
HEELS: A Host-Enabled eBPF-Based Load Balancing Scheme
Rui Yang

EPFL, Switzerland
rui.yang@epfl.ch

Marios Kogias
Imperial College London & Azure Research

m.kogias@imperial.ac.uk

ABSTRACT

Layer 4 (L4) load balancing is crucial in cloud computing and elastic
microservices. Existing L4 load balancer designs can be split into
two main categories: centralized designs using a hardware or soft-
ware middlebox, and decentralized designs in which every node
can play the role of the load balancer. Centralized designs offer
better scheduling policies and easier worker node management, but
suffer from I/O and CPU limitations. Decentralized designs scale
better, but are harder to manage. We introduce HEELS, a novel
load balancing scheme designed for internal cloud workloads and
microservices, achieving the best of both worlds. HEELS uses the
load balancer only during the connection establishment and allows
clients and servers to communicate directly after that. Supporting
general L4 load balancers and requiring no kernel changes, HEELS
is readily deployable on the public cloud. We implement HEELS as
a set of eBPF programs split across the client and server. Our evalu-
ation shows that HEELS introduces minimal overheads, works with
off-the-shelf load balancers (e.g., Katran by Meta), and significantly
reduces the costs of cloud load balancers.

CCS CONCEPTS

• Networks → Cloud computing; Data center networks; Net-
work performance analysis;

KEYWORDS

L4 Load balancing, Data center networking, eBPF
ACM Reference Format:

Rui Yang and Marios Kogias. 2023. HEELS: A Host-Enabled eBPF-Based
Load Balancing Scheme. In 1st Workshop on eBPF and Kernel Extensions
(eBPF ’23), September 10, 2023, New York, NY, USA. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3609021.3609307

1 INTRODUCTION

Layer 4 (L4) load balancing distributes the network traffic at the
granularity of TCP connections. It is the cornerstone of various
networked infrastructures ranging from edge systems [1, 4], to
datacenters [3, 6, 30] and cloud computing [10, 14]. There exist two
primary designs for L4 load balancers: centralized and decentralized.
Centralized L4 load balancers are widely deployed and depend on
a single network middlebox that can be implemented either in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
eBPF ’23, September 10, 2023, New York, NY, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 979-8-4007-0293-8/23/09. . . $15.00
https://doi.org/10.1145/3609021.3609307

software [6, 30, 31] or hardware [3, 27]. In contrast, decentralized
designs are more prevalent in the cloud [5, 17] or at the edge [4, 24],
where every node plays both the role of the load balancer and the
server, eliminating the need for a dedicated middlebox.

Both designs share the same goal of balancing CPU and I/O load
across multiple worker nodes. Ideally, a good load balancing scheme
should have the following properties: (i) efficiency – balancing the
traffic fast and evenly; (ii) scalability – not suffering from I/O bot-
tlenecks easily; (iii) per-connection-consistency (PCC) – allowing
easy updates to the worker pool (e.g., server leave) without break-
ing existing connections, and (iv) deployability – being compatible
with various infrastructures without any modifications.

Unfortunately, there is no perfect load balancing solution that
meets all these requirements, and picking the right one is a trade-off
based on the use case. Decentralized approaches, such as Cloud-
flare’s Unimog [4] or kube-proxy [16] in Kubernetes, are scalable,
but can lead to load imbalance due to the absence of a global view.
Centralized approaches can make superior load balancing decisions,
but can easily become an I/O bottleneck. Although they could use
programmable hardware to scale better [27], such hardware is not
widely accessible. Similar trade-offs also apply to PCC: stateful de-
signs guarantee PCC but are hard to scale, while stateless designs
can break existing connections when updating the worker pool.

Recent work has made efforts to break these trade-offs. For in-
stance, CRAB [14] targets internal cloud workloads and introduces
a new communication pattern, which uses load balancers only
for connection establishment. After that, CRAB allows clients and
servers to communicate directly, avoiding potential I/O bottlenecks
at the load balancer. While this design achieves scalability and
PCC, CRAB suffers from several shortcomings, resulting in poor
deployability. First, CRAB depends on a customized load balancer
to support its communication pattern, making it incompatible with
real-world load balancers. Second, CRAB requires kernel changes
at both client and server through direct kernel modifications or
kernel module loading, which is unrealistic in production.

We present Host-Enabled eBPF-Based Load Balancing Scheme
(HEELS), a new L4 load balancing scheme which fulfils all the above
properties without the limitations of CRAB. At a high level, HEELS
also focuses on internal cloud workloads and follows the same
communication pattern as CRAB. This allows HEELS to participate
only during connection establishment and be able to implement
any load balancing policy. In contrast to CRAB, HEELS instantiates
this design with a generalized mechanism, making it compatible
with a wide range of existing open-source and proprietary load
balancers. Additionally, HEELS requires no kernel modifications to
any end-host and allows safe and fast deployment in the real world,
addressing the limitations of CRAB.

