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Abstract

Training a single network for high resolution and geometrically consistent monocular depth
estimation is challenging due to varying scene complexities in the real world. To address this,
we present a dual depth estimation setup to decompose the estimations into ordinal and
metric depth. The goal of ordinal depth estimation is to leverage novel ordinal losses with
relaxed geometric constraints to model local and global ordinal relations for capturing better
high-frequency depth details and scene structure. However, ordinal depth inherently lacks
geometric structure, and to resolve this, we introduce a metric depth estimation method to
enforce geometric constraints on the prior ordinal depth estimations. The estimated scale-
invariant metric depth achieves high resolution and is geometrically consistent in generating
meaningful 3D point cloud representation for scene reconstruction. We demonstrate the
effectiveness of our ordinal and metric networks by performing zero-shot and in-the-wild
depth evaluations with state-of-the-art depth estimation networks.

Keywords: monocular depth estimation, point clouds, mesh generation
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Chapter 1

Introduction

Figure 1.1: We propose a two-step depth estimation framework to generate high-resolution
geometrically consistent metric monocular depth from a single image. Furthermore, the
depth can be projected to dense and detailed 3D point clouds to recover the surface mesh
for a diverse set of complex real-world scenes.

Depth estimation is an essential mid-level vision task with applications in computational
photography, image editing, and 3D reconstruction. In the presence of two or more images of
the same scene from different camera viewpoints, estimating depth is a simplified problem by
employing techniques from epipolar geometry between any pair of images. However, inferring
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Figure 1.2: Our high-resolution metric depth estimations can be projected to a geometric
coherent 3D point cloud to generate detailed surface meshes for complex scenes and single
objects.

strict scene geometry from a single or monocular depth estimation (MDE) is a challenging
problem in the absence of multi-view information. Therefore, depth estimation can leverage
different depth cues such as occlusions, relative sizes of objects, or perspective to reason
about the geometric structure of the scene. Monocular depth enables structure-aware editing
of still photographs (3D Photography [41], 3D Ken Burns effect [33] and Synthetic depth-of-
field [48]), and 3D scene reconstruction. Despite the immediate photographic appeal of going
into the 3D space through a single photograph, structure-aware computational photography
and 3D rendering pipelines have yet to see a wide adoption in the artistic community. One
significant limiting factor is that realistic 3D photography and rendering applications need
high-resolution depth with high-frequency details and well-defined geometric structures for
effective results.

With the rise in the usage of data-driven approaches in the computer vision community,
there is wide adoption of convolutional neural networks (CNNs) for depth estimation [3,
12, 24, 25, 36, 53, 54, 56, 57, 59]. However, due to the limited capacity in CNNs, an inverse
relationship exists between the structural consistency and the sharp depth discontinuities in
depth estimation [32]. Most existing approaches address either scene structure [12, 35, 36, 59]
or sharp depth boundaries [3, 53, 54] due to this limitation.

To estimate depth with coherent scene structure, recent methods [35, 36, 56, 57] collate
data from multiple datasets (e.g., stereo pair datasets) containing diverse labeled depth
representations. The images from different datasets are captured by camera setups with
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Figure 1.3: We can project our high-resolution metric depth estimations to geometric and
coherent point clouds to generate detailed surface meshes from single photographs with
varying scene complexities.

varying camera intrinsic parameters. Therefore, to account for the unknown camera baseline
between the two cameras in the stereo setup and the camera focal length across different
images, these methods employ a scale and shift invariant (SSI) loss to estimate depth up to
an affine transformation. Despite effective performance on different datasets, the SSI loss
prioritizes scene structure over capturing sharp details.

Alternatively, other MDE approaches estimate sharp depth boundaries through ordinal
depth at the cost of geometric structure. The motivation for ordinal depth is that it is much
easier for a network to predict relative depth relationships between pixels, i.e., asking the
network to ranking pixels based on their proximity to the camera rather than estimating
their true metric depth distance [60]. The ordinal depth estimation networks depend on point
pairs sampling to determine the depth ordinality through a ranking loss. The sampling can
be either random [3, 53] or guided by the RGB input image gradients [54]. This results in
better high-frequency depth details while lacking consistency in the global scene structure.

In addition to estimating depth for scene structure using SSI loss or sharp details through
ranking loss, there is another stream of prior approaches [12, 24, 25, 56] that estimate met-
ric depth by training on metric ground-truth depth from Kinect [12] or LiDaR [16]. The
networks estimate depth up to a scale by employing scale-invariant loss formulations that
enforce the depth estimation to have a similar ratio as the ground truth metric depth be-
tween any corresponding pair of pixels. However, a limitation of metric networks is that their
training data distribution is either small [39, 12] or less diverse [16] due to complexity and
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Figure 1.4: We consider an ordinal depth estimation network to capture local and global
ordinal depth relations to infer scene structure and high-frequency depth details. The ordi-
nal estimates are inputs to the metric depth estimation network to estimate geometrically
consistent depth by enforcing geometric constraints. The estimated metric depth helps gen-
erate a dense 3D point cloud for scene reconstruction.

scalability issues in data capturing systems. Further, the data captured by these setups are
either noisy (Kinect) due to the difficulties in matching pixel correspondences for complex
objects and materials or sparse (LiDaR). Due to these data limitations and the challeng-
ing nature of the problem, the depth estimation is low-resolution and lacks high-frequency
details, but it has a consistent geometric structure.

Modern MDE networks [35, 36, 54] struggle to generate high-resolution depth maps,
either due to network capacity or receptive field size [32]. To overcome the limitation of
earlier approaches [36, 54, 59] in estimating high-resolution depth estimation, Miangoleh et
al. [32] propose a post-processing step to boost the depth estimation from off-the-shelf
MDE networks [36, 54, 59]. The boosting framework performs a low-level merging of low-
resolution and high-resolution depth estimations using a CNN to achieve high-resolution
depth estimation. However, the boosting framework leverages depth estimations from pre-
trained MDE networks [36, 54, 59] that results in estimating structurally inconsistent high-
resolution depth. Therefore, training a single network to capture scene geometry and high-
resolution details is challenging.

This thesis proposes a dual depth estimation framework to generate high-resolution
and geometrically consistent monocular depth by decomposing the depth estimation into
two steps: ordinal and metric depth. Based on our observations in Chapter 3, the SSI loss
leads to consistent scene structure, while the ranking loss dominates in estimating sharp
and accurate depth boundaries. Therefore, we improve the training setup of both SSI and
ranking loss by combining them to estimate ordinal depth that shows both scene structure
and sharp depth edges. This combined objective explicitly enables depth ordinality con-
straints to model local (details) and global (structure) depth relations. To further address
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the lack of geometric structure consistency in the ordinal depth estimations, we leverage
the ordinal estimations as inputs to our metric depth network. The ordinal inputs provide
local and global depth relations. Our metric network estimates high-resolution metric depth
with consistent geometric structure by employing sparse and dense geometry-aware losses.
The high-resolution depth from our two-step approach can generate consistent 3D repre-
sentations for in-the-wild complex scenes from a single image. Furthermore, we can produce
dense and coherent point clouds by projecting the high-resolution metric depth estimation
to 3D space. The dense point cloud further enables recovering a consistent surface mesh for
diverse and complex real-world environments with intricate details, as shown in Figures 1.2
and 1.3. Finally, we provide an overview of the overall framework in Figure 1.4.
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Chapter 2

Related Work

There is a proliferation in the monocular depth estimation (MDE) approaches due to its
direct usage in numerous computer vision and computational photography applications [33,
41]. The traditional MDE approaches consider a prior on the scene structure for flat floors
and straight vertical walls (“floor-wall” model) [8, 17], followed by generalizable approaches
based on image superpixels to model the 3D structure of a scene [39] without any additional
assumptions on the scene structure. More recently, with a burst of data-driven approaches,
the convolutional neural network (CNN) based methods estimate dense depth from single
images using labeled metric depth data [11, 12, 14, 23, 27, 38].

2.1 Monocular Ordinal Depth Estimation

Collecting large-scale metric datasets for depth estimation can be expensive; hence several
CNN-based approaches solve depth estimation using synthetic datasets [31], sparse human
labeled depth annotations [3], structure-from-motion (SfM) and multi-view stereo (MVS)
on images collected from web [25], SfM and MVS on videos of people performing mannequin
challenge [24], SfM on internet videos with an assessment network to consider only high-
quality reconstructions, SfM on 3D movies [36, 49], ordinal annotations on stereo image
pairs [53, 54], and steerable datasets from 3D scans of environments [10].

The stereo-based data collected from the internet have an unknown scale and shift due
to the unknown camera baseline and focal length with respect to metric depth. Prior ap-
proaches use two main loss formulations to estimate depth: scale and shift invariant loss
(SSI) [36, 49, 58], and ranking loss [3, 53, 54]. Wang et al. [49] account for an unknown
shift in the disparity from web stereo videos by considering the gradient difference be-
tween the ground truth and rescaled disparity predictions at multiple scales. Ranftl et al.
[36] propose a loss invariant to scale and shift to train on data collated from multiple
datasets. Although the SSI loss [36] can estimate robust depth that captures global scene
structure, it lacks high-resolution details compared to the networks using ranking loss [54].
Another type of supervision uses ordinal annotations to train MDE networks with the rank-
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ing loss [3, 53, 54, 60]. A key component of ranking loss involves sampling image point pairs
to apply the loss, and the prior approaches use different sampling strategies. Some sampling
strategies are random [3], balanced random [53], and structure-guided [54]. In particular,
Xian et al. [54] shows that sampling point pairs based on the image structure benefit the
training in estimating better high-resolution details. However, a significant limitation of
MDE approaches using ranking loss is the lack of coherent scene structure compared to
networks using SSI loss [35, 36].

The key benefits of SSI and ranking losses are that they capture global scene structure
and local high-frequency details, respectively. Inspired by their advantages, we define a depth
space that obeys the ordinal depth distribution to combine the losses to complement
each other in training an ordinal depth estimation network to estimate both scene structure
and high-frequency details. Also, we propose a variant of the ranking loss, termed as relaxed
ranking loss with a novel triplet sampling of points to create good harmony with the SSI
loss. Through qualitative and quantitative evaluations, we demonstrate that our combined
loss formulation can generate better details than SSI loss and better structure than ranking
loss.

2.2 Monocular Metric Depth Estimation

The term “metric” depth indicates depth up to an unknown scale. Estimating metric depth
from images is more challenging than the ordinal formulation [60] as the network needs
to reason about the geometric structure of the scene. Moreover, the depth ratios greatly
vary between pixels in images across different environments. For instance, the depth ratio
between points a and b defined as r = a/b indicates that point a is at a distance r · b

further or closer than point b to the camera. The ratio between a pair of points denoting
the foreground and background object in an indoor environment can be drastically smaller
than the foreground and background points in an outdoor environment due to the difference
in the metric depth distribution. Therefore, estimating these complex relations from a single
input image is challenging. The early metric MDE approach by Eigen et al. [12] introduces
a scale-invariant loss in the log-depth space to account for the unknown depth scale to
estimate metric depth by matching the depth ratio of pixels in the depth estimation with the
corresponding pixels in the ground truth depth. Li and Snavely [25] consider large-scale web
data and derive ground truth using the SfM technique to train a metric MDE using scale-
invariant loss formulation. Unlike ordinal depth estimation, the metric MDE approaches
can derive consistent surface normals from metric depth estimations due to the geometric
constraints by the scale-invariant loss. Chen et al. [4] propose to use surface normals to
improve metric depth by enforcing additional geometric constraints. Yin et al. [56] propose
a normal loss based on the virtual plane constructed with points sampled in 3D point clouds
to introduce long-range geometric constraints to supervise depth estimation. Yin et al. [59]
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introduce a framework to recover 3D shape from monocular images by estimating metric
depth and an additional point cloud-based network to recover the unknown scale and shift
to fix the scale and shift of the estimated depth. Further, to train the depth network, they
use the pseudo-ordinal and sparse surface normals loss on points sampled based on image
gradients [54].

