
Flow control for Latency-Critical RPCs
Marios Kogias

EPFL
Edouard Bugnion

EPFL

ABSTRACT
In today’s modern datacenters, the waiting time spent within a
server’s queue is a major contributor of the end-to-end tail latency
of µs-scale remote procedure calls. In traditional TCP, congestion
control handles in-network congestion, while flow control was
designed to avoid memory overruns in streaming scenarios. The
latter is unfortunately oblivious to the load on the server when
processing short requests from multiple clients at very high rates.
Acknowledging flow control as the mechanism that controls queu-
ing on the end-host, we propose a different flow control mechanism
that depends on the application-specific service-level objectives and
controls the waiting time in the receivers queue by adjusting the
incoming load accordingly. We design this latency-aware flow con-
trol mechanism as part of TCP by maintaining a wire-compatible
header format without introducing extra messages. We implement a
proof-of-concept userspace TCP stack on top of DPDK and we show
that the new flow control mechanism prevents applications from
violating service-level objectives in a single-server environment by
throttling the incoming requests. We demonstrate the true benefit
of the approach in a replicated, multi-server scenario, where inde-
pendent clients leverage the flow-control signal to avoid directing
requests to the overloaded servers.

CCS CONCEPTS
• Networks → Transport protocols;

KEYWORDS
flow control, TCP, Remote Procedure Call, latency-critical
ACM Reference Format:
Marios Kogias and Edouard Bugnion. 2018. Flow control for Latency-Critical
RPCs. In KBNets’18: ACM SIGCOMM 2018 Afternoon Workshop on Kernel
Bypassing Networks , August 20, 2018, Budapest, Hungary. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3229538.3229541

1 INTRODUCTION
The “cloud era” is built on top of at least two nearly ubiquitous
paradigms: TCP/IP and remote procedure calls (RPC) [10]. Both
paradigms are used to connect to mega-datacenters (e.g., https)
as well as within datacenters, where they connect multiple tiers of
servers with wide fan-in/fan-out flow patterns and strict tail-latency
service level objectives (SLO) [7, 14]. TCP has emerged as the main
transport protocol on top of commodity Ethernet for latency-critical

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KBNets’18, August 20, 2018, Budapest, Hungary
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5909-2/18/08. . . $15.00
https://doi.org/10.1145/3229538.3229541

RPCs. The reliable, ordered byte stream provided by TCP serves
as the basis for other higher-level, application abstractions and
guarantees, such as exactly-once RPC semantics. Non-commodity
alternatives, e.g., RDMA over Infiniband and RDMA over Lossless
Ethernet (RoCE) have specific hardware requirements or expose
alternative APIs, that limits their wide adoption, despite potentially
reduced round-trip times (RTT).

A datacenter, though, differs radically from the assumptions
considered during the initial TCP design [13]. Specifically, modern
datacenters are uniformly designed and built upon low-latency
Ethernet fabrics in Clos topologies. Those fabrics comprise of com-
modity cut-through switches with shallow buffers that have a few
hundreds of nanoseconds of switching latency. Such a design guar-
antees unloaded RTTs in the scale of µs and a few Pbps of bisection
bandwidth [40]. Despite TCP’s extensive use within a datacenter,
most of its mechanisms remain as originally designed, such as the
sliding window. TCP’s sliding window is managed by both the con-
gestion and flow control logic. We make the distinction between
congestion control algorithms focusing on in-network congestion,
while flow control focusing on queueing on the end-hosts. Im-
provements throughout the networking stack, though, have mostly
focused on the in-network congestion. Approaches such as [2–4]
reduced congestion and buffer utilisation, nearly eliminated packet
drops, improved fabric utilisation, and reduced latency jitter.

In contrast, the endpoints have received less consideration. In
particular, the core flow-control mechanism of TCP is used today
primarily to prevent packet loss at the end-hosts, but without any
particular consideration for end-to-end latency. The initial purpose
of flow control is to avoid overwhelming the receiver, which can
lead to packet drop. This was a significant concern during the initial
design of TCP due to the limited amount of DRAM in computers
of a few decades ago. Modern servers nowadays have abundant
DRAM, and can potentially accommodate a large number of packets.
Applications with strict tail-latency SLOs, though, require mini-
mal queueing on the server side. For a datacenter RPC server that
handles µs-level requests from multiple sockets (fan-in), the queu-
ing on the server side will account for a significant proportion of
the client end-to-end latency, given that the service time and the
RTT combined account for a few µs. Latency-critical RPCs, such as
key-value stores, usually depend on short requests and responses
of a few bytes [6]. So, an in-memory, latency-sensitive RPC server
will violate a strict SLO after queuing only a few dozens of short
messages, which collectively require only a tiny fraction of the
server’s memory.

This paper suggests to revisit the notion of flow-control specifi-
cally for latency-sensitive, µs-scale, kernel-bypassed RPC services
on top of TCP. According to our proposal, the destination signals
its availability back to the source in an application-independent
manner, as with TCP’s standard flow control. Unlike the standard
approach, though, the signal is based on the expected wait and

15

https://doi.org/10.1145/3229538.3229541
https://doi.org/10.1145/3229538.3229541


KBNets’18, August 20, 2018, Budapest, Hungary M. Kogias et al.

