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Abstract
Cloud platform services must simultaneously be scalable,
meet low tail latency service-level objectives, and be resilient
to a combination of software, hardware, and network fail-
ures. Replication plays a fundamental role in meeting both
the scalability and the fault-tolerance requirement, but is
subject to opposing requirements: (1) scalability is typically
achieved by relaxing consistency; (2) fault-tolerance is typ-
ically achieved through the consistent replication of state
machines. Adding nodes to a system can therefore either in-
crease performance at the expense of consistency, or increase
resiliency at the expense of performance.

We propose HovercRaft, a new approach by which adding
nodes increases both the resilience and the performance of
general-purpose state-machine replication. We achieve this
through an extension of the Raft protocol that carefully elim-
inates CPU and I/O bottlenecks and load balances requests.
Our implementation uses state-of-the-art kernel-bypass

techniques, datacenter transport protocols, and in-network
programmability to deliver up to 1 million operations/second
for clusters of up to 9 nodes, linear speedup over unreplicated
configuration for selected workloads, and a 4× speedup for
the YCSBE-E benchmark running on Redis over an unrepli-
cated deployment.
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1 Introduction
Warehouse-scale datacenters operate at an impressive de-
gree of availability and information consistency despite con-
stant component failures at all layers of the network, hard-
ware and software stacks [8], constrained by the well-known
theoretical tradeoffs between consistency, availability, and

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
EuroSys ’20, April 27–30, 2020, Heraklion, Greece
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6882-7/20/04.
https://doi.org/10.1145/3342195.3387545

partition-tolerance [12]. This is the result of the careful de-
composition of modern applications into components that
each exhibit well-defined consistency, scalability, and avail-
ability guarantees. Each component is further configured to
match specific service-level objectives, often expressed in
terms of tail latency [26, 27].

Replication plays a key role in achieving these goals across
the entire spectrum of tradeoffs. First, scalability is com-
monly achieved by managing replicas with relaxed consis-
tency and ordering requirements [12, 27]. This is commonly
deployed as a combination of caching layers, data replication,
and data sharding [27]. Second, replication is also the foun-
dation for fault-tolerance, whether achieved through fault-
tolerant hardware and process pairs [41] or more commonly
in datacenters through distributed consensus protocols of
the Paxos and Raft families [51, 60–63, 76, 77]. Such proto-
cols ensure fault-tolerance through state machine replication
(SMR) [91], in which a distributed system with n nodes can
offer both safety and liveness guarantees in the presence of
up to f node failures as long as n ≥ 2 × f + 1 (under some
network assumptions [36]).

Scalability and fault-tolerance are classically opposed, even
though both rely on the same design principle of replication.
Adding nodes can improve scalability with relaxed consis-
tency and can lead to very large deployments within and
across datacenters (e.g., content delivery networks). On the
flip side, adding nodes to a consensus system can improve
fault tolerance but harm performance. In practice, most de-
ployments of SMR are limited to small cluster sizes, e.g.,
three or five replicas [14, 20, 46] as deployments of SMR
with more than a handful of nodes reduce performance and
are considered too expensive [10, 46].
Figure 1a shows the leader node bottlenecks for a classic

SMR deployment using Raft: (1) the leader acts as the RPC
server for all clients; (2) the leader must communicate indi-
vidually with each follower to replicate messages and ensure
their ordering. Figure 1a also illustrates that a user-defined
application that operates on the state machine must be mod-
ified to accept messages delivered by Raft (rather than use a
more conventional RPC API transport).

In this work we focus on stateful datacenter applications
that require fault-tolerance, low-latency, and scalability. We
ask two main questions: (1) Can we build fault-tolerant ser-
vices in an application-agnostic, reusable manner, i.e., take an
existing application (with deterministic behavior) and have
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Figure 1. Eliminating bottlenecks of SRM. Illustration on a 3-node cluster.

it transparently utilize a SMR protocol? (2) Can we take ad-
vantage of the replication present for fault-tolerance to also
improve the performance of the application?
Figure 1b illustrates the key contributions of our system,

HovercRaft, and its optional extension (HovercRaft++). We
answer the first question primarily by integrating the Raft
protocol [77] directly within R2P2 [58], a transport protocol
specifically designed for in-network policy enforcement over
remote procedure calls (RPC) inside a datacenter.
We answer the second question by first extending Raft

to separate request replication from ordering and using IP
multicast and in-network accelerators (e.g., a P4 ASIC) to
convert leader-to-multipoint interactions into point-to-point
interactions. These enhancements reduce the performance
degradation associated with larger clusters. We complete the
answer to the second question by using R2P2’s fundamental
mechanism for in-network operations, which allows the
destination IP address of an RPC request (as set by the client)
to differ from the source IP of the reply. This allows the load
balancing of client replies, as well as of the execution of read-
only, totally-ordered requests. These changes reduce the I/O
and CPU bottlenecks and allow HovercRaft to deliver even
superior performance to an unreplicated (and therefore not
fault-tolerant) deployment of the same application.

We make the following contributions:

• We integrate Raft [77], a widely used consensus algo-
rithm, with R2P2 [58], a transport protocol specifically de-
signed for datacenter RPCs, to offer fault-tolerance transpar-
ently to applications.
• We propose HovercRaft, a set of Raft protocol extensions
that leverage the built-in features of R2P2 to systematically
eliminate I/O and CPU bottlenecks associated with SMR,
without changing the core of the algorithm, thus its liveness
and safety guarantees.
• We further take advantage of in-network accelerators
now commonly found in datacenter switches to statelessly

offload low-level message processing, thus eliminating scal-
ability bottlenecks due to cluster size.

Our implementation of Raft relies on kernel-bypass to
deliver up to 1M ordered operations per second in a series
of microbenchmarks on a 3-node cluster, which corresponds
to a 4× improvement over the state-of-the-art [31, 66, 85].
Our implementation of HovercRaft++ delivers 1M ordered
operations for clusters of up to 9 nodes. The careful elimina-
tion of CPU and IO bottlenecks allows almost linear speedup
over the unreplicated configuration for selected workloads.
Our evaluation of Redis running YCSB-E shows that Hover-
cRaft can deliver up to 142k YCSB-E operations per second
on a 7-node cluster in ≤ 500µs at the 99th percentile, a 4×
performance increase over the unreplicated case.

The HovercRaft codebase is opensource and can be found
at https://github.com/epfl-dcsl/hovercraft. The rest
of the paper is structured as follows: after the necessary
motivation and background (§2), we present the design of
HovercRaft (§3), and its optional extension using in-network
accelerators (§4). We then identify the common properties of
Raft and HovercRaft, as well as their subtle differences (§5).
Finally, we describe our implementation of HovercRaft (§6)
and evaluate it using representative applications and work-
loads (§7). We describe the related work (§9) and conclude
(§10).

2 Motivation
2.1 Replication for Fault-Tolerance
SMR systems such as Chubby [14], Zookeeper [46], and
etcd [33] manage the hard, centralized state at the core
of large-scale distributed services, e.g., Kubernetes [18] and
RamCloud [81] use Raft/etcd for state management; Azure
Storage [16], Borg and Omega [13], Ceph [96], and GFS [38]
all have a built-in Paxos implementation to manage storage
metadata and cluster state. Because of their complexity, SMR
systems traditionally implement simple abstractions, such
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as a key-value store or a hierarchical namespace, exposed to
clients via a protocol proxy (e.g., http).