We take inspiration from the limitations of the prior metric MDE approaches that strug-
gle at high-resolution depth estimation from a single input image. Therefore, we propose a
metric depth network that combines the input image and a pair of ordinal depth esti-
mations at different resolutions to estimate high-resolution metric depth with geometrical
consistency. Specifically, we use the low and high-resolution depth estimations from our
ordinal depth network as inputs along with original RGB images. The low-resolution depth
estimates provide a rough scene structure, while the high-resolution estimates provide the
context of sharp depth discontinuities. The ordinal depth inputs enable us to use different
geometric loss formulations to apply depth and surface normal-based geometric constraints
to train the metric depth network. We employ a sparse ratio loss along with a dense scale-
invariant loss to preserve the metric depth relations in the estimation. Additionally, we add
dense surface normal losses to enforce local geometric and smoothness constraints on
the surface normals derived from the estimated metric depth. The high-resolution nature of
our geometrically consistent depth maps enables the projection of coherent, dense 3D point
clouds. Furthermore, we employ a state-of-the-art point cloud to mesh generation method by
Chen et al. [5] as a black box for 3D scene reconstruction for complex in-the-wild monocular
images with varying intricate details.

2.3 High-Resolution Monocular Depth Estimation

The prior metric MDE methods do not naturally generate high-resolution depth due to
network capacity or scene complexity. Therefore, most approaches utilize images with small
input resolutions to train the networks to estimate depth. However, several downstream
applications on depth such as shallow depth-of-field [48, 50], 3D Ken Burns [33], 3D Pho-
tography [21, 41], or 3D rendering would benefit from high-resolution and detailed depth
estimations. Niklaus et al. [33] propose guided up-sampling of low-resolution depth based on
the high-resolution image. Lyu et al. [28] propose introducing redesigned skip-connections
with a feature fusion approach. Miangoleh et al. [32] propose a more effective technique
to perform low-level gradient transfer using a trained CNN between depth estimations
at different resolutions from pre-trained depth networks. However, the pre-trained MDE
networks [36, 54] do not reason about the geometric structure, producing contorted 3D
representations of the scene.

Our metric network is inspired by the work by Miangoleh et al. [32] for high-resolution
depth estimation. Instead of implementing a low-level gradient transfer method [34], our

8



network performs high-resolution metric depth estimation with high-frequency details. Our
metric network uses the ordinal depth estimations as constraints along with the original
input image, similar to the CRF-based optimization setup by Zoran et al. [60] to estimate
metric depth from ordinal constraints.

9



Chapter 3

Preliminaries

Figure 3.1: Depth estimations from recent state-of-the-art MDE methods. Ranftl et al. [36]
introduce MiDaS v2 network using SSI loss for depth estimation. Xian et al. [54] propose
structure-guided ranking (SGR) based on the ranking loss formulate for depth estimation.
Ranftl et al. [35] uses transformers-based architecture for DPT using SSI loss. The SSI-
based approaches are effective in capturing scene structure, while the ranking loss-based
approaches capture better depth details.

Stereopsis is a significant contributor to depth perception of the environment through
a binocular vision in humans [13]. However, in the absence of binocular vision, we can
still perceive depth by leveraging depth cues such as perspective, shadows, or gradients to
perceive depth through monocular vision. We can use convolutional neural networks (CNNs)
for monocular depth estimation by training on labeled depth datasets. Monocular depth
estimation (MDE) networks use different depth cues in the images to estimate depth. Based
on the training objective, we can categorize the previous work in MDE into ordinal, pseudo-
ordinal or metric networks. An ordinal depth network aims to estimate depth by reasoning
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about the relative depth relations between pixels at the cost of geometric consistency. The
ordinal depth setup relaxes the geometric constraints, which lets the network train from
different datasets. The ordinal MDE majorly use ranking loss [3, 4, 53, 54] (§ 3.2) on sampled
depth pixels. In addition, we can consider the scale and shift invariant loss (SSI) [35, 36, 57]
as a dense pseudo-ordinal loss (§ 3.1).

The metric depth methods estimate consistent geometric depth that is a scale away from
ground truth by employing scale-invariant loss [12] (§ 3.3). Estimating metric depth is a
complex problem because the network must reason about the global depth ratio between
pixels to preserve the scene geometry across diverse complex scenes with a wide range
of depth values. Additional geometric supervision comes from surface normal-based angle
loss [4] to align the surface orientations between the estimation and ground truth surface
normals. A primary limitation of the metric depth is related to the quality of ground truth
depth. For example, training on noisy or sparse metric depth ground truth can capture the
geometric structure of the scene but not generate high-resolution details.

3.1 Pseudo-ordinal Scale and Scale Invariant Loss

Making MDE networks generalize to images in the wild requires training on large and diverse
datasets. However, a key challenge is the limited number of sizeable metric depth datasets
available to achieve it. Alternatively, prior approaches use large web-based stereo datasets
to generate depth maps from the optical flow between images in the stereo pairs [18, 36, 49,
53, 54]. However, the web stereo datasets contain images from diverse cameras, introducing
an unknown scale and shift ambiguity. The scale is due to the unknown focal length, which
is the distance between the optical centre of the lens and the camera’s image sensor. The
unknown shift is due to the camera baseline, which is the distance between the two cameras
in a stereo setup. To account for this ambiguity, recent work by Ranftl et al. [36] proposes
a SSI loss to train the MDE networks. Before computing the loss, they align the depth
estimation from the network with the ground truth depth using the least-squares criterion
to recover the scale and shift parameters to account for the ambiguity. The scale and shift
parameters h = (scale, shift)T is given by:

h =
(∑

i

d⃗id⃗T
i

)−1(∑
i

d⃗id∗
i

)
, d⃗i = (di, 1)T , (3.1)

where d∗
i and di indicate the depth values for the pixel i in the ground truth and

aligned depth estimation, respectively. We can define the SSI loss between the aligned
depth estimation and the ground truth image as:

Lssi(d, d∗) = 1
2M

∑
i

(d⃗T
i h − d∗

i )2, (3.2)

where M is the number of pixels.
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Figure 3.2: The scene complexity of images captured in the real world can have high varia-
tions or gaps in the depth distribution. This geometrical complexity limits the network from
estimating high-resolution details while preserving the geometric structure. For example, for
an indoor image (top row), the gaps shown by red arrows in both the depth and disparity
(inverse depth) histograms indicate the depth difference between the flowers. On the other
hand, the depth difference is more drastic in outdoor images (bottom row).

Pseudo-Ordinal Loss

We can consider the SSI loss as a pseudo-ordinal loss as it is neither completely ordinal nor
metric. It is not ordinal as it does not explicitly solve for depth order like the ranking loss
using ordinal constraints. In contrast, it does not enforce the depth ratio for corresponding
pixels between depth estimation and ground truth depth to be the same as the metric loss.
This is because the pseudo-ordinal depth is an affine transformation away from the metric
depth.

In addition, as the pseudo-ordinal loss considers ground depth derived from web-stereo
pairs, the generated ground truth is an affine transformation away from the true metric
depth. Although the depth is not truly metric, as discussed earlier, it still captures some
traits of metric depth distribution. A key observation is that most datasets cover a broad
range of depth values in indoor or outdoor scenes. However, only a subset of the distinct
depth values captures the essential geometric information. In Figure 3.2, the indoor scene
(top row) shows the depth distribution with multiple clustered bins with some space (or
gaps) between them. The gap in the histogram indicates a significant difference in the
depth levels in the ground-truth maps. The gaps become more evident in outdoor scenes
(bottom row), as the foreground and background objects are usually far apart. The gaps
lead to significantly fewer information clusters with depth. Therefore, reasoning about these
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Figure 3.3: We present an illustration of different point pairs sampling techniques employed
in monocular depth training pipelines for ranking loss. The random sampling [3] in (a)
randomly picks pixel pairs along a horizontal line in the image. Xian et al. [54] propose
a structure-guided sampling by leveraging the image gradients to sample along the edges
in (b) and combined random pairs sampling and segmentation mask-based sampling. The
previous sampling techniques leveraged only pixel pairs and generated imbalanced ordinal
pairs.

varying depth distributions while preserving the metric characteristics is challenging for
pseudo-ordinal loss based MDE networks and estimates monocular depth that lacks high-
resolution details at the cost of scene structure.

3.2 Ordinal Ranking Loss

Unlike the pseudo-ordinal loss that applies a dense loss on the pixels, an alternate approach
for MDE is applying the ranking loss on sparse pixels to estimate ordinal depth. The ordinal
depth relaxes the geometric reasoning constraints on the network to estimate monocular
depth by relative ranking of image pixels as described by Zoran et al. [60]. Most ordinal
MDE approaches employ the ranking loss [3] that enforces ordinal constraints to rank a
sparse set of pixel pairs.

For a given pair of points agt and bgt in the ground truth depth map, their depth
ordinality relation is given by:

ϕ =


+1 if agt / bgt > 1 + δ

−1 if bgt / agt > 1 + δ

0 otherwise

(3.3)

where δ is a depth tolerance threshold. The ranking loss [3] for the corresponding points
apred and bpred in the predicted depth maps based on the ground truth ordinal relation ϕ is
given by:
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Lrl(apred, bpred) =

log(1 + exp(−ϕ · (apred − bpred))) if ϕ ̸= 0

(apred − bpred)2 if ϕ = 0
(3.4)

The goal of the above loss is to pull points apred and bpred closer if their corresponding
ground truth points agt and bgt have an ordinal equality relation by optimizing the squared
error. However, it pushes the points in the predicted depth far apart to have different depth
values for inequality ground truth ordinal relations.

Pair sampling

The effectiveness of the ranking loss to estimate ordinal depth relies heavily on the sampling
strategy. Prior MDE approaches use different sampling rules to enforce different training
objectives. The sampling technique by Chen et al. [3] considers a combination of “uncon-
strained” and “symmetric” pairs that contribute almost equal point pairs. More specifically,
they uniformly sample point pairs along a random horizontal line in the unconstrained setup
but uniformly sample two symmetric points based on the centre of the random horizontal
line. Xian et al. [53] propose another random sampling strategy through online random
sampling of point pairs within each training mini-batch. They consider removing 25% the
point pairs with unequal ordinal relations if their depth difference is large. This additional
heuristic stabilizes the training by ignoring significant outlier errors and reducing the count
of a large number of pairs with unequal ordinality. Furthermore, Xian et al. [54] propose a
novel sampling strategy to estimate depth that captures high-frequency details. To achieve
this, they use RGB image gradients as a proxy for the depth discontinuities. The sampling
operation uses the gradients to guide the random sampling to choose four points for every
edge point computed from the image gradients. To further augment the sampling, they uti-
lize semantic maps of objects to sample inside and outside the semantic map. In addition,
they randomly sample from the image to create long-range ordinal depth relations. How-
ever, a limitation of random-based sampling of point pairs in all three previous strategies is
the selection of an imbalanced set of point pairs. Specifically, the number of equality point
pairs is lesser than the inequality ordinal pairs.

While choosing point pairs, these sampling techniques randomly sample points and
create pairs. However, the depth threshold (δ) to define the ordinal equality relation between
a pair of points using the depth ratio is small. Since the points are randomly selected, it is
highly unlikely that many points with a depth ratio less than the depth threshold are picked.
Due to this reason, these techniques generate more point pairs with inequality relations than
equality relations. We illustrate different prior sampling strategies (a and b) in Figure 3.3,
where blue points indicate the sampled points and the line indicates the point pairs.
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Figure 3.4: Illustration to demonstrate the issue of scale ambiguity in 3D to 2D perspective
projection. Specifically, the ambiguity arises from the fact that we can project infinite 3D
scenes with different scales to the exact 2D representation.

3.3 Metric Scale-Invariant Loss

Estimating consistent geometric depth requires capturing accurate ground truth metric
datasets with devices like Kinect or LiDaR. However, due to the mechanics of 3D to 2D
perspective projection, recovering the three-dimensional information from an input 2D input
image through MDE is an ill-posed problem. Due to this ill-posed nature of the metric
depth estimation problem, there are numerous geometrical solutions. More specifically, we
can project numerous 3D scenes to the exact 2D representation as seen on the image plane
in Figure 3.4. As seen in the figure, two 3D models of a cat with different scales can result in
the same 2D image. To address this issue, most prior metric MDE approaches [12, 24, 25, 56]
use a scale-invariant loss. Specifically, the goal of the loss is to match the depth ratio between
pixels in the depth estimation to the ratio between the corresponding points in the ground-
truth metric depth. Considering the depth ratio allows the loss to compute the error to
optimize the metric MDE network while not accounting for the scale discrepancy between
the estimation and ground truth. A vital benefit of the scale-invariant loss is preserving the
geometric constraints by matching the ratios. The mathematical expression for the standard
scale-invariant mean squared error [12] in the prior metric MDE approaches is given by:
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Figure 3.5: Overview of the depth estimation pipeline from boosting framework [32] using
MiDaS depth network. For a given image, depth estimations at two different resolutions
(receptive field size and R20) capture scene structure and high-frequency details. Then, the
merging network combines the two estimations to generate a high-resolution base estimate.
To further improve the intricate details in the base estimate, a patch refinement approach
is employed at the image patch level, as seen in the green squares.