Figure 1: Replicated RPC experiment setup

service times of the server and takes into consideration the specific
application-level tail-latency SLOs (rather than available memory).

Our flow-control mechanism uses a token bucket per connection
to control the incoming request rate and maintain it at a level so
that the application SLOs are not violated. The clients self-pace
their requests based on available tokens. The server controls the
size and the fill-rate of the bucket based on (a) the trailing estimate
of the service time distribution of RPCs, (b) the SLO, and (c) the
number of connections.

We implement a proof-of-concept TCP stack with a latency-
aware flow control mechanism by simply re-purposing the TCP
sliding window. The new mechanism requires no changes to the
TCP header format or additional messages. Our implementation on
top of Intel’s DPDK [15] is suitable to evaluate the effectiveness of
the approach for µs-scale tasks. Our evaluation of the mechanism
in a series of synthetic microbenchmarks with different service
time distributions shows that it can accurately identify the load
that will violate the latency SLO and maintain the throughput at
that level. Moreover, we show the benefits of using this mechanism
in cases of replicated services in order to avoid overloaded servers.

2 MOTIVATION
Flow control is one of the profound examples of Salzer’s end-to-end
argument [38]. In a latency-aware flow control mechanism, the
two ends, client and server, communicate, so that the client adjusts
their offered load after the server’s directives, based on how the
server performs and the agreed SLO. In a scenario with replicated
RPC-servers, this mechanism can be used to dynamically adjust the
incoming load to the servers, so that the application tail-latency
SLOs are not violated. Figure 1 provides a motivating example that
applies the end-to-end argument for replicated RPC services: 8K
clients are split into two groups, where the first group can inter-
changeably select between server 1 (S1) and server 2 (S2), but the
second group (for some reason) can only use S2. The relative ar-
rival rate of requests from the two groups is unknown and varying,
and the service time to process each request is also unknown. By
incorporating tail-latency awareness into flow control, each client
should be able to independently determine when and where to send
requests so that the SLO is never violated.

3 BACKGROUND

Existing TCP FlowControl: TCP, as a connection-oriented trans-
port protocol, implements flow control per connection. The flow
control mechanism depends on the size of the available receive
socket buffer communicated between the two endpoints with every

packet exchanged. The sender uses this information in conjunction
with the current congestion window size to decide how many bytes
to send, and sends the maximum amount allowed.

From an implementation perspective, flow control is implemented
via a 16-bit header field, with window-scale option exchanged dur-
ing the 3-way handshake [21]. On each endpoint the size of the
receive buffer can be configured per connection during runtime
through a setsockopt() call. However, it can not be configured to
less than 4kB. A server with a high client count (high fan-in) must
therefore accept potentially multiple RPCs from each client, before
the existing flow control starts throttling each client independently.

Figure 2a summarises the existing TCP flow control mechanism.
It shows a connection between a server and a client. The server also
has second connection to another client. There are buffers on both
ends of the connection that are partially occupied. TCP’s existing
flow control mechanism signals back the available per connection
buffer space (B) as part of the packets exchanged.

TCP Flow Control in KBNets: Kernel-bypass networking intro-
duces additional issues related to the implied semantics of flow-
control. TCP’s flow control accounts for the bytes processed by
the TCP stack but not processed by the application. Thus, it as-
sumes certain asynchrony between network and application pro-
cessing. This assumption is invalid for kernel-bypass implemen-
tations with a symmetric, run-to-completion design inspired by
middlebox dataplanes[8, 37]. Because of the tight coupling of net-
work and application processing, there are no buffered data between
the two stages. Thus, the semantics of TCP’s flow control become
vague. It appears as if receiver buffers are never filled up, despite
incoming packets being queued or dropped before TCP and appli-
cation processing. The alternative approach dedicates threads to
network processing, other threads to application processing, and
the two groups communicate over interprocess communication,
e.g., shared memory [22]. Here, the TCP flow control semantics
remain unchanged.

4 DESIGN
Our goal is to reduce and control buffering on the path of an RPC
on top of TCP. To do so, we design a latency-aware flow control
mechanism for TCP, specifically targeting latency-critical RPC ser-
vices.

Figure 2b summarises the proposed design. On the RPC-client
side, buffering is limited to the sliding window, which ensures that
requests can be sent without delay to the server. On the server side,
we change the semantics of the flow control signal to take into
consideration the total amount of connections on the server, and
the application SLOs and service time. The flow-control logic on the
server should be able to predict the overall incoming load that will
violate the latency SLO and maintain throughput below that level
across all connections. We set the following design requirements:
(a) There should not be extra messages specifically for flow control.
(b) The TCP header format should remain intact. (c) The mechanism
should be agnostic to the service time distribution.