Complex and stateful applications, such as databases, typ-
ically depend on application-specific solutions. For example,
they replicate state via cluster configurations (e.g., active-
passive database pairs) that can suffer from split-brain sce-
narios or require manual intervention in case of failures [4].
These stateful applications come with critical performance
advantages as they reduce communication roundtrips and
enable complex, atomic, transactional operations on state.

The separation of concerns between stateless applications
and stateful services exposing simple abstractions comes
with extra cost and complexity, due to the marshalling of
RPCs, multiple roundtrips due to abstraction mismatches,
and added network latency [1]. Approaches such as Splin-
ter [59] and Redis user-defined modules [89] help bridge
the gap through application-specific abstractions and richer
semantics, making a harder case for fault-tolerance, though.
As we will show, we advocate for transport protocols

specifically designed for RPCs with integrated SMR function-
ality to support applications with rich abstractions.

2.1.1 StateMachine Replication. At the core of all fault-
tolerant systems is a variant of a consensus algorithm that is
used to implement distributed state-machine replication [91].
State machine replication guarantees linearizability, namely
all replicas receive and apply the updates to the statemachine
in the same order. Consequently, all replicas in the same
group behave as a single machine. This field has been the
subject of extensive academic and industrial research both
from a theoretical [36, 60, 91] and systems [14, 46, 62, 77]
point of view.
Most consensus algorithms can be split into two phases:

the leader-election phase, where the participating nodes vote
to elect a leader node; and the normal operation. Once a
leader is elected, the leader is in charge of selecting one of
the client requests to be executed and notifies the rest of
the nodes about its choice. Once the majority of nodes are
aware of this choice, the leader can commit and announce
the committed decision, and the request can be executed.
Although the terminology (e.g., acceptors and learners

in Paxos vs. followers in Raft) and the specific semantics
change across different implementations, the key point is
that consensus algorithms generally operate in a 2-roundtrip
communication scheme. In the first round-trip the leader
announces the intention to execute an operation, and in the
second it announces that the operation is committed, given
the necessary majority.
For the rest of the paper we will focus on Raft [77] and

use Raft terminology. Raft is a consensus algorithm that
depends on a strong leader and exposes the abstraction of a
replicated log. The leader receives client requests, puts them
in its log, thus guaranteeing a total order, and replicates those
to the follower through an append_entries request. The

Client

Leader

Follower 1

Follower 2

Figure 2. Basic communication pattern to execute a client
request in a fault-tolerant group of 3 servers. Solid arrows
refer to messages from and to the client based on the service-
specific API, while dotted arrows refer to SMR messages.

followers append them to their logs and notify the leader.
Then, the leader can execute the operation and reply to the
client. The above interaction is summarized in Figure 2. The
leader notifies the followers for its committed log index in
the next communication round. The choice of Raft is crucial
for HovercRaft’s design (§3).

2.1.2 SMR Bottlenecks. We now focus on the normal
case of operation and we identify bottlenecks that might
arise based on the interactions between the clients and the
fault-tolerant group of servers, as well as the consensus com-
munication pattern inside the fault-tolerant group specifi-
cally in the case of Raft.

Leader IO bottleneck for request replication:The leader
is in charge of replicating requests to the followers. Once
those requests start increasing in size or the number of fol-
lowers increases, the transmission bandwidth of the leader’s
NIC will become the bottleneck, thus limiting throughput.

Leader IO bottleneck for client replies: The leader must
also reply to all clients. Depending on the reply sizes, the
leader transmission bandwidth can again become a bottle-
neck, especially in combination with the replication traffic.

Leader CPU bottleneck for running requests: Since the
leader is expected to reply to the client, it must run all client
requests, even read-only ones. However, this can lead to a
CPU bottleneck in the leader if the read-only operations
are expensive. This, for example, can be the case in systems
supporting mixed OLTP and OLAP workloads [88].

Leader packet processing rate: The leader must send re-
quests and receive replies from the majority of the followers
in order to make forward progress. Increasing quorum sizes
increases the packet processing requirements at the leader.
This can both limit the throughput of committed client re-
quests if the IOPS becomes a bottleneck, and increase latency
before hitting the IOPS bottleneck.

2.2 Replication for Scalability
Data replication, either in the form of caching or load bal-
ancing between replicated servers, is used to improve the
latency and throughput of data accesses. Replication, though,
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improves scalability by trading off either availability or con-
sistency, as the CAP theorem suggests [12, 27]. In such repli-
cated systems, concurrent accesses and component failures
lead to anomalies that must be handled either at the applica-
tion layer or by the end-user herself [27].

Replication is therefore the fundamental mechanism used
to offer either scalability or fault-tolerance, but not both
at the same time. Replication for scalability requires com-
promises in the consistency model and can at best offer
high-availability [3].

2.3 Low-latency intra-datacenter interactions
The core of datacenter communications relies on short µs-
scale RPCs [2, 37, 58, 71]. In current datacenters, using stan-
dard networking hardware technologies, any two computers
can communicate in ≤ 10µs at the hardware level between
any two NIC. Such time budget includes the latencies associ-
ated with PCI, DMA, copper transmission, optical transmis-
sion, and multiple hops through cut-through switches.
Recent advances in system software eliminate most soft-

ware overheads by bypassing the traditional networking
stacks. These technologies include kernel-bypass develop-
ment kits [29], user-level networking stacks [49, 68, 78],
stacks that bypass the POSIX layer [44], protected data-
planes [9, 84, 87], and microkernel-based approaches [56, 69].
Such stacks support either standard networking protocols
such as TCP or UDP, protocols specifically designed to accel-
erate datacenter RPC interactions [42, 58], or leverage RDMA
to directly access and manipulate data [30, 69, 70, 81].

Such proximity fundamentally changes assumptions about
the cost of sending messages from applications (clients) to
the nodes of a replicated system, as well as between the nodes
themselves. Approaches such as [58] show that increasing
the number of round-trips can lead to better tail-latency due
to better scheduling.
At the same time, the introduction of new non-volatile

memory technologies [79] reduces the access latencies, in-
creases throughput [48], and eliminates the traditional bot-
tleneck associated with persistent storage, especially when
combined with low-latency networking [28, 97]. In partic-
ular, the combination opens up new opportunities for SMR
applications previously presumed to be storage-bound.

3 Design
Our goal is to provide a systematic and application-agnostic
way of building fault-tolerant, µs-scale, datacenter services,
with similar or better performance to the unreplicated ones.
We achieve this by integrating the consensus directly within
the RPC layer (§3.1) and through a set of extensions to the
Raft consensus protocol that do not modify the core algo-
rithm, but only go after its CPU and IO bottlenecks. We call
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Figure 3.HovercRaft proposal in terms of layering compared
to existing approaches.

the Raft version with the performance extensions Hover-
cRaft. Figure 1b summarizes our design, and in the rest of
the section we analyze each design choice.