Lsi = 1
n

∑
i=1

(ri)2 − 1
n2

(∑
i=1

ri

)2

(3.5)

where ri = di −d∗
i and n is the total image pixels. The loss calculates the squared difference

between two pixels in the prediction (d) and the same two points in the ground truth (d∗)
averaged over all the points as described by Li et al. [24].

3.4 High-Resolution Monocular Depth Estimation

Depth from most prior MDE methods lacks high-resolution details essential to unleashing
powerful downstream applications [33, 41]. This limitation stems from the trade-off be-
tween capturing scene structure and sharp high-frequency details. As a result, few MDE
approaches estimate high-resolution depth. Niklaus et al. [33] resort to the depth refine-
ment technique by using a high-resolution image to guide the depth upsampling through
a neural network. Despite generating sharp object boundaries for large objects, it lacks
capturing intricate high-frequency details for smaller objects. Recently, a depth boosting
framework by Miangoleh et al. [32] generates high-resolution depth for images in the wild.
The boosting depth is a plugin framework on the pre-trained MDE networks. Specifically,
they demonstrate some critical behaviours of pre-trained MDE networks. First, they observe
that the characteristics of the depth estimation vary by changing the resolution of the input
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RGB image. For low-resolution input images similar to the training resolution of the MDE
network, the depth estimations generate consistent scene structure but not high-frequency
details. In contrast, gradually increasing the input resolution generates depth that shows
an increase in high-frequency details while degrading the scene structure. They show that
dual behaviour in pre-trained MDE networks is due to the network’s limited capacity of
CNNs and receptive field size. To leverage the unique characteristics of depth estimations at
different resolutions, they introduce a merging network to generate high-resolution depth.
The goal of the merging network is to fuse the consistent structure from the low-resolution
depth with the high-frequency details from the high-resolution depth. The low-resolution
image has the same dimension as the receptive field of the pre-trained MDE network. How-
ever, to determine the optimal dimension for the high-resolution image denoted by Rx, they
consider the contextual cues by constructing an edge map from the input image’s gradients.
The notation Rx indicates that x% of pixels do not receive any contextual information at
a given image resolution. Through experimental analysis, they determine R20 to be the
optimal dimension to estimate the high-resolution depth and note that R20 can be much
large than the original input resolution. Then they successfully merge the low-resolution
depth with a spatial dimension similar to the receptive field size and the high-resolution
depth at the R20 size through the merging network by resizing the input depth images to
the training size of the merging network. They name the output from the merging network
on the whole image as base estimate.

Additionally, they make use of the second observation that the output behaviour of the
pre-trained MDE networks for inputs at different resolutions is also related to the density
of the depth cues present in the image. The further away the contextual cues are from
the receptive field, the structural inconsistencies are higher in the depth estimations. This
observation also indicates that determining the optimal high-resolution size for an image
is driven by the regions with the lowest contextual cue density. However, the high-density
cues can still benefit from high-resolution estimations. To formalize this observation, they
propose a patch selection mechanism to generate high-resolution depth for different patch
regions in the image having high contextual cue density. They further merge the patch
estimation onto the base estimation from the first step. The patch-based refinement on the
base estimate further improves the high-frequency depth details in the depth estimation.
We show the overall pipeline to demonstrate the double estimation to generate the base
estimate and the patch refinement to generate the final high-resolution depth with sharp
object boundaries in Figure 3.5.
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Chapter 4

Ordinal Depth Estimation

Figure 4.1: Overview of the depth estimations from our ordinal depth for an image in
the wild. The depth estimation shows consistent scene structure at low input resolution,
while the high input resolution results in depth estimation containing high-frequency depth
details.

Following our observation in Chapter 3, to estimate depth with consistent global struc-
ture and sharp depth details, we need a depth estimation network that effectively uses both
the sparse ranking and dense scale and shift invariant (SSI) based loss formulations. How-
ever, naively combining the SSI and ranking loss to estimate depth can negatively impact
the network due to the design limitations of the sparse ranking loss and the pseudo-ordinal
nature of the SSI loss. The sampling strategy is another key component to provide a more
balanced setup for sparse ranking-based loss for effectively estimating depth details.

To overcome the above challenges, we propose an ordinal depth estimation network that
combines the sparse and dense losses with good harmony to estimate depth with consistent
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Figure 4.2: Overview of the trade-off between dense and sparse depth loss formulations.
The dense pseudo-ordinal loss used in MiDaS [36] estimates overall scene structure but
lacks geometric details, as indicated by white arrows. On the other hand, the sparse ordinal
loss used in SGR [54] is better are capturing sharp edges but lacks structural consistency,
as seen in smooth surfaces.

global structure and sharp depth boundaries. We introduce several key changes to MDE
networks to harmonize the dense and sparse losses effectively. Specifically, we introduce an
ordinal depth space that removes the geometric constraints to use fully ordinal dense loss.
We propose a relaxed ranking loss to make informed penalization for point pairs that do not
satisfy the ground truth depth ordinality relation. Further, we propose a triplet sampling
of sparse points to provide better ordinal depth context for the sparse relaxed ranking loss
and balanced sampling of equality and inequality ordinal pairs.

Algorithm 1 Algorithm to generate ordinal depth space
Data: depth map d
Result: inverse ordinal depth map do

Step 1: Compute the depth histogram with bins ρ = 100 in the depth space
Step 2: Remove bins with occupancy less than a threshold τ = (0.02 × H × W )
Step 3: Transform the ordinal depth to inverse depth (disparity) space
Step 4: Min-max normalize the inverse ordinal depth to constrain the space to [0, 1] to train
the MDE networks
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Figure 4.3: Our observation in Figure 3.2 shows that the ground truth depth distribution
(or space) with geometric constraints represented by gaps limits pseudo-ordinal SSI loss
from effective depth estimation. To overcome this, we generate ordinal depth space by
removing the geometric constraints in the ground truth depth space while maintaining the
depth ordering. Specifically, we remove the bins in the depth histogram that do not meet a
minimum occupancy threshold and make the depth distribution more connected as indicated
by green arrows in both indoor (top row) and outdoor (bottom row) images.

4.1 Ordinal Depth Space and Dense Ordinal Loss

A histogram can represent a depth space to show the distribution of pixels based on their
depth values. Computing the histogram for a metric depth map shows similar depth values
forming connected clusters. A gap in the depth distribution between the depth clusters
indicates a drastic change in the corresponding metric depth values. Additionally, the gaps
are the basis of the geometric structure in metric depth.

To make the SSI loss completely ordinal, we remove the geometric constraints present
in the metric-based depth space (§ 3.1) by proposing an ordinal depth space. To perform
this transformation to ordinal depth space, we evenly redistribute the depth values into
a fixed range. We introduce a technique to efficiently discard gaps in the original depth
space shown in Figure 3.2 and generate ordinal depth space that preserves the depth order
but not the geometric information. An advantage of this change is that it retains all the
rich, sharp depth discontinuities. More formally, we compute the depth histogram for the
ground-truth depth and remove bins not meeting a minimum occupancy threshold while
retaining the depth order. Next, we normalize the ordinal depth values and generate the
inverse ordinal depth. Finally, we constrain the output space to be in [0, 1] to train the
MDE models. In Algorithm 1, we describe the steps to compute the ordinal depth space. In
Figure 4.3, we show the ordinal depth for the indoor and outdoor images without any gaps
in their respective depth distribution.
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The ordinal depth is invariant to any strictly increasing function that retains the ordi-
nal relationship between the pixels. Instead of estimating ordinal depth with a fixed scale,
we encourage ordinal behaviour by aligning the ground-truth ordinal with the ordinal net-
work estimations using a monotonically increasing affine function. Our dense ordinal loss
resembles the SSI loss formulation (§ 3.1) but optimizes in the ordinal depth space. We can
estimate the scale and shift in the inverse ordinal space using the least-squares criterion:

h =
(∑

i

o⃗io⃗T
i

)−1(∑
i

o⃗io∗
i

)
, o⃗i = (oi, 1)T , (4.1)

where h = (scale, shift)T , o∗
i and oi indicate the ground-truth inverse ordinal depth

and estimated inverse depth values for the pixel i, respectively.
We can define the dense ordinal loss between the aligned ordinal depth estimation and

the ordinal ground truth image as:

Lord(o, o∗) = 1
2M

∑
i

(o⃗T
i h − o∗

i )2, (4.2)

The dense loss formulation does not penalize the estimations from the network if the
linear ordering of the depth values in the ordinal depth estimations is correct. Furthermore,
the ordinal depth estimations are a scale and shift away from the ground truth ordinal
depth.

4.2 Relaxed Ranking Loss

The goal of sparse ranking loss is to push pixels with ordinal inequality relations far apart
and bring pixels with ordinal equality relations closer to each other. To that end, we propose
a sparse loss called relaxed ranking loss that introduces a simplified ordinal relation
between pairs of pixels. It discourages any loss between point pairs if their difference satisfies
a minimum depth threshold (λthresh > 0) or if they are separated by a distance of λthresh.
Additionally, we use a ReLU function to compute the loss for point pairs that do not satisfy
the depth threshold or ground-truth ordinal relation. We show the loss curve for the relaxed
ranking loss in Figure 4.4. Unlike the ranking loss curve, our loss does not penalize the points
as long as they respect the ground-truth ordinal relation. Another benefit of the relaxed
ranking loss is that it combines well with other losses (e.g., dense ordinal, dense pseudo-
ordinal, or geometric loss), as it does not generate conflicting signals for point pairs that
already obey the depth ordering. The relaxed ranking loss helps generate sharper details
than the ranking loss discussed in Section 5.2.

For a pair of points apred and bpred in the predicted depth map, we can define the
relaxed ranking loss as:
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Figure 4.4: The diagram shows the loss (left) and loss derivative (right) curve for the
ranking [3], relaxed margin [4], and our relaxed ranking loss. Compared to other losses, we
do not penalize the point pairs as long as they satisfy the depth ordering or ground-truth
ordinality, as seen in the graph.

Lrrl(apred, bpred) =

max(−ϕ · (apred − bpred) + λthresh, 0) if ϕ ̸= 0

(apred − bpred)2 if ϕ = 0
(4.3)

We empirically determine λthresh = 0.01, and ϕ indicates the ordinal relation determined
based on the corresponding pair of points in the ground truth depth with respect to a
threshold δ = 0.01. The ordinality relation (ϕ) for the corresponding ground truth points
agt and bgt is given by:

ϕ =


+1 if agt - bgt > δ

−1 if agt - bgt < δ

0 otherwise

(4.4)

Additionally, we can call the relaxed ranking loss as sparse ordinal loss. Our ordinal
depth network combines sparse and dense ordinal loss to estimate ordinal depth with high-
frequency details and consistent ordinal scene structure.

Our sparse ordinal loss is similar to the ranking loss [3] in applying sparse supervision
using the sampled points to estimate depth. However, a unique trait of the ranking loss
is that it continues to compute a high gradient for pixels despite the estimated ordinality
relation matching the ground truth for sampled point pairs. Specifically, the ranking loss
encourages the depth of the sampled point pairs to be very different if their ground truth
ordinal relation is inequality. Our sparse ordinal loss overcomes this issue by only penalizing
the points if their depth difference is not greater than λthresh for ground truth inequality
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Figure 4.5: We present an illustration to compare our triplet sampling strategy with the
point pairs sampling adopted in previous monocular depth estimation networks with ordinal
loss formulations. For triplet sampling, we choose an anchor point (in red circles) and
randomly select positive (same depth) and negative (different depth) ordinal points (d).

ordinal relations. We show this phenomenon (red line) of the ranking loss in Figure 4.4.
Additionally, this characteristic of the ranking loss negatively affects the combined training
setup with the dense ordinal loss. A similar observation was shown by Chen et al. [4] when
combing the ranking loss and dense geometric loss.

