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Abstract—In this paper, we consider the problem of obtain-
ing graph-theoretic characterizations of controllability for the
Laplacian-based leader-follower dynamics. Our developments
rely on the notion of graph controllability classes, namely, the
classes of essentially controllable, completely uncontrollable, and
conditionally controllable graphs. In addition to the topology
of the underlying graph, the controllability classes rely on the
specification of the control vectors; our particular focus is on
the set of binary control vectors. The choice of binary control
vectors is naturally adapted to the Laplacian dynamics, as it
captures the case when the controller is unable to distinguish
between the followers and, moreover, controllability properties
are invariant under binary complements. We prove that the class
of essentially controllable graphs is a strict subset of the class of
asymmetric graphs and provide numerical results that suggests
that the ratio of essentially controllable graphs to asymmetric
graphs increases as the number of vertices increases. Although
graph symmetries play an important role in graph-theoretic
characterizations of controllability, we provide an explicit class
of asymmetric graphs that are completely uncontrollable, namely
the class of block graphs of Steiner triple systems. We prove
that for graphs on 4 and 5 vertices, a repeated Laplacian
eigenvalue is a necessary condition for complete uncontrollability
but, however, show through explicit examples that for 8 and
9 vertices, a repeated eigenvalue is not necessary for complete
uncontrollability. For the case of conditional controllability, we
give an easily checkable necessary condition that identifies a
class of homogeneous binary control vectors that result in a
two-dimensional controllable subspace. Finally, we give a lower-
bound on the rank of the controllability matrix for the Laplacian
dynamics. Several constructive examples demonstrate our results.

I. INTRODUCTION

Many modern engineering and economic systems con-

sist of collections of smaller subsystems interconnected to

each other over a communication network. Examples include

distributed energy resources, oscillator synchronization, dis-

tributed robotic networks [2], [3], [4], and also cascades of

information and opinions in social networks [5]. Due to the

large number of applications, in recent years there has been a

surge of activity within the control theory community to under-

stand how the network structure of multi-agent systems affects

the fundamental properties of controllability and stabilizability.

With regards to controllability, a graph theoretic character-

ization of linear networked control systems has been fully

developed in [6] via the notion of structural controllability.

In spite of this characterization, the recent attention within the

control community on the so-called Laplacian dynamics has
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resulted in an extensive literature on controllability properties

for this class of control systems, see of example [7], [8], [9],

[10], [11], [12]. Specifically, starting with a Laplacian-based

dynamics, a subset of the agents are classified as leaders and

act as control agents that can change the dynamics of the net-

work. The remaining agents, called the followers, are indirectly

controlled by the leaders via the connectivity of the network.

Most of the effort has gone to characterizing graph-theoretic

conditions under which such systems are uncontrollable.

A. Literature review

The controllability of leader-follower network dynamics was

first considered in [7], where a characterization of controlla-

bility using spectral analysis of the system matrix was given.

Using a graph-theoretic approach, in [8] it was shown that

for a single leader agent, symmetries present in the network

that preserve the leader’s neighbors results in uncontrollabil-

ity. Moreover, in the case of multiple leaders, a necessary

condition for controllability was given using equitable graph

partitions. In [9], it is shown that connectivity of the network is

necessary for controllability and two uncontrollable network

topologies are characterized. In [10], various sufficient and

necessary conditions for controllability are given for a network

tree topology. In [11], sufficient and necessary conditions

for controllability (and observability) of multi-input Laplacian

dynamics for path and cycle network topologies are given in

terms of modular arithmetic relations. In [12], a comprehensive

study was undertaken of the controllability (and observability)

properties of grid graphs. In particular, necessary and sufficient

conditions are given that characterize the set of nodes that

result in controllability.

The controllability problem for graphs has received interest

outside the control community. In [13], [14], the adjacency ma-

trix is used instead of the Laplacian matrix to study the graph

controllability problem. Explicitly, a “controllable graph” in

[13], [14] is a graph whose adjacency matrix has distinct

eigenvalues and no eigenvector of the adjacency matrix is

orthogonal to the all ones vector. Hence, the work in [13], [14]

investigates controllability when all of the nodes are chosen

as leaders and the system matrix is given by the adjacency

matrix. A similar approach is taken in [15], but now one is

allowed to control possibly only a subset of the nodes. We note

that when the system matrix is the Laplacian instead of the

adjacency matrix, all graphs of order n ≥ 2 are uncontrollable

according to the definition of “controllable graphs” given in

[13], [14], [15]. This follows from the well-known fact that

the all ones vector is an eigenvector of the Laplacian matrix,

and therefore orthogonal to the other eigenvectors.

The line of research in [7], [8], [9], [10] takes the point

of view that the states of the leaders act as inputs to the



follower agents and the dynamics of the leaders are ignored.

As a result, the controllability analysis is undertaken on a

reduced order system. On the other hand, the line of research

in [11], [12], [16], [17] takes the point of view that the leaders

continue to follow the Laplacian-based dynamics and the

external controls on the leaders influence the entire network

through the interaction of the leaders with the followers. It is,

however, an easy exercise to show that the former approach is

a special case of the latter (see Remark 3.1). In this paper, our

approach is more closely aligned with [11], [12], [16], [17].

B. Statement of contributions

The contributions of this paper are the following. To bet-

ter understand the role of topological graph obstructions to

controllability for Laplacian-based leader-follower systems,

we introduce graph controllability classes, namely, essentially

controllable graphs, completely uncontrollable graphs, and

conditionally controllable graphs. These definitions rely on the

specification of the control vectors and we focus primarily on

the case of binary control vectors. We show that with this

choice of control vectors, controllability is invariant under

binary complements for Laplacian-based leader-follower dy-

namics.

As our first result on graph controllability classes, we prove

that none of the essentially controllable graphs contain a non-

identity graph automorphism, i.e., all such graphs are asym-

metric. As a by-product, the so-called minimal controllability

problems [18] are solvable for this class. We also provide

numerical results that suggest that the ratio of essentially

controllable graphs to asymmetric graphs tends to one as the

number of vertices increases.

We then provide an explicit class of graphs, namely the

block graphs of Steiner triple systems, that are asymmetric yet

completely uncontrollable, and thus showing that essentially

controllable graphs form a strict subset of asymmetric graphs.

Although symmetry plays an important role in graph-theoretic

characterizations of controllability [8], this result and the fact

that asymmetry is typical in finite graphs [19], suggests that

the current focus in the literature on characterizing graph

uncontrollability by identifying graph symmetries targets a

narrow non-generic scenario. We prove that for connected

graphs with four or five vertices, a repeated eigenvalue is a

necessary condition for complete uncontrollability but show

through explicit examples that for n ≥ 8 this condition is in

general not necessary. As a by-product of our results, we give

a sufficient condition for complete uncontrollability in terms

of the eigenvectors of the Laplacian matrix and construct a

class of non-regular completely uncontrollable graphs.

We then provide a sufficient condition for conditional con-

trollability. Specifically, we identify a class of binary vectors

that we call homogeneous that result in a two-dimensional

controllable subspace. As an example, we show that the 3-

regular asymmetric Frucht graph on twelve vertices possess

these homogeneous binary control vectors. We then provide

a lower-bound on the rank of the controllability matrix for

the Laplacian based leader-follower system and discuss its

implications in the controllability of path graphs. Finally,

we end the paper with numerical results enumerating the

distinct controllability classes for graphs from order n = 2 to

n = 9. Throughout the paper, several examples demonstrate

the results.

C. Organization

The remainder of this paper is organized as follows. In

Section II we establish some notation and present necessary

definitions from graph theory along with a result on the

linear controllability for diagonalizable system matrices. In

Section III, after establishing some preliminary results, we

discuss the motivation of this paper as it relates to the

existing literature on graph symmetries and uncontrollability

of networked systems, and then introduce our graph control-

lability classes. Section IV contain our main results. Finally,

in Section V, we make concluding remarks and discuss ideas

for future work.

II. PRELIMINARIES

The set of natural numbers is denoted by N and we set

N0 = {0} ∪ N. Matrices will be denoted using upper case

bold letters such as A,F,L, and vectors using lower case

bold letters such as x,b,u. The transpose of A is denoted

by A
T . The cardinality of a finite set S is denoted by |S|. If

S ⊂ R then the complement of S in R is denoted by R\S. The

standard basis vectors in R
n are denoted by e1, e2, . . . , en.

Finally, given u,v ∈ R
n, we write that u ⊥ v if u and

v are orthogonal in the standard inner product of R
n, i.e.,

v
T
u = u

T
v = 0. More generally, if W ⊂ R

n, we write

u ⊥ W if u ⊥ w for each w ∈ W .