3.1 SMR-aware RPC layer
Clients interact with stateful servers through RPCs to change
or query the internal server state, making RPCs the natu-
ral place to implement a systematic, application-agnostic
mechanism for fault-tolerance. In a standard design of a
fault-tolerant service, clients interact with the nodes of a
cluster through a standard RPC library that is oblivious to
SMR. For example, etcd uses gRPC [42] for this interaction.
This protocol layering requires the SMR leader, which re-
ceives the initial client RPC, to decode it, re-encode it within
the SMR protocol for insertion into the consensus log, and
finally forward it to the followers. The selection of the end-
point for the client RPC can be done via a stateless load
balancer which hides the internal IP addresses of the cluster
but does not improve performance since all client requests
have to go through the leader, e.g., the etcd gateway [34].
We advocate, instead, to incorporate consensus directly

within an RPC library or a transport protocol, which has
RPC semantics (e.g., gRPC [42] or R2P2 [58]) and to provide
fault-tolerance at the RPC granularity. Specifically, the SMR
layer becomes part of the RPC layer which forwards RPC
requests to the application layer only after those requests
have been totally ordered and committed by the leader. Doing
so can transform any existing RPC service with deterministic
behavior into a fault-tolerant one with no code modifications.

We chose to workwith R2P2 [58] and incorporate Raft [77]
within the RPC processing logic. We chose R2P2 as it is a
transport protocol specifically designed for datacenter RPCs
that targets in-network policy enforcement and decouples
the initial request target from the replier. This design choice
in R2P2 is crucial for RPC-level load balancing implemented
at its core.
Figure 3 describes the proposed design in terms of lay-

ering. Unlike previous approaches that incorporate SRM
libraries at the application layer, HovercRaft incorporates
SMR within the same transport protocol that also exposes
request-response pair semantics, making the solution appli-
cation agnostic.
Our choice of Raft, instead of a Paxos variant, is driven

by Raft’s strong leader, and the in-order commit mechanism.
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In the original Paxos algorithm [60] there can be a different
leader in each consensus round, thus limiting the potential
for optimization due to centralized choice. Unlike Paxos, Raft
is a consensus algorithm that depends on a strong leader in
charge of ordering and replicating client requests across all
followers, with a global view of all the nodes participating
in the fault-tolerant group. Our goal is to take advantage of
the global cluster view at the Raft leader in conjunction with
R2P2’s load balancing capabilities to go after the SMR bottle-
necks. Although the above requirement is also satisfied by
Multi-Paxos [61], Raft’s in-order commit logic significantly
simplifies the design of in-network acceleration for Hover-
cRaft. We specifically target scalability bottlenecks, and we
note that our design does not improve upon Raft’s two net-
work roundtrip approach, unlike 1-roundtrip proposals [66].

3.2 Separating RPC Replication from Ordering
The first Raft bottleneck of §2.1.2 is the leader IO transmis-
sion bottleneck due to request replication. With n nodes in
the cluster, a mean RPC request size of Sr eq , and a link ca-
pacity of C , Raft cannot serve more than C/((n − 1) ∗ Sr eq)
requests per second.
HovercRaft achieves fixed-cost SMR independent of the

RPC request size. We solve the bottleneck by separating
replication from ordering and leverage IP multicast to repli-
cate the requests to all nodes. Instead of targeting a specific
server, clients inside the datacenter send requests to a mul-
ticast group that includes the leader and the followers, or a
middlebox that is in charge of assigning the correct multicast
IP. All nodes in the group receive client requests without
the leader having to send them individually to each of the
follower nodes.
Obviously, IP-multicast does not guarantee ordering or

delivery. As with Raft, the leader decides the order of client
requests. R2P2 provides a way to uniquely identify an RPC
based on a 3-tuple (req_id, src_port, src_ip) and HovercRaft
relies on this metadata built into the protocol. Upon recep-
tion of an RPC request, the leader immediately adds it to its
log, while followers insert the RPC into a set of unordered
requests. The leader then communicates fixed-size request
metadata to the followers. Followers retrieve the RPC re-
quests from the unordered set based on the request metadata
and add them in their log. Therefore, in the common case,
when no packet loss occurs, the leader is only in charge of
ordering requests and not data replication.

3.3 Load balancing replies
The second bottleneck mentioned in §2.1.2 refers to the cost
of replying to clients from the leader. We observe that re-
plying to the client can be load balanced between the leader
and the followers as long as the followers keep up with
the request execution. By doing so, the I/O bottleneck due
to client replies could expand from C/Sr eply RPS to almost
n ∗ C/Sreply RPS, where C is again the link capacity and
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Figure 4. A view of the leader log. Each log entry includes
the term, the designated replier, a pointer to the client re-
quest, and whether it is read-only. The replier is set only for
the entries up until the announced_idx.

Sr eply is the reply size. For example, a server with a 10G
NIC can serve up to approximately 400k requests per second,
when the replies are 2 MTUs (we assume an MTU of 1500
bytes). Load balancing those replies among 3 replicas can
improve application throughput by 3×. It also reduces the
leader CPU load due to network protocol processing.

The leader can decide which node replies to the client for
which request, given its global view of the cluster. According
to the semantics of the vanilla Raft algorithm, a leader sends
an append_entries message to the followers that includes
the client requests and the leader commit index, so that
followers can update their own commit index. There is no
explicit commit message per log entry. As a result, the leader
has to designate the replier when announcing the request
order to the followers, and not after committing them.
HovercRaft extends the information stored in the Raft

log with a replier field. The leader sets the replier field
immutably for each entry before sending the particular entry
to any follower for the first time. When a log entry is later
committed, each Raft node can run the RPC, but only the one
with the matching replier identifier replies to the client. For
this, we use a built-in feature of R2P2 that allows the source
IP address of the RPC reply to differ from the destination IP
address of the request.
The load balancing of replies creates a window of uncer-

tainty between the append_entries request that communi-
cates the designated replier, and the commit point, during
which the designated replier can fail, and as a result the client
will not receive a reply. Note that introducing this window
does not affect the correctness of the SMR algorithm, as it
is consistent with Raft’s semantics that do not guarantee
exactly-once execution, and can lead to missed replies. Note
also that clients may receive their replies in a different order
than in the log; this is not, however, different than Raft.

3.4 Bounded Queues
We rely on another design idea introduced in R2P2, bounded
queues, to minimize the potential visible impact of a partic-
ular node failure to clients to at most B lost replies. R2P2’s
Join-Bounded-Shortest-Queue was designed as a load balanc-
ing policy to mitigate tail latency across stateless servers [58].
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Join-Bounded-Shortest-Queue splits queueing between a
large centralized queue and distributed bounded queues, one
per server. The rational behind this policy is to delay del-
egating requests to a specific server queue in anticipation
of better scheduling, approaching the performance of the
optimal single queue. HovercRaft delays the reply node as-
signment to bound the number of lost replies in the case of
node failure.
Specifically, HovercRaft caps the quantity of announced

entries from the leader’s log relatively to the applied index,
thus bounding the amount of assigned but not applied op-
erations. Figure 4 describes the different indices on the log:
(1) the leader inserts entries at log_idx, the head of the log
without determining yet which node will send the reply;
(2) the leader selects the node in charge of replying to the
client and updates the announced_idx accordingly; (3) the
commit_idx represents the point upon which consensus has
been reached; (4) the applied_idx represents the point upon
which operations have been applied to the state machine.
Each follower also has its own set of applied_idx, commit_-
idx, and log_idx indices on its local log. Announced_idx is
relevant only for the leader. Followers communicate their
applied_idx to the leader as part of the append_entries
reply.
For every node there is a bounded queue of reply assign-

ments to that node between its applied_idx and the leader’s
announced_idx. The leader respects the invariant of the
bounded queue at node selection time, i.e., when moving an-
nounce_idx: nodes with too many operations left to apply
are not eligible for receiving additional work. This obviously
includes the case when the node has failed and its applied_-
idx does not progress. Thus, choosing nodes based on the
bounded queues minimizes the risk of selecting a failed node
and eventually losing client replies.
We note that respecting the bounded queue invariant

never affects liveness. When no node is eligible for desig-
nated replier, the leader simply waits either for the applica-
tion in the leader node to make progress and selects itself as
a replier, or an append_entries reply from a follower that
will make this follower eligible to reply.