We implement HEELS as a set of communicating eBPF programs
split across the client and the server nodes. We evaluate HEELS in
a local testbed and on the public cloud, and show that: (i) HEELS

77

https://doi.org/10.1145/3609021.3609307
https://doi.org/10.1145/3609021.3609307
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3609021.3609307&domain=pdf&date_stamp=2023-09-10

eBPF ’23, September 10, 2023, New York, NY, USA Rui Yang and Marios Kogias

Client
(CIP)

src: CIP
dst: VIP

Rewriting

VIP DIP

Load Balancer
(VIP)

Server
(DIP)

src: CIP
dst: DIP

Rewriting

DIP VIP

kernel (TCB) state
ebpf state

conn. establishment

data transfer

Client
(CIP)

Load Balancer
(VIP)

Server
(DIP)

src: CIP; dst: VIP
SYN

HEELS: CIP
(i) packet encapsulation

src: VIP; dst: DIP
src: CIP; dst: VIP

SYN
HEELS: CIP

(ii) packet rewriting

src: VIP; dst: DIP
SYN

HEELS: CIP

src: VIP; dst: CIP
SYN-ACK
HEELS: DIP

src: CIP; dst: DIP
ACKsrc: CIP; dst: DIP

DATA

(a) Per-connection state at end-hosts (b) TCP sequence diagram of HEELS

Figure 1: The communication pattern of HEELS, which supports two common L4 load balancers.

adds no latency to data transfer and minimal throughput overhead
(∼ 3%); (ii) HEELS is compatible with off-the-shelf load balancers
(e.g., Meta’s Katran [24] and AWS’ NLB [2]) and requires no kernel
modification; and (iii) HEELS is readily deployable on the public
cloud and can significantly reduce the costs of cloud load balancers.

2 BACKGROUND

In this section, we provide the necessary background on L4 load
balancing. In modern data centers, a cluster of backend servers
often appears to the outside as a single virtual unit, represented
by an L4 load balancer. This load balancer listens to a virtual IP
(VIP) that clients use to communicate with the service. When the
client initiates a new TCP connection and sends a SYN packet to the
load balancer (VIP), the load balancer assigns this connection to a
particular server that listens to a designated IP (DIP). To forward the
traffic to this server, the load balancer needs to modify the packets
using either packet rewriting or encapsulation. Packet rewriting
directly modifies the destination IP of the packet to DIP while
packet encapsulation adds an outer IP header destined to the DIP.
Depending on the load balancer’s configuration, the server replies
through the load balancer or directly to the client, with the former
incurring more overhead.

CRAB: CRAB [14] is an L4 load balancing scheme which largely
eliminates the overhead of the load balancer. The key idea of CRAB
is to involve the load balancer only during the TCP handshake to
make load balancing decisions, and exclude it after that. Since in this
case, the load balancer does not handle any TCP data traffic, it does
not need to maintain any per-connection state and avoids being
the I/O bottleneck. Meanwhile, it can implement any centralized
load balancing policy since it still participates in the handshake.

To achieve this, CRAB uses a customized TCP option to signal the
IPs of servers to clients, facilitating direct communication between
them. When the load balancer forwards the SYN to a picked server,
it adds this TCP option to it, with its own IP address (VIP) appended.
Upon sending the SYN-ACK packet to the client, the server echoes
back this TCP option. Once the client receives the SYN-ACK con-
taining VIP, it looks for the previously connection opened towards
VIP, and updates the destination IP in its Transport Control Block
(TCB) to DIP. This enables a CRAB client to redirect a connection,
initially opened with the load balancer, to the server.

Despite its benefits, it is difficult to directly deploy CRAB as
it requires modifications at both the load balancer and the end-
hosts (i.e., clients and servers). In particular, CRAB only supports a
specific type of packet-rewriting load balancer, which needs to be
customized to insert the TCP option. It also requires changes to the
connection TCB at clients and servers, which can only be achieved
through kernel modifications or kernel module loading.

3 DESIGN

We introduce HEELS, a novel connection load balancing scheme
that targets internal cloud workloads and cloud-native systems.
At a high level, HEELS follows the same communication pattern
as CRAB, where the load balancer only participates in connection
establishment. However, HEELS generalizes this pattern for a wide
range of load balancers and does not need any kernel modifications,
bypassing all CRAB’s limitations. Hence HEELS exhibits all prop-
erties required for an effective load balancing scheme: efficiency,
scalability, PCC, and especially, deployability.

Fig. 1a illustrates the overall setup of HEELS. At a high level,
HEELS follows a centralized design where a dedicated load balancer
serves multiple clients and servers. Fig. 1b describes the connec-
tion establishment and data transfer process with HEELS, for both
packet-encapsulation and packet-rewriting load balancer designs.
As shown, when a client opens a connection to the load balancer,
the endpoints of this connection are the client IP (CIP) and the VIP.
The client also includes the CIP as a TCP option in the SYN packet.
The load balancer then forwards the SYN packet to a chosen server,
using either packet encapsulation or rewriting. Upon receiving this
SYN packet, a HEELS server always rewrites the SYN’s source IP to
CIP (extracted from the HEELS TCP option) and destination IP to
DIP (in the case of packet encapsulation). This modification occurs
before the packet reaches the server’s protocol stack, ensuring that
the server’s connection TCB recognizes CIP and DIP as the two
endpoints. Prior to sending out the SYN-ACK, the server rewrites
the source IP of the SYN-ACK to VIP and embeds its own IP (DIP)
in another TCP option. This allows the client to (i) associate the
SYN-ACK with the previous connection it opened towards the load
balancer without any TCB modification, and (ii) acquire the ad-
dress of the server (DIP). From that point on, whenever the client
sends packets for this connection, it rewrites the outgoing packets’
destination IP from VIP to DIP, to communicate directly with the

