
On the computational complexity of 
enumerating certificates of NP problems

Marco Rospocher
PhD Student

International Doctorate School in ICT
Department of Information and Communication Technology

marco.rospocher@unitn.it

PhD Thesis Defense
March 31st, 2006

Advisor:
Prof. Romeo Rizzi

DIMI, Università degli Studi di Udine



O
n 

th
e 

co
m

pu
ta

tio
na

l c
om

pl
ex

ity
 o

f e
nu

m
er

at
in

g 
ce

rti
fic

at
es

 o
f N
P

pr
ob

le
m

s
M

ar
co

 R
os

po
ch

er

2

Summary

l Introduction.
l A structural complexity theory for listing problems 

associated to NP relations.
l Listing solutions of a broad class of combinatorial 

optimization problems.
l Listing satisfying truth assignments of some peculiar 

classes of boolean formulas (XOR and 2SAT).
l Conclusions.
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Historical Introduction

l Historically, computational problems have been 
considered from a decision perspective.

l Problems associated with binary relations (instance, 
solution):
– Decision problem: given x, is there y such that (x,y) 

belongs to the relation?
– Search problem: given x, return y (if any) such that (x,y) 

belongs to the relation.
– Counting problem: given x, count the number of y such that 

(x,y) belongs to the relation.
– Listing problem: given x, return all y (if any) such that (x,y) 

belongs to the relation.
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NP Relations

l A binary relation R is polynomially balanced if xRy 
implies that the length of y is polynomially bounded 
by the length of x.

l A binary relation R is polynomially decidable if 
there is a polynomial time algorithm which decides 
whether xRy for each couple (x,y).

l A binary relation R is an NP relation if R is both 
polynomially balanced and polynomially decidable.
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NP Relations: an example

l Consider the following relation:

RSAT :={(φ,T) : φ is a CNF boolean formula, T is a 
satisfying truth assignment for φ}.

l RSAT is an NP relation.
1. RSAT is polynomially balanced: the length of a truth 

assignment is bounded by the length of the formula;
2. RSAT is polynomially decidable: given a truth assignment T, 

we can decide in polynomial time if T satisfies φ.
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NP Relations

l The language L(R) associated to a relation R is the 
set of strings x such that there exists a string y with 
xRy.

l A language L belongs to NP if and only if there exists 
an NP relation R such that L=L(R).

l The strings y such that xRy are called certificates or 
witnesses of yes instance x.

l Hence, we are investigating the complexity of listing, 
with respect to an NP relation R, all the certificates of  
a string x of the language L(R).
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Listing Algorithms

l Return all solutions without duplicates.
l How do we measure efficiency of listing 

algorithms?
– Polynomial total time: time complexity polynomial in 

the input size and the output size (the number of 
solutions);

– P-enumerability: polynomial in the input size and linear 
in the output size; strong P-enumerability, if space 
used is polynomial in the input size only;

– Polynomial (Linear) Delay: first solution outputted in 
polynomial time in the input size; delay between two 
consecutive outputs polynomial (linear) in the input size.
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Listing Problems and NP relations

l LP is the class of listing 
problems associated 
with NP relations.

l We define some 
subclasses of LP 
according to the various 
notions of efficiency for 
listing algorithm EP, 
Penu, Pdel, Ldel.

LP

EP
Penu

Pdel

Ldel



O
n 

th
e 

co
m

pu
ta

tio
na

l c
om

pl
ex

ity
 o

f e
nu

m
er

at
in

g 
ce

rti
fic

at
es

 o
f N
P

pr
ob

le
m

s
M

ar
co

 R
os

po
ch

er

9

LP-completeness

l We say that a listing problem L is LP-complete if:
1. the listing problem belongs to class LP;
2. If there exists a polynomial total time algorithm for 

problem L, then there exists a polynomial total time 
algorithm for any problem in LP.

l We define LPC as the class of LP-complete 
problems.
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Levin Reductions

l Given two relations R1 and R2, a Levin reduction
from R1 to R2 is a triplet (f,g,h) of polynomial time 
computable functions such that:
1. x Î L(R1) if and only if f(x) Î L(R2);
2. If (x,y) Î R1, then (f(x),g(x,y)) Î R2;
3. If (f(x),z) Î R2, then (x,h(x,z)) Î R1.

l A Levin reduction implies a Karp reduction.
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An LP-complete problem

l Consider relation RBH defined as:

RBH:={((M,x,1t),y) : M is a deterministic Turing machine 
which accepts (x,y) within t steps}.

l RBH is an NP relation.

l The decision problem associated to relation RBH is 
called Bounded Halting, and it is an NP-complete 
problem.
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An LP-complete problem

l Lem: There exists a Levin reduction from the 
generic NP relation R to RBH which preserves the 
certificates (ie, (x,y) Î R iff (f(x),y) Î RBH).