3.5 Load balancing Read-only Operations
The third bottleneck of §2.1.2 is the leader CPU bottleneck.
We observe that many RPCs only query the state machine
but do not modify it. Such read-only requests still need to
be placed in the Raft log and ordered to guarantee strong
consistency, but do not need to be executed by all nodes. The
load balancing design of §3.3 therefore naturally extends
to the CPU for read-only operations, and can increase the
global CPU capacity of the system. Clients tag their requests
as read-only as part of the metadata of the R2P2 RPC. This
information is also kept in the Raft log and propagated to the
followers (see Figure 4). It follows that all requests remain

totally ordered by Raft, but only the designated replier node
executes a read-only query.
Read leases [40], which are an alternative solution for

read-only requests, were initially proposed for Paxos [17]
and also used in Chubby [14] and Spanner [20]. In this ap-
proach, read-only operations run on the leader without run-
ning consensus for them. However, this increases the CPU
load and traffic on the leader. Megastore [5] grants leases to
every replica for different read operations, but requires com-
municating with every replica to perform a write request.
Quorum leases [73] also load balance read-only requests
among different nodes, but assume an application-specific
way of detecting read-write dependencies and do not match
our application agnostic requirements. Finally, there is also
the choice of not ordering read operations, acknowledging
the risk of returning stale replies [32]

3.6 Join-Bounded-Shortest-Queue
Bounded queues are necessary to limit the lost client replies
up to the queue bound, but can also help improve the end-
to-end request latency, especially in cases where read-only
requests have high service time variability. Once the leader
decides to announce more log entries, identifies the eligible
followers, and has to select which follower will reply to the
client. One option is random choice among eligible nodes.
Another one is to leverage R2P2’s Join-Bounded Shortest
Queue (JBSQ) policy [58].

In HovercRaft, the leader maintains the queue depth of re-
quests to be executed on each node. This counter is increased
every time the leader assigns a request and decremented
when followers reply to the leader. The JBSQ policy load
balances the requests based on the known queue depths, as
this is known to improve tail-latency compared to a random
selection [58], by choosing the shortest among the bounded
queues. The queue of a follower that is assigned to run a long
read-only request will fill up while the node is busy serving
the request and that will prevent the leader from assigning
more work to that node. Preferring the other less loaded
nodes is expected to improve the tail-latency in cases of
high service-time variability, compared to the naive random
assignment policy.

3.7 Communication in HovercRaft
Figure 5a summarizes the logic and the communication pat-
tern described in the above design. A client sends requests to
a pre-defined multicast group. Requests get replicated to all
nodes based on multicast functionality existing in commod-
ity switches. The leader orders requests and sends append_-
entries with request metadata to followers, identifying the
request type (read-only or read-write) and delegating client
replies; in this particular case follower 1 will reply. The fol-
lowers reply to the leader and the leader commits the request.
At the next append_entries request the followers are no-
tified about the leader’s current commit index, execute the
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Figure 5. The communication patterns in our design resulting from separating replication from ordering and using in-network
fan-in/fan-out. Solid arrows refer to application requests and replies. Dotted arrows refer to SMR messages.

client request, and follower 1 replies to the client. The above
communication pattern increases latency in the unloaded
case (2.5 RTTs), but can lead to significant throughput bene-
fits.

4 HovercRaft++
The last bottleneck of § 2.1.2 is the packet processing over-
head at the leader that becomes worse as the number of
followers increases. The leader has to send append_entries
requests to each follower independently and receive replies
for each request. Communication delays inside the datacen-
ter, though, are short and usually predictable, so it is likely
that all followers make progress at the same pace. Based on
that observation, we tackle the packet processing bottleneck
using in-network programmability. Specifically, we design
and implement an in-network aggregator, based on a P4-
enabled programmable switch, that will handle the fan-out
and fan-in of the append_entries requests and replies. This
in-network accelerator should be viewed as part of the leader.
A P4 switch runs the aggregation logic at line rate. So, we
offload some of the leader’s packet processing duties, thus
reducing the leader’s CPU pressure, on a hardware appliance
specifically designed for packet IO. Our goal is to achieve
fixed-cost SMR in the non-failure case independently of the
number of followers for small cluster sizes.

Figure 5b describes our proposed design. Similarly, to Hov-
ercRaft’s communication pattern (Figure 5a), a client sends a
request to themulticast group and this request gets replicated
to all nodes. However, in the case of in-network acceleration
(HovercRaft++), the leader, instead of communicating with
each individual follower, sends only one append_entries
request to the network aggregator. This request includes the
metadata to implement the aforementioned load balancing
logic. The network aggregator then forwards this request to
the equivalent multicast group excluding the leader. The fol-
lowers reply back to the aggregator and the aggregator keeps
track of the per-follower replies, without forwarding them

MSGs\System Raft HovercRaft HovercRaft++
Rx msgs 1+(N-1) 1+(N-1) 1+1
Tx msgs (N-1)+1 (N-1) + 1/N 1+1/N

Table 1. Comparison of Rx and Tx message overheads for
the leader in Raft, HovercRaft, and HovercRaft++ for the
non-failure case. N is the number of nodes.

to the leader. Once the majority of the followers have suc-
cessfully replied, the aggregator multicasts an AGG_COMMIT
to all the nodes in the group, announcing the new commit
index. Based on that message, the delegate follower (follower
1) replies back to the client.

Table 1 summarizes the communication complexity at the
leader in Tx and Rx messages for the different approaches
for a cluster with N nodes (N-1 followers and a leader). In
the case of Raft, the leader receives the client request, sends
N-1 append_entries requests to the followers, receives N-1
append_entries replies, and sends the reply to the client.
In the case of HovercRaft, the leader receives the client re-
quest, sends N-1 append_entries requests (smaller than in
the previous case) to the followers, receives N-1 append_en-
tries replies, and approximately sends only 1/N replies to
the client because of replies load balancing. Finally, in the
case of HovercRaft++, the leader receives the client request,
sends only one append_entries request to the aggregator
that multicasts it to the followers, the aggregator collects the
quorum and sends one append_entries reply to the leader.
Similarly with the previous case, the leader approximately
sends only 1/N replies to the client.

5 HovercRaft vs Raft
HovercRaft does not modify the core of the Raft algorithm
but instead goes after its bottlenecks and implements opti-
mizations to bypass them. Those optimizations are only in
effect in the non-failure mode of operation. HovercRaft falls
back to vanilla Raft whenever a failure, e.g., failed leader, is
detected. As a result, HovercRaft provides exactly the same
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linearizability guarantees as Raft. It assumes the same failure
mode, and guarantees safety and liveness with 2f + 1 nodes,
where up to f nodes can fail.

Raft’s correctness depends heavily on the strong leader
and its election process. HovercRaft’s modifications to the
Raft logic only affect the normal operation after a leader is
elected. As a result, the correctness of the leader election is
not challenged.

The rest of this session discusses the modifications intro-
duced by HovercRaft, how they affect the consensus logic,
and how HovercRaft handles failures.