Predicting the SLO-violating load: Since we want to leverage
flow control, a throughput-oriented mechanism, to control the end-
to-end request latency, we need to understand and approximate the

16



Flow control for Latency-Critical RPCs KBNets’18, August 20, 2018, Budapest, Hungary

Client Server

Β C1

Β’ C2

C1

Β

(a) TCP Flow Control

Client Server

Β C1

Β’ C2

C1

F(#connections,SLO,service_time) 

(b) Latency-Aware Flow Control

Figure 2: One-way Flow Control FeedBack Loop. Ci indicates a connection, dark grey indicates occupied buffer space, light
grey indicates the slidiing window, B is the available receive buffer space.

correlation between the incoming rate of requests and the end-to-
end latency of each request. To do so, we use some basic queueing
theory. Although TCP is a connection-oriented transport protocol,
we focus on RPC services and abstract the basic system functional-
ity. Thus, a system can be described by its service time distribution,
the incoming distribution of requests, and the number of workers
and queues. We use Kendall’s notation to describe queuing models,
where in the following expression A/S/n, A is the inter-arrival dis-
tribution, S is the service time distribution, and n is the number of
workers. The scheduling policy implied is first-come-first-served
(FCFS). The end-to-end request latency is the sum of the propaga-
tion delay, the wait time in the queue, and the service time. The
propagation delay depends on the request size and the network
characteristics. The service time distribution depends on the appli-
cation. Thus, we focus on how to control the wait time and provide
wait time SLOs (WSLOs), namely an upper limit on the time each
request might wait to be served.

According to queuing theory, the average wait time in an M/G/1
system can be expressed in a closed form that depends on the
system load, and the average and standard deviation of the service
time. This implies that in any system with a Poisson inter-arrival
distribution and a single worker, we can control the average wait
time by controlling the system load, independently of the service
time distribution. Equation 1 expresses the average wait time (Tw ),
as a function of the system load (ρ), and the service time standard
deviation (σTs ) and average (Ts ) [27].

Tw = 1/2
ρTs

1 − ρ
[1 + (

σTs
Ts

)2] (1)

SLOs, though, are expressed at some percentile. Since there is
no closed form that expresses the wait time percentiles, we will use
the central limit theorem for heavy traffic queueing systems [24]
to approximate them. According to that, in any G/G/N queuing
system under heavy traffic load, the wait time distribution could
be approximated by an exponential distribution. Based on that
we can approximate any percentile of the wait time distribution,
since we know the distribution to be exponential and its average
from Equation 1. Vice versa, we can set an upper limit in the wait
time for a certain percentile, and predict the system load that will
violate this WSLO. To do so, first we need to estimate the average
wait time Twtarдet at the SLO. Equation 2 computes the average
of an exponential distribution whose value at the p-percentile is
Twslo . β is the scale parameter of the exponential distribution. If we

substitute Tw with Twtarдet in Equation 1, and solve for ρ, we get
the load that will violate the WSLO. For example, for a fixed service
time distribution (σTs = 0) with Ts = 10, and a 99-th percentile
WSLO of 100(Twslo = 100 and p = 0.99), we predict that the WSLO
will be violated when ρ = 0.81

Pr [X ≤ Twslo] = p (2)

1 − e−
Twslo

β = p

Twtarдet = β = −
Twslo

ln(1 − p)

Flow-controlMechanism:We incorporate the above result in the
existing TCP’s flow control infrastructure. The operator should only
define the WSLO as the amount of wait time allowed at a certain
percentile and the system should adjust accordingly. Although TCP
connections are symmetric, in the following explanation we focus
on the case of an RPC server (receiver) that needs to apply flow
control to the incoming requests from different clients (senders).

We first describe the functionality of the receiver running a
single RPC service. For simplicity, we consider a single-threaded
RCP server and we analyse the multi-threaded case at the end of the
section. The receiver calculates the maximum allowed incoming
rate according to the WSLO, based on the formulas in Section 4,
and prevents the clients from sending faster than this rate. To
estimate the average and standard deviation of the service time,
every receiver maintains a global moving average of the application
service time per request. Moreover, to avoid unnecessary client
throttling, every receiver maintains a moving average of the request
inter-arrival time across all connections, and throttles only when
the overall load is close to the maximum allowed one.

The throttling mechanism depends on a per-connection token
bucket algorithm controlled by the receiver. Every token corre-
sponds to a request. If the incoming rate is lower than a certain
percentage of the maximum allowed load, the receiver allocates
a fixed number of tokens per connection. For our experiments
we set the threshold at 80% of the maximum allowed load. After
that threshold throttling is necessary. The receiver distributes the
maximum allowed load across all connections. Load distribution
can consider any connection priority scheme depending on the
application logic. The receiver translates the per connection load
to a number of tokens per connection that periodically replenishes,
and communicates the amount of available tokens to the receiver

17



KBNets’18, August 20, 2018, Budapest, Hungary M. Kogias et al.

through the TCP header. If there are no tokens available, the sender
should remain silent till the new replenishment. To do so without
the need of extra messages, the receiver notifies the sender about
the duration it should remain silent, again through the TCP header.

Unlike the existing TCP semantics that depend on the socket API
with intermediate buffering on the send path, we assume a zero-
sized send buffer other than the sliding window. If there is a request
to be sent, the sender immediately sends it as long as there are
available tokens (one token per request). If not the send fails. Thus,
the application can decide whether it should drop the request, buffer
it in the application space and wait, or try using another connection,
if any. Compared to the existing TCP implementation, sends will
fail more often. A failed send, though, now implies that if this
request was actually send, it would probably be an SLO violation.
The sender can send again either after a token replenishment, or at
the end of the idle period as defined by the receiver.

