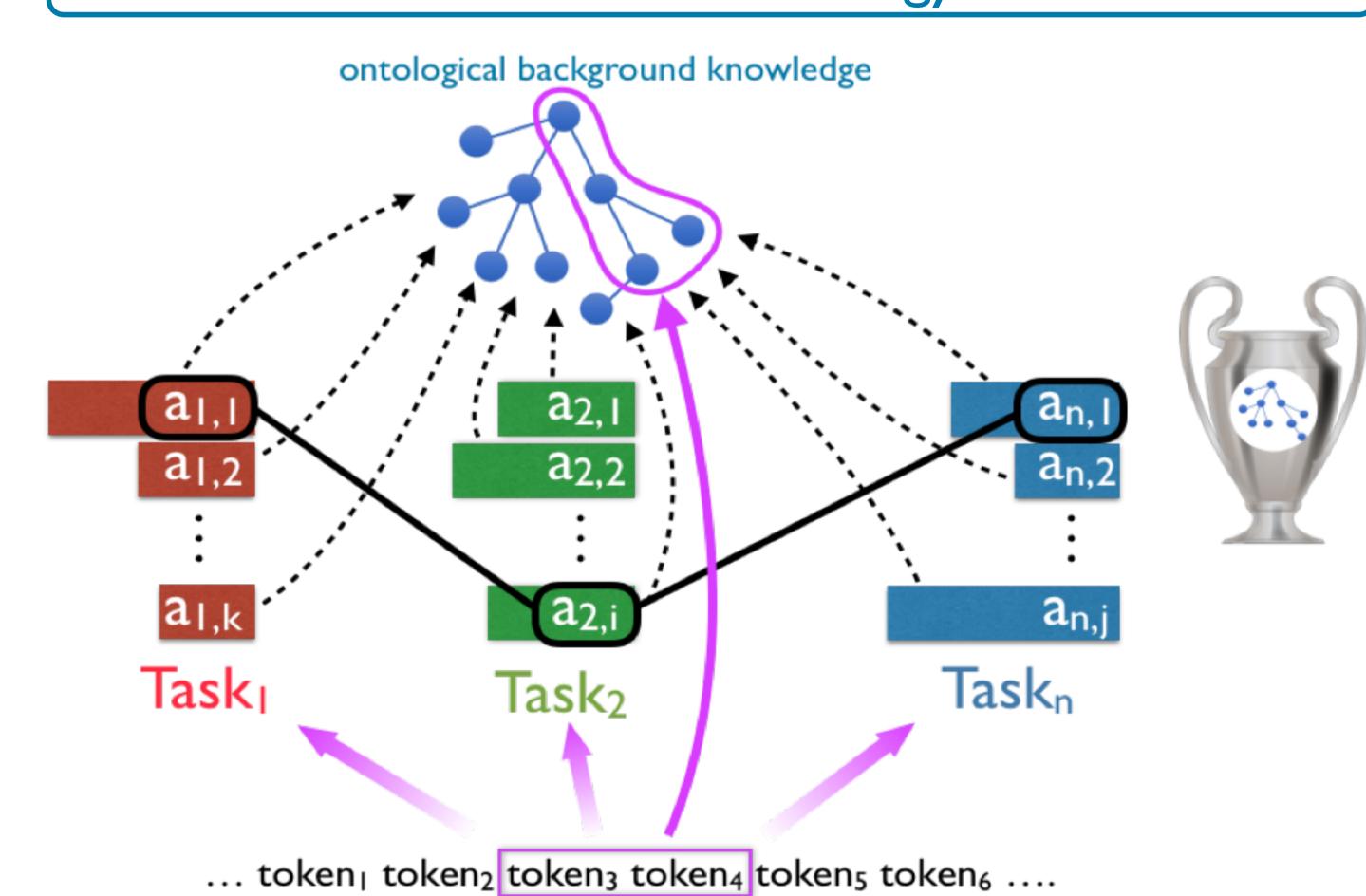

# Joint Posterior Revision of NLP Annotations via Ontological Knowledge




Marco Rospocher (rospocher@fbk.eu), Francesco Corcoglioniti (corcoglio@fbk.eu)

# I. Problem: Incoherent Mention-level NLP Annotations



# 2. Solution: Coherence via Ontology



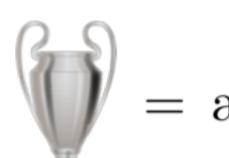
## 3. General Probabilistic Model

#### **Variables**

*m* entity mention

 $\boldsymbol{a}=(a_1\dots a_n)$  NLP annotations

NLP Background Knowledge


"The" Ontological Knowledge

Conditional Independence Assumptions

 $(2) P(a_i|m, B, K) = P(a_i|m, B)$ 

(3)  $P(C|a_i, m, B, K) = P(C|a_i, K)$ 

Entity's ontological class set (from K)



$$= \arg \max_{\boldsymbol{a}} P(\boldsymbol{a}|m, B, K)$$

$$P(\boldsymbol{a}|m,B,K) \stackrel{\text{M}}{=} \sum_{C} P(\boldsymbol{a},C|m,B,K)$$

$$P(\boldsymbol{a},C|m,B,K) \stackrel{\text{CP}}{=} P(C|m,B,K) \cdot P(\boldsymbol{a}|m,B,K,C)$$

$$\stackrel{\text{1}}{=} P(C|m,B,K) \cdot \prod_{i} P(a_{i}|m,B,K,C)$$

$$\stackrel{\square}{=} P(C|m, B, K) \cdot \prod_{i} P(a_{i}|m, E)$$

$$\stackrel{\square}{\subseteq} \prod_{i} P(a_{i}, C|m, B, K)$$

$$\stackrel{\mathsf{CP}}{=} \frac{\prod_{i} \mathrm{P}(a_{i}, C | m, B, K)}{\mathrm{P}(C | m, B, K)^{n-1}}$$

$$P(C|m, B, K) \stackrel{\mathsf{M}^*}{=} \left(\prod_i \sum_{a_i} P(a_i, C|m, B, K)\right)^{\frac{1}{n}}$$

$$P(a_i, C|m, B, K) \stackrel{\text{CP}}{=} P(a_i|m, B, K) \cdot P(C|a_i, m, B, K)$$

