

Boosting collaborative ontology building with key-concept extraction

Marco Rospocher

Fondazione Bruno Kessler (FBK) - Trento, Italy

Joint work with:

Sara Tonelli, Emanuele Pianta, Luciano Serafini

IEEE ICSC 2011 Stanford, USA – September 19-21, 2011

Automatic Concept Extraction

- Support ontology modeling by extracting concepts characterizing a domain from a reference text corpus.
- Automatic concepts extraction plays an important role in ontology modeling:
 - To boost the ontology construction/extension phase;
 - To "validate" an ontology against a domain corpus.

Our Contribution

- A framework for supporting ontology building/ validation by automatic concept extraction from a reference text corpus
- A fully-working and publicly available implementation of the proposed framework

Outline

- The Framework
- Implementation of the Framework
- Evaluation
- Application Scenarios
- Concluding Remarks

The Framework

Corpus Selection

- The corpus can be **manually** or **automatically** selected (e.g. crawling web pages).
- Corpus could consist of:
 - (large) collection of documents
 - e.g. pollen bulletins crawled on-line
 - A single big document
 - e.g. the BPMN specification.

Key-concept extraction

- Performed by KX (Keyphrase eXtraction) tool.
 - exploits linguistic information and statistical measures to select a list of weighted keywords from documents;
 - handles multi-words;
 - flexible parameters configuration;
 - easily adaptable to new languages;
 - ranked 2nd (out of 20) at SemEval2010, task on "Automatic Keyphrase Extraction from Scientific Articles".

Alignment with external resources

- Extracted key-concepts aligned and enriched with additional resources:
 - WordNet (& WN domains): synonyms, definitions, SUMO labels;
 - Wikipedia: link to the Wikipedia page corresponding to the term (exploiting BabelNet);
 - Other external resources (e.g. dictionary).
- Enriched key-concepts list matched against the ontology under development (to detect already defined key-concepts).

Manual Validation

- The user decides which of the extracted key-concepts to add to the ontology;
- The additional details provided in the enriched list may guide the formalization;
 - e.g. is-a related synsets, definitions, ...

- Collaborative wiki-based tool for modeling (integrated) ontologies and business processes;
- Supports an agile collaboration between domain experts and knowledge engineers via multi-mode knowledge access modalities;
- Offers several different functionalities:
 - Import/export of formal models;
 - Views on the is-a hierarchy and processes decomposition;
 - Graphical editing.
- Available @ http://moki.fbk.eu

DEMO

Evaluation

- Applied in **PESCaDO** (EU FP7 2010-2012) for building an ontology describing the environmental domain.
- Corpus: plain text corpus composed of **390 pollen** bulletins (541,000 tokens).
- The system outputted 91 key-concepts:
 - 26 pollen names (further validated against the Pollen Atlas);
 - 38 key-concepts enriched with additional information;
 - Extracted key-concepts having up to 4 tokens:
 - e.g. "oil seed rape pollen".

Application Scenarios

- The proposed approach can support several different ontology modeling tasks:
 - Ontology construction boosting: building an ontology from scratch;
 - Ontology extension: adding new concepts to an existing ontology;
 - Ontology validation: terminologically validating an ontology against a domain corpus;
 - Ontology ranking: ranking candidate ontologies wrt a given domain corpus;
 - Ranking of ontology concepts: determining which are the domain-wise most relevant concepts defined in an ontology.

Concluding Remarks

- We presented a framework for ontology building/ validation based on automatic concept extraction;
- Fully-implemented in a working system;
- Several application scenarios;
- Current/Future works:
 - Implementing specific support for ontology validation/ranking (e.g. computation of ontology metrics);
 - Extend for extraction of **structural information** (e.g. is-a relations defined in the corpus).

Thank You!

Questions?

MoKi

Marco Rospocher

http://moki.fbk.eu

http://dkm.fbk.eu/rospocher rospocher@fbk.eu