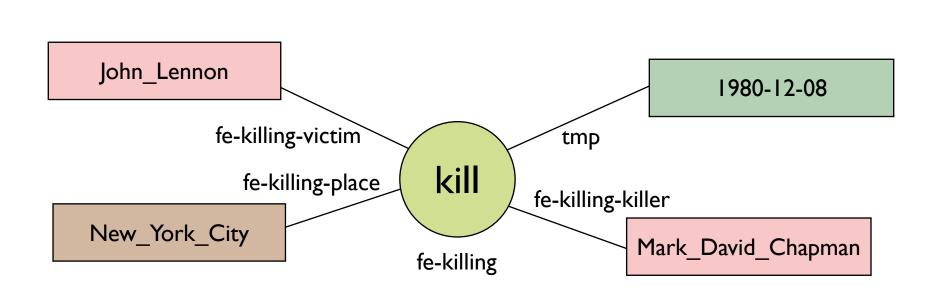


Towards Integration of Ontology and Text-extracted Data for Event Coreference Reasoning

Stefano Borgo, Loris Bozzato, Alessio Palmero Aprosio, Marco Rospocher and Luciano Serafini

1

Event description


An Event identifies a spatio-temporal region, the participating entities, and a narrative of what happens.

We characterize events via four features:

- I. Event type (e.g. killing, dying)
- 2. Participant(s) with their role
- 3. Time of happening (possibly generic)
- 4. Spatial location of happening (possibly generic)

Example:

On December 8, 1980, in NYC, Mark Chapman killed John Lennon.

2

Formal analysis of event types

We define features characterizing event types. Example of instantiation for "killing":

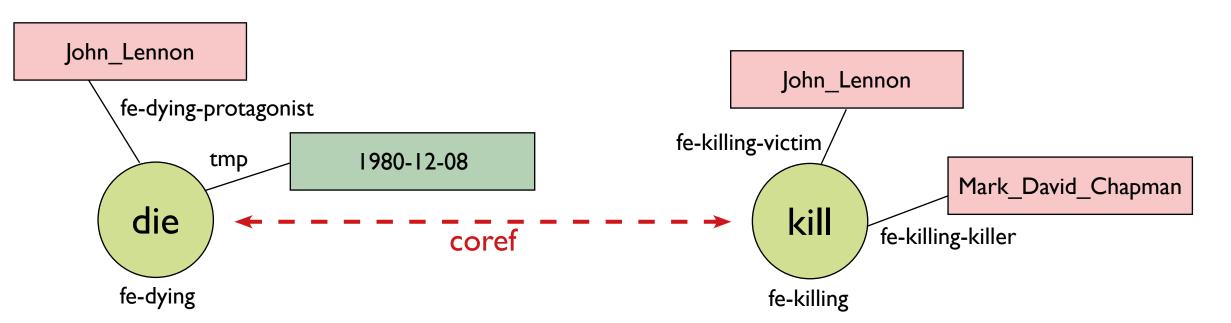
Ontological classification	Accomplishment					
Active participant	Physical object (including agents)					
Passive participant	Living entity					
Tool participant	Physical object (including chemical and biological entities)					
Subevents	Hitting (possible); start of the killing, dying (necessary)					
Sovraevents	Murdering, colliding, starving, being infected (all possible)					
Status: before	Passive participant is alive					
Status: during	Passive participant is alive					
Status: after	Passive participant is dead					
Relationship among events	Killing causes: damaging					
Symmetrical events	Dying for causes external to the passive participant					
Incompatible events/state	_					
Number of participants	Killing can have one or more active participants; one or more					
	passive participants; one or more tool participants.					
Spatial region	Killing happens in the location where the passive participants					
	are located					
Temporal region	Interval					
Repeatability	There cannot be two killing events with the same passive partic-					
	ipant; there can be more than one killing event with the active					
	participant; there can be more than one killing event in the same					
	spatio-temporal region.					
	·					

3

Ontological-based reasoning tasks for events

Example of high-level reasoning tasks enabled by the formal ontological characterization of event types:

- Pre- and Post-condition inference. Reasoning on the states that enable the activation of an event (i.e. its pre-conditions), the effects that the event produces on the state (i.e. its post-conditions), and possibly the facts that are true during the event execution.
- Completion of missing events. Inferencing of missing or implicit events.
- Completion of missing event relations. Finding relations between events, e.g. coreference, temporal sequence, incompatibility and causation.
- Event information refinement. Refining the extracted information associated to an event in order to reach a more fine grained representation of the event local knowledge.