A multi-threaded server would operate on a similar rational.
We assume that every thread serves incoming requests indepen-
dently from the others, and there is a static mapping of connections
to threads. Every thread runs a run-to-completion loop. This is a
popular design adopted by latency critical applications, such as
NGINX [34] and memcached [30], and operating systems, such as
IX [8]. In this design, every thread maintains its own moving aver-
ages for service time and inter-arrival distribution that correspond
to the connections it is responsible for, and implements flow control
based on the load it individually receives.

Assumptions and Limitations: The use of closed forms in the
above design depends on the two following assumptions: (1) the
RPC inter-arrival distribution is Poisson; (2) the system is modelled
as M/G/1, namely each core operates as a standalone entity and
there is no connection sharing across cores. If either of the two
assumptions is violated, we can still use heuristics to correlate the
incoming load with the queueing delay as part of a training phase,
and then use the same mechanism to keep the incoming load below
the threshold that emerged after the training phase.

Finally, note that our latency-aware flow control logic is inte-
grated within TCP without using any extra packets, but is in fact
independent of the actual transport used. For example, it could
trivially be implemented on top of RDMA by using either extra
control messages from the server back to the clients, or by having
the clients read the load from the server using one-sided remote
read operations.

5 IMPLEMENTATION
We implemented the above design in a userspace TCP/IP stack and
used it in a sample RPC client and server that are built on top of
Intel’s DPDK [15]. The TCP/IP stack does not make any assumption
about the kernel-bypass paradigm, namely, how to split network
and application processing across threads, and can be used both in a
symmetric and an asymmetric setup. We built the client and server
applications after the symmetric paradigm, where every thread
runs both network and application processing.

Since we specifically target latency-critical RPC services, we
didn’t expose a POSIX-like API for our proof of concept TCP stack.
Instead, we implemented an event-based API similar to IX [8]. In
this API, the application has direct access to the packets received.

Whenever there is an incoming packet, the application gets noti-
fied and receives a pointer and the length of the received payload.
Similarly, whenever the application wants to send a packet, writes
directly to the mbuf to avoid extra copies. Before sending, every
sender explicitly asks for a new mbuf to put the data to be sent at
the right offset. Finally, we implemented two extra function calls
to collect the per RPC application processing time. The application
calls these two functions at the beginning and end of processing
each individual RPC, equivalently.

We implemented the proposed flow-control mechanism by lever-
aging the existing 16-bit receive window without introducing any
extra messages or changing the TCP header. Unlike the existing
semantics though, where this field carries a number of bytes, we
need to overload it with dual semantics, since it can represent either
a number of tokens or the duration of idle time. We use the most
significant of the 16 bits as a mode switch. If not set, the lower 15
bits encode the number of available tokens. If set, they carry the
number of µs for which this particular connection should remain
idle. By configuring the token replenishment rate equivalently, 15
bits are enough to carry the available tokens per connection. In our
experiments we replenished each connection’s tokens every 500
µs. For the idle time, we assume that no connection should remain
idle for more than 32 ms, which is approximately the maximum du-
ration in µs encoded in 15 bits. If for any reason, the 15 bits are not
enough, we can employ the existing window scaling mechanism.

We didn’t implement any congestion control in our proof-of-
concept TCP stack, since our experiments are application-throttled.
Existing window-based congestion control schemes are not effec-
tive for this particular type of workload consisting of very small
messages [6] that fit in a single packet, across a large number of
connections, in an environment with µs RTTs. Congestion control
for such workloads is an open research problem [11, 12, 31, 47]
with recent research proposals [33] suggesting a generic conges-
tion control agent that can be used in kernel-bypass networking
stacks. Such an approach is a good fit for our networking stack, but
we leave this for future work.

6 EVALUATION
To evaluate our design we implemented a synthetic RPC service
based on our experimental TCP stack. We use fixed-size requests
and responses of 8 bytes. Each request encodes the amount of pro-
cessing time required by the server. Once the server receives the
request, spins for the amount of time specified and echoes the
received value back. This way we can emulate any service time dis-
tribution and evaluate whether our system can adjust accordingly.

Our experimental setup consists of a cluster of 4 client and 2
server machines connected by a Quanta/Cumulus 48x10GbE switch
with a Broadcom Trident+ ASIC. The client machines are Xeon
E5-2637 @ 3.5 GHz with 8 cores (16 hyperthreads), and the server
machines are Xeon E5-2650 @ 2.6 GHz with 16 cores (32 hyper-
threads). All machines are configured with Intel x520 10GbE NICs
(82599EB chipset). We connect the clients and the server to the
switch through a single NIC port each. On both clients and servers
we use only the one NUMA node.

We run two types of experiments. In the first type we emulate
multiple independent clients having a single connection to the RPC

18



Flow control for Latency-Critical RPCs KBNets’18, August 20, 2018, Budapest, Hungary

TCP LA-fc Zero-wait WSLO-100us

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Achieved Throughput (MQPS)

0

100

200

300

(a) Fixed (S̄ = 10µs)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Achieved Throughput (MQPS)

0

100

200

300

(b) Exponential (S̄ = 10µs)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Achieved Throughput (MQPS)

0

100

200

300

(c) Bimodal (S̄ = 10µs)

Figure 3: 99th percentile tail latency versus throughput for the three service time distributions with 10µs mean service time
and the two flow control mechanisms, TCP and the proposed latency-aware (LA-fc).

