine;

sockStatus := SocketGetStatus(

clientSocket);

WHILE (

sockStatus <> SOCKET_CONNECTED)

DO

ConnectionRoutine;

sockStatus := SocketGetStatus(

clientSocket);

ENDWHILE

RETRY;

ENDIF

ENDPROC

Example: Vulnerable RAPID App During an analysis of
the ABB application store for taint-style vulnerabilities
in RAPID applications, we found a vulnerable webserver
designed for ABB controllers. The software is intended to
share files from the robot controller with a client; it contains
functionalities for sending a whole directory, an for send-
ing a single file. The methods access the file system. The
unsanitized content of the filename in the user’s request is
passed through file system operations, allowing the user to
retrieve arbitrary files in the whole file system rather than
just the files supposed to be served (i.e., path traversal). We
reported the vulnerable application to ABB product security,
resulting in the application being removed from the store.
At the moment of our report, it had been downloaded a few
hundreds of times.

5.2 Interpreter issues

The second challenge in securing robotics programming
languages is the complexity of the interpreter. Indeed, the
complexity of the interpreter code (from parsing routines,
to the interpretation of the task program) leads to classic
software security challenges (e.g., memory corruption vul-
nerabilities in the interpreter code) and in more subtle issues,
especiallywhen different trust domains are involved, orwhen
task programs are executed from untrusted sources.
Case Study: Permission Circumvention in ABB Robots Writ-
ing and editing task programs is an essential part of the
interaction between the operator (or the programmer) and
the robot: Operators routinely interact with, and edit task
programs through the teach pendant, making them accessible
from the physical attack surface. Robot controllers are meant
to be multi-user, and thus equipped with an authorization
system with fine-grained permissions. As in other scenarios
(e.g., smartphones), the semantic differences between dif-
ferent, unrelated permissions, and their interaction may hide
security issues.

One of such issues is the “permission circumvention”, i.e.,
the fact that attackers who are granted only a limited set of
permissions could try to “circumvent” the permission system
to perform unintended or unwanted actions.

ABB controllers are equipped with a User Authorization
System (UAS), based on a role-based access control system:
Each user, identified by a username, belongs to a group, and
each group is assigned a set of permissions. Access is granted

123

M. Pogliani et al.

upon password-based authentication. Instead, task programs
are not bound by UAS permissions and always run with full
privileges, due to the common requirement of running pro-
gramswith a different privilege level than the operator who is
logged into the robot controller, or of running task programs
when no user is logged in at all. Thus, although the UAS
restricts how the user interacts with the controller through
the accessible APIs, UAS grants have no impact on the inter-
preted RAPID code. This stems from the assumption that
programs can be only loaded by a trusted user, and thismeans
that, when users are assigned the UAS grant to “edit RAPID
code,” they can modify the task program currently loaded in
the execution memory.

Although users with the permission to edit RAPID code
are considered trusted from the point of view of the robots
movements, they are not necessarily allowed to perform
administrative actions. This scenario can be considered com-
mon in different applications where few manual changes in
the code can help in adjusting the output of the control loop,
when automatic feedback is not helping and there is no pos-
sibility to restart the whole production cycle, or if the input
parts in the production may vary between stocks and there is
no automatic way of telling so.

As RAPID contains features for I/O and for executing
program modules, the user can bypass other restrictions: for
instance, they can read/write to the filesystem, and load in
memory other modules. First, it is reasonable to give opera-
tors access only to a single pre-loaded program (i.e., the one
that is supposed to apply to the domain/context of the specific
operator), without granting them to load code belonging to
other programs. However, if the operator is granted permis-
sions to edit the current program, the operator is able to load
arbitrary modules into the current program by calling from
RAPID code the procedures Load and StartLoad.