– R is an NP relation: hence, there exists:
1. For each (x,y) Î R, |y|≤p(x), where p() is a polynomial;
2. A Turing machine MR which decides R in time q(|x|+|y|), 

where q() is a polynomial.
– We define f,g,h as follows:

1. f(x):=(MR,x,1q(|x|+p(x)));
2. g(x,y):=y;
3. h(x,z):=z. (x,y) Î R iff ((MR,x,1q(|x|+p(x))),y) Î RBH
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An LP-complete problem

l LBounded Halting is LP-complete:
– LBounded Halting belongs to LP since RBH is an NP 

relation;
– By the Levin reduction previously considered, if there exists 

a polynomial total time algorithm for problem LBounded 
Halting, then there exists a polynomial total time algorithm 
for the generic listing problem in LP.

l LPC is not empty!

l LBounded Halting is a 
strong member of LPC.

LP

EP
Penu

Pdel

Ldel

LPC
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More LP-complete problems

l One-to-one certificates reduction from R1 to R2: is 
a Levin reduction (f,g,h) from R1 to R2 which is: 

– Parsimonious: the number of solutions of instance x of R1 is 
the same as the number of solutions of instance f(x) of R2;

– the function h which retrieves a certificate y for yes 
instance x from a certificate z for yes instance f(x) is 
injective in z.
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More LP-complete problems

l Let RA and RB be two NP relations. Let LA and LB 
be the listing problems associated to RA and RB
respectively. Assume that LA is LP-complete. If 
there exists a one-to-one certificates reduction 
(f,g,h) from RA to RB, then LB is LP-complete.

l Examples of LP-complete problems due to one-to-
one certificates reductions: LSat, LCircuit Sat, 
LHS, LIP,…
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?

Question

Does the LP-completeness of the listing 
problem associated to an NP relation imply 

the NP-completeness of the decision problem 
associated to the relation?
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Easy to decide, hard to list

l A monotone boolean formula does not contain any 
negation symbol.

l An implicant of a boolean formula is a subset of 
variables such that setting these variables to 1, the 
formula is satisfied whatever value is assigned to the 
remaining variables.

l A prime implicant is a minimal inclusionwise 
implicant.

l Example of monotone boolean formula:                  
(aVb) Λ (aVc) Λ (b) Λ (dVb).

l {a,b,d} is an implicant, {b,c} is a prime implicant.
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Easy to decide, hard to list

l Consider relation RPI defined as:

RPI :={(φ,I) : φ is a monotone boolean formula, I is a prime 
implicant for φ}.

l RPI is an NP relation.
l OBS1: every monotone boolean formula admits a 

prime implicant (ie, the decision problem associated 
to RPI is polynomial time solvable).

l OBS2: a prime implicant of a monotone boolean 
formula can be obtained in polynomial time applying 
a greedy strategy (ie, the search problem associated 
to RPI is polynomial time solvable).
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Easy to decide, hard to list

l TEO: LPrime Implicants, the problem of listing all 
prime implicants of a monotone boolean formula is 
LP-complete.

l There exists no polynomial total time algorithm for 
listing all prime implicants of a monotone boolean 
formula unless P=NP (Goldberg 1991).

l TEO: There exists no polynomial total time algorithm 
for an LP-complete listing problem unless P=NP.
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End of first part…

l Introduction.
l A structural complexity theory for listing problems 

associated to NP relations.
l Listing solutions of a broad class of combinatorial 

optimization problems.
l Listing satisfying truth assignments of some peculiar 

classes of boolean formulas (XOR and 2SAT).
l Conclusions.
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Combinatorial Ensembles

l A combinatorial ensemble is a family of couples 
(S,F), where S, called the ground set, is a finite set of 
elements, and F is a collection of subsets of S 
(feasible solutions). We assume F to be given  
implicitly by a compact representation.

l Examples:
– Matching ensemble: S is the set of edges of a graph G, F is 

the family of matchings of G, G is a compact representation 
of F;

– Truth assignments ensemble: S is the set of variables of a 
boolean formula φ, F is the family of satisfying truth 
assignments of φ, φ is a compact representation of F.
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Combinatorial Ensembles

l Problems investigated on a combinatorial ensemble:
– Decision problem: does a feasible solutions exist?