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Offered Rate (MQPS)

0

20

40

D
ro

p
 R

a
te

 (
%

)

(a) Fixed

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Offered Rate (MQPS)

0

20

40

(b) Exponential

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Offered Rate (MQPS)

0

20

40

(c) Bimodal

Figure 4: Drop rate as a function of the offered throughput in the case of LA-fc for the 3 service time distributions.

server and we show how the system can identify the load that will
violate WSLO, and maintain the incoming request rate lower than
that level. In the second type of experiment, we show how this
mechanism can be used in a replicated RPC service, so that clients
avoid overloaded replicas, and thus achieving better tail-latency.

Single-node RPC service: In this experiment we use 4 client ma-
chines and 1 server machine. Each client machine opens 1024 con-
nections spread across 8 threads. Every client thread generates re-
quests with a Poisson inter-arrival distribution, randomly chooses
one of the available connections, and sends the request to the server.
This workload is equivalent to 4096 independent clients generating
requests with a Poisson inter-arrival against the RPC server. If flow
control allows it, the client sends the request to the server. Other-
wise, the request is dropped. Note, that this is an extreme case that
will help us evaluate the maximum throughput loss because of the
new flow control mechanism. In a more realistic scenario, the client
could decide to wait for a certain amount of time for the connection
to become available before dropping the request depending on the
application SLOs.

We use three different service time distributions with the same
average of 10µs, but different dispersion. We consider a fixed, an
exponential and a bimodal distribution where 90% of the requests
require 5 µs of processing time and the rest 10% requires 55 µs. We
run the client and the server both with the standard TCP flow con-
trol mechanism and with the proposed latency-aware flow control
mechanism, and we set a WSLO of 100µs at the 99-th percentile.

Figure 3 shows the 99-th percentile end-to-end latency in µs
measured at the client as a function of the achieved throughput in

million requests per seconds for the two flow control mechanisms,
TCP and latency-aware. The server runs on 16 cores, so with an
average service time of 10µs, the theoretically maximum possible
throughput is 1.6 million requests per second. We limit the y-axis at
300 µs. The red dashed line is theWSLO defined as 100 µs above the
unloaded latency. Firstly, we observe that in the case of TCP flow
control, latency can increase beyond the SLO. TCP is agnostic to the
application SLO and and there are multiple clients with outstanding
requests. In the case of latency-aware flow control, the system
manages to throttle the incoming rate according to the WSLO.
Moreover, we can see that the maximum allowed load changes
according to the service time distribution. This load increases as
the service time dispersion decreases.

In this experiment we traded the drop rate for better tail-latency,
since clients instantly drop their request if the connection is not
available. Figure 4 shows the drop rate as a function of the offered
request rate for the same three distributions of service time. In this
plot, it becomes obvious that our mechanism can decide when to
start throttling based on the different service times. Clients start
dropping requests at different request rates across the three ser-
vice time distributions. As expected, as the service time dispersion
increases, client start dropping requests earlier.

Multi-node RPC service: This experiment addresses the motivat-
ing example of Figure 1 by showing how the mechanism can be
used by clients of a replicated RPC service to avoid the overloaded
replicas. We assume a replicated RPC service across two servers
where the two servers, S1 and S1, can be used interchangeably. We
split the client machines into two groups. GroupA emulates 4096

19



KBNets’18, August 20, 2018, Budapest, Hungary M. Kogias et al.

0 5 10 15 20 25 30 35

Time (s)

0.35

0.40

0.45

T
h

ro
u

g
h

p
u

t 
(M

Q
P

S
) LA-fc gA s1

LA-fc gA s2

TCP gA s1

TCP gA s2

(a) Throughput over time

0 5 10 15 20 25 30 35

Time (s)

0

100

200

300

9
9

th
 L

a
te

n
c
y
 (

u
s
) TCP LA-fc WSLO-100us

(b) Latency over time

Figure 5: GroupA (gA) throughput against server1 (s1) and server2 (s2), and 99th percentile tail latency for the two flow control
mchanisms, TCP and the proposed latency-aware (LA-fc)

independent clients that have one connection to each server and
generate requests with a Poisson inter-arrival (λA ). According to
the client logic, each client randomly chooses between the two
connections. If the chosen connection can be immediately used for
sending, they send their request. Otherwise they try their other
connection. If this one is available, they use this to send the request,
else they drop it. GroupA generates a constant load of 800 kQPS
with a 10-µs exponential service time against the two servers. The
second group of clients, groupB, again consists of 4096 independent
clients but they can only use S2. GroupB clients generate a constant
load of 800 kQPS with a 10-µs exponential service time starting at
t0 = 20 for 10 seconds and then they stop. We measure and plot
the throughput and latency achieved by groupA for the two flow
control mechanisms, TCP and latency-aware.

Figure 5a shows the achieved throughput for groupA, and how
it is distributed across the two servers. In the case of TCP, groupA
selects both S1 and S2 with the same likelihood, independently
of groupB’s behaviour. However, in the case of the latency-aware
flow control mechanism, groupA starts showing preference to S1 at
t0 = 20. After groupB starts loading, S2 operates beyond its WLSO,
so it starts throttling. As a result groupA’s connection to S2 can
not support the same load as before. Thus, S1 is chosen more often.
GroupA’s request rate to S1 increases, and the rate to S2 decreases,
while the aggregate throughput remains the same. The drop rate for
groupA is close to zero. Regarding groupB throughput, although not
shown in the graph, it is 800 kQPS in the case of TCP, while it drops
to around 660 kQPS in the case of latency-aware flow control. This is
in accordance with the results in Figure 3b for S2, since 1 MQPS (330
kQPS from groupA and 660 kQPS from groupB)is approximately
the maximum allowed load for the exponential distribution with
a WSLO of 100 µs. We could avoid dropping groupB’s throughput
by choosing a different load allocation policy in S2 that favours
groupB connections.