78

HEELS: A Host-Enabled eBPF-Based Load Balancing Scheme eBPF ’23, September 10, 2023, New York, NY, USA

Table 1: The implementation description for all eBPF programs in HEELS

Location Program Name eBPF Hook Description

client client_sock SOCK_OPS • Add CIP in the HEELS-specific TCP option of SYN
• Create sk_storage entry, with DIP extracted from SYN-ACK

client_tc_egress TC • Rewrite the destination IP of outgoing data packets to DIP

server server_sock SOCK_OPS • Add DIP in the HEELS-specific TCP option of SYN-ACK
• Create sk_storage entry, with VIP extracted from SYN

server_tc_ingress TC • Rewrite the source and destination IPs of incoming SYN

• Replace CIP in the HEELS-specific TCP option of SYN with VIP

server_tc_egress TC • Rewrite the source IP of all outgoing packets to VIP

server. Similarly, whenever the server sends packets to the client, it
rewrites the outgoing packets’ source IP from DIP to VIP, allowing
the client to recognize these packets correctly.

The advantage of this design is twofold. First, it supports two
common load balancers with a unified underlying mechanism, sim-
plifying the deployment and management. Unlike CRAB, HEELS
requires no changes to the load balancers themselves, making it
even possible to support proprietary load balancers. Second, the
rewriting mechanism at clients and servers eliminates the need for
direct modifications of the TCB in the kernel. This frees HEELS
frommaking any kernel changes at end hosts. Instead, HEELS main-
tains the above rewriting information as the per-connection state.
As shown in Fig. 1a, the state is the DIP for the client, and the VIP
for the server. Note that the load balancer does not maintain any
state, which is another key to HEELS being compatible with a range
of load balancers in the real world.

4 IMPLEMENTATION

HEELS is implemented as a series of eBPF programs, strategically
placed in the client and server, using different network hooks. Note
that HEELS doesn’t require eBPF programs at the load balancers,
making it highly deployable, and compatible with different load
balancing approaches, either based on packet rewriting or packet
encapsulation. Our implementation of HEELS consists of ≈ 1.2k
lines of C code and requires a recent Linux kernel (5.6+) for eBPF
support. Table 1 summarizes all eBPF programs used in HEELS, in-
cluding their location, eBPF hook, and basic functionality. Currently,
HEELS supports both Meta’s Katran L4 load balancer and AWS Net-
work Load Balancer (NLB) out-of-the-box. We chose these two
because they represent packet-encapsulation and packet-rewriting
load balancers, respectively. Currently, HEELS supports Katran’s
IP-IP encapsulation. Note that HEELS can be easily extended to
support other common L4 load balancers. Supporting other L4
load balancers requires changes only to the server_tc_ingress
program, which needs to process the packets sent by the load bal-
ancer. For example, to use HEELS with a new load balancer that
implements a different encapsulation protocol, one has to add such
decapsulation support in the said eBPF program.

On both the client and server, HEELS maintains per-connection
state in a special per-socket eBPF data structure: BPF_MAP_TYPE_-
SK_STORAGE [19]. On the server side, SK_STORAGE is created to hold

the VIP when receiving the SYN packet, while on the client side,
it stores the DIP upon receiving the SYN-ACK. On both sides, it is
accessed whenever sending outgoing packets that require rewrit-
ing. A key advantage of SK_STORAGE is that it has the same life-
time as the attached connection. Hence HEELS eliminates the need
for any connection tracking or manual memory management for
per-connection state. In the following, we explain in detail the
implementation of HEELS on the client and server side.

Client side: On the client side, two different eBPF programs are
employed, one hooked at TC [22] and the other hooked at SOCK_-
OPS [18]. Before sending out the SYN packet, the SOCK_OPS program
adds the source IP (CIP) and source port as a TCP option in its TCP
header. We implemented the option writing using this hook, instead
of TC, to avoid TCP checksum pollution. Upon receiving the SYN-
ACK packet from the server, the same SOCK_OPS program parses the
TCP options to retrieve the server’s IP (DIP). It then adds DIP in
SK_STORAGE, which has the same lifetime with the connection and
needs no special care from HEELS. From that point forward, the
TC program takes charge of rewriting all outgoing packets for this
connection. Specifically, the program changes the destination IP of
packets from VIP to DIP, i.e., the value retrieved from SK_STORAGE.

Server side: On the server side, the implementation of HEELS
involves three eBPF programs hooked at different locations: (i) TC
ingress, (ii) TC egress, and (iii) SOCK_OPS. The TC ingress program is
in charge of handling and rewriting incoming SYN packets. Depend-
ing on the load balancer technology, this program will optionally
perform packet decapsulation and header rewriting. It modifies
the SYN packet to ensure its source IP is CIP and destination IP is
DIP. CIP is retrieved from the TCP option in the packet, which was
added by the client. Later when the network stack processes the
SYN, it will open a connection between CIP and DIP. Additionally,
this program identifies and communicates the load balancer IP (VIP)
to the two programs at the server. This is done by retrieving and
adding VIP to the TCP option that previously held CIP. Depending
on the load balancer, VIP is either the destination IP of the encap-
sulation header (in Katran) or the source IP of the SYN (in AWS
NLB). The SOCK_OPS program on the server has two roles. First, it
retrieves VIP from the SYN packet and saves it in the SK_STORAGE.
Second, it modifies the SYN-ACK packet to include DIP as a TCP
option. Finally, the TC egress program has similar functionality to

79

eBPF ’23, September 10, 2023, New York, NY, USA Rui Yang and Marios Kogias

the client – rewriting all outgoing packets’ source IP to VIP, which
is retrieved from the connection’s SK_STORAGE.