We also verified that a user who is assigned only the
controller grants to edit RAPID code and to execute task
programs is able to write code to read (or even change)
arbitrary files to the file system, even if this user is not
granted any file-system access. A malicious operator can
write a program that prints the content of any file in the con-
troller file system: in the worst case, a program to read the
file HOME:/../../INTERNAL/uas_users.xml,
containing the weakly obfuscated list of UAS users with
their password, including the administrator’s credentials.
Being able to read and edit this file, the malicious oper-
ator can log in to the controller with full permissions;
otherwise, the user could directly manipulate arbitrary con-
figuration files, or directly change their permissions by
editing uas_groups.xml.

6 Mitigations and defenses

As any complex software-based device, controlled manufac-
turing systems often contain design errors and bugs that lead
to security issues. Indeed, designing software free fromerrors
and vulnerabilities is currently an extremely hard task, and
formal verification techniques are too costly for such a com-
plex device. However, due to the long service-life and the
legacy roots of controlled manufacturing system, a simple
“patch and fix” style of managing security vulnerabilities is
not sufficient, calling for secure architectures that are able
to guarantee safety and resilience in the presence of soft-
ware compromise. Controlled manufacturing systems are
controlled by a set of embedded systems, and securing them
presents challenges similar to the ones found in the embed-
ded and IoT space; they are also cyber-physical systems used
for critical processes, and they present challenges similar to
those of the industrial control system space [22]. In this Sec-
tion, we outline the main avenues for defending controlled
manufacturing systems, mostly with a long term focus, and
hinting at the main open research and engineering challenges
in this field.

Secure Software Development Lifecycle The process of
designing an industrial controller should take cyberattacks
into account. On the one hand, this translates into adopting
practices such as a secure software development lifecy-
cle [18] during the design and implementation phases of
all the software components, including steps ranging from
“secure coding’ standards to reduce the likelihood of simple
vulnerabilities, to security-oriented code review activities, up
to the management of third-party dependencies. On the other
hand, this requires a deep analysis of the device’s attack sur-
faces aiming at reducing them to the minimum that preserves
the intended functionality, and in considering the presence of
an active attacker in all the phases of the system design. Fur-
thermore, the secure lifecycle should include a formalized
vulnerability management process and an easy way for cus-
tomers or external researchers, including non-customers, to
report vulnerabilities and security incidents.

Patch Management Once a security vulnerability is found, it
needs to be addressed, and the resulting security update needs
to be timely deployed across existing systems, in order to
reduce the window of opportunity for the attacker. In an envi-
ronment as critical as a factory it is not easy to apply patches
to already deployed systems. First, in most cases, applying
software updates requires to interrupt the production, causing
costs and delays. This opens the challenge of hot-patching
operating systems and user-space applications without inter-
ruption; although this challenge has been partially addressed
both in research (e.g., [28]) and in commercial systems (e.g.,
Linux’skpatch), existing solutions present drawbacks, and
live patching remains not yet feasible in most scenarios. Sec-

123

Security of controlled manufacturing systems in the connected factory: the case of…

ond, the majority of industrial routers and controllers do
not have procedures to automatically update their firmware
when security vulnerabilities are discovered and patched, in
order to avoid connecting them to the Internet, to address
legitimate concerns on regression issues, as well as to avoid
possible production interruption in case an update renders
the controlled system unserviceable. Thus, the decision to
update the software is up to the customers: It is influenced
by their awareness of security issues, and their evaluation of
the cyber-security risk.

Secure and Resilient Architectures An effective defense is
the adoption of more secure architectures to increase the bar
of attacks and reduce their impact. This opens various engi-
neering challenges for rendering devices more resilient to
attacks, assuming the compromise of one or more compo-
nents. In their most basic form, this translates in designing
the systemwith the principle ofminimumprivilege, reducing
the implicit trust between hardware and software compo-
nents, and compartmentalizing the system so that a single
vulnerability is not enough for a complete compromise. Fur-
thermore, it is advisable to implement software signing to
guarantee integrity and provenance of firmware updates as
well as the software of plugin and accessories.