Figure 5b shows the end-to-end tail-latency as it is measured by
the groupA clients, by choosing either S1 or S2 according to the
client logic. The red dashed line is the WSLO for the exponential
distribution as shown in Figure 3b. As expected, groupA tail-latency
increases when groupB starts loading server2. In the case of TCP,
though, the WSLO is violated since S2 is still selected with the
same likelihood. As a result, S2 serves approximately 1.2 MQPS
(800 kQPS from groupB and 400 kQPS from groupA) resulting in a
99-th percentile latency around 230 µs. This result is in accordance

with the TCP result in Figure 3b. The latency-aware flow control
mechanism manages to adjust the S2 throughput so that the WSLO
is not violated, given that groupA’s 99-th percentile latency is kept
below 160 µs.

7 RELATEDWORK
Several kernel-bypass systems implement TCP/IP stacks [8, 16, 17,
22, 28, 29, 35–37, 39], and remain fully compatible with the exact
TCP semantics. Similarly to TCP, protocols such as QUIC [26] and
HTTP2 [9], also, implement flow control mechanisms based on
buffer occupancy, and remain agnostic to latency SLOs.

Token bucket algorithms are the canonical way of implementing
flow control in any kind of communication in fields such as wide-
area networks [43], networks-on-chip [23], storage [25, 42, 44, 46],
and network congestion control [12].

There are several research proposals on changing the semantics
or implementation of TCP, according to application needs, such
as sharing the congestion window [20] for faster convergence, ad-
vertising the send buffer occupancy for better load balancing and
network utilization [1], or adaptively changing the send buffer size
for streaming [18].

Finally, there a several research proposals dealing with selecting
servers in a replicated service and reducing tail-latency because of
strugglers [5, 14, 19, 32, 41, 45]

8 ACKNOWLEDGEMENTS
The authors want to thank Katerina Argyraki, Jonas Fietz, Adrien
Ghosn and George Prekas for the early discussions on specializ-
ing TCP for low-latency RPCs. This work is funded by a VMware
Research Grant.

9 CONCLUSION
We presented a latency-aware flow control mechanism specifically
for latency-critical RPCs that use TCP. We introduced the notion
of wait time SLO and we showed how our flow control mecha-
nism prevents applications from violating their WSLOs. Finally, we
showed how this mechanism can benefit clients of replicated ser-
vices to avoid overloaded replicas, and thus reduce the end-to-end
tail-latency.

20



Flow control for Latency-Critical RPCs KBNets’18, August 20, 2018, Budapest, Hungary

REFERENCES
[1] Alexandru Agache and Costin Raiciu. 2015. Oh Flow, Are Thou Happy? TCP

Sendbuffer Advertising for Make Benefit of Clouds and Tenants.. In HOTCLOUD.
[2] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan

Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Ma-
tus, Rong Pan, Navindra Yadav, and George Varghese. 2014. CONGA: distributed
congestion-aware load balancing for datacenters.. In SIGCOMM. 503–514.
https://doi.org/10.1145/2619239.2626316

[3] Mohammad Alizadeh, Albert G. Greenberg, David A. Maltz, Jitendra Padhye,
Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010.
Data center TCP (DCTCP).. In SIGCOMM. 63–74. https://doi.org/10.1145/1851182.
1851192

[4] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin Vahdat,
and Masato Yasuda. 2012. Less Is More: Trading a Little Bandwidth for Ultra-Low
Latency in the Data Center.. In NSDI. 253–266.

[5] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica. 2013.
Effective Straggler Mitigation: Attack of the Clones.. In NSDI. 185–198.

[6] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.
2012. Workload analysis of a large-scale key-value store.. In SIGMETRICS. 53–64.
https://doi.org/10.1145/2254756.2254766

[7] Luiz André Barroso, Mike Marty, David Patterson, and Parthasarathy Ran-
ganathan. 2017. Attack of the killer microseconds. Commun. ACM 60, 4 (2017),
48–54. https://doi.org/10.1145/3015146

[8] Adam Belay, George Prekas, Mia Primorac, Ana Klimovic, Samuel Grossman,
Christos Kozyrakis, and Edouard Bugnion. 2017. The IX Operating System: Com-
bining Low Latency, High Throughput, and Efficiency in a Protected Dataplane.
ACMTrans. Comput. Syst. 34, 4 (2017), 11:1–11:39. https://doi.org/10.1145/2997641

[9] M. Belshe, R. Peon, and M. Thomson. 2015. Hypertext Transfer Protocol Version
2 (HTTP/2). RFC 7540 (Proposed Standard). , 96 pages. https://doi.org/10.17487/
RFC7540

[10] Andrew Birrell and Bruce Jay Nelson. 1984. Implementing Remote Procedure
Calls. ACM Trans. Comput. Syst. 2, 1 (1984), 39–59. https://doi.org/10.1145/2080.
357392

[11] Bob Briscoe and Koen De Schepper. 2015. Scaling TCP’s Congestion Window for
Small Round Trip Times. Technical Report TR-TUB8-2015-002. BT, Bell Labs.