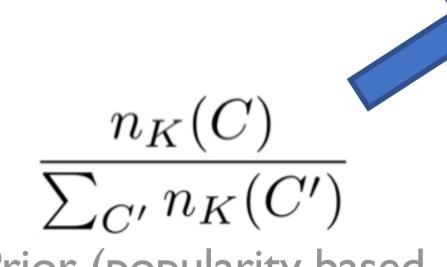
$$2 \stackrel{\text{2}}{=} P(a_i|m, B) \cdot P(C|a_i, K)$$

confidence score

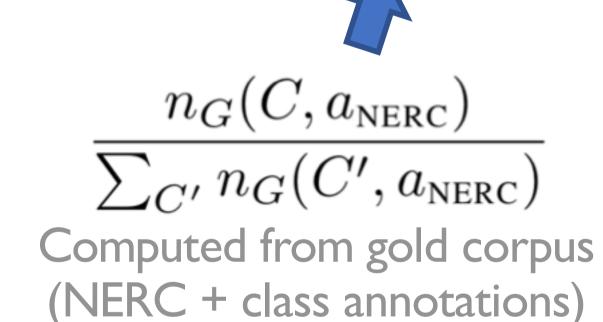
learned from data

# 4. Model Instantiated on NERC + EL

## Ontological Background Knowledge







(only ingoing links)

#### Estimating NERC

$$\mathbf{P}(C|a_{\text{NERC}},K) = \alpha \cdot \mathbf{P}(C|K) + (1-\alpha) \cdot \mathbf{P}(C|a_{\text{NERC}},G)$$



Prior (popularity based on entity ingoing links)





Consider only class sets restricted to popular classes (seen at least n\* times in the gold corpus)

### Estimating EL

$$P(C|a_{EL}, K) = \mathbf{1}_{\{C_K(a_{EL})\}}(C)$$

Deterministically computable from the classes of the entity (possibly leveraging alignments between EL Knowledge Base and yago

### 5. Evaluation



#4479

Tools: Stanford CoreNLP DBpedia Spoille li



Gold Corpus (NERC): AIDA CoNLL-YAGO (train)

Datasets: 1 AIDA CoNLL-YAGO (test-b) (2) MEANTIME (3) TAC-KBP

Research question: Does the JPARK posterior joint revision of the annotations from Stanford CoreNLP (NERC) and DBpedia Spotlight (EL), via YAGO, improve their performances?

Measures: NERC / EL / NERC+EL

|            | NERC                  |        |        | $\mathbf{EL}$  |        |                  | NERC+EL        |        |        |
|------------|-----------------------|--------|--------|----------------|--------|------------------|----------------|--------|--------|
|            | $\overline{P}$        | R      | $F_1$  | $\overline{P}$ | R      | $\overline{F_1}$ | $\overline{P}$ | R      | $F_1$  |
| AIDA       |                       |        |        |                |        |                  |                |        |        |
| standard   | 94.30%                | 87.50% | 90.80% | 66.20%         | 65.20% | 65.60%           | 63.40%         | 62.50% | 63.00% |
| with JPARK | 95.00%                | 88.10% | 91.40% | 67.10%         | 65.40% | 66.20%           | 65.50%         | 63.70% | 64.60% |
| $\Delta$   | $\boldsymbol{0.70\%}$ | 0.60%  | 0.60%  | 0.90%          | 0.20%  | 0.60%            | 2.10%          | 1.20%  | 1.60%  |
| MEANTIME   |                       |        |        |                |        |                  |                |        |        |
| standard   | 88.20%                | 69.50% | 77.70% | 70.30%         | 55.60% | 62.10%           | 63.50%         | 50.20% | 56.10% |
| with JPARK | 91.40%                | 72.00% | 80.50% | 70.50%         | 55.70% | 62.20%           | 67.00%         | 53.00% | 59.20% |
| $\Delta$   | 3.20%                 | 2.50%  | 2.80%  | 0.20%          | 0.10%  | 0.10%            | 3.50%          | 2.80%  | 3.10%  |
| TAC-KBP    |                       |        |        |                |        |                  |                |        |        |
| standard   | 91.10%                | 65.20% | 76.00% | 40.10%         | 42.30% | 41.20%           | 36.70%         | 38.60% | 37.60% |
| with JPARK | 92.60%                | 66.30% | 77.20% | 41.20%         | 42.60% | 41.90%           | 38.90%         | 40.20% | 39.50% |
| $\Delta$   | 1.50%                 | 1.10%  | 1.20%  | 1.10%          | 0.30%  | 0.70%            | 2.20%          | 1.60%  | 1.90%  |

Restricted to gold mentions. Similar improvements also considering all mentions, and macro-averaging by document or by NERC type.