Indeed, various issues we found in the case studies pre-
sented in this paper stem from design decisions that consider
the environment where the control system is deployed com-
pletely trusted. For example, the DSLRF vulnerability in
Universal Robot can be mitigated by disallowing unau-
thenticated execution of URScript code from the network,
and its impact can be reduced by adopting the principle of
minimum privilege throughout the software running on the
controller (e.g., avoid running all the processes as the root
user). However, suchmitigations are challenging, and should
be intended as a long-term solution: In this example, the non-
authenticated transmission of commands is used throughout
theUniversal Robots architecture and in third-party software,
thus, changing the interface to require authentication would
break existing deployments.

Another example of trusting the environment is the attack
surface exposed to an operator physically interactingwith the
control system. To mitigate the issues raised by the physical
attack surface, vendors should take into account that the oper-
ator is not necessarily trusted, and implement robust access
control policies in their software.

Secure Deployment Besides improvements in the design of
manufacturing systems, network segmentation and secure
deployments are still one of the most important avenues to
reduce the attack surfaces and contain the effects of an attack.
To aid with this task, we advise to distribute a “secure oper-
ation manual” with each controller, with clear guidelines to
help the user configure (and harden, if necessary) the robot,
tailoring the security level to their needs, possibly disabling

features and services not needed for the specific deployment.
This could be coupled with secure defaults in the configu-
ration of the controller software (e.g., forcing the customer
to set a password during the installation procedure instead
of shipping a default one), taking into account the trade-off
between the device security and the product usability. Risk
management standards and activities (i.e., ISO/TS 15066)
could be expanded to cover security concerns raised by this
paper and other recent research.

Secure Task Programs The problems concerning the pro-
gramming of the machine with modern domain-specific
languages can be mitigated on two levels. As with program-
ming traditional systems, programmers should be advised to
properly check and sanitize untrusted data, e.g., wrapping
the late binding mechanism inside a input validation method
that checks that the called procedure is among a white-list of
valid targets. Unfortunately, doing so requires that the devel-
opers of task programsknow the security implications of their
programs,whichwe believe is not (yet) the case for robot pro-
gramming. Thus, as amedium-termmitigations, designers of
robotics programming language should develop high-level
and easy-to-use abstraction that make it more difficult to
insert security vulnerabilities (e.g., robotics DSL can provide
basic socket abstractions to implement communication rou-
tines, instead of providing higher-level interfaces with easy
data type and format checking, and default use of secure
and authenticated transmissions channels). As a long-term
countermeasure, we argue that smaller andmore specific lan-
guages may be used in place of today’s full-fledged ones,
developed when robots ran in isolation: This way, it would
be possible to reduce the attack surface and the likelihood
for a robot programmer to introduce a critical vulnerability.

The role of standards The industrial robotics field is heavily
standardized: Many ISO standards dictate safety require-
ments of machinery and industrial robots. For example, ISO
10218:2011 focuses on requirements in terms of firmware
performance, stop functionalities, emergency stop, teach
pendant controls and speed limits. On the other hand, ISO
34849 and IEC 62061 regulate the performance of safety
related control systems (SRP/CS – safety related parts of
control systems), taking into account also concepts related
to “design and installation”. Safety standards are also being
extended to co-bots: the ISO/TS 15066:2016 regulates the
key safety requirements of collaborative robots, such as set-
ting bio-mechanical limits for contactwith parts of the human
body. However, standards do not explicitly consider the risk
of cyberattacks. Safety is concerned with all the actions and
measures taken to prevent injuries and accidents in normal
condition: For instance, putting robots in a cage to prevent
a human being to come too close to the robot; having a
stop button to instantly remove electric power; implement-
ing force sensing devices in the co-bot robotic arms, so that

123

M. Pogliani et al.

an accidental collision with unintended objects result in a
instant stop. For what concerns collaborative robots specifi-
cally, even though they are intrinsically safe through the use
of dedicated safety sensors and electronics, it should be con-
sidered that in some instances the standard-dictated limits
could be exceeded [7].