4.3 Triplet Sampling

Most prior MDE approaches [3, 53, 54] with ranking loss formulations consider sampling
pixel pairs to determine the depth ordinality. However, the sampling techniques in prior
approaches suffer from imbalanced point pairs. Specifically, the number of point pairs with
inequality relation is more than the equality constraint. Moreover, the ranking loss requires
only point pairs to compute the loss. Hence, they do not have an additional reference depth
value to guide the pushing and pulling of point pairs. Specifically, if one of the points in the
pair has incorrect depth estimation, then both points will be pulled closer together. This
phenomenon can generate gradients that conflict with other dense losses, as some correct
pixel estimations continue to receive a high loss and gradient. Therefore, there are more
efficient ways to use in sparse ordinal type loss formulations than sampling point pairs. To
address this limitation, we consider sampling pixel triplets instead of pixel pairs [3, 53, 54].
Specifically, we randomly sample an anchor point and select two other pixels based on
a depth threshold following the previous MDE approaches: one with positive ordinality
relation and another with negative ordinality relation with the anchor point. The pixel with
positive ordinality has the same depth as the anchor point, and the pixel with negative
ordinality has a different depth value (either higher or lower) from the anchor point.
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Figure 4.6: We provide an overview of the training pipeline of the ordinal network. First, for
an input RGB image and ground-truth depth map, we pre-process the ground-truth depth
to generate the ordinal depth. Then, the ordinal network estimates the depth for an input
image, and the loss is computed based on Eq. 4.5 between the estimated and ground-truth
ordinal depth as described in Section 4.4.

The sampling generates balanced ordinal positive and negative values, unlike the prior
pixel pair sampling mechanisms [3]. We illustrate our triplet sampling procedure in Fig-
ure 4.5.

The depth threshold we use is uniform across all images and generates reliable and
effective ordinal depth as described in Section 5.2. However, there are two extreme scenarios
where triplets cannot be constructed. Only the dense ordinal and multi-scale depth gradient
losses (§ 4.4) will be computed in these scenarios to train the network. One such scenario has
a slight variation in depth, or the depth difference between points is less than the uniform
threshold (e.g., flat wall facing the camera). In this case, it is not possible to sample points
with an ordinal inequality relation with the anchor point. Similarly, the second scenario
with significant variations in depth or the depth difference between any point pair is more
significant than the uniform threshold (e.g., hallway), and in this, it is not possible to find
points with an equality relation for the anchor.

4.4 Ordinal Network

Due to the complementing properties of the dense ordinal loss and our sparse ordinal loss,
we combine them to generate ordinal depth with better details than dense-only training and
a better structure than sparse-only training. Our final loss for the ordinal training combines
dense ordinal, sparse ordinal, and multi-scale gradient loss [25] to train the ordinal depth
network in the inverse ordinal depth space. The goal of the multi-scale gradient loss (Lmsg)
is to enforce local depth smoothness.

Finally, we define the overall combined loss for training the ordinal depth network as:

L = λordLord + λrrlLrrl + λmsgLmsg (4.5)
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We set the loss weights λord = 10, λrrl = 10, and λmsg = 0.5 when training ordinal
depth network. We show the overview of our ordinal training setup in Figure 4.6.

4.5 Datasets

We follow the recent monocular depth estimation approaches [35, 36, 58] to train our ordinal
depth network on a diverse set of datasets for better generalization. Specifically, we train
our model on the combination of the following datasets:

Omnidata [10]: Omnidata proposes a framework to generate “steerable” datasets from
3D scans of environments. In particular, we use the Hypersim [37], Replica [43], and
Replica [43] + Google Scanned Objects [7] datasets from Omnidata.

The Hypersim dataset from Omnidata [10] consists of diverse photo-realistic synthetic
images rendered for 461 complex 3D indoor scenes [37] with significant depth variations.
Each scene contains 100 images rendered from different camera positions with an image
resolution of 768×1024. We consider the official train split from [37] for training the ordinal
depth network.

The Replica dataset contains 18 real-world indoor scenes with an image resolution of
512 × 512. A custom RGBD camera setup with an infrared (IR) projector captures all the
data. In addition, the Replica dataset provides high-quality 3D meshes by fixing the planar
surface for holes in the scanning process. Omnidata uses the 3D meshes to render ∼ 57K
training images from different camera poses.

The Replica+GSO is a dataset rendered in Omnidata setup by scattering the 3D
objects [7] in Replica [43] indoor scenes. In addition, the GSO dataset captures over 10K
3D scans of real-world individual objects using a standard off-the-shelf RGBD capture setup.
Finally, the omnidata framework renders a total of ∼ 108K training images.

OpenRooms [26]: OpenRooms dataset renders photo-realistic synthetic data from 3D
scans collated from existing open repositories of indoor scenes with different lighting and
material setups. The dataset generates ∼ 100K images at 480 × 640 image resolution.

TartanAir [51]: TartanAir dataset contains photo-realistic scenes rendered from the
Unreal Engine using the AirSim plugin. The dataset comprises 30 diverse indoor and outdoor
scenes captured from a drone camera with complex trajectories to capture diverse views of
the scene with different lighting conditions and detailed scenes.

FSVG [22]: The FSVG dataset contains images captured from Grand Theft Auto V [15].
The dataset consists of ∼ 100K training images by implementing an autonomous agent to
navigate the scene. The capture starts at a random location in the environment and ends
after collecting 30 seconds of data before resetting.

HRWSI [54]: The HRWSI comprises ∼ 21K web stereo pairs, and an optical flow
network is used to generate the disparity maps based on the forward-backward consistency
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check to use reliable values. A segmentation network sets the sky region in an image to have
the minimum disparity value.

Holopix50K [18]: The Holopix50k dataset consists of ∼ 50K image pairs captured from
the Holopix platform. We compute the disparity maps from RAFT [45] and consider sky
segments from Mask2Former [6] to set corresponding disparity values to zero.

We perform zero-shot depth evaluation on the four datasets not seen during training
similar to prior MDE approaches [36, 54]. We consider DIODE [47], IBims-1 [20], Middle-
bury [40], and KITTI [16] datasets. In DIODE, we use the validation set of 771 images,
including indoor and outdoor images. In IBims-1, we use the official test split of 100 images
for the evaluation. To evaluate Middlebury, we consider all the training and test images.
Finally, we consider the Eigen split of 697 images for evaluation in KITTI.

4.6 Implementation Details

For our ordinal depth network experiments, we follow the network setup of [54] with a
ResNeXt101 [55] feature extractor. We initialize the feature extractor ResNeXt101 [55] with
WSL weights [29] similar to the setup in [36] trained in a weakly-supervised learning setup on
a large corpus of images, with further fine-tuning on ImageNet1K dataset. We use Sigmoid
to restrict the output depth values to [0, 1] during training. We use a learning rate of 10−5

with an Adam optimizer. For datasets with outdoor images, we set the disparity of the sky to
zero in every image. To better stabilize the ordinal training, we consider warm-starting the
network by considering ∼ 5K images by randomly sampling 20 images from every scene in
the Hypersim [37] dataset and training the network with an L1 loss for one epoch. We then
continue the training on the Hypersim [37] and OpenRooms [26]. We then incrementally
add the other datasets in the following order: Replica [43], Replica [43]+GSO [7], FSVG [22],
TartanAir [51], HRWSI [54], and Holopix50K [18]. We construct a batch size by uniformly
sampling the images from every dataset and setting the batch size to 16.

To crop the input image for training, we follow the setup from Miangoleh et al. [32]
to compute the R0 size such that no pixel in the image is far away from the contextual
cues. Since we upper bound the cropping resolution to R0, any resolution less than that
ensures every pixel receives context information. This cropping mechanism helps the network
fit the entire image with contextual cues into the receptive field and thus helps the network
estimate consistent global ordinal structure with details. We then randomly crop from [384,
R0] and resize to 384 × 384. We then randomly apply horizontal flip, color jitter, Gaussian
blur, and grayscale data augmentation operations for better generalization. During training,
we adjust the ground-truth distribution in the depth space as described in Section 4.1 and
compute our overall ordinal loss in Section 4.4. We match the scale and shift of the predicted
ordinal estimate with the ground truth ordinal depth using the least-squares criterion before
computing the combined ordinal loss (§ 4.4).
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Chapter 5

Ordinal Depth Evaluation

This chapter evaluates our ordinal depth network trained with sparse and dense ordinal
losses. We show quantitative and qualitative results of our ablation study to demonstrate
the effectiveness of different components in our ordinal depth network training setup. We
compare the ordinal depth network with the state-of-the-art ordinal networks to show the
improvement in performance on novel datasets not seen during training. Finally, we present
the results of our ordinal network with boosting framework [32] to show the strong gener-
alization capabilities for photographs in the wild.

5.1 Evaluation Metrics

We consider several evaluation metrics to evaluate different attributes of depth estimation.
First, we use the ordinal (Ord.) loss to evaluate the ordinality between depth points by
randomly sampling 10K points in an image. We use D3R [32] to measure the high-frequency
details in the estimated depth. To reduce the inference time, we resize the images with a
larger axis equal to the network’s training size and adapt the smaller size to preserve the
aspect ratio for depth prediction. Additionally, we align the predictions from our ordinal
network with the ground-truth depth in the inverse-depth space using the least-squares
criterion.

The Ordinal evaluation metric is Ord. =
∑n

i wiI(li ̸= l∗i ))/
∑n

i wi, where n is the total
number of sampled pixel pairs and w is set to 1. l indicates the determined ordinal relation
for a pair i. To quantify the quality of edge accuracy, we use D3R from Miangoleh et al.
[32]. Specifically, to calculate D3R, the first step is to compute superpixel segments on the
ground truth depth and construct pixel pairs based on the neighbouring segment centres.
The pixel pairs indicate the depth accuracy for object boundaries and drastic changes to
depth. The error metric on the n pixel pairs is given by: D3R = (

∑n
i |li − l∗i |)/n.

To further measure the edge accuracy, we employ the Soft Edge Error (SEE) by Chen
et al. [2]. The SEE metric computes the absolute difference in error between a value in the
estimated depth and a local patch of size k × k around a point at the same location in the
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Figure 5.1: We present an example from our controlled experiment in Section 5.2 where we
compare the pseudo-ordinal dense loss by [36] with our dense ordinal loss. The fully ordinal
formulation of our loss allows the network to generate sharper details.

ground-truth depth. The SEE metric is defined as 1/n
∑n

i seek(di −d∗
i ), where i ∈ Edge(d∗)

and seek = min(|di − d∗
j |), j ∈ nk(i). In SEE, nk indicates the k × k neighbourhood patch

for the point i.
During training and inference, we resize the images to the corresponding network’s

training resolution such that the larger axis matches the training size and adapt the minor
axis to maintain the aspect ratio. Specifically, we resize the images for our network to ensure
the larger axis is set to 384 while adapting the minor axis. For KITTI, with a wide aspect
ratio, we follow the setup by Ranftl et al. [36] to set the minor axis to 384 and adapt the
larger axis to handle the aspect ratio. Finally, all the estimations are rescaled to the original
image size to compute the evaluation metrics, except for D3R.

5.2 Ablation Study

In this section, we evaluate the effectiveness of our proposed ordinal depth training strategies
and inspect the contribution of each of our proposed components. Specifically, we analyze
different losses for training monocular ordinal depth estimation, the effect of combining the
sparse and dense ordinal loss, and different ordinal sampling strategies.
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Table 5.1: We perform an ablation study to evaluate the effectiveness of the ordinal depth
network on IBims-1 [20], Middlebury [40], and Hypersim [37] datasets. We compare our
ordinal loss with scale and shift invariant (SSI) [36] loss and sparse Ranking loss [3]. Ad-
ditionally, we compare our triplet point sampling with random [3], random balanced [53],
and structure-guided sampling [54].

Methods IBims-1 Middlebury Hypersim
Ord. ↓ RMSE ↓ Ord. ↓ RMSE ↓ Ord. ↓ RMSE ↓

Dense Loss
Pseudo-ord SSI 0.150 0.604 0.161 0.202 0.138 0.427
Ordinal SSI 0.143 0.570 0.170 0.199 0.136 0.428

Sparse Loss
Random + Ranking 0.179 0.768 0.182 0.200 0.176 0.585
Random + Ordinal 0.126 0.553 0.182 0.209 0.126 0.424
Random Balanced + Ordinal 0.139 0.605 0.195 0.215 0.126 0.426
SGR + Ordinal 0.139 0.574 0.187 0.212 0.126 0.427
Triplet + Ordinal 0.136 0.558 0.189 0.219 0.129 0.434

Combined Loss
SSI + Triplet + Ordinal 0.135 0.537 0.167 0.193 0.128 0.413

We experiment with our method on the Hypersim dataset [37] from Omnidata [10].
First, we construct the training set by sampling 10K images and their associated depth
maps from the provided train split [37] of the data. In particular, we sample 20 images for
each scene in the Hypersim training data. Then, we train our depth estimation models on the
constructed training data and evaluate the depth estimation performance on Hypersim [37],
Middlebury [40], and IBims-1 [20] using standard depth estimation metrics, including SSI-
RMSE, and Ord.