– Search problem: find a feasible solution if any.

– Listing problem: find all feasible solutions in F.

l To every instance of a combinatorial ensemble we 
can associate a 0/1-polytope P(S,F) in RS whose 
vertices are in one-to-one and onto correspondence 
with feasible solutions of the instance. 

S={s1,s2,s3,s4,s5},    {s1,s4,s5} Î F   ↔    (1,0,0,1,1)
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Combinatorial Ensembles

1. We say that a combinatorial ensemble has a 
compact description if the description of P(S,F) in 
terms of inequalities can be obtained in time 
polynomial in the size of the instance.

2. We say that a combinatorial ensemble is separable
if we have a separation algorithm for P(S,F), that is, 
a polynomial time algorithm that, given a rational 
vector z in RS, tests if z belongs to P(S,F) or, if not, 
returns a rational vector c in RS such that cx < cz for 
each x in P(S,F).

l Clearly, (1) implies (2), but (2) does not imply (1).
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Combinatorial Ensembles: Results

l Bussieck and Lübbecke (1997) showed that if a 
combinatorial ensemble has a compact description, 
then there exists a polynomial space polynomial 
delay algorithm for listing all feasible solutions for 
any given instance.

l We show that if a combinatorial ensemble is 
separable, then there exists a polynomial space 
polynomial delay algorithm for listing all feasible 
solutions for any given instance.
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Combinatorial Optimization Problem

l To each element e of the ground set is assigned a 
weight we.

l The value of a feasible solution is defined as the sum 
of the weights of the elements in it.

l In the combinatorial optimization problem associated 
to a combinatorial ensemble, the goal is to find a 
minimum value feasible solution.
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l If a combinatorial ensemble is separable, then 
there exists a polynomial space polynomial delay 
algorithm that, for any instance (S,F):
1. lists all feasible solutions;
2. lists all minimum/maximum cardinality feasible solutions;
3. for any weight vector w in RS, lists all minimum/maximum 

value feasible solutions;
4. for any weight vector w in RS, lists all minimum/maximum 

value minimum/maximum cardinality feasible solutions.
l Applies to: matching ensemble, t-join ensemble, 

spanning tree ensemble,…

Separable Combinatorial Ensembles
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l We just need to solve one of the variants of case 3.

l TEO: a combinatorial ensemble is separable if and 

only if the associated combinatorial optimization 

problem is polynomial time solvable for any weight 

vector (Consequence of the equivalence between 

optimization and separation by Grötschel, Lovasz, 

Schrijver).

l We assume to have a polynomial time algorithm 

MIN(S,F,w) which returns the minimum value.

Separable Combinatorial Ensembles
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MWST Simulation

s1
Min(S,F,w+) = Min(S,F,w)

Min(S,F,w -) = Min(S,F,w)-1

8

s2

s1

s4

s3

s5

1

2 2
3

3

Min = 8
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MWST Simulation

s1
Min(S,F,w+) = Min(S,F,w)

Min(S,F,w -) = Min(S,F,w)-1

8

s2

s1

s4

s3

s5

2

2 2
3

3

Min = 9

w+
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MWST Simulation

s1
Min(S,F,w+) = Min(S,F,w)

Min(S,F,w -) = Min(S,F,w)-1

8

s2

s1

s4

s3

s5

0

2 2
3

3

Min = 7

w+ w -
s1

8

s2
7



O
n 

th
e 

co
m

pu
ta

tio
na

l c
om

pl
ex

ity
 o

f e
nu

m
er

at
in

g 
ce

rti
fic

at
es

 o
f N

P
pr

ob
le

m
s

M
ar

co
 R

os
po

ch
er

31

MWST Simulation

s1
Min(S,F,w+) = Min(S,F,w)

Min(S,F,w -) = Min(S,F,w)-1

8

s2

s1

s4

s3

s5

0

3 2
3

3

Min = 8

w+ w -
s1

8

s2
7

w+
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MWST Simulation

s1
Min(S,F,w+) = Min(S,F,w)

Min(S,F,w -) = Min(S,F,w)-1

8

s2

s1

s4

s3

s5

0

1 2
3

3

Min = 6

w+ w -
s1

8

s2
7

w+ w -

s3
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MWST Simulation

s1
Min(S,F,w+) = Min(S,F,w)

Min(S,F,w -) = Min(S,F,w)-1

8

s2

s1

s4

s3

s5

1

2 2
3

3

Min = 8

w+ w -
s1

8

s2
7

w+ w -

s3
6

w+
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6
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w+ w -

w -

s4
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?