A. Graph theory

Our notation from graph theory is standard and follows the

notation in [20], [21]. By a graph we mean a pair G = (V , E)
consisting of a finite vertex set V and an edge set E ⊆ [V ]2 :=
{{v, w} | v, w ∈ V}. We consider only simple graphs, i.e.,

unweighted, undirected, with no loops or multiple edges. The

order of the graph G is the cardinality of its vertex set V . The

neighbors of v ∈ V is the set Nv := {w ∈ V | {v, w} ∈ E}
and the degree of v is dv := |Nv|. A path in G of length k is

a subgraph of G consisting of vertices {v0, v1, . . . , vk} ⊂ V
and edges {{v0, v1}, {v1, v2}, . . . , {vk−1, vk}} ⊂ E , where all

the vi are distinct. For such a path, v0 and vk are called

the terminal vertices. Given vertices u, v ∈ V , we define

the distance dG(u, v) between u and v as the length of a

shortest path whose terminal vertices are u and v. A graph

G is connected if there is a path between any pair of vertices.

Henceforth, when not explicitly stated, we fix an ordering on

the vertex set V and thus, without loss of generality, we take

V = {1, . . . , n}, where n is the order of G. The adjacency

matrix of G is the n × n matrix A defined as Aij = 1 if

{i, j} ∈ E and Aij = 0 otherwise, where Aij denotes the

entry of A in the ith row and jth column. We note that if

r = dG(i, j), with i 6= j, then (Ak)ij = 0 for all 0 ≤ k < r
and (Ar)ij 6= 0.

We denote by D the degree matrix of G, i.e., the diagonal

matrix whose ith diagonal entry is di. The Laplacian matrix

of G is given by

L = D−A.



The Laplacian matrix L is symmetric and positive semi-

definite, and thus the eigenvalues of L can be ordered λ1 ≤
λ2 ≤ · · · ≤ λn. The ones vector 1n := [1 1 · · · 1]T is

an eigenvector of L with eigenvalue λ1 = 0, and if G is

connected then λ1 = 0 is a simple eigenvalue of L. We

assume throughout that G is connected so that 0 < λ2. For

our purposes, by the eigenvalues (eigenvectors) of a graph G
we mean the eigenvalues (eigenvectors) of its Laplacian matrix

L.

A mapping ϕ : V → V is an automorphism of G if it is a

bijection and {i, j} ∈ E implies that {ϕ(i), ϕ(j)} ∈ E . The

order of an automorphism ϕ is the smallest positive integer

k such that the k-fold composition of ϕ with itself is the

identity automorphism. An automorphism ϕ of G induces a

linear transformation on R
n, denoted by Pϕ or just P when

ϕ is understood, whose matrix representation in the standard

basis is a permutation matrix, i.e., as a linear mapping ϕ
acts as a permutation on the standard basis {e1, . . . , en}
of R

n. It is well-known that ϕ is an automorphism of G
if and only if PA = AP. Moreover, an automorphism P

preserves degree of vertices, and therefore di = dϕ(i) for

every i ∈ {1, 2, . . . , n}, i.e., PD = DP. It follows that an

automorphism P of G also satisfies PL = LP.

A graph is called k-regular if all its vertices have degree

k ∈ N. A k-regular graph G = (V , E) is called strongly regular

if there exists λ, µ ∈ N such that

i) |Nv ∩ Nu| = λ, for every v ∈ V and every u ∈ Nv, and

ii) |Nv ∩ Nu| = µ, for every v ∈ V and every u /∈ Nv .

It is known that strongly regular graphs have exactly three

Laplacian eigenvalues [22]. A strongly regular graph will be

denoted by SRG(n, k, λ, µ).

B. Diagonalizability and linear controllability

Given a matrix F ∈ R
n×n and vector b ∈ R

n, we

denote by 〈F;b〉 the smallest F-invariant subspace containing

b. It is well-known that 〈F;b〉 = span{Fk
b | k ∈ N0},

and that if dim〈F;b〉 = k + 1 then {b,Fb, . . . ,Fk
b} is

a basis for 〈F;b〉. The pair (F,b) is called controllable

if dim〈F;b〉 = n. The following result characterizes the

controllability of single-input linear systems (F,b) when F

is diagonalizable.

Proposition 2.1: (Controllability and eigenvalue multiplic-

ity): Let F ∈ R
n×n be diagonalizable.

(i) For any open set B ⊂ R
n, the pair (F,b) is uncontrol-

lable for every b ∈ B if and only if F has a repeated

eigenvalue.

(ii) Suppose that F has distinct eigenvalues and let U

be a matrix whose columns are linearly independent

eigenvectors of F. If b ∈ R
n then the dimension of

〈F;b〉 is equal to the number of nonzero components of

v = U
−1

b. In particular, (F,b) is controllable if and

only if no component of v is zero.

The proof of (i) follows from the properties of the determinant

and for the proof of (ii) see for instance [7].

III. PROBLEM STATEMENT AND GRAPH

CONTROLLABILITY CLASSES

Let G = (V , E) be a graph with vertex set V =
{1, 2, . . . , n}. The Laplacian dynamics on G is the linear

system

ẋ(t) = −Lx(t),

where x ∈ R
n, t ∈ R, and L is the Laplacian matrix of G.

Suppose that a nonempty subset of the vertices Ṽ ⊂ V are

actuated by a single control u : [0,∞) → R and consider

the resulting single-input linear control system. Explicitly, let

b = [b1 b2 · · · bn]T ∈ {0, 1}n be the binary vector such that

Ṽ = Vb := {i ∈ V | bi = 1}, and consider the single-input

linear control system

ẋ(t) = −Lx(t) + bu(t). (1)

The vertices Vb are seen as control or leader nodes and influ-

ence the remaining follower nodes V\Vb through the control

signal u(·) and the connectivity of the network. A motivation

for the set of binary control vectors is that it captures the

scenario of when an external agent connected to the nodes

Vb is unable to distinguish between its followers. Hence, all

the followers receive the same control input from the leader.

The reason for choosing the Laplacian dynamics (1) is that

it serves as a benchmark problem for studying distributed

control systems. The problem is also of independent theoretical

interest because it reveals useful information about the set of

eigenvectors of the Laplacian matrix of a graph [15].

From a controls design perspective, it would of course be

desirable to select the leader nodes so that the pair (L,b) is

controllable. First, note that choosing b = 1n results in a

controllable pair (L,b) if and only if n = 1 since L1n = 0n.

More generally, a direct application of Proposition 2.1(ii) for

the Laplacian dynamics yields the following result.

Corollary 3.1 ([7]): (Necessary and sufficient condition for

controllability of Laplacian dynamics): Consider the controlled

Laplacian dynamics (1) with b ∈ R
n and assume that L has

no repeated eigenvalues. Then the pair (L,b) is controllable

if and only if b is not orthogonal to any eigenvector of L.

Although Corollary 3.1 provides a general necessary and

sufficient condition for controllability in terms of the graph

Laplacian eigenvectors, the problem that we consider is in

obtaining controllability conditions in terms of the topological

structure of the graph. Graph-theoretic characterizations of

controllability for leader-follower multi-agent systems was

first considered in [8] in terms of the automorphism group

of a graph. Following [8], we say that b ∈ {0, 1}n is

leader symmetric if there exists a non-trivial automorphism

ϕ : V → V of G that leaves the leader nodes Vb invariant, i.e.,

Pϕ(b) = b. It is straightforward to verity that the definition

of leader symmetry given in [8] is equivalent to the one

given here. The following result of [8] links leader symmetry

and uncontrollability (a short alternative proof is given in the

Appendix).

Proposition 3.1: (Leader symmetry and uncontrollability):

Consider the controlled Laplacian dynamics (1) with b ∈
{0, 1}n. If b is leader symmetric then (L,b) is uncontrollable.

As shown in [8, Proposition 5.9], leader symmetry is not a

necessary condition for uncontrollability. Figure 1(a) displays

the graph on n = 6 vertices that is used in [8] to show this fact.