Thus, to guarantee the safety of the user and all of the
other assets, it is important to start considering security when
interconnecting manufacturing systems. Indeed, designing
a device for safety (in presence of a fault, or of an unin-
tentional mistake) does not provide guarantees against a
motivated attacker in an adversarial context—that is, when
security problems arise. Even if standards consider limits
to what the user can do with safety related software (which
requires that the firmware must not be easily modifiable),
currently, there is not a clear and systematic approach to
security. Hopefully the industry will steer toward standards
and best practices in security, like it already happened in
the industrial control system (ICS) world with the standard
ISA/IEC62443 (ISA99)—mostly concernedwith the control
network security and segmentation rather than with software
security—and with the NIST special publication 800-82, as
a guide to industrial systems security, and in the automotive
industry, with the SAE J3061, an automotive cybersecurity
guidebook published in 2016, and thought also to be a foun-
dation for further security standard development throughout
the industry.

7 Conclusions

In this paper, we analyzed the attack surface of modern con-
trolled industrial manufacturing systems, and the security
risks that arise from their interconnection, operation, and
expansion with accompanied IIoT devices. We discussed the
physical and network attack surface of a typical controller,
and how the complexity of these systems can expose flaws at
different levels. We found that the attack surface is not lim-
ited to the network attack surface, but it includes the physical
interaction with the HMI operator and the use of domain-
specific programming languages. Indeed, we found attacks
that exploits the expressiveness ofDSLs anduntrusted inputs,
as well as weaknesses in the implementation of permission
systems (often thought to avoid easy access to some features
rather than to stop a determined unauthorized user), which
can result in a an attacker gaining full remote control of the
controller. The design and the architecture of a controlled
manufacturing system is still largely similar to what it was
ten years ago—and it is probably close to what we will still
see for quite some time. We believe that connecting systems
can improve the cooperation and is a necessary development
for the modern factory, but we also believe that, to realize
this vision, systems need to be robust enough not only to

unintended errors but also to malicious attempts to disrupt
the system.

Vulnerability Disclosure According to industry-standard
coordinated disclosure practices,wedisclosed to the involved
vendors or to the U.S. ICS/CERT security issue we found
during this research. Specifically, ABB acknowledged the
issues found while working at our previous conference paper
in an advisory [1], while the ICS/CERT acknowledged the
issues found on the Universal Robot controller with an
advisory [32], and assigning CVE-2018-10633 and CVE-
2018-10635.

Acknowledgements Politecnico di Milano received funding for this
project from the European Union’s Horizon 2020 research and inno-
vation programme under the Marie Skłodowska-Curie grant agreement
nr. 690972, and has been partially supported by CINI Cybersecurity
National Laboratory within the project FilieraSicura: Securing the Sup-
ply Chain of Domestic Critical Infrastructures from Cyber Attacks
(www.filierasicura.it), funded by CISCO Systems Inc. and Leonardo
SpA.

References

1. ABB: Cyber Security Advisory, SI20107. https://library.e.abb.
com/public/a6b4cd9bf68c4f2f917365d3b4e32275/SI20107%20-
%20Advisory%20for%20Multiple%20Vulnerabilities%20in
%20ABB%20RobotWare.pdf (2016)

2. ABB Robotics: Robot web services. http://developercenter.
robotstudio.com/webservice/api_reference

3. Apa, L.: Exploiting industrial collaborative robots. http://
blog.ioactive.com/2017/08/Exploiting-Industrial-Collaborative-
Robots.html (2017)

4. Belikovetsky, S., Yampolskiy, M., Toh, J., Gatlin, J., Elovici,
Y.: dr0wned—cyber-physical attack with additive manufactur-
ing. In: 11th USENIX Workshop on Offensive Technologies
(WOOT 17). USENIX Association, Vancouver, BC. https://www.
usenix.org/conference/woot17/workshop-program/presentation/
belikovetsky (2017)