Separating replication and ordering: In HovercRaft, all
nodes receive client requests through the multicast group
and the leader is in charge of ordering. Client requests are
placed in the Raft log as they are received only in the leader.
Followers keep those requests in a list of un-ordered requests
waiting for an append_entries request.

Followers index unordered requests based on R2P2 unique
3-tuple (req_id, src_ip, src_port). Clients are responsible to
ensure the uniqueness of the metadata identifiers. This is
not a problem in practice given the large R2P2 metadata
namespace. The leader can also include a hash of the request
body to avoid cases of metadata collision. Therefore, there is
a unique mapping between metadata in the append_entries
message and the requests in the followers unordered list.
HovercRaft does not assume reliable multicast [45, 83].

Consequently, there might be cases in which client requests
do not reach all the nodes. Followers detect such cases when
processing an append_entriesmessage and do not find the
equivalent client request in their unordered set. We intro-
duced a new recovery_request message type. Followers
use this request to ask for a missing client request from the
leader or any other follower that might have potentially re-
ceived it. Once a follower retrieves a missing request, it adds
it to the unordered set, waiting for the next append_entries
request from the leader to order it properly.

The inverse case, in which the followers received a client
request but the leader did not, does not require changes to
the algorithm. The followers periodically garbage collect
client requests in their unordered set that linger, based on a
specific timeout. Early garbage collection does not affect the
correctness of the algorithm and will unnecessarily trigger
the recover mechanism described above.

Bounded Queues: Bounding the amount of committed but
unapplied requests does not affect the number of lost client
requests in case of a leader failure. Followers have also re-
ceived the client requests already placed in the failed leader
log, but not yet announced. When a leader fails, the new
leader will remove the received client requests from its un-
ordered set, add them to its log in some order and start
sending append_entries announcing their order.

Load Balancing Client Replies: Raft does not guarantee
exactly-once RPC semantics but instead only at-most-once
RPC semantics [92]. It only guarantees linearizability of op-
erations, leaving the client outside the algorithmic logic.
Consequently, the client reply can be lost or the leader can
crash after committing a log entry and before replying to
the client. Guaranteeing exactly-once RPC semantics is out-
side the scope of Raft and projects like RIFL [64] solve the
problem of implementing exactly-once semantics on top of
infrastructures providing at-most-once RPC semantics.

HovercRaft’s ability to load balance replies introduces this
window of uncertainty between the point of replier choice
by the leader and the actual client reply. This is consistent
with Raft’s at-most-once RPC semantics, does not affect cor-
rectness, and should be considered equivalent to the cases
of missing replies in vanilla Raft.

Load Balancing Read-Only Operations: Read-only oper-
ations do not modify the state machine but still need to be
ordered to guarantee strong consistency. It is safe to exe-
cute them only in the designated replier, only after they
have been committed. The application (client-side or server-
side) is responsible to correctly identify which operations
are read-only, as to avoid a catastrophic inconsistency.

In-networkAggregation:The aggregator should be viewed
as part of the leader that undertakes leader tasks in the non-
failure case. In HovercRaft++, followers reply to the aggre-
gator only when append_entries requests succeed. When
an append_entries fails, e.g., due to wrong previous entry,
followers talk directly to the leader, bypassing the aggregator.
When the leader receives a failure reply for an append_en-
tries request, it uses point-to-point communication with
this follower until it recovers. In the meantime, this follower
receives the multicast append_entries requests from the
aggregator and keeps them in order to identify when to stop
the recovery process with the leader, and continuewith using
the messages from the aggregator instead.
If the in-network aggregator fails, the followers stop re-

ceiving requests from the leader. This will trigger a new
election process, in which the aggregator does not partici-
pate. Once a new leader is elected based on the vanilla Raft
election process, the new leader has to identify whether to
use the in-network aggregator or not. The leader switches
to HovercRaft++ once it has confirmed the liveness of the
in-network aggregator. The state in the aggregator is flushed
after every new leader election.
Model-checking the correctness of HovercRaft++ using

TLA+ [93] is left for future work.

6 Implementation
We implemented HovercRaft and HovercRaft++ based on
the open-source version of R2P2 [39], and a production-
grade, open-source implementation of Raft [15], which is
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thoroughly tested for correctness, and used in Intel’s dis-
tributed object store [25]. We built the network aggregator
in P414 and ran it in a Tofino ASIC [7].
To guarantee timely replies, we dedicate a thread to net-

work processing and a thread to run the application logic.
The networking thread is in charge of receiving client re-
quests and running the R2P2 and consensus logic. The ap-
plication thread is in charge of running the application and
replying to the client if necessary. In our implementation
on top of DPDK [29], we configure 1 RX queue for the net-
working thread and 2 TX queues, one for each thread. The
networking thread polls the RX queue, while the application
thread polls for changes in the commit_idx and applies the
newly committed entries.

6.1 R2P2 protocol extensions
We extended R2P2 to integrate consensus in its RPC process-
ing logic. R2P2’s RPC-tailored semantics and its RPC-aware
design choice are a perfect fit to achieve our goal.
The R2P2 header includes two relevant fields for our im-

plementation. The first one is the POLICY field, initially used
to define load balancing policies. We extended the seman-
tics of this field with two new policies. Clients use those
fields to tag requests that must be totally ordered for strong
consistency. Specifically, requests that read and modify the
state machine should be marked with REPLICATED_REQ, and
requests that only read with REPLICATED_REQ_R. Marking
requests that require strong consistency allow servers in the
fault-tolerance group to serve also other requests that are
not replicated, with the probability of stale data, similarly
to etcd [33]. Those non-replicated requests can also be load
balanced based on the techniques described in [58].

The second relevant field is the message type. Given that
Raft itself depends on RPCs, Raft RPCs are also on top of R2P2.
We added two more message types, one for Raft requests and
one for Raft responses, as to separate them from the client
ones since they have to be handled by the consensus logic in
R2P2. These fields are also used by the network aggregator
to specially handle Raft requests and replies.

6.2 Raft extensions
We added minimal modifications to the Raft implementation
initially for high throughput and low-latency and then to
support HovercRaft. Specifically, we switched from the peri-
odic application of the log, to eager application the moment
the entries are committed. Then, we extended the log entry
with two new fields to include the replier identifier and the
entry’s type (read-only/read-write). Finally, without modify-
ing the Raft code, we extended the append_entries reply to
include the applied index, necessary for the bounded queues
(§3.4) and load balancing.

6.3 Multicast Flow Control and Recovery
Raft and HovercRaft differ noticeably in one particular area.
In vanilla Raft, the leader is the only one receiving client re-
quests and is in charge of both ordering and replicating them;
it is the only bottleneck in the system. Therefore, dropping
client requests at the leader is a form of implicit flow con-
trol. HovercRaft, however, leverages multicasting to replicate
client requests, which implies that, under high load, different
requests will be dropped for the leader and the followers.