5 EVALUATION

In this section, we evaluate HEELS’s performance and the ease of its
deployment in the real world. First, we benchmark the throughput
and latency overhead of HEELS (§5.1). Then, we demonstrate the
usefulness of HEELS by deploying it with AWS’ Network Load
balancer and Katran on the public cloud, highlighting its immediate
cost-saving benefits (§5.2).

We run the benchmark experiments on three Intel Xeon E5-2637
@3.50GHz with 8 cores (16 hyper threads) and a 10G NIC. The
three machines are connected by a Quanta/Cumulus 48x10GbE
switch. For the cloud experiments, we employ five virtual machines
with instance type t3.large from AWS. All the above servers and
virtual machines are running Ubuntu 22.04 (kernel 5.15.0).

5.1 Performance Analysis

We begin our evaluation by studying the throughput and latency
overhead brought by HEELS to both TCP connection establishment
and data transmission. We perform the experiments in our local
testbed. The testbed setup includes one client machine, one server
machine, and one load balancer machine. These three machines
are in the same rack, and directly connected with each other via a
Top-of-Rack (ToR) switch.

To properly benchmark the performance, we use a customized
implementation of Netperf’s CRR (Connect-Request-Response) and
RR (Request-Response) [12]. The original CRR benchmarkmeasures
the latency of establishing a connection, exchanging a single re-
quest/response with an 8-byte payload, and closing this connection.
In the RR benchmark, clients establish a connection once and then
use this persistent connection to exchange all requests/responses
with the server. In our evaluation, we perform both CRR and RR
benchmarking to measure latency and throughput. However, we
customize the message sizes and the number of connections to
observe the performance of HEELS under various traffic loads.

5.1.1 Throughput Overhead. To measure the throughput over-
head HEELS introduces, we run the RR benchmark with increasing
message sizes and measure the goodput (bytes of application data
per unit time). The load balancer machine runs Katran, which is an
eBPF-based L4 load balancer. To ensure maximal performance of
Katran, we load its XDP programs in native mode. Note that since
HEELS only deploys eBPF programs on the client and server, there
exists no interference between HEELS and Katran. We compare
HEELS with two baselines: (i) direct data transmission where the
client and the server communicate directly with each other, and
(ii) IP Virtual Server (IPVS) [20], a mechanism widely used in the
decentralized design where the clients perform load balancing. We
compare them with HEELS running with Katran.

Fig. 2 shows the goodput comparison between direct data trans-
fer, IPVS, and HEELS. Throughout the experiments, we fix the
number of concurrent TCP connections to 100. Fig. 2a represents
the results when all CPU cores are enabled on the client and server
machines, while Fig. 2b shows the results with only one CPU core
enabled on each machine. Fig. 2a demonstrates that HEELS achieves
the same goodput with direct data transfer and IPVS throughout

102 103 104 105
0
2
4
6
8
10

Message Size (bytes)

G
oo

dp
ut

(G
bp

s)

Direct Transfer HEELS IPVS

(a) all cores enabled

102 103 104 105
0
2
4
6
8
10

Message Size (bytes)

(b) single core enabled

Figure 2: The goodput achieved by direct data transfer and

HEELS in a 10Gbps network link.

0 0.50 1.00 1.50

1

100

Latency (normalized)

M
es
sa
ge

Si
ze

(K
by

te
s)

HEELS Vanilla Katran
IPVS Direct Data transfer

(a) CRR benchmark

0 0.50 1.00 1.50

1

100

Latency (normalized)

(b) RR benchmark

Figure 3: Unloaded median latency measured for direct data

transfer, vanilla katran, and HEELS.

0 10 20 30 40 50 60
Time [us]

HEELS (full) HEELS (SYN & SYNACK)
HEELS (SYN) Vanilla Katran
Direct Data transfer

Figure 4: TCP handshake latency breakdown

the experiments. When transmitting 32KB of data, they all achieve
a goodput of ∼9.39Gbps, starting to saturate the 10G link.

Note that in our testbed, with the default kernel configuration,
one single core alone can not saturate the 10G link. Therefore, the
goal of the experiment in Fig. 2b is to measure the overhead intro-
duced by HEELS and compare it with IPVS and direct data transfer,
while being CPU-bound. As shown, when transmitting 260KB of
data, both direct data transfer and HEELS start to reach ∼100% CPU
usage and their goodput is 6.248 Gbps and 6.043 Gbps, respectively.
This indicates a 3.2% overhead brought by HEELS to data trans-
mission. Note that IPVS also achieves similar performance with
HEELS, as it brings a 2% ∼ 3% overhead to direct data transmission
throughout the experiment.