5. Bloem, J., Van Doorn, M., Duivestein, S., Excoffier, D., Maas,
R., Van Ommeren, E.: The fourth industrial revolution—things to
tighten the link between it and ot. Tech. Rep., SOGETI. https://
www.fr.sogeti.com/globalassets/global/downloads/reports/vint-
research-3-the-fourth-industrial-revolution (2014)

6. Bonaci, T., Herron, J., Yusuf, T., Yan, J., Kohno, T., Chizeck, H.J.:
To make a robot secure: an experimental analysis of cyber security
threats against teleoperated surgical robots (2015). arXiv preprint
arXiv:1504.04339

7. Bonev, I.: Should we fence the arms of universal robots? http://
coro.etsmtl.ca/blog/?p=299 (2014)

8. Brunner, M., Hofinger, H., Krauß, C., Roblee, C., Schoo, P., Todt,
S.: Infiltrating critical infrastructures with next-generation attacks.
Tech. rep, Fraunhofer Institute for Secure Information Technology
(SIT), Munich (2010)

9. Calcagno, R., Bonivento, A.: Wireless teach pendant for robotics
technological rationale for comau witp. IFAC Proc. Vol. 39(15),
494–497 (2006). https://doi.org/10.3182/20060906-3-IT-2910.
00083. 8th IFAC Symposium on Robot Control

10. Cerrudo, C., Apa, L.: Hacking robots before skynet. https://
ioactive.com/pdfs/Hacking-Robots-Before-Skynet.pdf (2017)

123

https://library.e.abb.com/public/a6b4cd9bf68c4f2f917365d3b4e32275/SI20107%20-%20Advisory%20for%20Multiple%20Vulnerabilities%20in%20ABB%20RobotWare.pdf
https://library.e.abb.com/public/a6b4cd9bf68c4f2f917365d3b4e32275/SI20107%20-%20Advisory%20for%20Multiple%20Vulnerabilities%20in%20ABB%20RobotWare.pdf
https://library.e.abb.com/public/a6b4cd9bf68c4f2f917365d3b4e32275/SI20107%20-%20Advisory%20for%20Multiple%20Vulnerabilities%20in%20ABB%20RobotWare.pdf
https://library.e.abb.com/public/a6b4cd9bf68c4f2f917365d3b4e32275/SI20107%20-%20Advisory%20for%20Multiple%20Vulnerabilities%20in%20ABB%20RobotWare.pdf
http://developercenter.robotstudio.com/webservice/api_reference
http://developercenter.robotstudio.com/webservice/api_reference
http://blog.ioactive.com/2017/08/Exploiting-Industrial-Collaborative-Robots.html
http://blog.ioactive.com/2017/08/Exploiting-Industrial-Collaborative-Robots.html
http://blog.ioactive.com/2017/08/Exploiting-Industrial-Collaborative-Robots.html
https://www.usenix.org/conference/woot17/workshop-program/presentation/belikovetsky
https://www.usenix.org/conference/woot17/workshop-program/presentation/belikovetsky
https://www.usenix.org/conference/woot17/workshop-program/presentation/belikovetsky
https://www.fr.sogeti.com/globalassets/global/downloads/reports/vint-research-3-the-fourth-industrial-revolution
https://www.fr.sogeti.com/globalassets/global/downloads/reports/vint-research-3-the-fourth-industrial-revolution
https://www.fr.sogeti.com/globalassets/global/downloads/reports/vint-research-3-the-fourth-industrial-revolution
http://arxiv.org/abs/1504.04339
http://coro.etsmtl.ca/blog/?p=299
http://coro.etsmtl.ca/blog/?p=299
https://doi.org/10.3182/20060906-3-IT-2910.00083
https://doi.org/10.3182/20060906-3-IT-2910.00083
https://ioactive.com/pdfs/Hacking-Robots-Before-Skynet.pdf
https://ioactive.com/pdfs/Hacking-Robots-Before-Skynet.pdf

Security of controlled manufacturing systems in the connected factory: the case of…

11. Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham,
H., Savage, S., Koscher, K., Czeskis, A., Roesner, F., Kohno, T.:
Comprehensive experimental analyses of automotive attack sur-
faces. In: Proceedings of the 20th USENIX Security Symposium
(2011)

12. ComauRobotics: PDL2ProgrammingLanguageManual—System
Software Rel. 3.3x. Comau Robotics (2009)

13. Cruz, L.: Digitization and iot reduce production downtime.
https://newsroom.cisco.com/feature-content?type=webcontent&
articleId=1764957 (2016)

14. DeMarinis, N., Tellex, S., Kemerlis, V., Konidaris, G., Fonseca,
R.: Scanning the internet for ros: A view of security in robotics
research. arXiv preprint arXiv:1808.03322 (2018)

15. Fachkha, C., Bou-Harb, E., Keliris, A., Memon, N., Ahamad,
M.: Internet-scale probing of CPS: inference, characterization and
orchestration analysis. In: Proceedings of the 24th Annual Net-
work and Distributed System Security Symposium, NDSS (2017).
https://doi.org/10.14722/ndss.2017.23149

16. Formby, D., Durbha, S., Beyah, R.: Out of control: Ransomware
for industrial control systems. Tech. Rep., RSA Conference. http://
cap.ece.gatech.edu/plcransomware.pdf (2017)

17. Fryman, J., Matthias, B.: Safety of industrial robots: from con-
ventional to collaborative applications. In: Proceedings of the
ROBOTIK 2012; 7th German Conference on Robotics, pp. 1–5
(2012)

18. Howard, M., Lipner, S.: The Security Development Lifecycle, vol.
8. Microsoft Press, Redmond (2006)

19. International Federation of Robotics: Executive Summary: World
Robotics 2017 Industrial Robots. https://ifr.org/downloads/press/
Executive_Summary_WR_2017_Industrial_Robots.pdf (2017)

20. Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Check-
oway, S.,McCoy, D., Kantor, B., Anderson, D., Shacham,H., et al.:
Experimental security analysis of a modern automobile. In: Pro-
ceedings of the 2010 IEEE Symposium on Security and Privacy,
pp. 447–462 (2010). https://doi.org/10.1109/SP.2010.34

21. Maggi, F., Quarta, D., Pogliani, M., Polino, M., Zanchettin, A.M.,
Zanero, S.: Rogue robots: Testing the limits of an industrial
robots security. Tech. Rep., Technical report, TrendMicro, Politec-
nico di Milano. https://documents.trendmicro.com/assets/wp/wp-
industrial-robot-security.pdf (2017)

22. McLaughlin, S., Konstantinou, C., Wang, X., Davi, L., Sadeghi,
A.R., Maniatakos, M., Karri, R.: The cybersecurity landscape in
industrial control systems. Proc. IEEE 104(5), 1039–1057 (2016).
https://doi.org/10.1109/JPROC.2015.2512235

23. Nohl, K., Lell, J.: Badusb-On Accessories that Turn Evil. Black
Hat USA (2014)

24. Object Managemenet Group: The DDS security specifica-
tion version 1.1. https://www.omg.org/spec/DDS-SECURITY/1.
1/ (2018)

25. Pinto, A.D., Dragoni, Y., Carcano, A.: TRITON: The first ICS
cyber attack on safety instrument systems. Tech. Rep., Nozomi
Networks. https://www.nozominetworks.com/downloads/US/
Nozomi-Networks-TRITON-The-First-SIS-Cyberattack.pdf
(2018)

26. Quarta, D., Pogliani, M., Polino, M., Maggi, F., Zanchettin, A.M.,
Zanero, S.: An experimental security analysis of an industrial robot
controller. In: Proceedings of the 38th IEEE Symposium on Secu-
rity and Privacy, pp. 268–286 (2017). https://doi.org/10.1109/SP.
2017.20

27. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J.,
Berger, E., Wheeler, R., Ng, A.: Ros: an open-source robot operat-
ing system. In: Proceedings of the ICRAWorkshop onOpenSource
Software (2009)