Table 5.1 compares the overall depth estimation for different ordinal loss setups. We first
compare the model trained using SSI loss in the pseudo-ordinal depth space and our ordinal
depth space. The results in rows 1 & 2 in Table 5.1 across different datasets and metrics
show that using ordinal depth space with dense SSI loss effectively estimates ordinal depth.
Furthermore, removing metric constraints to generate ordinal depth space is beneficial in
learning sharp depth edges, as shown in Figure 5.1. In contrast, the pseudo-ordinal trained
network generates smooth edges and lacks the object’s structural details. In rows 3 & 4,
we compare the ranking loss and our relaxed ranking loss. Our relaxed variant effectively
improves the overall numerical results for all the datasets, indicating it works well for diverse
datasets. This is because our sparse-only training with relaxed ranking loss does not push
the depth values very far apart as long as they satisfy the minimum threshold described
in Section 4.2. In contrast, the ranking loss negatively impacts the training by pushing
the objects very far from each other despite the point pairs satisfying the ground truth
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Figure 5.2: We showcase the qualitative results from our controlled experiment described
in Section 5.2 to compare the ranking [3] and our relaxed ranking loss. Our relaxed ranking
loss captures sharper details compared to the ranking loss. Additionally, our loss does not
push the objects in the background too far from the foreground as long as the depth order
is satisfied, which is not the case in the ranking loss.

ordinality relation, as described in Figure 5.2. In addition to positively impacting training,
the relaxed ranking loss also improves the sharp details in the depth estimation.

In rows 5 to 7, we study the effect of different point sampling strategies for our relaxed
ranking loss. Numerically, our triplet sampling is on par with other mechanisms and per-
forms well on the Ord. metric to show that using the triplet sampling of sparse points in the
relaxed ranking loss estimates better ordinal depth. Compared to the other sampling tech-
niques (random, balanced random, and structured-guided samplings), our triplet sampling
generates better depth details (see Figure 5.3). Specifically, creating a reference depth for
the positive and negative sampled points helps establish a better context for the foreground
and background objects, leading to better overall results.

To get the best of all the different components, we combine them in the last row in
Table 5.1. Specifically, the final setup involves the dense ordinal loss and our sparse relaxed
ranking loss with triplet sampling. Numerically, the combined setup achieves the best overall
results across all datasets. The RMSE points to the global structure of the depth estima-
tion effectively estimated by the combined loss. In addition, the Ord. metric indicates that
the complete ordinal dense and sparse training is effective in estimating ordinal depth. In
Figure 5.4, we compare the results from our combined loss with the sparse and dense-only
loss setups. The combined loss displays consistent overall structure as the dense-only loss
and sharp depth details as the sparse-only loss. This indicates that our dense and sparse
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Figure 5.3: In this figure, we present the qualitative results of the experiment to study the
impact of the point pair sampling technique on the ordinal depth estimations. We compare
the random [3], balanced random [53], structure-guided sampling [54] and our triplet-based
sampling techniques. Our sampling technique helps to infer sharper depth discontinuities
compared to others.

Figure 5.4: We present an example from our controlled experiment in Section 5.2, where
we show that our dense and sparse losses harmonize well to generate better structure and
details.
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Table 5.2: We consider a zero-shot quantitative evaluation of our proposed ordinal network
“Ours-ordinal” with other state-of-the-art ordinal depth networks using depth ordinal and
edge accuracy metrics. Specifically, we compare with VN TPAMI [56], SGR [54], LeReS [59],
MiDaS [36], DPT [35], 3D KenBurns [33]. Additionally, we compare our boosted [32] ordinal
depth “Ours-boosted” with SGR and MiDaS.

Methods Middlebury IBims-1 DIODE KITTI
SEEk3 ↓ SEEk5 ↓ Ord. ↓ D3R ↓ SEEk3 ↓ SEEk5 ↓ Ord. ↓ D3R ↓ εacc

DBE ↓ εcomp
DBE SEEk3 ↓ SEEk5 ↓ Ord. ↓ D3R ↓ Ord. ↓ D3R ↓

VN TPAMI 0.120 0.115 0.211 0.600 0.157 0.149 0.140 0.683 4.795 79.595 0.227 0.219 0.207 0.944 0.150 0.085
SGR 0.169 0.163 0.220 0.516 0.191 0.182 0.199 0.579 2.127 48.068 0.130 0.124 0.247 0.899 0.166 0.060
SGR-bmd 0.160 0.154 0.210 0.304 0.188 0.179 0.196 0.489 2.049 28.367 0.140 0.134 0.236 0.906 0.161 0.052
LeReS-ordinal 0.150 0.144 0.197 0.456 0.101 0.096 0.107 0.502 2.399 23.940 0.221 0.213 0.204 0.916 0.159 0.071
MDS 0.111 0.106 0.176 0.451 0.135 0.128 0.127 0.502 1.874 45.755 0.174 0.167 0.175 0.888 0.120 0.071
MDS-bmd 0.102 0.098 0.164 0.223 0.132 0.125 0.126 0.438 1.901 33.415 0.180 0.174 0.182 0.892 0.117 0.069
DPT 0.104 0.099 0.161 0.369 0.143 0.136 0.100 0.436 2.001 29.740 0.176 0.169 0.166 0.884 0.186 0.091
KenBurns 0.134 0.129 0.219 0.525 0.132 0.125 0.122 0.674 2.190 22.840 0.183 0.177 0.237 0.941 0.136 0.078
Ours-ordinal 0.098 0.093 0.196 0.404 0.111 0.105 0.113 0.439 1.878 25.404 0.142 0.136 0.202 0.901 0.129 0.082
Ours-bmd 0.094 0.090 0.185 0.170 0.114 0.109 0.125 0.324 1.914 12.709 0.155 0.149 0.222 0.880 0.127 0.063

losses complement each other in the combined setup to achieve the best result for ordinal
depth estimation.

5.3 Comparison with Ordinal State-of-the-art

We perform the zero-shot evaluation of our ordinal depth network following evaluation
setup by Ranftl et al. [36]. We compare our results with several prior baselines to compare
the effectiveness of our ordinal network. The Virtual Normal (VN TPAMI) network by
Yin et al. [56] combines a virtual normal on sparse normals with a dense scale and shift
invariant (SSI) loss. The structured-guided ranking (SGR) approach by Xin et al. [54]
propose to use a ranking loss with pair sampling based on the image gradients as a proxy for
depth discontinuities to estimate better depth edges in sparse-only training. The LeReS [59]
method uses a variation of dense SSI with normal-based sparse loss to estimate relative
depth. The Midas [36] uses the SSI loss to train a depth network across diverse datasets
that accounts for the unknown scale and shift in dense-only training. The KenBurns [33]
estimates a coarse depth and an up-sampling module to estimate high-resolution depth with
accurate boundaries. The DPT [35] uses the same training setup as Midas but replaces
the convolutional architecture with the recent vision transformer [9] based architecture.
Additionally, we consider the boosted versions of SGR (SGR-bmd) and Midas (Midas-bmd)
using the depth boosting framework by Miangoleh et al. [32] to estimate high-resolution
ordinal depth.

In Table 5.2, we compare our two approaches, “Ours-Ordinal” and “Ours-bmd”, with
all the prior methods. On the high-resolution Middlebury [40] dataset, the results from our
boosted ordinal network show strong performance on all the edge-based metrics. This shows
that our ordinal network is better at capturing high-frequency details for high-resolution
input images than all the baselines. However, for the ordinal metric (Ord.), the DPT base-
line shows strong results as it has a larger network capacity than our convolutional-based
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Figure 5.5: We present a zero-shot qualitative comparison against state-of-the-art ordi-
nal and pseudo-ordinal depth estimation methods: VN [56], Midas [36], SGR [54], Ken-
Burns [33], DPT [35] and our ordinal depth estimation method. We also show high-resolution
results for Midas, SGR and Ours using the boosting method by Miangoleh et al. [32]. We
detail our experimental setup in Section 4.6.

Figure 5.6: We compare our ordinal network with previous state-of-the-art ordinal and
pseudo-ordinal depth estimation methods on Middlebury [40].
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network to capture complex scenes. In Figure 5.5, we show qualitative results on the Mid-
dlebury dataset. Our ordinal networks outperform other methods in precisely capturing the
depth edges to show holes in the foreground object. Additionally, our ordinal network is
effective at discerning the information inside holes as background, which other approaches
fail to capture. Further, in Figure 5.6, our approach captures the high-frequency details of
intricate objects like a basket and toys on the table for a complex indoor image in Middle-
bury.

On IBims-1 [20] dataset, our ordinal networks show strong results on the edge accuracy
metrics. However, LeReS has better performance on the SEEk metrics. A possible explana-
tion is that LeReS involves a sparse loss for surface normals on points sampled along strong
gradient edges in the image using structure-guided sampling. This explicit supervision gives
LeReS an advantage for the SEEk metrics. Again, DPT shows better performance for the
ordinal (Ord.) metric due to the large model capacity. In Figure 5.7, we compare the quali-
tative results on images from the IBims-1 dataset for all the methods. Our ordinal networks
demonstrate the effectiveness of capturing intricate details in images. In particular, our ap-
proaches get precise and sharp depth boundary edges of the leaves and the table. Similarly,
in Figure 5.8, our methods infer the shape of complex and small objects like the cables and
the arm of the overhead projector.

On the DIODE [47] dataset, our ordinal networks perform better than most of the
baselines apart from SGR and its boosted counterpart for the SEEk metrics. Again, DPT
shows a stronger result for the ordinal (Ord.) metric due to network capacity. For the D3R

metric, our networks show competitive results with respect to other models.
For the KITTI [16] dataset, as the ground truth is sparse, we only consider the metrics

that consider a sparse set of points to evaluate a model. Our ordinal networks do not have
the best results on KITTI as the input images are not high-resolution with unusual aspect
ratios but show comparable results to the best-performing SGR model.

Our combined loss has a consistent ordinal structure than sparse-only methods and
higher depth details than dense-only networks. Overall our combined ordinal dense and
sparse loss with the multi-scale gradient depth loss does help the network to generate depth
with both consistent global structure at low resolution and sharp high-frequency depth
details at higher resolutions based on our boosted ordinal depth estimations.

5.4 In-the-wild Ordinal Depth Estimation

We train our ordinal network with the combined loss on a variety of synthetic and real-
world datasets, covering a wide range of environments to make it generalize for in-the-
wild images. To test this depth generalization hypothesis, we collected diverse images from
Unsplash contributed by different photographers. The image set contains complex scenes
with dynamic objects like people, birds, and animals. Further, we employ the boosted [32]
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Figure 5.7: We compare our ordinal network with previous state-of-the-art ordinal and
pseudo-ordinal depth estimation methods on IBims-1 [20].

Figure 5.8: We compare our ordinal network with previous state-of-the-art ordinal and
pseudo-ordinal depth estimation methods on IBims-1 [20].
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Figure 5.9: We present the high-resolution qualitative results from our ordinal network with
the boosting technique [32] for in-the-wild images capturing complex indoor and outdoor
environments of different objects.

version of our ordinal depth network to generate high-resolution ordinal depth images. We
show the results of this setup in Figure 5.9. Despite not training on datasets containing
animals, our boosted ordinal results show consistent global ordinal structure with sharp
depth boundaries for animals, as seen in result (a). For images with multiple objects of
the same type, our result shows consistent object structure with clear depth boundaries to
separate the objects, as seen in images (b and d). Additionally, our depth estimation shows
a strong result on images with humans. Specifically, for a close-up shot of a human face
with intricate hair structure, our results capture the subtle details of facial hair in the depth
estimation, seen in result (c). Similar to the images with animals, our ordinal network can
estimate reliable high-resolution ordinal depth for images containing birds with intricate
features, as seen in result (e). Finally, for outdoor images with a group of people and trees,
our depth estimation shows consistent global structure while capturing all the tiny details
of the trees, as seen in result (f). These results thus prove our generalization hypothesis
that our ordinal depth network can estimate reliable depth for photographs in the wild.
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Chapter 6

Metric Depth Estimation

Figure 6.1: The depth estimation from our metric depth network on a photograph in the
wild. Our depth estimation is high-resolution with geometric consistency. We can project
the metric depth estimation to a dense 3D point cloud. Finally, we can leverage an off-the-
shelf meshing network to recover the surface mesh from the 3D point clouds.