Unfortunately, this example is not illuminating in the quest for

obtaining graph-theoretic characterizations of controllability

because the leader nodes are chosen so that b = 1n, i.e.,



(a) (b) (c)

Fig. 1. (a) The example of [8], (b) an asymmetric graph on n = 6 vertices
having 14 binary vectors b resulting in uncontrollable Laplacian dynamics,
and (c) a graph for which any binary vector b results in uncontrollability.

every node is actuated. As remarked above, unless n = 1,

this choice results in uncontrollability regardless of the graph

topology. Interestingly, the only control vectors b resulting in

uncontrollability for the graph in Figure 1(a) are the trivial

ones, i.e. b = 0n or b = 1n. In view of the fact that

asymmetry is typical in finite graphs [19], it is natural then to

ask what graph-theoretic obstructions to controllability exist

other than symmetry. For example, consider the asymmetric

graph on n = 6 vertices displayed in Figure 1(b). Of the

2n − 2 = 62 non-trivial choices of b, there are 14 that result

in uncontrollability, namely:

b1 = [1 1 1 0 0 0]T , b2 = [0 0 0 1 1 1]T ,

b3 = [1 1 0 1 0 0]T , b4 = [0 0 1 0 1 1]T ,

b5 = [0 1 1 1 0 0]T , b6 = [1 0 0 0 1 1]T ,

b7 = [0 1 0 0 1 0]T , b8 = [1 0 1 1 0 1]T ,

b9 = [1 0 1 0 1 0]T , b10 = [0 1 0 1 0 1]T ,

b11 = [1 0 0 1 1 0]T , b12 = [0 1 1 0 0 1]T ,

b13 = [0 0 1 1 1 0]T , b14 = [1 1 0 0 0 1]T .

(2)

The control vectors b7 and b8 result in a two-dimensional

controllable subspace, while the other control vectors all result

in a five-dimensional controllable subspace. On the other hand,

for the graph on n = 6 vertices displayed in Figure 1(c), any

choice of b ∈ {0, 1}n results in uncontrollability. Clearly, the

graph displayed in Figure 1(c) has a non-trivial symmetry but

symmetry plays no role in the lack of controllability for every

control vector b ∈ {0, 1}n. In fact, as we will show, there

exist asymmetric graphs such that no matter the choice of

b ∈ {0, 1}n the pair (L,b) is uncontrollable.

Our previous discussion naturally leads to the definition of

the following three graph controllability classes.

Definition 3.1: (Graph controllability classes): Let G be a

connected graph with Laplacian matrix L and let B ⊂ R
n be

a nonempty set. Then G is called

(i) essentially controllable on B if (L,b) is controllable for

every b ∈ B\ ker(L);
(ii) completely uncontrollable on B if (L,b) is uncontrollable

for every b ∈ B;

(iii) conditionally controllable on B, if it is neither essentially

controllable nor completely uncontrollable on B.

In this paper we are mainly concerned with controllability

classes on the control set B = {0, 1}n. Hence, when not

explicitly stated, we simply call a graph G essentially control-

lable (conditionally controllable, or completely uncontrollable)

if G is essentially controllable (conditionally controllable, or

completely controllable) on {0, 1}n. Hence, according to Def-

inition 3.1, the graph in Figure1(a) is essentially controllable,

the graph in Figure1(b) is conditionally controllable, and the

graph in Figure1(c) is completely uncontrollable.

Remark 3.1: Let us describe the approach taken in [8] and

how it relates to ours. We note that our approach is also

adopted in [11], [12]. In [8], one begins with a Laplacian-

based dynamics ẋ = −Lx, selects a leader node, say i ∈
{1, 2, . . . , n}, and considers the reduced system of followers

actuated by node i. Explicitly, let Lf ∈ R
(n−1)×(n−1) be the

matrix obtained by deleting the ith row and ith column of L,

and let bf ∈ R
n−1 be the column vector obtained by removing

the ith entry of the ith column of L. The reduced system of

followers considered in [8] is ż = −Lfz− bfu. The system

(Lf ,bf ) is controllable if and only if (L, ei) is controllable.

Indeed, the dynamic extension

ż = −Lfz− bfξ,

ξ̇ = v,

is controllable if and only if (Lf ,bf ) is controllable. Letting

v = −b
T
f z − diξ + u, we see that the dynamic extension

is feedback equivalent to (L, ei). Hence, in relation to the

problem we consider in this paper, the approach in [8] is

concerned with the controllability of (L,b) in the restricted

case that b ∈ {e1, e2, . . . , en} ⊂ {0, 1}n. We note that the

graph in Figure 1(b) is such that (L, ei) is controllable for

every ei ∈ {e1, . . . , en}, yet as shown in the example, fails

to be controllable for some b ∈ {0, 1}n.

IV. GRAPH-THEORETIC CHARACTERIZATIONS OF

CONTROLLABILITY CLASSES

Before we state our main results, we provide a useful

property of controllability under binary control vectors. The

astute reader may have noticed that the control vectors (2) that

result in uncontrollability for the graph in Figure 1(b) come in

complementary pairs. To be more precise, given b ∈ {0, 1}n

we let

b = 1n − b

be the complement of b. As a further piece of notation, for

b ∈ {0, 1}n we let ‖b‖1 =
∑n

i=1 bi be the number of nonzero

elements of b. With this notation we have the following result.

Proposition 4.1: (Controllability and binary complements):

Let n ≥ 2 and consider the controlled Laplacian dynamics

(1) with b ∈ {0, 1}n. Then the pair (L,b) is controllable

if and only if the pair (L,b) is controllable. Specifically, if

b /∈ {1n,0n} then dim〈L;b〉 = dim〈L;b〉.
Proof: If L has repeated eigenvalues, then (L, c) is un-

controllable for every c ∈ R
n, and the claim follows trivially.

Hence, assume that L has distinct eigenvalues. Let U be an

orthogonal matrix consisting of unit norm eigenvectors of L

and let the first column of U be the eigenvector u1 = 1√
n
1n.

Let b ∈ {0, 1}n\{1n,0n}, let v = U
T
b = [v1 · · · vn]T , and

let v = U
T
b = [v̄1 · · · v̄n]T . Then

v = n√
n
e1 − v. (3)

From (3) we see that v̄i = −vi for all i = 2, . . . , n. Now,

v1 = u
T
1 b = ‖b‖1√

n
and thus v1 6= 0 because b 6= 0n.

On the other hand, v̄1 = n−‖b‖1√
n

and thus v̄1 6= 0 because

b 6= 1n. This proves that v and v have the same number of

nonzero components provided b /∈ {1n,0n}. Therefore, by

Proposition 2.1(ii), we have that dim〈L;b〉 = dim〈L;b〉.



For computational purposes, it is worth mentioning the

following immediate consequence of the previous result.

Corollary 4.1: (Uncontrollable subset has even cardinal-

ity): If n ≥ 2 then the cardinality of the set of {b ∈
{0, 1}n | (L,b) is uncontrollable} is always even.

A. Essentially controllable graphs

In this section, we give a necessary condition for essential

controllability. The condition depends on the following auxil-

iary result.

Lemma 4.1: (Order of non-identity automorphisms [20]): If

all of the eigenvalues of L are simple then every non-identity

automorphism of G has order two.

Proof: The proof of the claim when L is replaced by the

adjacency matrix A is given in [20, Theorem 15.4]. However,

the proof for the case of L is identical because if P is an

automorphism of G then P commutes with both the adjacency

matrix A and the degree matrix D, and therefore P also

commutes with L.

Using the previous result, the following necessary condition

for essential controllability is straightforward.

Proposition 4.2: (Essentially controllable graphs are asym-

metric): Let n ≥ 3. An essentially controllable graph on

{0, 1}n is asymmetric.

Proof: Let G be an essentially controllable graph on

{0, 1}n. Then necessarily L must have distinct eigenvalues and

therefore, by Lemma 4.1, every non-identity automorphism of

G has order two. Assume by contradiction that G has a non-

trivial automorphism group and let P be a permutation matrix

representing a non-identity automorphism of G. Then there

exists two distinct standard basis vectors ei and ej such that

Pei = ej and Pej = ei. Put b = ei + ej . We note that since

n ≥ 3 we have that b 6= 1n. Now, b is clearly invariant under

P, i.e., Pb = b. Thus, b is leader symmetric and therefore,

by Proposition 3.1, (L,b) is uncontrollable, a contradiction.

This completes the proof.

According to Proposition 4.2, and since any asymmetric

graph has at least six vertices [19], any essentially controllable

graph has also at least six vertices. The condition given in

Proposition 4.2 is, however, clearly only necessary; the graph

of Figure 1(b) is an example of an asymmetric graph with six

nodes that is not essentially controllable.

Example 4.1: (Essentially controllable graphs): Exactly

four of the eight asymmetric graphs on six vertices are

essentially controllable; these graphs are shown in Figure 2.

(a) (b) (c)

(d)

Fig. 2. All essentially controllable graphs on six vertices

In Figure 3, we display two essentially controllable graphs

having orders n = 8 and n = 11. •

(a) (b)

Fig. 3. Essentially controllable graphs of order n = 8 (a), and n = 11 (b).