80

HEELS: A Host-Enabled eBPF-Based Load Balancing Scheme eBPF ’23, September 10, 2023, New York, NY, USA

Table 2: Deploying costs for vanilla AWS NLB, HEELS w AWS

NLB, and vanilla Katran in the cloud

Message size
(Kbytes)

Price per hour ($/hr)

Vanilla HEELS w Vanilla
AWS NLB AWS NLB Katran

8 0.028 0.027 0.092
1024 0.135 0.027 0.092
4096 0.459 0.027 0.092

5.1.2 Latency Overhead. Now we proceed to measure the la-
tency overhead imposed by HEELS. We configure the CRR and RR
benchmarks to use a single RX/TX queue and core, a single connec-
tion, and allow for a single outstanding request in this connection.
We use the following three baselines: (i) direct data transmission,
(ii) IPVS, and (iii) vanilla Katran load balancer without HEELS.

Fig. 3 plots the normalized unloaded latency (median) over 400 000
samples using both CRR and RR benchmarks, transmitting 1 KB
and 100 KB data. In both benchmarks, vanilla Katran constantly in-
troduces ∼50% more latency than direct data transfer. For instance,
when transmitting 1KB data, the CRR latency of direct data transfer
and vanilla Katran is 105µs and 150µs, respectively. This is due to
the fact that all packets sent from the client need to go through
the Katran load balancer, resulting in a half RTT latency overhead.
Since the SYN packets in HEELS also need to go through the load bal-
ancer, this overhead is unavoidable in its handshake phase. Indeed,
as shown in the CRR benchmark, HEELS incurs the same overhead
to the direct data transfer when sending 1KB data. However, this
initial overhead gets amortized for longer connections. For instance,
in the CRR benchmark, HEELS only introduces ∼9% overhead to
direct data transfer for 100KB data transmission. This observation
aligns with the RR benchmark shown in Fig. 3b, where HEELS adds
almost no extra latency in the data transmission phase, since the
TCP handshake is excluded. Note that IPVS achieves similar perfor-
mance with direct data transfer in both CRR and RR benchmarks, as
packets in IPVS are always directly transmitted between the client
and the server, without involving the load balancer.

Considering HEELS only exhibits latency overhead during con-
nection establishment, we dive deeper and investigate the latency
added by each eBPF program in this phase. Specifically, we incre-
mentally enable and load the relevant eBPF programs, observing the
duration of the connection establishment without any data trans-
fer. Initially, we enable the client_sock program which adds the
TCP option to the SYN packet (HEELS (SYN)). Then, we enable the
server_sock program which adds the TCP option to SYN-ACK, as
well as the server_tc_ingress program (HEELS (SYN & SYNACK)).
Finally, we enable all the eBPF programs of HEELS. Fig. 4 sum-
marizes the experiment results. We observe that HEELS slightly
increases (3-4 µs) the connection establishment duration on top of
Katran. This increase is distributed almost evenly among all the
eBPF programs involved.

5.2 Deployment in the Cloud

In this section, we demonstrate the usefulness and cost benefits
of HEELS by deploying it on the public cloud. We employ four

0 5 10

8

1024

4096

Time [ms]

M
es
sa
ge

Si
ze

(K
by

te
s)

HEELS w Katran
vanilla Katran
HEELS w AWS NLB
vanilla AWS NLB

Figure 5: Unloaded median latency measured for AWS Net-

work load balancer and HEELS.

virtual machines (VM) on AWS: one serving as the client and three
as backend servers. Each VM uses the ENA driver [21] to allow
loading XDP programs. For the purpose of observing unloaded
latency, we only use a single client VM. In addition, we use a VM as
the Katran load balancer and configure an AWS NLB to distribute
traffic to the three backends. At each backend, we use NGINX [29]
to serve a static file.We use wrk2 [33] at the client to generate HTTP
requests over a persistent connection and measure the latency.

We have the following four different configurations in this ex-
periment: (i) vanilla Katran where the traffic is load balanced by
the Katran load balancer directly, (ii) HEELS with the Katran load
balancer, (iii) vanilla AWS NLB where the traffic is load balanced
by the native load balancer unit, and (iv) HEELS with AWS NLB.

Our experiments show that HEELS works seamlessly with both
AWS NLB and Katran on the cloud. It is worth noting that the
HEELS presents no deployment issues in the public cloud. Fig. 5
plots the median latency measured with increasing file sizes served
by NGINX at backends. We observed that vanilla AWS NLB has
the highest latency. For instance, its latency is nearly 1.4ms higher
than HEELS with AWS NLB, when requesting 4MB of data. There
are several factors that may contribute to its higher latency. First,
unlike Katran, AWS NLB is not a Direct Server Return (DSR [28])
load balancer, suggesting a higher RTT overhead. Second, since we
configured the Katran load balancer with the same instance type
as the client and servers, it is likely situated closer to the endpoints
compared to AWS NLB. Notably, Fig. 5 also shows that HEELS with
Katran and HEELS with AWS NLB achieve similar latency across
different file sizes, as their traffic both follows the same data path.