[12] Inho Cho, Keon Jang, and Dongsu Han. 2017. Credit-Scheduled Delay-Bounded
Congestion Control for Datacenters.. In SIGCOMM. 239–252. https://doi.org/10.
1145/3098822.3098840

[13] David D. Clark. 1988. The design philosophy of the DARPA internet protocols..
In SIGCOMM. 106–114. https://doi.org/10.1145/52324.52336

[14] Jeffrey Dean and Luiz André Barroso. 2013. The tail at scale. Commun. ACM 56,
2 (2013), 74–80. https://doi.org/10.1145/2408776.2408794

[15] dpdk [n. d.]. Data Plane Development Kit. http://www.dpdk.org/.
[16] dpdk-ans [n. d.]. ANS (Accelerated Network Stack) on DPDK. https://github.

com/ansyun/dpdk-ans.
[17] Adam Dunkels. 2001. Design and Implementation of the lwIP TCP/IP Stack.

Swedish Institute of Computer Science 2 (2001), 77.
[18] Ashvin Goel, Charles Krasic, and Jonathan Walpole. 2008. Low-latency adaptive

streaming over tcp. TOMCCAP 4, 3 (2008), 20:1–20:20. https://doi.org/10.1145/
1386109.1386113

[19] Mingzhe Hao, Huaicheng Li, Michael Hao Tong, Chrisma Pakha, Riza O. Suminto,
Cesar A. Stuardo, Andrew A. Chien, and Haryadi S. Gunawi. 2017. MittOS: Sup-
porting Millisecond Tail Tolerance with Fast Rejecting SLO-Aware OS Interface..
In SOSP. 168–183. https://doi.org/10.1145/3132747.3132774

[20] Safiqul Islam and Michael Welzl. 2016. Start Me Up: Determining and Sharing
TCP’s Initial Congestion Window. In Proceedings of the 2016 Applied Networking
Research Workshop (ANRW ’16). ACM, New York, NY, USA, 52–54. https://doi.
org/10.1145/2959424.2959440

[21] V. Jacobson, R. Braden, and D. Borman. 1992. TCP Extensions for High Perfor-
mance. RFC 1323 (Proposed Standard). , 37 pages. https://doi.org/10.17487/
RFC1323 Obsoleted by RFC 7323.

[22] Eunyoung Jeong, ShinaeWoo, Muhammad Asim Jamshed, Haewon Jeong, Sungh-
wan Ihm, Dongsu Han, and KyoungSoo Park. 2014. mTCP: a Highly Scalable
User-level TCP Stack for Multicore Systems.. In NSDI. 489–502.

[23] Natalie D. Enright Jerger, Tushar Krishna, and Li-Shiuan Peh. 2017. On-Chip
Networks, Second Edition. Morgan & Claypool Publishers.

[24] J. F. C. Kingman. 1961. The single server queue in heavy traffic. Mathematical
Proceedings of the Cambridge Philosophical Society 57, 4 (1961), 902âĂŞ904. https:
//doi.org/10.1017/S0305004100036094

[25] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. 2017. ReFlex: Remote Flash ≈
Local Flash.. In ASPLOS-XXII. 345–359. https://doi.org/10.1145/3037697.3037732

[26] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic,
Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan R. Iyengar, Jeff Bailey,
Jeremy Dorfman, Jim Roskind, Joanna Kulik, Patrik Westin, Raman Tenneti,
Robbie Shade, Ryan Hamilton, Victor Vasiliev, Wan-Teh Chang, and Zhongyi Shi.
2017. The QUIC Transport Protocol: Design and Internet-Scale Deployment.. In
SIGCOMM. 183–196. https://doi.org/10.1145/3098822.3098842

[27] Jean-Yves Le Boudec. 2010. Performance Evaluation of Computer and Communi-
cation Systems. EPFL Press, Lausanne, Switzerland.

[28] libuinet [n. d.]. libuinet a library version of FreeBSD’s TCP/IP stack. https:
//github.com/pkelsey/libuinet.

[29] Ilias Marinos, Robert N. M. Watson, and Mark Handley. 2014. Network stack
specialization for performance.. In SIGCOMM. 175–186. https://doi.org/10.1145/
2619239.2626311

[30] memcached [n. d.]. Memcached. https://memcached.org/.
[31] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily R. Blem, Hassan M. G.

Wassel, Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, and
David Zats. 2015. TIMELY: RTT-based Congestion Control for the Datacenter..
In SIGCOMM. 537–550. https://doi.org/10.1145/2785956.2787510

[32] Michael Mitzenmacher. 2001. The Power of Two Choices in Randomized Load
Balancing. IEEE Trans. Parallel Distrib. Syst. 12, 10 (2001), 1094–1104.