Question

Consider a combinatorial ensemble for which the 
associated combinatorial optimization problem is 

polynomial time solvable only for nonnegative 
weights (e.g. min-cut problem): can we efficiently list 

all (optimal) feasible solutions?
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Negative example

l Weighted 0Valid Sat:

– Input: 0Valid CNF-formula φ of n variables, a non-negative 

weight wi associated to each variable xi.

– Output: a minimum value satisfying truth assignment of φ, 

where the value of a truth assignment T is ∑i=1..nwiT(xi).

l Weighted 0Valid Sat is polynomially solvable: T=0n

is always a minimum value truth assignment!

l LWeighted 0Valid Sat is LP-hard: setting all weights 

equal to 0, we get L0Valid Sat, an LP-complete 

problem.
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A partial compensation…

l If the combinatorial optimization problem associated 
to a combinatorial ensemble is polynomial time 
solvable for nonnegative weights, then there exists 
a polynomial space polynomial delay algorithm that:
1. lists all minimum cardinality feasible solutions;
2. for any weight vector w in R>0

S, lists all minimum value 
feasible solutions;

3. for any weight vector w in R>0
S, lists all minimum value 

minimum cardinality feasible solutions.

l Slight modification of the previous algorithm.
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End of second part…

l Introduction.
l A structural complexity theory for listing problems 

associated to NP relations.
l Listing solutions of a broad class of combinatorial 

optimization problems.
l Listing satisfying truth assignments of some peculiar 

classes of boolean formulas (XOR and 2SAT).
l Conclusions.



O
n

 t
h

e
 c

o
m

p
u

ta
ti
o

n
a

l 
c
o

m
p

le
x
it
y
 o

f 
e

n
u

m
e

ra
ti
n

g
 c

e
rt

if
ic

a
te

s
 o

f 
N
P

p
ro

b
le

m
s

M
a

rc
o

 R
o

s
p

o
c
h

e
r

38

XOR-formulas

l An XOR-formula is a CNF boolean formula where 

disjunction is replaced by exclusive disjunction.

l Example: (aÅb) Λ (not(a)ÅcÅnot(b)) Λ (b).

l The problem of deciding whether an XOR-formula is 

satisfiable or not is in P (Gaussian elimination is 

polynomial time computable – Edmonds ‘67).

l There exists a polynomial time algorithm to count the 

number of satisfying truth assignments of an XOR 

formula (Creignou, Hermann ‘96).

l There exists a polynomial space polynomial delay 

algorithm for listing all satisfying truth assignments of 

an XOR formula (Creignou, Hébrard ‘97).
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2SAT formulas

l A 2SAT formula is a CNF boolean formula with at 
most two literals per clause.

l Example: (aVb) Λ (not(a)Vc) Λ (b).

l There exist several linear time algorithms to decide 
whether a 2SAT formula is satisfiable [Even, Itai, 
Shamir ‘76 – Del Val ‘01].

l The counting problem is #P-complete (Valiant ‘79).

l There exists a polynomial space polynomial delay 
algorithm for listing all satisfying truth assignments of 
a 2SAT formula (Creignou, Hébrard ‘97).
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XOR-formulas & 2SAT formulas

l We propose a polynomial space linear delay 
algorithm for listing all satisfying truth assignments of 
XOR formulas and a polynomial space linear delay 
algorithm for listing all satisfying truth assignments of 
2SAT formulas.

l Differently from the previously proposed approaches, 
our algorithms achieve this improved delay-time 
bound by exploiting the underlying structure of the 
considered problems.
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Conclusions: new contributions

l A new structural computational complexity theory for 
listing problems associated to NP relations.

l Listing (optimal) feasible solutions of combinatorial 
optimization problems.

l New polynomial space linear delay algorithms for 
listing satisfying truth assignments of XOR formulas 
and 2SAT formulas.
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Conclusions: an open problem

l There exists a polynomial delay algorithm to list all 
maximal independent sets of a graph (Johnson, 
Papadimitriou, Yannakakis ‘88).

l It is unknown whether even a polynomial total time 
algorithm exists for hypergraphs.

l Given an hypergraph and a collection of maximal 
independent sets for it, there exists a quasi-
polynomial time (mlog(m)) algorithm which finds a new 
maximal independent set or concludes that the given 
collection is complete (Fredman and Khachiyan ‘96).
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Thank you! 

Questions ?