28. Ramaswamy, A., Bratus, S., Smith, S.W., Locasto, M.E.: Katana:
A hot patching framework for elf executables. In: Proceedings
of the 2010 International Conference on Availability, Reliability
and Security ARES, pp. 507–512. IEEE (2010). https://doi.org/10.
1109/ARES.2010.112

29. Sametinger, J., Rozenblit, J., Lysecky, R., Ott, P.: Security chal-
lenges for medical devices. Commun. ACM 58(4), 74–82 (2015).
https://doi.org/10.1145/2667218

30. Tischer, M., Durumeric, Z., Foster, S., Duan, S., Mori, A.,
Bursztein, E., Bailey, M.: Users really do plug in usb drives they
find. In: 2016 IEEE Symposium on Security and Privacy (SP), pp.
306–319 (2016). https://doi.org/10.1109/SP.2016.26

31. UniversalRobots: Servicemanual—revision ur10_en_3.1.3 (2016)
32. U.S. DHS ICS-CERT: Advisory (ICSA-18-191-01). https://ics-

cert.us-cert.gov/advisories/ICSA-18-191-01
33. Zanchettin, A.M., Ceriani, N.M., Rocco, P., Ding, H., Matthias, B.:

Safety in human-robot collaborative manufacturing environments:
metrics and control. IEEE Trans. Autom. Sci. Eng. 13(2), 882–893
(2016). https://doi.org/10.1109/TASE.2015.2412256

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://newsroom.cisco.com/feature-content?type=webcontent&articleId=1764957
https://newsroom.cisco.com/feature-content?type=webcontent&articleId=1764957
http://arxiv.org/abs/1808.03322
https://doi.org/10.14722/ndss.2017.23149
http://cap.ece.gatech.edu/plcransomware.pdf
http://cap.ece.gatech.edu/plcransomware.pdf
https://ifr.org/downloads/press/Executive_Summary_WR_2017_Industrial_Robots.pdf
https://ifr.org/downloads/press/Executive_Summary_WR_2017_Industrial_Robots.pdf
https://doi.org/10.1109/SP.2010.34
https://documents.trendmicro.com/assets/wp/wp-industrial-robot-security.pdf
https://documents.trendmicro.com/assets/wp/wp-industrial-robot-security.pdf
https://doi.org/10.1109/JPROC.2015.2512235
https://www.omg.org/spec/DDS-SECURITY/1.1/
https://www.omg.org/spec/DDS-SECURITY/1.1/
https://www.nozominetworks.com/downloads/US/Nozomi-Networks-TRITON-The-First-SIS-Cyberattack.pdf
https://www.nozominetworks.com/downloads/US/Nozomi-Networks-TRITON-The-First-SIS-Cyberattack.pdf
https://doi.org/10.1109/SP.2017.20
https://doi.org/10.1109/SP.2017.20
https://doi.org/10.1109/ARES.2010.112
https://doi.org/10.1109/ARES.2010.112
https://doi.org/10.1145/2667218
https://doi.org/10.1109/SP.2016.26
https://ics-cert.us-cert.gov/advisories/ICSA-18-191-01
https://ics-cert.us-cert.gov/advisories/ICSA-18-191-01
https://doi.org/10.1109/TASE.2015.2412256

	Security of controlled manufacturing systems in the connected factory: the case of industrial robots
	Abstract
	1 Introduction
	2 Industrial robots
	2.1 The industrial robot ecosystem

	3 Risks and threats to controlled manufacturing systems
	3.1 Threat scenarios
	3.2 Controller subsystems and vectors

	4 Attack surface analysis
	4.1 The network attack surface
	4.1.1 Case studies

	4.2 The ``interaction'' attack surface
	4.2.1 Case studies

	5 Impact of domain-specific programming languages
	5.1 Vulnerable task programs
	5.2 Interpreter issues

	6 Mitigations and defenses
	7 Conclusions
	Acknowledgements
	References