4

Event coreference

Two events corefer when they share some qualified combination of their four characterizing features.

Goal: determine the existence and degree of truth to which a coreference relation exists based on the related data on the events.

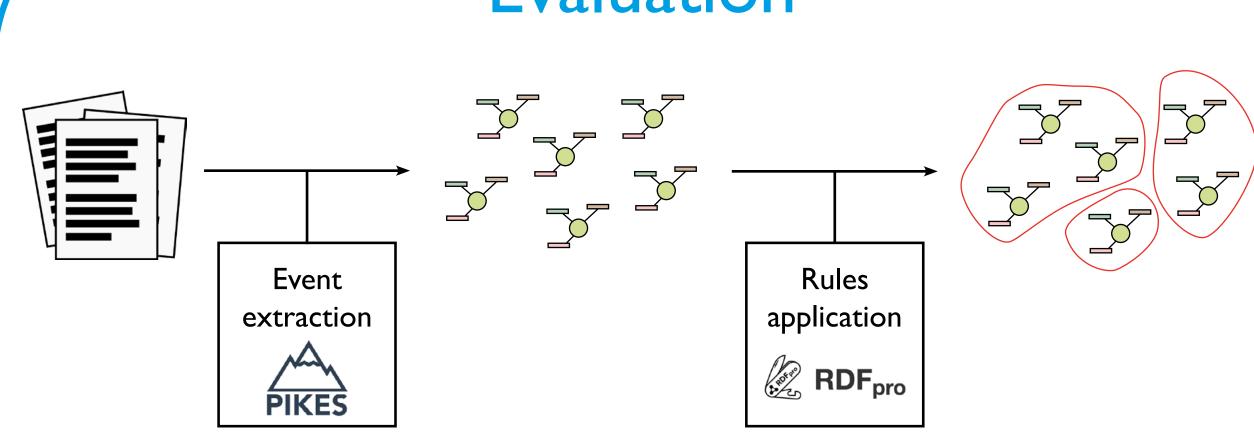
Example:

John Lennon died on December 8, 1980.

Lennon was killed by Chapman.

5

Coreference rules from formal analysis


Rules for event coreference derived from the ontological analysis of events. We provided rules for certain and possible coreference:

- certain coreference: sufficient and necessary conditions (for each event type) for coreference existence
- possible coreference: only necessary conditions, providing an evidence for possible existence of coreference.

Example:

certain coref.	(E1.Victim == E2.Victim)
cortain corer.	$(E1.SubEvent\ hasCoref\ E2.SubEvent)$
	$\Big (E1.Killer == E2.Killer) \& (E1.Time \sim E2.Time)\Big $
possible coref.	$ (E1.Killer == E2.Killer) \& (E1.Place \sim E2.Place) $
possible corer.	(E1.Killer == E2.Killer) & (E1.Tool == E2.Tool)
	$(E1.Tool == E2.Tool) \& (E1.Time \sim E2.Time)$
	$(E1.Place \sim E2.Place) \& (E1.Time \sim E2.Time)$

Evaluation

Evaluation on EventCorefBank (ECB)
482 news texts, 43 topics, 1744 event mentions, 339 distint events

Evaluation restricted to 6 event (facts) types: Arresting, Killing, Dying, Charging, Shooting, Attacking.

	MUC		$ brack B^3$			CEAF (M)			BLANC			
	p	r	F1	p	r	F1	p	r	F1	p	r	F1
lemma baseline	81.78	89.14	85.30	39.87	73.46	51.69	45.48	45.48	45.48	62.45	76.08	66.14
only certain	100	7.39	13.77	100	2.76	5.38	86.34	6.96	12.88	96.47	88.38	91.6
only possible	100	6.08	11.46	100	3.35	6.5	82.14	5.84	10.91	95.07	90.54	92.18
possible + certain	100	13.48	23.75	100	6.12	11.54	84.37	12.8	22.23	98.23	89.6	93.29