The class of essentially controllable graphs are interesting

for various reasons. First, this class is important from a design

perspective because, except for the trivial control vectors 0n

and 1n, controllability is independent of the subset of nodes

that receive the control inputs. This is useful when this is un-

known a priori, e.g., when the control inputs are broadcasted.

Another important fact about essentially controllable graphs is

that the so-called minimal controllability problem is solvable

[18] for these graphs. Following [18], let B ⊂ R
n and consider

the dynamics (1) for fixed b ∈ B. We say that (1) is minimally

controllable if b has the fewest number of nonzero entries

among all vectors b̃ ∈ B such that (L, b̃) is controllable.

It is shown in [18] that it is in general intractable to even

approximate the number of zeros in the vector b that leads to

minimal controllability. Nevertheless, given that the class of

essentially controllable graphs are controllable using any non-

trivial vector in {0, 1}n, the minimal controllability problem

is solvable for (1) on all essentially controllable graphs, and

the sparsest b ∈ {0, 1}n has (n− 1) nonzero entries.

We are not aware of any algorithm producing essentially

controllable graphs. Given that these graphs constitute a strict

subset of asymmetric graphs, and that it is NP-hard to verify if

a graph has non-trivial automorphisms [23], it is unclear if the

problem of generating essentially controllable graphs of order

n is computationally feasible. Another interesting problem

is to investigate how the number of essentially controllable

graphs grows, within the class of asymmetric graphs, with the

number of vertices (see Table I).

B. Completely uncontrollable graphs

In this section, we study the class of completely uncon-

trollable graphs. Our first result shows that complete uncon-

trollability is not a consequence of graph symmetries. To

the best of our knowledge, this important fact is overlooked

in the literature on network controllability primarily because

most existing results seek graph-theoretic characterizations of

uncontrollability via graph symmetries. To state our first result,

we need to introduce a subclass of strongly regular graphs

called the block graphs of Steiner systems [24]. We begin with

the following definition.

Definition 4.1: (Steiner systems): Given three integers 2 ≤
t < k < ν, a Steiner system of order ν is a pair of finite

sets (X ,B) where |X | = ν and B is collection of k-element

subsets of X called blocks such that every t-element subset of

X is contained in one and only one block. A Steiner system

will be denoted by SS(t, k, ν).
Definition 4.2: (Steiner triple systems): A Steiner triple

system is a (2, 3, ν)-Steiner system, that is, the set of blocks

B consist of triples of X and every pair of points in X is

contained in exactly one of the triples. A Steiner triple system

of order ν will be denoted by STS(ν).



Example 4.2: (STS(7)): The sets X = {1, 2, . . . , 7} and

B = {{1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 7}, {5, 6, 1},

{6, 7, 2}, {7, 1, 3}}

constitute a STS(7). This Steiner triple is called the Fano

plane and is the unique Steiner triple system of order ν = 7.•
Example 4.3: (STS(9)): The sets X = {1, 2, . . . , 9} and

B = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {1, 4, 7}, {2, 5, 8}, {3, 6, 9}

{1, 5, 9}, {2, 6, 7}, {3, 4, 8}, {1, 6, 8}, {2, 4, 9}, {3, 5, 7}}

constitute a STS(9) and it is the unique Steiner triple system

of order ν = 9. •

The number of blocks in a SS(t, k, ν) is |B| =
(νt)
(kt)

, and

in particular, a Steiner triple system of order ν contains

ν(ν−1)/6 blocks. As shown in [25], a Steiner triple system of

order ν > 1 exists if and only if ν = 1 or 3 (mod 6). We say

that two Steiner systems (X1,B1) and (X2,B2) are isomorphic

if there exists a bijection Ψ : X1 → X2 such that σ ∈ B1 if

and only if Ψ(σ) ∈ B2. An automorphism of a Steiner system

(X ,B) is an isomorphism from (X ,B) onto itself. A Steiner

system is called asymmetric if it admits only the identity

automorphism. It is shown in [26] that the number N(ν)
of pairwise non-isomorphic Steiner triple systems of order ν
satisfies N(ν) ≥ (e−5ν)ν

2/12, and in particular, Steiner triple

systems of arbitrarily large order ν = 1 or 3 (mod 6) exist.

The block graph of a Steiner system (X ,B) is the graph

GSS with the blocks as vertices, that is, V = B =
{σ1, σ2, . . . , σ|B|}, and the edge set consists of pairs of blocks

{σi, σj} having a nonempty intersection, i.e., σi ∩ σj 6= ∅.

The block graph of a Steiner triple system STS(ν) is strongly

regular with parameters (n, k, λ, µ) = (ν(ν − 1)/6, 3(ν −
3)/2, (ν + 3)/2, 9).

Example 4.4: The block graph of STS(7) is the complete

graph on seven vertices. The block graph of STS(9) is

shown in Figure 4(a), and as a strongly regular graph, it has

parameters (n, k, λ, µ) = (12, 9, 6, 9).
Finally, it is a straightforward exercise to show that Ψ :

X → X is an automorphism of (X ,B) if and only if the

corresponding mapping Ψ : B → B is a graph automorphism

of GSS. With these constructions, we can now state the

following result.

Theorem 4.1: (A class of completely uncontrollable asym-

metric graphs): For any K ∈ N there exists a connected

and asymmetric graph of order n ≥ K that is completely

uncontrollable.

Proof: It is proved in [27, Theorem 1] that Steiner triple

systems are almost always asymmetric. Explicitly, let N(ν)
be the number of STSs of order ν and let A(ν) be the number

of asymmetric STSs of order ν. Then for ν = 1 or 3 (mod 6)
sufficiently large it holds that

N(ν)−A(ν)

N(ν)
< ν−ν2(1/16+o(1)).

In other words, the probability that a random Steiner triple

system of order ν is asymmetric exceeds 1− ν−ν2(1/16+o(1)).

By [26], we may assume that ν is sufficiently large such that

n := |B| = ν(ν − 1)/6 ≥ K . Since the block graph of a

Steiner triple system is strongly regular, its Laplacian matrix

has only three distinct eigenvalues. The claim now follows by

Proposition 2.1(ii).

It is known [28] that asymmetric Steiner triple systems of

order ν exist beginning with ν = 15. In fact, for ν = 15, there

are 36 asymmetric Steiner triple systems [29], one of which

has blocks

B = {{1, 2, 15}, {1, 3, 8}, {1, 4, 5}, {1, 6, 13}, {1, 7, 11},

{1, 9, 14}, {1, 10, 12}, {2, 3, 9}, {2, 4, 6}, {2, 5, 10},

{2, 7, 13}, {2, 8, 12}, {2, 11, 14}, {3, 4, 15}, {3, 5, 11},

{3, 6, 10}, {3, 7, 12}, {3, 13, 14}, {4, 7, 10}, {4, 8, 9},

{4, 11, 13}, {4, 12, 14}, {5, 6, 12}, {5, 7, 14}, {5, 8, 13},

{5, 9, 15}, {6, 7, 9}, {6, 8, 11}, {6, 14, 15}, {7, 8, 15},

{8, 10, 14}, {9, 10, 13}, {9, 11, 12}, {10, 11, 15}, {12, 13, 15}}

and its block graph is shown in Figure 4(b).

(a) (b)

Fig. 4. (a) The block graph of STS(9), and (b) the block graph of an
asymmetric Steiner triple system of order ν = 15, and as a strongly regular
graph has parameters (n, k, λ, µ) = (35, 18, 9, 9).

Remark 4.1: (Large asymmetric completely uncontrollable

graphs): It is conjectured that almost all strongly regular

graphs are asymmetric [30], and therefore all such asymmetric

graphs would be completely uncontrollable. A proof of the

aforementioned conjecture would provide a class of graphs

larger than the block graphs of Steiner triple systems that are

asymmetric and completely uncontrollable. •
As shown in Theorem 4.1, uncontrollability of the block

graph of a Steiner triple system is due to the Laplacian matrix

having a repeated eigenvalue. It is natural then to ask if this

condition is necessary for complete uncontrollability for a

Laplacian-based leader-follower system. To shed light into this

problem, we recall from Proposition 2.1(i) that if F ∈ R
n×n

is diagonalizable then for any open subset B ⊂ R
n the pair

(F,b) is uncontrollable for every b ∈ B if and only if F has a

repeated eigenvalue. When B is replaced by a discrete set, such

as B = {0, 1}n, the condition of a repeated eigenvalue is no

longer necessary for complete uncontrollability. For example,

the symmetric matrix

F =




2 0 −1 −1
0 2 −1 −1

−1 −1 5 −3
−1 −1 −3 5




has distinct eigenvalues λ1 = 0, λ2 = 2, λ3 = 4, λ4 = 8, and

it is readily verified that (F,b) is uncontrollable for every

b ∈ {0, 1}4. Of course, F is not the Laplacian matrix of

any (undirected) connected graph. We have, however, verified



numerically that for n ∈ {2, 3, . . . , 7}, a repeated eigenvalue is

necessary and sufficient for complete uncontrollability of the

Laplacian dynamics. In fact, for n = 4 and n = 5 we have

the following, whose proof can be found in the Appendix.