In Chapter 4, we introduce our fully ordinal depth estimation method. Although our
approach achieves better depth details and structure in the ordinal space, as highlighted in
Section 5.3, the depth estimation still lacks geometric structure, which can hinder its usage
in different downstream applications [33, 41].

The convolutional nature of the ordinal depth network can be utilized to generate depth
estimations for input resolutions greater than the training resolution of 384 × 384. Specifi-
cally, varying the input resolution of the image generates depth with different characteristics.
Specifically, our ordinal depth estimation captures the overall ordinal scene structure for
low-resolution (receptive field size) input, as the network can see the complete image. How-
ever, for high-resolution input, our ordinal network estimates depth with high-frequency
local details but with inconsistent global scene structure. We provide an overview of these
observations in Figure 6.2. A similar observation was shown by Miangoleh et al. [32] on
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Figure 6.2: Overview of the characteristics of the low and high-resolution ordinal estima-
tions. The low-resolution ordinal estimates capture the scene structure (green circles) but
lack high-frequency details (blue circles). On the other hand, the high-resolution ordinal
estimates are good at generating sharp depth discontinuities (green circles) but lack struc-
tural consistency (blue circles).

pre-trained depth networks and exploited this behaviour of the pre-trained depth networks
to boost their depth estimations to high resolution.

We set up the high-resolution metric depth estimation problem with two ordinal depth
inputs and an RGB image. The first ordinal depth estimation is at the network receptive
field size of the ordinal network, 384 × 384, to capture the global ordinal relationships in
the input scene. The second ordinal depth is a high-resolution estimation with resolution
R20 as defined by Miangoleh et al. [32] (§ 3.4), which is adaptive to images based on their
content and the edge distribution. The advantage of our setup is the readily available depth
information for the metric network to estimate high-resolution metric depth. Instead of
reasoning about the scene structure and depth details from a monocular image for high-
resolution metric depth estimation, our metric depth network can leverage the local and
global ordinal information provided in the inputs. In addition to the rich information in
the input data, we apply different geometric constraints on the network to explicitly fix the
geometric structure of the depth estimation.

The high-resolution metric depth with two ordinal depth estimations setup resembles
the mid-level depth estimation framework by Zoran et al. [60]. Specifically, Zoran et al.
[60] leverages the local and global context in the images to estimate sparse ordinal depth
relations. The local context captures local image formations, while the global context cap-
tures the overall image structure. The sparse ordinal depth relations are then utilized in a
CRF-based optimization to generate dense depth. In contrast to Zoran et al. [60], instead
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Figure 6.3: Overview of the high-resolution metric depth training pipeline. Given an input
image and the ground-truth depth, we first generate low and high-resolution ordinal esti-
mates from the pre-trained ordinal network. Then, we channel-wise concatenate the input
image, low-res, and high-res ordinal estimates of dimension H × W × 5 as input to the met-
ric network. We also fix the ground-truth depth scale based on the low-resolution ordinal
estimate using the least-squares criterion. Finally, we compute the scale-invariant loss on
the estimated metric depth and the scaled-fixed ground-truth depth to penalize the network
during training. The scale-invariant loss in Eq. 6.5 is a combination of sparse ratio, multi-
scale gradient, surface normal, and multi-scale surface normal gradient loss as described in
Section 6.5.

of estimating sparse ordinal depth relations, we train the ordinal depth network in the or-
dinal depth space to estimate two dense ordinal depth estimations to capture the local and
global contextual information. Specifically, the global context is captured by our ordinal
estimation for the input image at the receptive field size. Meanwhile, the local context is
provided by our ordinal depth estimation for the input image with a resolution higher than
the receptive field size. We then use our metric depth network to take the ordinal inputs
along with the RGB to estimate dense metric depth, similar to the CRF-based optimization
by Zoran et al. [60].

We use the different sparse and dense losses to effectively train the metric depth network
to enforce geometric constraints in both the depth and the surface normal space. We use
a dense loss, a sparse depth ratio loss, and a multi-scale depth gradient loss for the depth
space. In addition, we use dense angle loss and a multi-scale normal gradient loss in the
normal space.

39



6.1 Dense Loss

The “metric” depth is defined up to an unknown scale. The prior MDE methods [12, 24,
25, 56] adopt the scale-invariant loss formulation to estimate metric depth. During training,
similar to the scale and shift-invariant (SSI) loss [36], the scale-invariant loss requires a
least-squares fit between depth estimation and ground truth metric depth before computing
the loss. However, following this approach to determine the scale can make our dense loss
unstable due to inaccurate depth estimation from an under-trained metric network in the
early training epochs. Computing the scale on these inaccurate depth estimations and the
ground truth depth can negatively affect the least-squares fit, leading to high gradients and
poor network convergence.

In our metric depth estimation setup with ordinal inputs, we can use the low-resolution
ordinal estimate as a point of reference for our metric depth network. Specifically, the
low-resolution ordinal estimate from the pre-trained ordinal depth network is stable. The
least-squares fit between the low-resolution ordinal estimate and the ground truth produces
reliable results. Therefore, we use our low-resolution ordinal depth estimation (oL) to set
the arbitrary scale in the ground truth depth (d∗) as given by:

c = argmin
c

∑
i

(c · d∗
i − oL

i )2 (6.1)

We can use this fixed scale c to define our ground-truth depth as d̂∗ = c · d∗. We can
also fix the arbitrary scale of the high-resolution ordinal depth estimate to that of the low-
resolution ordinal estimation to ensure that both the inputs and output depth maps have
the same overall scale. We can define the loss between the metric depth estimation d and
the scaled fixed ground truth d̂∗ as:

Ldsi = 1
n

∑
i

|di − d̂∗
i |, (6.2)

where n is the total number of pixels in the image.
A limitation of this setup is that if the ordinal estimations are noisy, then the scale we

determine for the ground truth depth can be unreliable. However, the ordinal network can
generate noisy depth if the input images contain noise, as described in Section 9.1.

6.2 Sparse Ratio Loss over Triplets

In addition to the scale-invariant loss (§ 6.1), we define a sparse ratio loss over triplets to
enforce an additional geometric constraint. This is based on the motivation that each pair
of points in the depth estimation should differ by the same ratio as the corresponding points
in the ground- truth, regardless of their global scale. Inspired by this setup, we define the
loss as:
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Figure 6.4: Our sparse metric loss helps the network generate sharper details, while our
dense losses on normals make it possible to generate smooth surfaces on IBims-1 [20].

Lsrl(i, j) =


(

d̂∗
i

d̂∗
j

− di
dj

)2
if d̂∗

j > d̂∗
i(

d̂∗
j

d̂∗
i

− dj

di

)2
otherwise

(6.3)

In the above equation, both cases ensure the defined loss is smaller than one, making the
loss more stable on scenes with a large depth ratio between the foreground and background
objects (e.g., outdoor images). We define the sparse depth ratio loss on the points selected
with our triplet sampling. As seen in ordinal training with triplet sampling (§ 4.3), using
it in metric training enhances the high-resolution details in the prediction, as discussed in
Section 7.2.

6.3 Dense Surface Normal Loss

In addition to the depth-based losses to estimate global geometric structure, we impose
constraints on the local surface geometry. To achieve this, we compare the surface normal
maps derived from the estimated and ground-truth depth. We derive the surface normals by
normalizing a vector n ∈ R3, where n = [∇dx, ∇dy, 1]T and ∇ indicates the depth gradient.
We can define the dense normal loss (Ldsn) as:

Ldsn =
n∑
i

(1 − ni · n∗
i ) (6.4)

where, n is the total number of image pixels. The loss in Eq. 6.4 is similar to the angle loss
defined in Chen et al. [4].
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6.4 Multi-Scale Normal Gradient Loss

Inspired by the multi-scale gradient loss [25] on depth estimations, we consider computing
the multi-scale gradient loss on the surface normals. As the surface normals are derived from
the depth maps, considering a multi-scale gradient would be equivalent to determining the
second derivative of the depth. Therefore, the second derivative gives information on the
local curvature of the depth. We show the effectiveness of using this loss in Figure 6.4 when
applied to other geometric losses for training the scale-invariant network. We define the loss
as Lnmsg.

6.5 Overall Loss Function

To train the metric depth estimation network, we combine all the aforementioned losses to
enforce local and global geometric constraints. We can define the overall metric loss as:

Lscale−invariant = λdsiLdsi+λsrlLsrl+λsnLsn+λnmsgLnmsg +λmsgLmsg +λlsganLlsgan (6.5)

where, Ldsi is the dense scale-invariant loss, Lsrl is the sparse depth ratio loss over
triplets, Ldsn is the dense surface normal loss, Lnmsg is the multi-scale surface normal
gradient loss, Lmsg is the multi-scale depth gradient loss, and finally Llsgan is the Least
Squares GAN [30]. We set the loss weights λdsi, λsrl, λsn, λnmsg, λmsg, and λlsgan to 1000,
500, 100, 5, 500, and 1, respectively.

6.6 Datasets

To train our metric depth network, we use the following datasets: Hypersim [37], Sun
RGBD [42], and TartanAir [51] dataset. The Hypersim and TartanAir datasets are de-
scribed in the training datasets part of Section 4.5.

SunRGBD [42] dataset comprises ∼ 11K RGBD images from real-world environments
of indoor scenes captured from four sensors. In addition, the depth maps from cameras are
further improved to remove noise and holes by combining depth from nearby frames. We
consider the Hypersim and Sun RGBD datasets to train the indoor metric network while
training the outdoor network using the TartanAir dataset. The motivation behind training
separate metric networks for indoor and outdoor scenes is due to the difference in the depth
range between indoor and outdoor scenes. While our ordinal network can handle both
environments by utilizing our ordinal depth space, which relaxes the metric constraints, it
is challenging for the metric network. Therefore, we resort to training two models to handle
this complexity in metric depth. For the indoor network, we utilize Hypersim and compute
all the geometric losses (§ 6.5). However, for the Sun RGBD dataset, we only consider the
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sparse depth ratio loss on the sampled points using our triplet sampling. We only consider
the TartanAir dataset with all the geometric losses for training for the outdoor network.

To test the metric network, we follow the same zero-shot evaluation setup on four test
datasets described for ordinal network evaluation in Section 4.5.

6.7 Implementation Details

To train the metric depth network, we consider the Pix2Pix [19] training setup. We use
the EfficientNet [44] backbone network with ImageNet pretrained weights for the encoder.
We modify the first layer to consider input with five channels. The input resolution is
1024 × 1024 × 5, where 5 is the number of input channels. We channel-wise concatenate
the RGB input with low and high-res ordinal estimates. We train the network with a batch
size of 1 and randomly crop the image with size (H/2 × W/2) by resizing it to 1024 × 1024.
Then, we use the metric geometric losses (§ 6.5) and the Least Squares GAN [30] loss with
the Patch-GAN setup [19]. In Figure 6.3, we illustrate the overall training pipeline of the
metric network. In Figures 7.2 and 7.3, we show the qualitative results from our metric
depth network compared to the state-of-the-art baseline networks. In Figure 7.4, we project
the depth estimations from the metric network on Middlebury [40] to a dense coherent 3D
point cloud.
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Chapter 7

Metric Depth Evaluation

In this chapter, we evaluate our metric depth estimation network trained with a combination
of depth and surface normal based losses to introduce local and global geometric constraints.
We show quantitative and qualitative results of our ablation study to demonstrate the
effectiveness of each of the losses in our metric depth network training setup. We compare
the metric depth network with the state-of-the-art metric networks to show the improvement
in performance on novel datasets not seen during training. Finally, we present the results of
our metric network to demonstrate the robust performance against a stereo-based approach
that uses multi-view information to estimate depth.