As a consequence, HovercRaft has to implement flow con-
trol to guarantee forward progress under high load or bursts
of load that lead to dropped multicast client messages. One
way of dealing with the problem is to let the leader and
the followers drop requests independently under high load,
and rely on the recovery mechanism to create back-pressure.
However, this would lead to poor performance.
Instead, we leverage the R2P2’s FEEDBACK mechanism,

that is designed to be repurposed according to the application
needs, to limit the number of outstanding client requests
in the system. For example, the R2P2 request router used
FEEDBACKmessages to implement the JBSQ scheduling policy.
HovercRaft and HovercRaft++ use FEEDBACK messages to
implement a coarse-grained flow control mechanism for
multicast traffic.
Specifically, instead of letting clients send requests to

a multicast IP, we use a middlebox, e.g., a programmable
switch, that counts the number of requests in the system and
switches the destination IP to the multicast IP of the fault-
tolerance group. Every time a node sends back a reply to the
client, it also sends a FEEDBACK message to the flow-control
middlebox, to decrement the counter of requests. When the
number of requests in the system reaches a certain thresh-
old, instead of multicasting, the middlebox sends a NACK
back to the client for every new client request arriving, thus
preventing throughput collapse in the system.

6.4 Aggregator implementation
Our in-network aggregator is implemented as part of a Tofino
programmable switch, but it is an IP connected device that
can be placed anywhere inside the data center. The aggre-
gator maintains only soft state that is flushed on every new
leader election.
The aggregator needs to keep per-follower state and the

current commit index. For this purpose, we use P4 registers
that can be read and modified in the dataplane. For each node
the aggregator keeps its current log index and the number
of completed requests necessary for load balancing. The
current log index information in the aggregator is effectively
the match index kept in the Raft leader, thus the aggregator
should be seen as an extension of the leader and not as a
standalone entity. Our implementation uses two P4 registers
for each follower, and each follower is handled in a different
Tofino pipeline stage.
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Figure 6. The in-network aggregator pipeline handling append_entries requests and replies

Figure 6 illustrates our implementation with the Tofino’s
ingress and egress pipelines. When receiving append_en-
tries requests, the aggregator only has to forward the packet
with a modified destination IP address set to the appropriate
multicast group. That multicast group includes all nodes ex-
cept for the sender. The aggregator keeps track of the current
term. Receiving an append_entries request with a higher
term will lead to the aggregator flushing its internal state.
Processing append_entries replies is more challenging

since the aggregator needs to decide whether the log should
be committed up until a certain point and multicast the
AGG_COMMITmessage to all the nodes. The AGG_COMMITmes-
sage should include the committed index and the number
of completed requests per node. To achieve this in one pass
through the dataplane, we keep the match_idx registers in
the ingress pipeline and the completed_count registers in
the egress pipeline. When an append_entries reply arrives
at the aggregator, the aggregator updates the match index of
the sender node, counts the number of nodes that have re-
ceived up until this log index to determine whether it should
commit or not, and sets its decision in per packet metadata.
All replies go through egress processing, to at least update
the register holding the completed requests. If the aggrega-
tor decides in ingress that the commit index is increased, it
compiles an AGG_COMMIT reply that includes the completed
requests of the followers and multicasts it to all nodes. Oth-
erwise, it drops the reply in egress.
There are cases where the leader announces up to the

same log index, which is already committed, in its append_-
entries request. This might happen either because there
are no new client requests, or because a message between
the aggregator and the leader was lost. In this case, the ag-
gregator needs to forward the request to the followers to
prevent a new leader election and send an AGG_COMMIT for
an already committed log index. If the aggregator detects the
same log index as in a previous append_entries request, it
keeps track of it, and sends an AGG_COMMIT for the next ap-
pend_entries reply it receives, even if the commit index is
not increased. (check_log_idx, set_pending and check_-
pending stages)

The aggregator does not participate in the leader election,
but it should be able to notify the new leader that it is up and
ready to serve requests. Thus, the new leader, after being
elected, contacts the aggregator sending a vote_request

message. If the aggregator is up, it replies with a vote_-
reply. Note that this vote_reply does not count for the
leader election.
Finally, Figure 6 illustrates the logic split between the

ingress and egress pipelines required to meet the timing re-
striction of the ASIC: each stage of the pipeline can access
only one register. With the Tofino v1 ASIC , HovercRaft++
can accommodate up to 9 nodes, with full line-rate process-
ing, and without requiring any packet recirculation.

7 Evaluation
We evaluate HovercRaft and HovercRaft++ with the pri-
mary goal of showing the benefits of load balancing and
in-network aggregation for datacenter SMR.
Our infrastructure is a of a mix of Xeon E5-2637 @ 3.5

GHz with 8 cores (16 hyperthreads), and Xeon E5-2650 @
2.6 GHz with 16 cores (32 hyperthreads), connected by a
Quanta/Cumulus 48x10GbE switch with a Broadcom Tri-
dent+ ASIC. All machines are configured with Intel x520
10GbE NICs (82599EB chipset).

All experiments use the Lancet open-source load genera-
tor, which generates an open-loop Poisson arrival process,
relies on hardware timestamping for accurate RPC mea-
surements, and reports accurately the 99th percentile tail
latency [57]. Lancet supports R2P2.

Our experiments compare four different system setups, all
on top of DPDK:
(1) the unreplicated service (UnRep) is not fault-tolerant

as the state-machine is not replicated. Clients interact with
that single server using R2P2. This setup is expected to have
the lowest latency, but it is not fault-tolerant.

(2) Our port of the vanilla Raft algorithm [15] on R2P2 and
DPDK (VanillaRaft), which directly integrates the SMR
layer within the RPC layer. This setup incorporates our de-
sign contributions from §3.1, but no protocol contributions.

(3) HovercRaft (HovercRaft), which incorporates protocol
extensions to separate request replication from ordering
(§3.2), and the ability to load-balance replies (§3.3) and read-
only operations (§3.5).
(4) HovercRaft++ (HovercRaft++), which leverages in-

network aggregation to offload protocol processing (§4).
This last configuration leverages, in addition to the hard-
ware above, a Barefoot Tofino ASIC that runs within an
Edgecore Wedge100BF-32X accelerator connected to the
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Figure 7. Tail latency vs. throughput for a fixed service time
S = 1µs workload with 24-byte requests and 8-byte replies
on N=3 node cluster.

Quanta switch via a 40Gbps link. We use the same Bare-
foot switch as a flow-control middlebox.

We use a combination of synthetic micro-benchmarks and
a real-world application. Synthetic microbenchmarks depend
on a synthetic service with configurable CPU service execu-
tion time, request, and reply sizes. Requests to this service
can be either read-only or read-write. This methodology is
used to determine protocol overheads in the presence of
known upper bounds in terms of either CPU or I/O, and
therefore to exercise the bottlenecks independently. For ex-
ample, we run most experiments with a service time S = 1µs,
which obviously limits the throughput to ≤ 1000KRPS . Sim-
ilarly, we run some experiments with 6KB replies, which
limits throughput to ∼≤ 200KRPS per 10GbE link.

The evaluation answers the following questions and quan-
tifies the benefits of our design decisions:

1. what is the overhead of turning an RPC service into
a fault-tolerant one with SMR implemented directly
within the RPC layer in a 3-node cluster? (§7.1)

2. how is HovercRaft’s and HovercRaft++’s performance
affected by the client request size? (§7.1)

3. how do HovercRaft and HovercRaft++ scale with an
increased number of nodes? (§7.2)

4. how does HovercRaft load balance replies and optimize
read-only operations? (§7.3)

5. how does HovercRaft behave in the presence of fail-
ures? (§7.4)

6. how well does HovercRaft perform in practice with a
production-grade application (Redis) and an industry-
standard benchmark (YCSB-E)? (§7.5)

7.1 One million SMR operations per second
We first characterize all four setups on a 3-node cluster us-
ing a microbenchmark with a tiny service time (S = 1µs),
minimum request size (24B) and minimum reply size (8B).
There are no read-only operations to be load balanced. For
this baseline experiment, we also explicitly disable the load
balancing of client replies offered by HovercRaft, as to focus
on protocol overheads.

Figure 7 shows the latency versus throughput curve for the
four setups. We observe that there is a latency offset between
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Figure 9. Achieved throughput under a 500µs SLO for a
workload with fixed service time of S = 1µs, 24-byte requests
and 8-byte replies for different cluster sizes.

the fault-tolerant configurations and the unreplicated case
that comes from the extra round-trip required to achieve
consensus. Nevertheless, that offset remains small and never
exceeds 68µs, even for throughputs as high as 950KRPS .
Also, note that our experiment infrastructure depends on
rather old hardware. Newer hardware, such as in [54], is
expected to reduce this offset.
Figure 7 also shows that all four setups achieve close

to the maximum possible throughput (1M RPS) under the
500µs SLO. This is a significant result as it outperforms
other software-based, state-of-the-art approaches that ei-
ther depend on kernel networking, such as NOPaxos [66]
(by a factor of 4×), implement consensus inside the kernel,
such as Kernel Paxos [31] (by a factor of 5×), or depend on
RDMA [85] (by a factor of 4×). The difference is explained by
our kernel-bypassed DPDK-based implementation and the
leaner RPC protocol (R2P2) with its direct Raft integration.

Figure 8 adjusts the first experiment by setting the request
size to 64B and 512B (compared to 24B in the first experi-
ment) and reports the achieved client throughput in requests
per second under the 500µs SLO. We observe that Hover-
cRaft and HovercRaft++ are unaffected by the request size
as they rely on multicast for request replication. However,
the VanillaRaft configuration is sensitive to request size,
with the throughput under SLO reduced by 2% and 48% for
64B and 512B sized-requests, respectively, vs 24B requests
for the baseline experiment.
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7.2 Scaling Cluster Sizes Without Regret
We now scale the cluster size to 5, 7, and 9 nodes i.e., clusters
that can tolerate 2, 3, and 4 failures, for the same experiment
as the baseline in §7.1.

Figure 9 shows the achieved throughput under the 500µs
SLO. In the 3-node cluster the three configurations are equiv-
alent. The differences become obvious with larger clusters,
with VanillaRaftmost severely affected (−43% for 9 nodes).
HovercRaft is unaffected up to 5 nodes, but shows a reduc-
tion with 7 and 9 nodes as the leader has to communicate
independently with every follower. HovercRaft++ benefits
from in-network aggregation and its performance is inde-
pendent of the cluster size: the communication overhead
at the leader is always the same for any number of nodes,
since the replication and aggregation are performed at the
P4 switch, which operates at line rate.

7.3 Scaling to Improve Performance
In the previous experiments, we showed how HovercRaft++
outperforms the other configurations even without consid-
ering its load balancing benefits. We now enable the load
balancing mechanism of HovercRaft with bounded queues
of up to 128 pending requests and increase the reply size to
6KB; all other parameters remain the same as the baseline.
All SMR operations execute on all nodes.

Figure 10 plots the latency as a function of the achieved
throughput for the unreplicated case and HovercRaft++ with
3 and 5 nodes. As expected, the unreplicated setup hits an
IO-bottlenecked at ∼200KRPS , which corresponds to a fully
utilized 10G link. Running on 3 and 5 nodes, increases the
capacity of the system by almost 3× and 5×, since it is an
IO-bottlenecked workload and all followers reply to clients.

We now study specifically the CPU load balancing mech-
anisms in our design. The purpose of this experiment is to
study the impact of service time variability and scheduling
disciplines on performance. For this, we assume that 75% of
operations are read-only. We use the baseline configuration
for request and reply sizes (which is free of I/O bottlenecks),
and increase the CPU service time to an average of S = 10µs.
We switch from the fixed service time distribution to a bi-
modal distribution, in which 10% of the requests are 10x
longer than the rest. Based on these parameters, the unrepli-
cated service is expected to reach close to 100k RPS, while
HovercRaft++ on a 3-node cluster will be close to 200k RPS
if perfect load balancing is achieved.

Figure 11 shows the 99th percentile tail-latency as a func-
tion of the achieved throughput for the unreplicated and
replicated cases. For HovercRaft++, we consider two load
balancing policies, RANDOM and JBSQ, with bounded queues
of 32, due to the longer service time. We observe that load
balancing the read-only operations increases the CPU capac-
ity of the system for a 57% throughput improvement under
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Figure 10. Latency versus throughput for S = 1µs fixed
service time, 24-byte requests, and 6kB replies for different
cluster sizes.
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Figure 11. Latency versus throughput for a S = 10µs service
time with bimodal distribution on a 3-node cluster. Requests
are 24-bytes, replies are 8-bytes, and 75% of operations are
read-only.

the 500µs SLO. Also, the benefit of JBSQ over RANDOM be-
comes obvious. JBSQ allows HovercRaft++ to deliver lower
latency, and therefore higher throughput under SLO, since
it load balances read-only requests better by avoiding over-
loaded followers. We expect the gap between the 2 curves to
increase with the number of nodes in the cluster given the
more opportunities for careful load balancing.

7.4 Loadbalancing in the presence of failures
HovercRaft and HovercRaft++ enable pushing the achieved
throughput load beyond the capacity of a single node by
leveraging the existing redundancy. In the presence of fail-
ures, though, the capacity of the fault-tolerant system re-
duces. In such cases, HovercRaft and HovercRaft++ should
manage the failure and gracefully degrade their performance.
In the next experiment we study how HovercRaft++ be-

haves when the leader fails. We use the same setup as in
the previous experiment with the bimodal distribution of
S̄ = 10µs and 75% read-only operations. Note that the capac-
ity of the system with this request mix is 200k RPS with 3
nodes, but drops to 160k RPS with 2 nodes. We load the sys-
tem with a fixed load of 165 kRPS which is below maximum
capacity for the 3-node case, but above the maximum capac-
ity for the 2-node setup. We configure flow control to allow
up to 1000 client requests in the system. We measure the
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Figure 12. 99-th percentile latency and throughput as a
function of time in the presence of failures a leader failure
for a HovercRaft++ 3-node cluster and a bimodal distribution
of S̄ = 10µs with 75% read-only operations.

latency and throughput every second. At some point in time
we kill the leader and we study how the system behaves.

Figure 12 plots the 99-th percentile latency and through-
put as a function of time. We observe that before the leader
failure the system serves 165k RPS under low latency. When
the leader fails, one of the followers takes over and the sys-
tem operates with 2 nodes. Because of bounded queues the
new leader does not assign work to old leader. Throughput
drops to the system capacity of 160k RPS. The flow control
mechanism drops approximately 5k RPS maintaining the
number of requests in the system below 1000, leading to
increased latency, but avoiding collapse.

7.5 YCSB-E on Redis
Finally, we evaluate our design on a real-world application
that requires generic SMR functionality for fault-tolerance.
We run Redis [89] with the YCSB-E [19] workload.

YCSB-E is a cloud workload that consists of SCAN and
INSERT operations, in a 95:5 ratio, modelling threaded con-
versations. It assumes 1kB records, with 10 fields of 100 bytes
each. INSERT requests add a new record and they have to be
ordered since they are parts of a conversation. SCAN requests
query the last posts in a conversation, and they also need to
be ordered for correctness, but they are read-only operations,
thus they can be load balanced. We set the maximum number
of elements to be returned in a SCAN request to 10.

Redis is an in-memory data store that supports basic data-
structures and operations on them, such as lists, hashmaps,
and sets. We chose Redis because it can be easily extended
through user-defined modules [90]. Through Redis modules,
users can define their own operations that manipulate Redis
data-structures. We leverage the feature to implement the
SCAN and INSERT operations of YCSB-E as single Redis op-
erations that are guaranteed to execute within an isolated
transaction. Given the support for arbitrary SMR operations,
turning Redis to fault-tolerant requires an application agnos-
tic approach similar to HovercRaft and HovercRaft++.
We ported Redis to use R2P2 instead of TCP for client

operations. Beyond this protocol change, running the fault-
tolerant version of Redis via VanillaRaft, HovercRaft, or
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Figure 13. Latency vs throughput for YCSB-E(95% SCAN
5% INSERT) on Redis with our custom module to support
YCSBE-E operations.

HovercRaft++ required no code modifications, showing the
benefits of transport layer support for SMR.
Figure 13 plots the 99th percentile latency as a function

of the achieved throughput for the unreplicated case and
the cluster configurations for HovercRaft++ with 3, 5, and 7
nodes. YCSB-E on Redis is a CPU-bound. read-mostly work-
load.We observe that SMR has only a verymoderate negative
impact on tail latency at low loads (up to 10KRPS), but that
HovercRaft++’s ability to leverage data replication present
in SMR substantially increases the achieved throughput un-
der the 500µs SLO. In the 7-node cluster, Redis can execute
142k YCSB-E operations per second under SLO, while guar-
anteeing full state machine replication and ordering of all
operations, for a speedup of 4× over the unreplicated case.
This speedup of 4× is consistent with the upper bound pre-
dicted by Amdahl’s law given the relative cost of SCAN and
INSERT, and the fact that only SCANs can be load balanced.

8 Discussion

Programmable Switches andConsistency:HovercRaft++
is not the first system to leverage programmable switches for
state machine replication. However, the use of programmable
switches in HovercRaft++ differs when compared to the pre-
vious work, and we believe our proposal could be used in
other distributed systems mechanisms, such as byzantine
fault tolerance and primary backup.
We split the proposals of using programmable switches

in SMR in three main categories. The first category includes
systems that use P4 switches as sequencers. NOPaxos [66]
and Harmonia [100] take advantage of in-network compute
to assign sequence numbers to client requests under very
low latency and high throughput. Despite its simplicity, one
drawback in this approach is handling switch failures. After
a sequencer failure, the new sequencer has to make sure that
it respects the request order from the previous sequencer.
Thus, these systems depend on a second fault-tolerant group
at the level of the network controller that maintains an epoch
number, that increases at every sequencer failure, and is used
to bootstrap the new sequencer.
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The second category includes systems that fully offload
the implementation of an SMR algorithm on a programmable
switch. For example, Paxos made switch-y [22] runs a Paxos
coordinator and acceptor inside the P4 dataplane. Although
such proposals can significantly improve performance, they
suffer from the P4 dataplane limitations, such using fixed-
size small values.

HovercRaft++ partially offloads leader duties to the pro-
grammable switch by using it as a very efficient packet pro-
cessor. The programmable switch deals with Raft’s fan-out
and the fan-in communication patterns, while maintaining
only soft state. If a switch fails, a new switch can take over
starting from an empty state, thus bypassing the problems
in the first category. Also, using a software-based leader run-
ning in a server offers a lot of flexibility to the system, unlike
the proposals from the second category.

HovercRaft and High Speed Networks: HovercRaft and
HovercRaft++ go after both IO and CPU bottlenecks in SRM.
Although the IO bottlenecks might become less important
with the advent of faster networks, e.g., 40G and 100G, the
read-only operation load balancing and in-network fan-out/fan-
in management employed in HovercRaft++ focus only on
CPU bottlenecks and remain relevant despite bandwidth
abundance. Especially, HovercRaft++will becomemuchmore
beneficial in those high speed networks since it offloads
packet IO to the programmable switch and exposes a fixed
overhead to the leader independent of the cluster size.

9 Related work

SMR: Consensus and state machine replication have been
widely studied both from a theoretic [51, 60–63, 76, 77], and
a systems point of view. Systems such as Spanner [20], Zoo-
keeper [46], Chubby [14], etcd [33] depend on those algo-
rithms and are widely deployed serving millions of users.
Researchers have optimized consensus systems to offer SMR
in aWAN environment [67, 72], inside the datacenter [66, 86],
implemented within the kernel [31], using RDMA fabrics [85,
95], or on top of FPGAs [47]. Similar to NOPaxos [66] and
Speculative Paxos [86], HovercRaft focuses on fault tolerance
inside the datacenter assuming lossy Ethernet fabrics (rather
than RDMA). Despite leaderless approaches such as Men-
cious [67] and EPaxos [72] deal with leader bottlenecks, they
lack a global cluster view, unlike HovercRaft, thus reducing
the load balancing potentials.

Scaling read-only operations: Read leases [40] proposed
to optimize for read-only operations in SMR and have been
used either in the form of master leases in Spanner [20], and
Chubby [14], or in the form of read quorums [73]. Those
approaches either overload the leader or assume application-
specific knowledge. HovercRaft implements load balanc-
ing of linearizable, read-only operations in an application-
agnostic manner.

µs-scale computing: Exposing the hardware potential of
µs-scale interactions within a datacenter to applications re-
quires a new approach. This approach includes datacenter-
specific operating systems [9, 53, 80, 84, 87, 98], user-level
networking stacks [49, 54, 56], and transport protocols [58,
71]. HovercRaft builds on the R2P2 paradigm of pushing
support for RPC to the transport layer [58] by extending it
to offer fault-tolerance.

Networking protocol design and implementation: The
separation of request data and metadata for ordering is
also used in previous systems [6, 11, 35, 52]. UDP has been
proposed to increase scalability of datacenter RPCs [75].
Bounded batching has been proposed to increase through-
put [9] and reduce tail latency [58]. In-network programma-
bility and programmable switches have been used for fault-
tolerance, for sequencing in NOPaxos [66], to accelerate
Vertical Paxos in NetChain [50], or implementing the en-
tire Paxos algorithm [22, 24, 94]. Such approaches either do
not assume switch failures, or rely on another fault-tolerant
group for state management. HovercRaft incorporates these
ideas into the domain of SMR, and only stores soft-state in
the network, which is recreated at every leader election.

Alternative fault-tolerance models: Fault-tolerance can
be offered at the system call layer (Crane [21]), at the level of
memory operations [23], in transactional databases [65, 74,
99], key-value stores [82], or for multi-threaded applications
(Rex [43] and Eve [55]). HovercRaft provides fault-tolerance
at the RPC layer in an application-agnostic manner and with-
out code modifications.

10 Conclusion
We showed that replication can simultaneously improve
both fault-tolerance and performance. Through the careful
implementation of HovercRaft using modern kernel-bypass
techniques and appropriate datacenter transport protocols,
we first show that SMR is suitable for µs-scale computing,
delivering 1 million ordered operations per second. Through
the additional use of multicast, in-network accelerators, and
load balancing, we tackle SMR’s CPU and I/O bottlenecks
and enable the deployment of fault-tolerant applications in
an application-agnostic manner.
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