Proposition 4.3: (Completely uncontrollable graphs with

four and five vertices): All connected and completely un-

controllable graphs on {0, 1}4 and {0, 1}5 have a repeated

eigenvalue.

However, for n = 8 we have found ten graphs that are

completely uncontrollable and have distinct eigenvalues and,

for n = 9 we have found twelve such graphs. In Figure 5 we

display two such graphs on n = 8 vertices and one for n = 9
vertices, the latter graph being asymmetric.

(a) (b) (c)

Fig. 5. (a) and (b) show two completely uncontrollable graphs with n = 8
vertices and (c) shows a completely uncontrollable graphs with n = 9 vertices,
all with distinct eigenvalues.

Needless to say, the class of completely uncontrollable

graphs with distinct eigenvalues form a very special class of

graphs and have the potential to shed light on new necessary

conditions for controllability and will be pursued in a future

paper. For now, we focus on obtaining conditions that imply

the existence of a repeated eigenvalue and consequently com-

plete uncontrollability. To that end, we introduce the following

definition.

Definition 4.3: (B-annihilators): Let B ⊂ R
n and let γ =

{u1, . . . ,uk} ⊂ R
n be linearly independent. We say that γ is

a B-annihilator or that it annihilates B if for each b ∈ B

there exists uj ∈ γ that is orthogonal to b, that is, uT
j b = 0.

The proof of Proposition 4.3 identifies a set of three vectors

that alone are {0, 1}n-annihilators.

Lemma 4.2: (A set of {0, 1}n-annihilator vectors): Let n ≥
4 be a positive integer and let v1,v2,v3 ∈ R

n be defined by

v1 =
[
1 −1 0 0 0 · · · 0

]T
,

v2 =
[
0 0 1 −1 0 · · · 0

]T
,

v3 =
[
1 1 −1 −1 0 · · · 0

]T
.

(4)

Then {v1,v2,v3} is a {0, 1}n-annihilator.

Proof: Any vector b ∈ {0, 1}n having a zero in compo-

nents 1 through 4 is clearly orthogonal to v1 (and v2, and v3).

Therefore, we need only consider the binary vectors having

possibly nonzero entries in components 1, 2, 3, and/or 4. There

are
∑4

k=1

(
4
k

)
= 15 possible cases:

i) if b = e1 or b = e2 then b
T
v2 = 0;

ii) if b = e3 or b = e4 then b
T
v1 = 0;

iii) if b(1) = b(2) = 1 then b
T
v1 = 0;

iv) if b(1) = b(3) = 1 then b
T
v3 = 0;

v) if b(1) = b(4) = 1 then b
T
v3 = 0;

vi) if b(2) = b(3) = 1 then b
T
v3 = 0;

vii) if b(2) = b(4) = 1 then b
T
v3 = 0;

viii) if b(3) = b(4) = 1 then b
T
v2 = 0;

ix) if b(1) = b(2) = b(3) = 1 then b
T
v1 = 0;

x) if b(1) = b(2) = b(4) = 1 then b
T
v1 = 0;

xi) if b(1) = b(3) = b(4) = 1 then b
T
v2 = 0;

xii) if b(2) = b(3) = b(4) = 1 then b
T
v2 = 0;

xiii) if b(1) = b(2) = b(3) = b(4) = 1 then b
T
v3 = 0.

This ends the proof.

Next, we show that any graph containing the vectors

{v1,v2,v3} in (4) as eigenvectors will have a repeated

eigenvalue.

Theorem 4.2: ({0, 1}n-annihilator graphs and repeated

eigenvalues): Let G be a connected graph on n ≥ 4 vertices.

If v1,v2,v3 given by (4) are eigenvectors of G then G
has a repeated eigenvalue. Consequently, G is completely

uncontrollable on R
n.

Proof: Let v1,v2,v3 be eigenvectors of L and assume

that L has distinct eigenvalues. Let {u1,u2, . . . ,un} be a

set of orthonormal eigenvectors of L and, without loss of

generality, let

u1 = 1√
n
1n, u2 = 1√

2
v1, u3 = 1√

2
v2, u4 = 1

2v3.

Put U =
[
u1 u2 u3 u4 · · · un

]
and let Λ =

diag(λ1, . . . , λn) be the corresponding diagonal matrix of

eigenvalues of L, where λ1 = 0 and λ2, . . . , λn are in no

particular order. Now, since L = UΛU
T , a straightforward

calculation shows that the upper left 4× 3 submatrix of L is

L4×3 =




1
2 λ2 +

1
4 λ4 − 1

2 λ2 +
1
4 λ4 − 1

4 λ4

− 1
2 λ2 +

1
4 λ4

1
2 λ2 +

1
4 λ4 − 1

4 λ4

− 1
4 λ4 − 1

4 λ4
1
2 λ3 +

1
4 λ4

− 1
4 λ4 − 1

4 λ4 − 1
2 λ3 +

1
4 λ4



.

Since λ4 > 0, and the off diagonal entries of L are either

0 or −1, we obtain from the (1, 3) entry of L that λ4 = 4.

Then, from the (1, 2) entry of L, either λ2 = 2 or λ2 = 4.

In the latter case, L has a repeated eigenvalue, which is a

contradiction, and therefore λ2 = 2. Similarly, from the (4, 3)
entry of L, the only possible cases are λ3 = 2 or λ3 = 4.

In either case, L has a repeated eigenvalue, which leads to a

contradiction. This completes the proof.

In Theorem 4.1, we showed the existence of (asymmetric)

completely uncontrollable graphs which happened to be regu-

lar graphs. To end this section, we use Lemma 4.2 to construct

a class of non-regular completely uncontrollable graphs.

Theorem 4.3: (Large uncontrollable graphs): For each n ≥
6, the set of graphs of order n that are not regular and are

completely uncontrollable is nonempty.

Proof: We prove the result by a direct construction. For

n = 6, consider the graph in Figure 6(a). The Laplacian matrix

for this graph is

L6 =




1 −1 0 0 0 0
−1 5 −1 −1 −1 −1
0 −1 3 −1 −1 0
0 −1 −1 3 0 −1
0 −1 −1 0 3 −1
0 −1 0 −1 −1 3



,



and a set of linearly independent eigenvectors of L are

u1 = 1√
6
1
T
6 ,

u2 = 1√
30

[
5 −1 −1 −1 −1 −1

]T
,

u3 = 1√
2

[
0 0 −1 0 0 1

]T
,

u4 = 1√
2

[
0 0 0 1 −1 0

]T
,

u5 = 1
2

[
0 0 1 −1 −1 1

]T
,

u6 = 1√
20

[
−4 0 1 1 1 1

]T
.

After a permutation of the indices, we can apply Lemma 4.2

and conclude that the set {u3,u4,u5} is a {0, 1}6-annihilator.

Now let n ≥ 6 and extend the graph in Figure 6(a) to the graph

G shown in Figure 6(b), where Gn−6 is any connected graph

on n− 6 vertices. By construction, the Laplacian of G can be

1

2

34

6 5

(a)

3

4

6

5

2 1 7

Gn−6

(b)

Fig. 6. A {0, 1}n-annihilator graph with six vertices (a), and its extension
to a {0, 1}n-annihilator graph of any size (b).

decomposed as

L =

[
L6 E

E
T

Ln−6

]
,

where Ln−6 denotes the Laplacian of the graph Gn−6 and

E ∈ R
6×(n−6) is the matrix

E =
[
−e1 0n · · · 0n

]

From the above decomposition of L, and noting that the first

entries of u3,u4,u5 are zero, it is not hard to see that u3,u4

and u5 can be lifted to eigenvectors of L. Indeed, we have

that

L

[
uj

0n−6

]
=

[
L6uj

0n−6

]
= λj

[
uj

0n−6

]
.

It is clear that the lifted eigenvectors
[ uj

0n−6

]
∈ R

n, for j ∈
{3, 4, 5}, form a set of {0, 1}n annihilators. This ends the

proof.