[33] Akshay Narayan, Frank Cangialosi, Prateesh Goyal, Srinivas Narayana, Mo-
hammad Alizadeh, and Hari Balakrishnan. 2017. The Case for Moving Con-
gestion Control Out of the Datapath.. In HOTNETS-XVI. 101–107. https:
//doi.org/10.1145/3152434.3152438

[34] nginx [n. d.]. NGINX. https://www.nginx.com/.
[35] ofp [n. d.]. Open FastPath. http://www.openfastpath.org/.
[36] ool [n. d.]. Open OnLoad. http://www.openonload.org/.
[37] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind Krishna-

murthy, Thomas E. Anderson, and Timothy Roscoe. 2016. Arrakis: The Operating
System Is the Control Plane. ACM Trans. Comput. Syst. 33, 4 (2016), 11:1–11:30.
https://doi.org/10.1145/2812806

[38] Jerome H. Saltzer, David P. Reed, and David D. Clark. 1984. End-To-End Ar-
guments in System Design. ACM Trans. Comput. Syst. 2, 4 (1984), 277–288.
https://doi.org/10.1145/357401.357402

[39] seastar [n. d.]. Seastar Project. http://www.seastar-project.org/networking/.
[40] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy

Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, Anand
Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda, Jim Wanderer, Urs Hölzle,
Stephen Stuart, and Amin Vahdat. 2015. Jupiter Rising: A Decade of Clos Topolo-
gies and Centralized Control in Google’s Datacenter Network.. In SIGCOMM.
183–197. https://doi.org/10.1145/2785956.2787508

[41] P. Lalith Suresh, Marco Canini, Stefan Schmid, and Anja Feldmann. 2015. C3:
Cutting Tail Latency in Cloud Data Stores via Adaptive Replica Selection.. In
NSDI. 513–527.

[42] Eno Thereska, Hitesh Ballani, Greg O’Shea, Thomas Karagiannis, Antony I. T.
Rowstron, TomTalpey, Richard Black, and Timothy Zhu. 2013. IOFlow: a software-
defined storage architecture.. In SOSP. 182–196. https://doi.org/10.1145/2517349.
2522723

[43] Jonathan Turner. 1986. New directions in communications(or which way to the
information age?). IEEE communications Magazine 24, 10 (1986), 8–15.

[44] Theodore M. Wong, Richard A. Golding, Caixue Lin, and Ralph A. Becker-Szendy.
2006. Zygaria: Storage Performance as a Managed Resource.. In RTAS. 125–134.

[45] Zhe Wu, Curtis Yu, and Harsha V. Madhyastha. 2015. CosTLO: Cost-Effective
Redundancy for Lower Latency Variance on Cloud Storage Services.. In NSDI.
543–557.

[46] Timothy Zhu, Alexey Tumanov, Michael A. Kozuch, Mor Harchol-Balter, and
Gregory R. Ganger. 2014. PriorityMeister: Tail Latency QoS for Shared Networked
Storage.. In SOCC. 29:1–29:14. https://doi.org/10.1145/2670979.2671008

[47] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,
Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. 2015. Congestion Control for Large-Scale RDMA Deployments.. In
SIGCOMM. 523–536. https://doi.org/10.1145/2785956.2787484

21

https://doi.org/10.1145/2619239.2626316
https://doi.org/10.1145/1851182.1851192
https://doi.org/10.1145/1851182.1851192
https://doi.org/10.1145/2254756.2254766
https://doi.org/10.1145/3015146
https://doi.org/10.1145/2997641
https://doi.org/10.17487/RFC7540
https://doi.org/10.17487/RFC7540
https://doi.org/10.1145/2080.357392
https://doi.org/10.1145/2080.357392
https://doi.org/10.1145/3098822.3098840
https://doi.org/10.1145/3098822.3098840
https://doi.org/10.1145/52324.52336
https://doi.org/10.1145/2408776.2408794
http://www.dpdk.org/
https://github.com/ansyun/dpdk-ans
https://github.com/ansyun/dpdk-ans
https://doi.org/10.1145/1386109.1386113
https://doi.org/10.1145/1386109.1386113
https://doi.org/10.1145/3132747.3132774
https://doi.org/10.1145/2959424.2959440
https://doi.org/10.1145/2959424.2959440
https://doi.org/10.17487/RFC1323
https://doi.org/10.17487/RFC1323
https://doi.org/10.1017/S0305004100036094
https://doi.org/10.1017/S0305004100036094
https://doi.org/10.1145/3037697.3037732
https://doi.org/10.1145/3098822.3098842
https://github.com/pkelsey/libuinet
https://github.com/pkelsey/libuinet
https://doi.org/10.1145/2619239.2626311
https://doi.org/10.1145/2619239.2626311
https://memcached.org/
https://doi.org/10.1145/2785956.2787510
https://doi.org/10.1145/3152434.3152438
https://doi.org/10.1145/3152434.3152438
https://www.nginx.com/
http://www.openfastpath.org/
http://www.openonload.org/
https://doi.org/10.1145/2812806
https://doi.org/10.1145/357401.357402
http://www.seastar-project.org/networking/
https://doi.org/10.1145/2785956.2787508
https://doi.org/10.1145/2517349.2522723
https://doi.org/10.1145/2517349.2522723
https://doi.org/10.1145/2670979.2671008
https://doi.org/10.1145/2785956.2787484

	Abstract
	1 Introduction
	2 Motivation
	3 Background
	4 Design
	5 Implementation
	6 Evaluation
	7 Related Work
	8 Acknowledgements
	9 Conclusion
	References