7.1 Evaluation Metrics

To evaluate the metric network for zero-shot setup, we consider the metric depth eval-
uation metrics along with the ordinal Ord. and D3R metrics. Specifically, we consider
the scale-invariant root mean squared error (SI-RMSE), the absolute relative difference
(Abs.), and the depth threshold (δt). The depth threshold δt metric is defined as δ1.25 =
max(d/d∗, d∗/d) < 1.25, where d∗ is the ground-truth depth and d is the estimated depth.
We can define the absolute relative metric (Abs.) as 1/n

∑n
i |d∗

i −di|/d∗
i , where n is the total

number of image pixels. Additionally, we use the εacc
DBE and εcomp

DBE metrics from Koch et al.
[20] as part of the IBims-1 dataset to measure the accuracy and completeness of the depth
edges.

We consider SI-RMSE and Abs. for all datasets but use the depth threshold metric δ1.25

on all datasets except Middlebury [40]. For DIODE [47], IBims-1 [20], and KITTI [16], we
compute the SI-RMSE, and absolute relative in the depth space, whereas ordinal and D3R

in the inverse depth space. For Middlebury, we compute all the metrics in the inverse-depth
space since the ground-truth data denotes disparity. We consider the least squares criterion
to fit the scale of the ground truth to the metric depth estimation before computing the
evaluation metrics.
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Table 7.1: We perform an ablation study on our metric network to study the impact of
different geometric losses. We evaluate the networks on IBims-1 [20] dataset and consider
both depth and surface normal based metrics.

Methods Depth Angle Distance % Within t◦

Ord. ↓ D3R ↓ RMSE ↓ Mean ↓ Median ↓ 11.25 ↑ 22.5 ↑ 30 ↑
Ldsi + Llsgan + Lmsg 0.128 0.414 0.913 37.053 29.093 0.203 0.423 0.532
+Lsrl 0.134 0.404 0.783 35.317 27.797 0.218 0.440 0.549
+Lsrl + Lssn 0.137 0.413 0.839 35.671 27.786 0.218 0.439 0.549
+Ldsi + Ldsn 0.121 0.408 0.760 31.496 23.761 0.264 0.500 0.610
+Ldsi + Ldsn + Lnmsg 0.120 0.368 0.780 30.189 22.595 0.284 0.528 0.633

Figure 7.1: Our sparse metric loss helps the network generate sharper details, while our
dense losses on normals make it possible to generate smooth surfaces on IBims-1 [20].
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7.2 Ablation Study

We demonstrate the effectiveness of different proposed dense and sparse geometric losses in
training the metric network. We consider a controlled experiment by training the network
setup described in Section 6.7 on just the Hypersim [37] using the data preparation setup
detailed in Section 5.2. We consider the standard depth quality metrics RMSE, Ord., and
D3R introduced previously. In addition, we use two additional metrics, Angle Distance and
% Within t, specifically designed to assess the geometric quality of depth estimations.

In Table 7.1, we show the quantitative evaluation of the metric network trained with
different loss configurations. Training the network with a combination of the dense scale-
invariant loss (Ldsi), multi-scale gradient loss (Lmsg), and sparse ratio loss (Lsrl) generates
depth with smooth depth boundaries and uneven surfaces as seen in the depth and derived
surface normal qualitative results in Figures 6.4 and 7.1. By adding the sparse ratio loss,
we can enforce sharper details and better geometric structure to preserve the depth ratio
between pixels according to the ground truth ratio. However, adding the sparse depth
ratio loss introduces spiky artifacts on smooth regions as the loss supervision is sparse.
Further, adding the sparse surface normal (Lssn) loss to align the surface orientation of the
prediction with ground truth does not improve the performance. A reasonable explanation
for this behaviour is that sparse normal lacks local context around the sampled point to fix
the orientation of the surfaces. An alternative is to use dense surface normal angle loss on all
the image pixels. With the addition of dense surface normal loss (Ldsn) and this does improve
the overall quality of the generated depth maps in terms of sharper depth boundaries, and
surfaces appear flatter. Finally, to further improve the local geometric details related to
curvature, we apply multi-scale normal gradient loss (Lnmsg). The network trained with all
the losses (§ 6.5) solves the issues concerning distortions on flat surfaces as they appear
smooth with sharper depth details. The combined loss also shows consistent improvement
across all the metrics.

7.3 Comparison with State-of-the-art

We perform a zero-shot evaluation of our metric depth network following the evaluation
setup by Ranftl [36]. We train two networks independently on indoor and outdoor datasets
(§ 6.6) based on the implementation details in Section 6.7. We compare our results with
several prior metric depth baselines to compare the effectiveness of our metric network.
We compare with a MegaDepth (MD) [25] network trained on depth maps generated from
a structure-from-motion (SfM) framework on web images. The network combines scale-
invariant loss with sparse ordinal loss to estimate the metric depth. The baseline Mannequin
Challenge (MC) [24] trains a network of web videos that represents the mannequin challenge
of people. They again use the SfM framework for the ground-truth generation to train the
depth network using scale-invariant losses. The Virtual Normal setup by Yin et al. [57]
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Figure 7.2: We compare the depth estimations across different metric depth networks on
Middlebury [40] dataset.

Table 7.2: We consider quantitatively evaluating our metric network “Ours-si” with other
prior depth networks. Specifically, we compare with MD [25], MC [24], Virtual Normals [57],
and LeReS [59]. We use the scale-invariant depth metrics and edge metrics to compare the
performance of different models.

Methods Middlebury IBims-1 DIODE KITTI
RMSE ↓ δ1 ↑ Ord. ↓ D3R ↓ RMSE ↓ Abs. ↓ δ1 ↑ Ord. ↓ D3R ↓ εacc

DBE ↓ εcomp
DBE ↓ RMSE ↓ Abs. ↓ δ1 ↑ Ord. ↓ D3R ↓ RMSE ↓ Abs. ↓ δ1 ↑ Ord. ↓ D3R ↓

MD 0.242 30.070 0.258 0.556 2.200 47.246 48.575 0.268 0.596 3.145 78.144 9.857 45.480 46.560 0.259 0.929 9.055 23.636 55.361 0.159 0.079
MC 0.229 28.395 0.274 0.690 1.067 22.719 60.580 0.255 0.724 4.083 57.348 10.215 44.546 42.171 0.307 0.945 11.904 31.784 41.137 0.237 0.096
VN ICCV 0.254 29.141 0.255 0.688 0.738 13.751 80.441 0.179 0.707 4.089 50.938 10.505 43.762 40.068 0.351 0.952 12.671 36.747 34.599 0.321 0.111
LeRes 0.169 28.160 0.199 0.434 0.877 20.155 68.753 0.107 0.431 2.252 20.046 9.225 40.604 50.560 0.204 0.911 10.642 25.233 53.826 0.160 0.08
Ours-si 0.138 41.085 0.190 0.235 0.766 13.218 81.199 0.126 0.324 1.642 14.304 10.092 38.448 50.359 0.226 0.901 11.432 26.502 50.800 0.117 0.074

employs sparse geometric losses. Finally, Yin et al. [59] propose a point-cloud network to
estimate the unknown scale and shift for generating metric depth by fixing the ordinal input
estimate.

We perform a zero-shot evaluation of our metric depth network following the evaluation
setup by Ranftl [36]. We train two networks independently on indoor and outdoor datasets
(§ 6.6) based on the implementation details in Section 6.7. We compare our results with
several prior metric depth baselines to compare the effectiveness of our metric network.
We compare with a MegaDepth (MD) [25] network trained on depth maps generated from
a structure-from-motion (SfM) framework on web images. The network combines scale-
invariant loss with sparse ordinal loss to estimate the metric depth. The baseline Mannequin
Challenge (MC) [24] trains a network of web videos that represents the mannequin challenge
of people. They again use the SfM framework for the ground-truth generation to train the
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Figure 7.3: Comparison of metric depth estimation methods on Middlebury [40].

depth network using scale-invariant losses. The Virtual Normal setup by Yin et al. [57]
employs sparse geometric losses. Finally, Yin et al. [59] propose a point-cloud network to
estimate the unknown scale and shift for generating metric depth by fixing the ordinal input
estimate.

In Table 7.2, we show the quantitative comparison of our metric depth network on zero-
shot datasets with all the previous baselines. On Middlebury [40] dataset, our metric network
“Ours-si” performs the best across all metrics for geometric structure and sharp edges on
high-resolution input images. Similarly, on IBims-1, we show consistent improvement in
results compared to other baseline metric networks. For DIODE [47] dataset, our metric
depth network shows improvements on metrics like Abs. and D3R. Moreover, it performs on
par with other SoTA baselines on the other metrics, indicating that it is good at geometric
structure and depth details. On KITTI, our metric network shows comparable results due to
the low-resolution unconventional aspect ratio of the input images. We employ an indoor-
only model on all datasets except the KITTI dataset. Note that the baseline methods
either resort to using homogeneous datasets as used in MC [24] and Virtual Normal [57] or
only outdoor landmark data as in MD [25], hence displaying strong quantitative results on
datasets with similar data distribution. In addition to our geometric losses, the significant
benefit that makes our metric regression easier is the availability of ordinal inputs to the
network that assist with sharp depth edges and scene structure.

In Figures 7.2 and 7.3, we present the qualitative results of all the methods. Our metric
depth network estimates depth with sharp details on challenging scenes with complex ob-
jects. The LeReS [59] first estimates the ordinal depth and then estimates the scale and shift
parameters from a secondary point cloud-based network to produce metric depth. Although
it can generate geometric scene structure, it does not estimate high-frequency scene details
and depth edges as the depth estimation happen at low resolution or the receptive field
size of the network. At receptive field size, the network only generates scene structure, with
additional post-processing to fix the geometric structure with the point cloud network. In
contrast, our network can capture intricate details of complex objects. In Figure 7.2 (top
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Figure 7.4: We compare the point clouds generated from the depth estimated by our metric
network with LeReS [59] on Middlebury [40] dataset.

row), our metric depth estimation captures high-frequency details of the pipes. Most prior
approaches do not capture intricate details of the pipes and create noisy depth estimations.
For the image in the bottom row, our metric depth estimation captures all the different
objects on the table with sharp details (e.g., hat). In contrast, the baseline approaches wash
out all details and create smooth depth for the objects. A major limitation of the baseline
approaches is that the depth estimation happens at low resolution. In contrast, our ap-
proach leverages low and high-resolution ordinal estimates to provide context on the scene
structure and depth details. Similarly, in Figure 7.3, our metric depth estimation is effec-
tive at inferring the details of the object in the background, whereas the baselines generate
smooth depth of the background object.

In addition to the depth estimation, we also project our detailed depth maps to dense
coherent 3D point clouds as shown in Figure 7.4 and compare the point clouds from LeReS.
The results in 3D show the details of complex scene structures that our metric depth
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Table 7.3: We compare our high-resolution metric with stereo depth SMD-Nets [46] on
the UnRealStereo4K [46] dataset. Despite using a single input to estimate high-resolution
depth, our network demonstrates strong results in capturing sharp edges. In addition, we
consider the soft edge error (SEE) [2] to demonstrate the edge accuracy.

Methods UnRealStereo4K (3840 × 2160)
SEEk3 ↓ SEEk5 ↓

SMD-Nets 66.41 64.97
Ours 42.16 41.31

captures, unlike the baseline method LeReS at capturing high-frequency details. Specifically,
our approach can precisely separate the background seen through the holes in the foreground
object (centre column) that the baseline method fails to achieve. A similar observation is
in separating the yellow cup (first column) from the background wall in the point cloud
generated from our metric depth estimation.

The high-resolution nature of our metric depth with sharp depth edges is also helpful
for interactive image editing applications, and one such application is depth-based image
segmentation. Specifically, we can perform simple depth thresholding to generate a binary
mask to indicate object segment, as shown in Figure 7.5. With this approach, the obtained
segments from our metric depth estimation show sharp object boundaries compared to other
networks that either do not capture a complete object or contain incorrect boundaries. For
instance, our depth can generate a detailed segment of the flower (middle row) compared
to LeReS. Similarly, our depth can segment a complete dragonfly with its wings (last row)
compared to the baseline LeReS network.

7.4 Comparison with Stereo Depth

We evaluate the metric network against a stereo-depth network that considers multi-view
information to construct depth. Specifically, we consider the SMD-Nets [46] network that
introduces a depth estimation method using stereo data to estimate high-resolution depth
with sharp discontinuities. In Table 7.3, we provide the quantitative comparison using the
SEE [2] metric on the depth edges on UnRealStereo4K [46] dataset. Despite considering
only a single view (left image) in a zero-shot setup to estimate depth, our metric network
shows a stronger result with a lower edge error compared to SMD-Nets [46] that use stereo
data.