C. Conditionally controllable graphs

In this section we consider conditionally controllable

graphs. The goal for this class would be to classify, in graph-

theoretic terms, the set of control vectors b ∈ {0, 1}n such

that dim〈L;b〉 = k, for each k ∈ {0, 1, 2, 3, . . . , n}. In other

words, letting

Ck = {b ∈ {0, 1}n | dim〈L;b〉 = k},

for k ∈ {0, 1, 2, . . . , n}, so that {0, 1}n = C0 ∪ C1 ∪ C2 ∪
· · · ∪ Cn and Ci ∩ Cj = ∅ whenever i 6= j, we would like to

develop graph-theoretic conditions that fully characterizes Ck.

To this end, the main result in this section is the identification

of elements in C2. It is feasible that a similar technique can

be used to identify subsets of other Ck’s. We begin with the

following definition.

Definition 4.4: (Homogeneous control vectors): Let G =
(V , E) be a graph and let α, β ∈ N. We say that b ∈ {0, 1}n is

a (α, β)-homogeneous control vector for G if, for each i ∈ Vb,

we have that α = |Ni ∩ V\Vb| and, for each j ∈ V\Vb, we

have that β = |Nj ∩Vb|. In other words, each leader node i is

adjacent to α followers and each follower node j is adjacent

to β leaders.

Theorem 4.4: (Rank two control vectors): Let G be a graph

and consider the controlled Laplacian dynamics (1), where

b ∈ {0, 1}n\{0n,1n}. If b is a (α, β)-homogeneous control

vector for G then b ∈ C2. In fact,

L
2
b = (α + β)Lb

and therefore Lb is an eigenvector of L with eigenvalue (α+
β). Consequently, dim〈L;b〉 = 2. Conversely, if dim〈L;b〉 =
2 then Lb is an eigenvector of L.

Proof: Consider the discrete linear system

x(k + 1) = Lx(k),

with initial condition x(0) = b ∈ {0, 1}n. Let x(k) =[
x1(k), · · · , xn(k)

]T
denote the state vector at time k ∈

N0. If i ∈ Vb then xi(0) = 1 and therefore xi(1) =∑
ℓ∈Ni

(xi(0) − xℓ(0)) = α. If j ∈ V\Vb then xj(0) = 0
and therefore xj(1) =

∑
ℓ∈Nj

(xj(0)− xℓ(0)) = −β. In other

words,

Lb = x(1) = αb+ β(b− 1n) = (α+ β)b− β1n.

Then,

L
2
b = x(2) = Lx(1) = (α+ β)Lb− βL1n = (α+ β)Lb

and this proves the first claim.

Now, if dim〈L;b〉 = 2 then L
2
b = c0b + c1Lb for some

c0, c1 ∈ R. Using the fact that L2
b is orthogonal to 1n we

immediately deduce that c0 = 0. Hence, L2
b = c1Lb, i.e.,

Lb is an eigenvector of L. This ends the proof.

The following corollary is immediate.

Corollary 4.2: Let G be a connected graph on n-vertices

and suppose that n ≥ 3. If G has a (α, β)-homogeneous

control vector then G is not essentially controllable.

We give two examples that illustrate the previous result.

Example 4.5: (A rank two conditionally controllable asym-

metric graph): Consider the asymmetric graph shown in Fig-

ure 7. There are 2 binary vectors b that result in dim〈L,b〉 =
2, namely b = e2 + e5 and its binary complement b. For

the choice b, each control node (red nodes) is adjacent to

α = 2 follower nodes (blue nodes) and each follower node

is adjacent to β = 1 control node. It can be verified that

L
2
b = (α+ β)Lb = 3Lb. •
Example 4.6: (Frucht graph): As another example, consider

the Frucht graph, shown in Figure 8, which is an asymmetric

3-regular graph on n = 12 vertices. There are 4 binary vectors

b that result in the controllable subspace of (L,b) having

dimension two, namely, b1 = e1+e5+e7+e12, b2 = e3+e7+
e10, and their binary complements b1 and b2, respectively.

The cases b1 and b1 are shown in Figure 8 and the cases

b2 and b2 are shown in Figure 9. For b1, each control node
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Fig. 7. Leader configuration b = e2 + e5 (left) and its binary complement
b̄ (right). For b, each control node (red) is adjacent to 2 follower nodes (blue)
and each follower node is adjacent to 1 control node.

(red nodes) is adjacent to α = 2 follower nodes (blue nodes)

and each follower node is adjacent to β = 1 control node. It

can be verified that L2
b1 = (α + β)Lb1 = 3Lb1. For b2,

each control node is adjacent to α = 3 follower nodes and

each follower node is adjacent to β = 1 control node. One

can verify that L2
b2 = (α+ β)Lb2 = 4Lb2. •
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Fig. 8. Leader configuration b1 = e1 +e5 +e7 +e12 (left) and its binary
complement b̄1 (right). For b1, each leader node (red) is connected to 2
follower nodes (blue) and each follower is connected to 1 leader node, and
vice-versa for the complement b̄1.
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Fig. 9. Leader configuration b2 = e3 + e7 + e10 (left) and its binary
complement b̄2 (right). For b2, each leader node (red) is connected to 3
follower nodes (blue) and each follower is connected to 1 leader nodes, and
vice-versa for the complement b̄2.

To end this section, we provide a lower-bound for

dim〈L,b〉. The result depends on the following whose proof

is found in the Appendix, see also [16].

Lemma 4.3: (An auxiliary result on powers of the Laplacian

matrix): Let G = (V , E) be a connected graph with vertex set

V = {1, 2, . . . , n}, and let r ∈ N. Then for i, j ∈ V such that

r ≤ dG(i, j) we have that (Lk)ij = 0, for all 0 ≤ k < r, and

(Lr)ij = (−1)r(Ar)ij .

To state our lower bound, we need a further piece of

notation. Given a follower node j ∈ V\Vb, we denote by

rj the minimum distance of j to the set of control nodes, that

is,

rj = min
i∈Vb

dG(i, j).

We define the control diameter of b by

rb = max
j∈V\Vb

rj .

The following result appears in [17] for the single-leader

case and in [16] for the multiple-leader case. To keep this

paper self-contained, we include its short proof.

Theorem 4.5: (A lower-bound on the rank of the control-

lability matrix): Let G = (V , E) be a connected graph

and consider the Laplacian dynamics (1), where b ∈
{0, 1}n\{1n,0n}. Then

dim〈L;b〉 ≥ rb + 1, (5)

where rb is the control radius of b.

Proof: For a follower node j ∈ V\Vb let Kj := {i ∈
Vb | dG(i, j) = rj}. From Lemma 4.3, and linearity, it follows

that (Lk
b)j = 0 for all 0 ≤ k < rj and

(Lrjb)j = (−1)rj
∑

i∈Kj

(Arj )ij .

It is well-known that (Ak)ij is the number of walks from i to

j of length k [20, pg. 11]. Hence, by definition of rj , we have

(Arj )ij > 0 for all i ∈ Kj . This implies that (Lrjb)j 6= 0. It

follows that {b,Lb, . . . ,Lrjb} is a linearly independent set

of vectors. The claim follows by taking rj = rb.

Using Theorem 4.3, we obtain an alternative proof of the

following known fact about the controllability of a path graph.

Corollary 4.3: (Controllability of path graphs [7]): The path

graph Pn is controllable when the leader node is chosen as

one of the terminal nodes.

Proof: Let G = Pn =
{{1, 2, . . . , n}, {{1, 2}, {2, 3}, . . . , {n − 1, n}} be the

path graph of length n. If b = en then the control radius is

rb = dG(1, n) = n − 1, and therefore by Theorem 4.5 we

must have that dim〈L;b〉 = n, i.e., (L,b) is controllable.

D. Enumeration of Controllability Classes for Small Graphs

In this section we provide numerical results on the cardinal-

ity of the controllability classes. In Table I, we enumerate the

graph controllability classes for small connected graphs from

order n = 2 through n = 9. In the table, gn is the number of

connected graphs, an is the number of asymmetric connected

graphs, en is the number of essentially controllable graphs,

un is the number of completely uncontrollable graphs, and cn
is the number of conditionally controllable graphs, where n is

the order of the graph.

n gn an en un cn

2 1 0 1 0 0
3 2 0 0 1 1
4 6 0 0 4 2
5 21 0 0 11 10
6 112 8 4 59 49
7 853 144 84 264 505
8 11117 3552 1992 2764 6361
9 261080 131452 94084 29750 137246

TABLE I
ENUMERATION OF CONTROLLABILITY CLASSES FOR SMALL GRAPHS

Values of the sequences gn and an can be found in [31]. We

used Maple’s Graph Theory package to generate the adjacency

matrices of all connected graphs on 2 ≤ n ≤ 9 vertices.