Deploying HEELS on the cloud does not only improve the la-
tency introduced by centralized load balancers, but also offers cost
advantages for cloud users. The insight is that cloud providers
often charge tenants by the amount of data traversing the load
balancer they employ. With HEELS bypassing the load balancer in
the data path, the load balancer costs are no longer dependent on
the amount of data exchanged between clients and servers. This
has the potential of significantly reducing the overall cost for load
balancing internal cloud workloads. Indeed, in Table 2 we compute
the load balancer costs per hour for the previous latency experiment
setup, where the clients continuously request data from NGINX
servers. The load balancer costs consist of (i) a flat rate of $0.027/hr,
and (ii) a $0.006/hr rate for every GB processed in this hour. As
shown in the table, the AWS NLB costs increase as the message size

81

eBPF ’23, September 10, 2023, New York, NY, USA Rui Yang and Marios Kogias

grows because of the increasing data traversing the load balancer.
In contrast, HEELS with AWS NLB constantly incurs a minimal flat
rate since the SYN packets are so small that the AWS pricing model
does not even take it into account. Note that the vanilla Katran
VM also only incurs a constant flat rate as it resides in the same
availability zone with clients and servers, where all traffic is free.
Consequently, HEELS with Katran incurs the same cost as vanilla
Katran, so we omit it from the table to avoid duplication.

6 DISCUSSION

Load Balancing Policies: Evaluating different load balancing poli-
cies is beyond the scope of this paper, which only focuses on the
HEELS communication pattern. Previous works [3, 14] analyze the
pros (e.g., efficient load balancing and PCC guarantee) and cons (e.g.,
poor scalability) of stateful services. HEELS can support any state-
less (e.g., hash-based) or state-full (e.g., cache-based) load balancing
policies. Note that HEELS can simplify the deployment of state-
ful services and eliminate their scalability problems since HEELS
distributes the per-connection state at the end-hosts.

Packet Encapsulation for HEELS: Our initial HEELS’ imple-
mentation depended on packet encapsulation instead of packet
rewriting, where the client adds an encapsulation header to the
egress packets instead of rewriting them. This approach turned out
to be inapplicable as it led up to 50% overhead in some benchmarks.
The reason is that we could only implement egress packet encapsu-
lation in TC, as XDP only supports ingress. Encapsulating packets
in the TC layer proves to be costly as it required an additional copy
and allocation of sk_buff. In contrast, XDP is capable of performing
encapsulation without copying, due to its preallocated headroom
in the packet data structure.

All-client-side HEELS: An alternative design to HEELS is to im-
plement all the packet rewriting logic on the client side, eliminating
the need for any eBPF program on the server side. However, this ap-
proach requires the client side to implement a connection tracking
mechanism and use an eBPF map to store the per-connection state.
The lifetime of each entry in this map should match the lifetime of
the connection TCB in the kernel. In addition, for every incoming
packet, at least two hash lookups are needed – one by an eBPF map
for packet rewriting and another by the kernel to find the associated
TCB. We wanted to avoid the complexity and performance issues
of this approach. Therefore, we chose to use eBPF per-connection
storage (SK_STORAGE) and split this state at the server and client.

HEELS for other protocols: Another interesting question is if
HEELS could apply to other transport protocols.While usingHEELS
for UDP is challenging due to the lack of connection establishment
in UDP, we could potentially adapt HEELS for QUIC [11], a widely
deployed transport protocol over UDP. QUIC has its own connec-
tion migration, allowing a connection to survive client migration
(IP/port changes). However, this mechanism does not widely sup-
port server migration and suffers from certain overhead (e.g., path
validation) due to QUIC’s security concerns. Given that UDP does
not have the options necessary for HEELS, we could instead lever-
age IP options to convey the required information. We leave the
exploration of using IP options in HEELS for future work.

7 RELATEDWORK

L4 Load Balancers: L4 load balancers can be categorized as cen-
tralized and decentralized. Among centralized designs, software
solutions [6, 9, 31] are the most popular but often introduce perfor-
mance overheads, while hardware solutions [7, 27] achieve line-rate
processing but require programmable hardware which is not widely
accessible. Offloading the load balancing logic to individual clients,
decentralized designs [4, 15] provide better scalability and deploya-
bility, but suffer from suboptimal load balancing decisions due to
the lack of a global view. HEELS achieves the best of both worlds
by using the load balancer only during connection establishment
phase and allowing direct communication.

Another load balancer split is between stateful and stateless
designs. Beamer [30] is a stateless load balancer that guarantees
PCC through daisy chaining. In contrast, Cheetah [3] uses a cookie
sent by the client to implement stateful load balancing policies.
HEELS and CRAB [14] can implement stateful load balancing poli-
cies without maintaining any state at the load balancer since they
both distribute the per-connection state to the endpoints.

eBPF Network Applications: eBPF has been widely used to ac-
celerate different applications beyond load balancing. BMC [8] uses
eBPF to implement an in-kernel cache for Memcached acceleration
and Polycube [26] is an eBPF-based NFV framework. Spright [32]
leverages eBPF for serverless communication. Syrup [13] is a user-
defined scheduling framework dependent on eBPF. A follow-up
work on NitroSketch [23] implements sketches in eBPF [25].