In Figure 7.6, we qualitatively demonstrate the high-resolution depth estimated from
our network compared to SMD-Nets. Our network can better reason about the depth edges
than the stereo depth network. In the top row, our network captures smaller objects like
stones in greater detail. Similarly, in the bottom row, our network captures sharper details
of metallic objects.
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Figure 7.5: Overview of depth-based segmentation by thresholding depth values and over-
laid on the input image. This illustration demonstrates the sharp depth discontinuities
attained by our metric network. The results illustrate red segments based on the depth val-
ues. Our metric network captures complete objects in each segment compared to LeReS [59].
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Figure 7.6: We compare our high-resolution metric with stereo depth SMD-Nets [46] on the
UnRealStereo4K [46] dataset. Despite using only a single input to estimate high-resolution
depth, our network demonstrates strong results in capturing high-frequency depth details
compared to the stereo depth network that uses stereo input data, as shown in the insets.
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Chapter 8

High-Resolution Metric Depth
In-the-wild

In Chapter 4, we introduce the fully ordinal depth network, and in Chapter 6, we introduce
our metric network that uses the ordinal estimates to generate high-resolution depth. We
now demonstrate the strengths of our high-resolution estimations based on in-the-wild data.

Metric depth enables geometric reconstruction, so we consider projecting the dense,
high-resolution depth onto a 3D point cloud. Additionally, we consider filtering out the
high-gradient edges in depth to remove the floating points in the 3D representation. Finally,
given this dense point cloud, we reconstruct the scene by recovering the surface mesh using
the neural dual contouring (NDC) framework proposed by Chen et al. [5].

To demonstrate the strength of our metric depth estimation in generating a 3D dense
point cloud and recovering geometric consistent 3D surface mesh, we compare it with an-
other previous state-of-the-art metric network from Yin et al. [59] (LeReS). We also compare
with the high-resolution ordinal depth from Ranftl [36] through boosting framework (BMD
Midas v2). In Figure 8.1, we compare the results on images containing humans. The first
image (top) contains a person on a couch with other intricate objects, and the second (bot-
tom) captures a person with an empty background. Despite not training on human-only
datasets, our metric network captures the consistent structure (such as walls, couch, floor)
shown in red inset and high-frequency details (such as plant, human face) shown in green

inset for both the humans and the background objects. Although LeReS is a metric depth
network, it estimates low-resolution depth with smooth depth edges. In contrast, BMD Mi-
das v2 estimates high-resolution ordinal depth with sharp edges but with a distorted 3D
geometric structure as seen on walls (above) and human faces (below).

In Figure 8.2, we show a similar comparison of complex indoor scenes with intricate
objects. The first image (top) captures an inside view of a solarium with many plants and
lamps and the second (bottom) captures an inside view of a dentist’s office. Compared to
LeReS and BMD Midas v2, our metric network estimates depth that captures the high-
frequency details (such as glass ceiling, plants, lamps, and chairs) shown in green insets
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Figure 8.1: We compare the point clouds and recovered surface meshes from the high-
resolution depth estimation by our metric network with LeReS [59] and Midas with boost-
ing [32] framework for photographs in the wild containing people in diverse environments.
LeReS [59] estimates metric depth but at low resolution with a consistent geometric struc-
ture. Midas with boosted depth produces high-resolution depth but with distorted scene
structure. We highlight the geometric structure characteristics in red insets and the depth
details in green insets. Our results contain both high-resolution details and consistent ge-
ometric structure.
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Figure 8.2: We compare the point clouds and recovered surface meshes from the high-
resolution depth estimation by our metric network with LeReS [59] estimates metric depth
but at low resolution with a consistent geometric structure. Midas with boosted depth pro-
duces high-resolution depth but with distorted scene structure. We highlight the geometric
structure characteristics in red insets and the depth details in green insets. Our results
contain both high-resolution details and consistent geometric structure.
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Figure 8.3: Overview of the project point clouds from our high-resolution metric network
with and without removal of the high gradient edges that create floating pixels in the 3D
space.

and consistent geometric structure (such as walls and cabinets) shown in red insets. LeReS
lacks high-frequency details and generates smooth depth edges, whereas BMD Midas show
strong depth edges but with distorted scene structure.

Directly projecting a depth map to a 3D point cloud can create artifact 3D points around
the edges that get stretched in the 3D point cloud. Furthermore, these artifacts in the point
cloud can generate irregular mesh around the edges when recovering surface mesh from
point clouds using NDC [5]. To overcome this issue, we create a post-processing step after
depth estimation that filters out high-gradient generating edge pixels in the depth image.
With this technique, there does not exist any artifact or floating pixels in the 3D point cloud
around edges, leading to crisp mesh generating. We provide an overview of the qualitative
results of point clouds with and without the edge pixels filtering technique in Figure 8.3.
The figure shows that the depth around the dog’s nose (top) has smooth edges leading to
stretched 3D point clouds around the dog noise. After filtering the artifacts around the
dog’s nose, the result looks sharp and clean. The bottom image shows a similar observation
around the helmet’s outer edges.
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Figure 8.4: We show the surface meshes generated for close-up object images based on the
3D point clouds extracted from the depth estimations of our metric network on the DTU
dataset [1].

Our high-resolution dense coherent 3D point naturally lends itself to extracting surface
mesh. Specifically, we first estimate high-resolution metric depth for close-up images of
objects. Then we use the meshing network from Chen et al. [5] to recover the surface mesh
of a variety of single object images [1] from the dense 3D point cloud. In Figure 8.4, we show
the qualitative results of the meshes for all the objects along with the ground-truth mesh
generated by MVSTER [52], which uses a multi-view stereo setup to generate mesh from
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multi-views images of the objects. For the input image in the first row, we can recover the
surface mesh of all the vegetables with precise orientation. For the second row, the mesh
from our point clouds captures the L-shaped structure of the pack of cans. This indicates
that applying the geometric constraints to train the metric network does capture the correct
surface orientation of objects in the wild. In the third row, our results capture the precise
shape and orientation of the two deflated balls. Lastly, the mesh from our high-resolution
metric depth-based point cloud can capture the shape of the container. Overall, despite
using only a single image for each object, our monocular metric network can generate depth
that captures the accurate structure and sufficient details compared to the ground-truth
mesh generated from a multi-view stereo setup.
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Chapter 9

Limitations

The main advantage of our ordinal depth network is estimating depth with both ordinal
scene structure and high-frequency details. The depth from the ordinal network is an impor-
tant aspect of depth estimation from the metric network. A vital requirement is to consider
high-resolution input images to achieve good performance from our two-step framework. In
this chapter, we study the effect of noise in the input image and its implications on the or-
dinal estimates. Additionally, we highlight another limitation of our framework concerning
details in the extracted mesh compared to multi-stereo-based approaches.

9.1 Sensitivity to Image Noise

In Chapter 6, we introduce our high-resolution depth estimation network by utilizing the
ordinal estimates introduced in Chapter 4 at different resolutions with the input image.
Specifically, the low-resolution ordinal estimate is estimated at the receptive field size to
capture the global scene structure, and the high-resolution ordinal estimate is estimated at
R20 [32] to capture the high-frequency depth details. The effectiveness of the metric network

Figure 9.1: We provide an overview of a limitation of our depth estimation network on noisy
input images from IBims-1 [20] dataset. Our high-resolution ordinal estimate generates low-
frequency artifacts on images with highly noisy signals, as seen in the “High-res (R20)”
estimate for both noisy images.
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Table 9.1: We quantitatively evaluate our ordinal networks “Ours-ordinal” and “Ours-bmd”
on the NYU [12] dataset with other ordinal depth networks using ordinal and edge accuracy
metrics.

Methods NYU
SEEk3 ↓ SEEk5 ↓ Ord. ↓ D3R ↓

VN TPAMI 0.124 0.117 0.124 0.638
SGR 0.140 0.134 0.179 0.578
SGR-bmd 0.145 0.139 0.182 0.572
LeReS-ordinal 0.096 0.089 0.096 0.436
MDS 0.117 0.110 0.118 0.517
MDS-bmd 0.114 0.107 0.122 0.579
DPT 0.120 0.114 0.109 0.493
Ken Burns 0.106 0.100 0.082 0.459
Ours-ordinal 0.110 0.104 0.104 0.467
Ours-bmd 0.111 0.104 0.124 0.473

Table 9.2: We quantitatively compare our metric network “Ours-si” with other depth net-
work on NYU [12] dataset using both scale-invariant depth and edge metrics.

Methods NYU
RMSE ↓ Abs. ↓ δ1 ↑ Ord. ↓ D3R ↓

MD 1.341 33.329 52.521 0.216 0.561
MC 0.662 17.921 70.738 0.189 0.687
VN ICCV - - - - -
LeRes 0.513 13.679 81.793 0.095 0.391
Ours-si 0.594 13.706 79.841 0.134 0.524

is strongly dependent on the quality of the depth features captured in the ordinal estimates.
Therefore, the quality of the ordinal depth depends on the quality of the input image. On
datasets with high-resolution images with low image white noise, the estimated ordinal
depth captures relevant features, particularly the high-resolution ordinal depth. However,
datasets with high image noise, like NYU [12], can cause the high-resolution ordinal estimate
to contain low-frequency artifacts. In Figure 9.1, we consider applying Gaussian noise to the
input IBims-1 image with a similar resolution as NYU to demonstrate the effect of white
noise on the quality of ordinal depth estimations. Despite this limitation of our approach,
we quantitatively evaluate our ordinal depth network in Table 9.1 and our metric depth
network in Table 9.2. In both tables, our networks still produce results on par with the
state-of-the-art depth networks that estimate the depth at a lower resolution on NYU [12]
dataset.

9.2 Limited Details in 3D Reconstructions

The goal of our approach is to estimate geometrically consistent high-resolution depth with
sharp depth details. This is beneficial for generating meaningful 3D reconstructions of
monocular scenes better than prior depth estimation methods. However, the depth esti-
mation is limited to the information captured in the input image. This restricts the sharp
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details captured in the extracted surface mesh compared to multi-view stereo methods [52]
that leverage diverse scene information from multiple camera views as shown in Figure 8.4.
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Chapter 10

Conclusion

To estimate high-resolution and detailed metric depth, we describe a framework to estimate
metric depth for monocular images through ordinal depth. We decompose the problem into
two steps to propagate the relevant local and global context information about the scene
structure and depth details from the ordinal depth to solve metric depth estimation. The
ordinal estimation can effectively provide relevant contextual information by exploiting the
unique traits of sparse and dense ordinal losses in a combined setup to generate depth details
and scene structure. The ordinal depth space is important in exploiting the full potential
of the dense loss for ordinal estimation. The dense ordinal loss harmonizes well with the
sparse relaxed ranking loss, making a more informed penalization on the depth ordering.
The triplet sampling of sparse points provided sufficient information and reference for depth
order, thus further improving the relaxed ranking loss. Our analysis of the different aspects
of the ordinal network demonstrates that combining all the above aspects improves the
quality of the ordinal depth estimation on a diverse range of images.

Estimating geometric consistent metric depth from the ordinal inputs simplifies the task
of the metric network to reason about the geometry through multiple depth and surface
normal-based constraints on the provided ordinal global and local contextual information.
A vital component of the geometric constraint is the sparse ratio loss to fix the relative
geometric information between points. In addition, the surface normal dense loss and multi-
scale normal gradient loss demonstrate their effect in generating consistent geometric depth.
Our analysis of the different components in the geometric losses indicates their effectiveness
in improving the geometric structure of the metric depth. Further, recovering the meaningful
3D surface mesh through a dense consistent 3D point cloud from the high-resolution depth
demonstrates the significance of the geometric constraints.

High-resolution metric monocular depth unlocks a variety of future directions. An ex-
citing direction would be to explore different architectures for the metric network, as our
current network has limitations when the inference resolution is higher than the training
resolution. For example, a potential network to explore is an image transformer [9] that
overcomes the issues related to image resolution. Furthermore, high-resolution metric depth
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can be used as a geometric prior in neural rendering architectures for high-resolution 3D sur-
face reconstruction. Likewise, the high-resolution monocular metric depth is beneficial for
high-resolution video depth estimation, which might require additional temporal geometric
constraints for temporal stability.
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