The data in Table I suggests that the ratio en/an is growing

with n. It is an interesting problem to investigate if almost all



asymmetric graphs are essentially controllable on {0, 1}n as

n → ∞.

V. CONCLUSION AND FUTURE WORK

We have considered the controllability problem for the

Laplacian-based leader-follower dynamics. We introduced the

class of essentially controllable, completely uncontrollable,

and conditionally controllable graphs. We proved that the set

of essentially controllable graphs is strict subset of the set of

asymmetric graphs and classified all essentially controllable

graphs on six vertices. We provided a class of asymmetric

completely uncontrollable graphs, namely the block graphs of

Steiner triple systems. We proved that for connected graphs

with four or five vertices, having a repeated eigenvalue fully

characterizes complete uncontrollability. We gave a suffi-

cient condition for complete uncontrollability in terms of the

eigenvectors of the Laplacian matrix, which also leads to

repeated eigenvalues. We have also shown the existence of

completely uncontrollable graphs with distinct eigenvalues for

graphs with eight vertices and higher. We identified a class

of homogeneous binary control vectors that result in a two-

dimensional controllable subspace. Finally, we gave a lower-

bound on the dimension of the controllable subspace in terms

of the distance of the followers to the leaders.

There are several natural open problems we plan to in-

vestigate further. The characterization of the graphs that are

completely uncontrollable and have distinct eigenvalues is a

very interesting problem. From a design perspective, the class

of essentially controllable graphs are robust to the choice of

input vertices; hence finding sufficient conditions for an asym-

metric graph to be essentially controllable and investigating

if the class of essentially controllable graphs asymptotically

approaches the class of asymmetric graphs are of great impor-

tance. Investigating the existence of a polynomial-time algo-

rithm for generating essentially controllable graphs, exploring

scenarios with multiple leaders, and extending the proposed

classifications to other, possibly nonlinear, networked control

systems are other areas of future work.
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APPENDIX

A. Proof of Proposition 3.1

Here, we provide an alternative proof of Proposition 3.1.

The proof is an easy consequence of the following result.

Lemma A.1: (Invariance of graph automorphisms under the

Laplacian matrix): If P is an automorphism of G and Pv = v

for some v ∈ R
n then PLv = Lv. In other words,

the subspace of fixed elements of P is invariant under the

Laplacian matrix L.

Proof: If P is an automorphism of G then P commutes

with both the adjacency matrix A and the degree matrix D,

and therefore it also commutes with the Laplacian matrix L.

Therefore, PLv = LPv = Lv.

We now prove Proposition 3.1.

Proof of Proposition 3.1: If b is leader symmetric then

there exists an automorphism P such that Pb = b. Applying

Lemma A.1 recursively we have that PL
k
b = L

k
b for any

k ∈ N0. Thus, the subspace 〈L;b〉 lies in the eigenspace of

P associated to the eigenvalue λ = 1. Because P is not the



identity matrix it follows that 〈L;b〉 is a strict subspace of

R
n.

B. Proof of Proposition 4.3

Case n = 4: Let L be the Laplacian matrix of a

connected graph that is completely uncontrollable on {0, 1}4.

Suppose by contradiction that L has distinct eigenvalues

0 = λ1, λ2, λ3, λ4. Then any basis of R
4 of eigenvectors

of L is uniquely determined up to scalar multiples. Let

{u1,u2,u3,u4} be basis of R4 consisting of mutually orthog-

onal eigenvectors of L. Then by Proposition 2.1(ii), the basis

{u1,u2,u3,u4} annihilates {0, 1}4. Without loss of generality

(w.l.o.g.), let u1 = [1, 1, 1, 1]T . Then {u2,u3,u4} annihi-

lates the standard basis vectors {e1, e2, e3, e4} ⊂ {0, 1}4.

Therefore, by the pigeon hole principle, one of the vectors

in {u2,u3,u4}, say u2, must contain two zero entries. Then,

since u2 ⊥ u1, we have (possibly after permuting coordinates)

that u2 = [1,−1, 0, 0]T . Without loss of generality, we may

now assume that u3 ⊥ e1, and since u3 ⊥ {u1,u2}, it

follows that u3 is of the form u3 = [0, 0, 1,−1]T . Finally,

since u4 ⊥ {u1,u2,u3}, then u4 = [1, 1,−1,−1]T . Now

put,

U =
[

1
‖u1‖u1

1
‖u2‖u2

1
‖u3‖u3

1
‖u4‖u4

]
.

Then, since L = Udiag([0, λ2, λ3, λ4])U
T , we obtain that

L =

[
X1 X2

X
T
2 X3

]
, where

X1 =

[
λ3 +

1
4 λ4 − 1

2 λ3 +
1
4λ4

− 1
2 λ3 +

1
4 λ4

1
2 λ3 +

1
4λ4

]
,

X2 = −
λ4

4

[
1 1
1 1

]
,

X3 =

[
1
2 λ2 +

1
4 λ4 − 1

2 λ2 +
1
4 λ4

− 1
2 λ2 +

1
4 λ4

1
2 λ2 +

1
4 λ4

]
.

Since λ4 > 0, and the off diagonal entries of L are either

0 or −1, we obtain from the (1, 3) entry of L that λ4 = 4.

Then, from the (1, 2) entry of L, either λ3 = 2 or λ3 = 4.

In the latter case, L has a repeated eigenvalue, which is a

contradiction, and therefore λ3 = 2. Then, from the (3, 4)
entry of L, the only possible cases are λ2 = 2 or λ2 = 4.

In either case, L has a repeated eigenvalue, which leads to a

contradiction. This completes the proof for n = 4.

Case n = 5: Let L be the Laplacian matrix of a

connected graph that is completely uncontrollable on {0, 1}5.

Suppose by contradiction that L has distinct eigenvalues

0 = λ1, λ2, λ3, λ4, λ5. Then, by Proposition 2.1(ii), there

exists an orthogonal set {u1,u2,u3,u4,u5} of eigenvectors

of L that annihilates {0, 1}5. Without loss of generality, let

u1 = [1 1 1 1 1]T . Then {u2,u3,u4,u5} annihilates the set

S2 = {b ∈ {0, 1}5 | ‖b‖1 = 2}, i.e., the set of elements in

{0, 1}5 containing two nonzero entries. Now |S2| =
(
5
2

)
= 10,

and therefore by the pigeon hole principle, there is at least

one vector in {u2,u3,u4,u5}, say u2, that is orthogonal to

at least three vectors in S2. Hence, let b1,b2,b3 ∈ S2 be

distinct vectors such that u2 ⊥ {b1,b2,b3}. There are three

cases to consider.

Case 1. Suppose that the number of distinct indices where

b1,b2,b3 are nonzero is three. Say b1 is nonzero at the pair

of indices (i, j), b2 is nonzero at the pair of indices (j, k),
and thus b3 is nonzero at the pair of indices (i, k). Then from

u2 ⊥ {b1,b2,b3} we obtain


1 1 0
0 1 1
1 0 1





u2(i)
u2(j)
u2(k)


 =



0
0
0


 ,

whose unique solution is u2(i) = u2(j) = u2(k) = 0.

Therefore, since u2 ⊥ u1 we have (possibly after permuting

indices) that u2 = [1 − 1 0 0 0]. Now, u2 is orthogonal to

b1 = [0 0 1 1 0]T , b2 = [0 0 1 0 1]T , b3 = [0 0 0 1 1]T , and

also b4 = [1 1 0 0 0]T . This leaves the following six vectors

in S2 that are annihilated by {u3,u4,u5}:

b5 = [1 0 1 0 0]T , b6 = [1 0 0 1 0]T , b7 = [1 0 0 0 1]T ,

b8 = [0 1 1 0 0]T , b9 = [0 1 0 1 0]T , b10 = [0 1 0 0 1]T .

Now, we may assume that u3 ⊥ e1, and since also u3 ⊥
{u1,u2}, then u3 must be of the form u3 = [0 0 c1 c2 c3]

T

where c1 + c2 + c3 = 0. Now, by the pigeon hole principle,

u3 is orthogonal to at least two vectors in {b5, . . . ,b10}. We

claim that in fact u3 is orthogonal to exactly two of them.

Indeed, suppose that u3 ⊥ b5. Then clearly c1 = 0 and thus

c2 = −c3 6= 0. Now, in this case we also have that u3 ⊥ b8.

If u3 ⊥ b6 or u3 ⊥ b7 then clearly c2 = c3 = 0, which

is a contradiction since u3 6= 0. Similarly, if u3 ⊥ b9 or

u3 ⊥ b10 then again c2 = c3 = 0, which is a contradiction.