8 CONCLUSION

In this paper, we present HEELS, a new layer 4 load balancing
scheme which offloads the load balancing logic to the endpoints.
Inspired by CRAB, HEELS follows its communication pattern where
the load balancer only participates in connection establishment.
However, HEELS generalizes this pattern for a wide range of load
balancers and requires no kernelmodifications, bypassing all CRAB’s
limitations. We demonstrate that HEELS introduces minimal perfor-
mance overhead, works natively with common L4 load balancers,
and can significantly reduce the cost of cloud load balancers.

ACKNOWLEDGEMENTS

We thank our anonymous reviewers for their insightful comments
and helpful feedback. We would like to also thank Edouard Bugnion,
Andrii Vasylevskyi, Rüdiger Birkner, and Konstantinos Prasopoulos
for many helpful discussions during the course of this project. This
work does not raise any ethical issues.

REFERENCES

[1] João Taveira Araújo, Lorenzo Saino, Lennert Buytenhek, and Raul Landa. 2018.
Balancing on the Edge: Transport Affinity without Network State.. In Proceedings
of the 15th Symposium on Networked Systems Design and Implementation (NSDI).
111–124.

[2] AWS. 2023. AWS Elastic Load Balancing. (2023). https://aws.amazon.com/
elasticloadbalancing/ [Accessed: (06/2023)].

[3] Tom Barbette, Chen Tang, Haoran Yao, Dejan Kostic, Gerald Q. Maguire Jr.,
Panagiotis Papadimitratos, and Marco Chiesa. 2020. A High-Speed Load-Balancer
Design with Guaranteed Per-Connection-Consistency.. In Proceedings of the 17th
Symposium on Networked Systems Design and Implementation (NSDI). 667–683.

[4] Cloudflare. 2020. Unimog - Cloudflare’s edge load balancer. (2020). https://blog.
cloudflare.com/unimog-cloudflares-edge-load-balancer/ [Accessed: (06/2023)].

82

https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/elasticloadbalancing/
https://blog.cloudflare.com/unimog-cloudflares-edge-load-balancer/
https://blog.cloudflare.com/unimog-cloudflares-edge-load-balancer/

HEELS: A Host-Enabled eBPF-Based Load Balancing Scheme eBPF ’23, September 10, 2023, New York, NY, USA

[5] Docker. 2023. Docker Swarm. (2023). https://docs.docker.com/engine/swarm/
[Accessed: (06/2023)].

[6] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman Kononov,
Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. 2016. Maglev: A Fast and Reliable Software Network Load
Balancer.. In Proceedings of the 13th Symposium on Networked Systems Design and
Implementation (NSDI). 523–535.

[7] Rohan Gandhi, Hongqiang Harry Liu, Y. Charlie Hu, Guohan Lu, Jitendra Padhye,
Lihua Yuan, and Ming Zhang. 2014. Duet: cloud scale load balancing with
hardware and software.. In Proceedings of the ACM SIGCOMM 2014 Conference.
27–38.

[8] Yoann Ghigoff, Julien Sopena, Kahina Lazri, Antoine Blin, and Gilles Muller.
2021. BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack
Processing.. In Proceedings of the 18th Symposium on Networked Systems Design
and Implementation (NSDI). 487–501.

[9] Github. 2016. Github Load Balancer. (2016). https://github.blog/
2016-09-22-introducing-glb/ [Accessed: (06/2023)].

[10] Yutaro Hayakawa, Lars Eggert, Michio Honda, and Douglas Santry. 2017. Prism:
a proxy architecture for datacenter networks.. In Proceedings of the 2017 ACM
Symposium on Cloud Computing (SOCC). 181–188.

[11] IETF. 2021. The QUIC Transport Protocol - IETF. (2021). https://datatracker.ietf.
org/doc/html/draft-ietf-quic-transport-34 [Accessed: (06/2023)].

[12] Rick Jones. 2005. NetPerf. (2005). https://fossies.org/linux/netperf/doc/netperf.
pdf [Accessed: (06/2023)].

[13] Kostis Kaffes, Jack Tigar Humphries, David Mazières, and Christos Kozyrakis.
2021. Syrup: User-Defined Scheduling Across the Stack.. In Proceedings of the
28th ACM Symposium on Operating Systems Principles (SOSP). 605–620.

[14] Marios Kogias, Rishabh Iyer, and Edouard Bugnion. 2020. Bypassing the load
balancer without regrets.. In Proceedings of the 2020 ACM Symposium on Cloud
Computing (SOCC). 193–207.

[15] Kubernetes. 2018. IPVS-based Kubernetes Load Balanc-
ing. (2018). https://kubernetes.io/blog/2018/07/09/
ipvs-based-in-cluster-load-balancing-deep-dive [Accessed: (06/2023)].

[16] Kubernetes. 2023. Kube Proxy. (2023). https://kubernetes.io/docs/reference/
command-line-tools-reference/kube-proxy/ [Accessed: (06/2023)].

[17] Kubernetes. 2023. Kubernetes Container Orchestrator. (2023). https://kubernetes.
io/ [Accessed: (06/2023)].

[18] Linux. 2017. BPF_PROG_TYPE_SOCK_OPS. (2017). https://lwn.net/Articles/
727189/ [Accessed: (06/2023)].

[19] Linux. 2023. BPF_MAP_TYPE_SK_STORAGE. (2023). https://docs.kernel.org/
bpf/map_sk_storage.html [Accessed: (06/2023)].

[20] Linux. 2023. IPVS Virtual Server. (2023). http://www.linuxvirtualserver.org/
software/ipvs.html [Accessed: (06/2023)].

[21] Linux. 2023. Linux kernel driver for Elastic Network Adapter (ENA) family.
(2023). https://www.kernel.org/doc/html/latest/networking/device_drivers/
ethernet/amazon/ena.html [Accessed: (06/2023)].

[22] Linux. 2023. Linux Trafic Control. (2023). https://man7.org/linux/man-pages/
man8/tc.8.html [Accessed: (06/2023)].

[23] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kassner, Vladimir Braverman,
Roy Friedman, and Vyas Sekar. 2019. Nitrosketch: robust and general sketch-
based monitoring in software switches.. In Proceedings of the ACM SIGCOMM
2019 Conference. 334–350.

[24] Meta. 2023. Katran. (2023). https://github.com/facebookincubator/katran
[Accessed: (06/2023)].

[25] Sebastiano Miano, Xiaoqi Chen, Ran Ben Basat, and Gianni Antichi. 2023. Fast
In-kernel Traffic Sketching in eBPF. Comput. Commun. Rev. 53, 1 (2023), 3–13.

[26] Sebastiano Miano, Fulvio Risso, Mauricio Vásquez Bernal, Matteo Bertrone, and
Yunsong Lu. 2021. A Framework for eBPF-Based Network Functions in an Era of
Microservices. IEEE Trans. Netw. Serv. Manag. 18, 1 (2021), 133–151.

[27] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. 2017.
SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap Using Switch-
ing ASICs.. In Proceedings of the ACM SIGCOMM 2017 Conference. 15–28.

[28] NGINX. 2016. NGINX DSR: IP Transparency and Direct Server Return with NG-
INX and NGINX Plus as Transparent Proxy. (2016). https://www.nginx.com/blog/
ip-transparency-direct-server-return-nginx-plus-transparent-proxy/ [Accessed:
(06/2023)].

[29] NGINX. 2023. NGINX Reverse Proxy. (2023). https://docs.nginx.com/nginx/
admin-guide/web-server/reverse-proxy [Accessed: (06/2023)].

[30] Vladimir Andrei Olteanu, Alexandru Agache, Andrei Voinescu, and Costin Raiciu.
2018. Stateless Datacenter Load-balancing with Beamer.. In Proceedings of the 15th
Symposium on Networked Systems Design and Implementation (NSDI). 125–139.

[31] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin Murthy, Albert G. Green-
berg, David A. Maltz, Randy Kern, Hemant Kumar, Marios Zikos, Hongyu Wu,
Changhoon Kim, and Naveen Karri. 2013. Ananta: cloud scale load balancing.. In
Proceedings of the ACM SIGCOMM 2013 Conference. 207–218.

[32] Shixiong Qi, Leslie Monis, Ziteng Zeng, Ian-Chin Wang, and K. K. Ramakrish-
nan. 2022. SPRIGHT: extracting the server from serverless computing! high-
performance eBPF-based event-driven, shared-memory processing.. In Proceed-
ings of the ACM SIGCOMM 2022 Conference. 780–794.

[33] Gil Tene. 2023. wrk2: a HTTP benchmarking tool. (2023). https://github.com/
giltene/wrk2/ [Accessed: (06/2023)].

83

https://docs.docker.com/engine/swarm/
https://github.blog/2016-09-22-introducing-glb/
https://github.blog/2016-09-22-introducing-glb/
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-34
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-34
https://fossies.org/linux/netperf/doc/netperf.pdf
https://fossies.org/linux/netperf/doc/netperf.pdf
https://kubernetes.io/blog/2018/07/09/ipvs-based-in-cluster-load-balancing-deep-dive
https://kubernetes.io/blog/2018/07/09/ipvs-based-in-cluster-load-balancing-deep-dive
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-proxy/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-proxy/
https://kubernetes.io/
https://kubernetes.io/
https://lwn.net/Articles/727189/
https://lwn.net/Articles/727189/
https://docs.kernel.org/bpf/map_sk_storage.html
https://docs.kernel.org/bpf/map_sk_storage.html
http://www.linuxvirtualserver.org/software/ipvs.html
http://www.linuxvirtualserver.org/software/ipvs.html
https://www.kernel.org/doc/html/latest/networking/device_drivers/ethernet/amazon/ena.html
https://www.kernel.org/doc/html/latest/networking/device_drivers/ethernet/amazon/ena.html
https://man7.org/linux/man-pages/man8/tc.8.html
https://man7.org/linux/man-pages/man8/tc.8.html
https://github.com/facebookincubator/katran
https://www.nginx.com/blog/ip-transparency-direct-server-return-nginx-plus-transparent-proxy/
https://www.nginx.com/blog/ip-transparency-direct-server-return-nginx-plus-transparent-proxy/
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy
https://github.com/giltene/wrk2/
https://github.com/giltene/wrk2/

	Abstract
	1 Introduction
	2 Background
	3 Design
	4 Implementation
	5 Evaluation
	5.1 Performance Analysis
	5.2 Deployment in the Cloud

	6 Discussion
	7 Related Work
	8 Conclusion
	References