Thus, if u3 ⊥ b5 then u3 ⊥ b8, and u3 is not orthogonal to

{b6,b7,b8,b9,b10}. Similar arguments show that if u3 ⊥ b6

then u3 ⊥ b9, and u3 is not orthogonal to any vector in

{b6,b7,b8,b10}, and that if u3 ⊥ b7 then u3 ⊥ b10,

and u3 is not orthogonal to any vector in {b5,b6,b8,b9}.

Hence, after a possible permutation of the indices, we have

that u3 = [0, 0, 0, 1,−1]T , and therefore u3 ⊥ {b5,b8}.

Now, since u4 ⊥ {u1,u2,u3}, it follows that u4 takes the

form u4 = (a, a,−2(a + b), b, b) for a, b 6= 0. Now, u4

is orthogonal to one of b6,b7,b9,b10. It is readily verified

that in any case this implies that a = −b. Therefore, we

have that u4 = [1 1 0 − 1 − 1]T , and this implies that

u5 = [1 1 − 4 1 1]T . Now put

U =
[

1
‖u1‖u1

1
‖u2‖u2

1
‖u3‖u3

1
‖u4‖u4

1
‖u5‖u5

]

and compute L = Udiag([0, λ2, λ3, λ4, λ5])U
T . The first

column of L is

L1 =




1
2 λ2 +

1
4 λ4 +

1
20 λ5

− 1
2 λ2 +

1
4 λ4 +

1
20 λ5

− 1
5 λ5

− 1
4 λ4 +

1
20 λ5

− 1
4 λ4 +

1
20 λ5



.

From the third component of L1, we see that because 0 < λ5

and the off diagonal entries of L are either 0 or -1, we must

have λ5 = 5. The updated L is

L =

[
X1 X2

X
T
2 X3

]
,



where

X1 =




1
2 λ2 +

1
4 λ4 +

1
4 − 1

2 λ2 +
1
4 λ4 +

1
4 −1

− 1
2 λ2 +

1
4 λ4 +

1
4

1
2 λ2 +

1
4 λ4 +

1
4 −1

−1 −1 4



 ,

X2 =
1

4
(1− λ4)

[
1 1
1 1

]
,

X3 =

[
1
2 λ3 +

1
4 λ4 +

1
4 − 1

2 λ3 +
1
4 λ4 +

1
4

− 1
2 λ3 +

1
4 λ4 +

1
4

1
2 λ3 +

1
4 λ4 +

1
4

]
.

Consider the (1, 5) entry of L, namely − 1
4λ4 +

1
4 . The only

possible cases are that λ4 = 5 or λ4 = 1. In the case λ4 =
5 we have a repeated eigenvalue, which is a contradiction.

Therefore, λ4 = 1, and the updated Laplacian matrix is

L =

[
X1 X2

X
T
2 X3

]
, where

X1 =




1
2 λ2 +

1
2 − 1

2 λ2 +
1
2 −1

− 1
2 λ2 +

1
2

1
2 λ2 +

1
2 −1

−1 −1 4


 ,

X2 = 02×2,

X3 =

[
1
2 λ3 +

1
2 − 1

2 λ3 +
1
2

− 1
2 λ3 +

1
2

1
2 λ3 +

1
2

]
.

Now consider the (4, 5) entry of L, namely − 1
2λ3 +

1
2 . The

only possible cases are λ3 = 1 or λ3 = 3. In the former case

we have a repeated eigenvalue, which is a contradiction, and

therefore λ3 = 3. The updated Laplacian is

L =




1
2 λ2 +

1
2 − 1

2 λ2 +
1
2 −1 0 0

− 1
2 λ2 +

1
2

1
2 λ2 +

1
2 −1 0 0

−1 −1 4 −1 −1
0 0 −1 2 −1
0 0 −1 −1 2



.

Finally, consider the (1, 2) entry of L, namely − 1
2λ2+

1
2 . The

only two possible cases are λ2 = 1 or λ2 = 3. In the former

case, we have the repeated eigenvalue λ2 = λ4 = 1 and in

the latter case we have the repeated eigenvalue λ2 = λ3 = 3.

In either case, we obtain a contradiction. This completes the

proof of Case 1.

Case 2. Suppose that the number of distinct indices where

b1,b2,b3 are nonzero is 4, say at (i, j), (k, ℓ), (i, k), respec-

tively. Then from u2 ⊥ {b1,b2,b3} we obtain the linear

system




1 1 0 0
0 0 1 1
1 0 1 0








u2(i)
u2(j)
u2(k)
u2(ℓ)


 =




0
0
0
0


 ,

whose solution up to a scalar is u2(i) = u2(ℓ) = 1 and

u2(j) = u2(k) = −1. Since u2 ⊥ u1, then after a possible

permutation of the indices, we have that u2 = [1 1 −1 −1 0]T .

Now, u2 is orthogonal to b1 = [1 0 1 0 0]T , b2 =
[1 0 0 1 0]T , b3 = [0 1 1 0 0]T , and b4 = [0 1 0 1 0]T , and

this leaves six vectors {b5, . . . ,b10} in S2 that are annihilated

by {u3,u4,u5}. Now, we may assume that u3 ⊥ e3, and since

u3 ⊥ {u1,u2}, it is straight forward to show that u3 takes

the form u3 = [a, b, 0, a + b,−2(a + b)]T , where a, b 6= 0.

Now, by the pigeon hole principle, u3 is orthogonal to at

least two vectors in {b5, . . . ,b10}. Similar arguments as in

Case 1. show that in fact u3 is orthogonal to four vectors

in {b5, . . . ,b10} and that u3 = [−1 1 0 0 0]T . Now, we

may assume that u4 ⊥ e1, and since also u4 ⊥ {u1,u2,u3},

this implies that u4 = [0 0 − 1 1 0]T . This then fixes

u5 = [−1,−1,−1,−1, 4]T . The proof that L has a repeated

eigenvalue is similar as in Case 1.

Case 3. Suppose that the number of distinct indices where

b1,b2,b3 are nonzero is 5, say at (i, j), (k, ℓ), (m, k), respec-

tively. Then from u2 ⊥ {b1,b2,b3} we obtain the linear

system




1 1 0 0 0
0 0 1 1 0
0 0 1 0 1








u2(i)
u2(j)
u2(k)
u2(ℓ)
u2(m)


 =




0
0
0
0
0


 ,

whose solution space is 2-dimensional and spanned by the

vectors v1 = [−1 1 0 0 0]T and v2 = [0 0 − 1 1 1]T .

Since the entries of u2 sum up to one, we have that u2 =
[−1 1 0 0 0]T . The rest of the proof is then identical as in

Case 1. This completes the proof of n = 5.

C. Proof of Proposition 4.3

The proof is by induction on r ∈ N. Let i, j ∈ V and

suppose that 1 ≤ dG(i, j). Then necessarily i 6= j and thus

(L0)ij = 0 and (L)ij = (D)ij−(A)ij = −(A)ij . This proves

the claim for r = 1. Suppose by induction that the claim holds

for r ≥ 1. Fix vertices i, j with r+1 ≤ dG(i, j). Clearly, r ≤
dG(i, j) and therefore, by the induction hypothesis, (Lk)ij = 0
if 0 ≤ k < r, and in particular, (Lr−1)ij = 0. Let Ni denote

the neighbors of i. Then, for any k ≥ 1 we have

(Lk)ij = e
T
i L

k
ej = e

T
i DL

k−1
ej − e

T
i AL

k−1
ej ,

= die
T
i (L

k−1)ej −
∑

ℓ∈Ni

e
T
ℓ L

k−1
ej ,

= di(L
k−1)ij −

∑

ℓ∈Ni

(Lk−1)ℓj .

Now, for each ℓ ∈ Ni it is clear that r ≤ dG(ℓ, j). Hence,

we can apply the induction hypothesis for each ℓ ∈ Ni,

and in particular, (Lr−1)ℓj = 0 and (Lr)ℓj = (−1)r(Ar)ℓj .

Therefore,

(Lr)ij = di(L
r−1)ij −

∑

ℓ∈Ni

(Lr−1)ℓj = 0

and consequently

(Lr+1)ij = di(L
r)ij −

∑

ℓ∈Ni

(Lr)ℓj = −
∑

ℓ∈Ni

(Lr)ℓj .

Hence

(Lr+1)ij = −
∑

ℓ∈Ni

(−1)r(Ar)ℓj = (−1)r+1
∑

ℓ∈Ni

e
T
ℓ A

r
ej,

= (−1)r+1(eTi A)Ar
ej,

= (−1)r+1
e
T
i (A

r+1)ej ,

= (−1)r+1(Ar+1)ij .

This ends the proof. �


