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Counting formulas for catafusenes (earlier
work based on dualist graphs) are briefly reviewed.
It is now reported that the number of normal alkane
staggered C~rotamers ckH2k+2 is the same as that of
non-branched catafusenes with k - 1 benzenoid rings
(if enantiomers of C-rotamers are counted together).
For branched systems, the situation is somewhat more
complex. Diamondoid hydrocarbons have dualist graphs
which are staggered alkane or cycloalkane C-rotamers
so that this approach may also count (with some
restrictions) diamondoid hydrocarbons. Spin-offs of
this investigation are more rigorous definitions and
systematizations, coding and nomenclature systems,
and correlations with chemical properties (resonance
energy, chirality, optical rotatory power).

Catafusenes

Several years ago, the enumeration of all possible
cata—-condensed polycyclic benzenoid hydrocarbons (catafusenes)
was made possible by using "the dualist graph approach" : the
centre of each benzenoid ring becomes a vertex of a new graph,
and two vertices are joined by an edge whenever the rings are
condensed (ortho-fused). Unlike "dual graphs", the new graph
thus obtained has certain restrictions, namely that all edges
have a constant length, and that their angles may only be 120°
or 180° ; also, there i1s no point corresponding to the exter-
nal region, as dual graphs have. Therefore this new graph,
formerly called ! characteristic graph, is better called
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dualist graph.

Polycyclic benzenoid hydrocarbons (polyhexes) are
classified 1 into two main groups, catafusenes, whose dualist
graphs are acyclic, and perifusenes, whose dualist graphs have
circuits. All catafusenes with the same number n of condensed
benzenoid rings are isomeric and have molecular formula

H

Can+2Hon4g

o1 1)
I II ITI

The enumeration of non-branched catafusenes was made by
assigning three digits : 0, 1, and 2, to the three directions
in which a catafusene can be annelated to a higher homologue
(formula I). It was shown k that the number K. of non-branched
catafusenes with n benzenoid rings is

P,= (372« 4x38=3)/2 L 13/4  for n odd

F = (3n—2 + 2x3(n_2)/2 + 1)/4 for n even.

n

Each catafusene can be coded by a string of digits
indicating the angles between the edges of the dualist graph
(digit 0 stands for 180°, digits 1 or 2 for 120° or 240%),
starting from one end, with the convention that the smallest
number formed by the string of digits is adopted as the code
(in most cases, e. g. II, different numbers result when one
starts from the other end or when one reverts the convention
concerning digits 1 and 2). This code can be used in a new
nomenclature for catafusenes, e. g. I1 can be named [Ol]tetra—
catafusene.

A complicated formula results for the enumeration of
branched catafusenes.2 Their code can be formulated by indi-



e

cating the branch(es) in round brackets after the digit where
branching occurs ; a one-vertex branch is indicated by a dot,

*
3 The conventions for

e. 8. III is [1(.)] tetracatafusene.
finding the code as the minimal number ignore the brackets, but
have additional rules.3

Perifusenes have so far not been amenable to a mathema-
tical enumeration, but the numbers of the first terms in the
series were calculated by a computer program.4 Numerical data
for catafusenes and perifusenes with n = 1 - 7 are presented
in table 1.

On the graphite lattice, there are three orientations
of edges, hence a bidimensional dualist graph of a catafusene
superimposable with this lattice needs three digits : they can
be 0, 1, and 2 as above (or in other applications 1, 2, and 3,
e. g. for coding configurations of annulenes).5’6

Topological correlations between codes of catafusenes
and chemical properties such as resonance energy E, or pola-
rographic redwction potential, were found,7 depending linearly
on two parameters : the number n of condensed benzenoid rings,
and the number a of zero digits in the code :

E=1.75n- 0.15 a + 0.25 (in beta-units).

Staggered normal-alkene C-rotamers 8

Diamondoid hydrocarbons, e. g. adamantane, diamantane,
etc., can be enumerated by a similar procedure, constructing
their dualist graphs ; in these cases, these graphs are no
longer bidimensional, but tridimensional dualist graphs :
their vertices are the centres of adamantane units.

These dualist graphs are superimposable on the diamond
lattice, hence they have fixed tetrahedral angles (109.50) and
are identical with the carbon skeletons of staggered alkane or
cycloalkane conformers (C-rotamers). Therefore we started to
enumerate staggered alkane C-rotamers, and found that for
n-alkanes’ C,H,, ., their numbers R, are the same as those of

The codes and dualist graphs may be seen on formulas II-III.

*%
Here, n stands for normal, i. e. non-branched, therefore we
use henceforth the index k for the number of vertices in
the dualist graph.



-54 -

rI0ygne jussaad ayj £q Ppumoy axsm SaanSTI J9YAO TTE , ¢ suoTareInoTed J9yndwon

1A B
> *JIsa J91Je DLBINOTERYD 7
*sated ut anq ‘ALT1ereaedss PslUMOD 20U aIB SIIWOTIUBUT 5
‘¥0 8Y3 UT sSuoqaed JO pur ‘HI I0 J) auUl Jo ydea? 4STTEND SUY} UT S90T4JIeA JO JOQUMU YT T
"HO JeTndodaT = JTHA ¢ u0qIedo0JpAY PTOPUOWEBTP JeTnFal = JHT ¢ payoumaq = *Jq
{ (payourzg-uou) JBSUTT = *UTT ¢ OTTOLD = *£0 ! WaTM = *M ¢ anoysTm = *om ¢ saxayltod
= Hd ! souesnytaad = 44 ! saewejod-) pagsBFers = W) ¢ SousesnIBABO = JD ! SUOTLIBTALIQAY %
88 4 €| €€ | 6 €L Gk 4 L 19 44 £€e| otz | €zt £€c | oL L
e l 4 ol 4 L ¢z L l et ol 28 34 LY 2l ¢z 9
L 0 0 € 1 £ & 0 l 2z 14 2z | ot ZL 4 ot 4
3 0 0 L 0 2 € 0 0 2 2 L 2 4 t ¥ 14
L o} 0 0 0 2 l (0] 0 0 L 3 i Z 0 2 13
! 0 0 0 0 t I 0 0 0 L 4 0 L 0 l 2
! 0 (o} 0 0 l L 0 0 o] l l 0 l 0 4 3
(Ly) | (o) [(st)|(pe)lCEr){(r)| (1r) [(ou) (6) [(8) [(L) | (9) [(&) |(¥) [(E) [(2) (1)
HaQ JTHQ (ITHA |IHO |JTHT| JIHQ ¥D *£o [ob *m(od*om| ud Hd |3 dd a0 7 gD | 40
Te30%|*£o |*aq |*aq |*uTT|*uTT| TB30% MO*aq |¥D°axq |*uTT Te30%| *aq |°*UuTtT g A
J0
SaUBNTBOTOLO pue sauelTe u
= SU0QIBO0JIDAY PTOPUOWET(] JOo sJemel0J-) patafFess saxayfrod pue saussnisir)

— suU0QJIBO0JPAY PTOPUOWRTD pue ‘sxemelol-) patsfFess ‘saussnyesed JO sIaqUny | 9Tqe]



- 55 -

non-branched catafusenes (if no distinection is made between
enantiomeric C-rotamers) :

B =P, 4

This is not unexpecied, since also in this case homo-
logation can occur in three directions (ef. formula IV). Since
all angles are equal, however, we will use digits 1 - 4 to
discriminate among the four orientations of edges on a diamond
lattice,”

2 2 3 2 &
2 ] 1
4 1 1 3
1 3 2

1212 1231231 1234
3 2 00 12121 &
| (%)
v v VI VII

One can obtain a one-to-one correspondence between each
n-alkane C-rotamer and each non-branched catafusene. This 1-1
correspondence can be used for converting the 4-digit notation
of staggered C-rotamers into a 3-digit notation, as seen from
formulas V - VII (in these and subsequent formulas, ordered
under one another, are presented : the C-rotamer, the 4-digit
code, the 3-digit code, and the corresponding catafusene).

Bach triplet in the 4-digit notation corresponds to one
of the digits 0, 1, and 2 in the 3-digit notation ; the four-
-digit code is a degenerate, i. e. an overlapping, code. The
triplet can be interpreted as a helicity, e. g. the carbon
skeleton of n-butane can exist in three conformations of low
energy corresponding to three helicities : trans, VIII, achiral
with helicity O, and two enantiomeric gauche conformations, IX
and X, with non-zero helicity symbolized by 1 and 2.

If the convention of the minimal number from the string
of digits (ignored in the codes of X) is maintained, then
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enantiomeric helicities IX and X cannot be distinguished and
then they both correspond to the same catafusene (phenanthre-

1 2 3 D
1 1/\/ 1ﬁ4

ne).

121 123 124
0 1 2
VIII IX X

One can devise a "dictiopnary" between 4-digit triplets
and 3-digit codes, as seen in table 2. With the help of this
dictiqﬂnary, any n-alkane staggered C-rotamer can be described
either in the 4-digit or in the 3-digit code. For the rules
which govern the allowed sequences of digits in the four-digit
code, and for the elaboration of the dictionnary presented in
table 2, the original reference should be consulted.

Table 2. Correspondence beiween triplets of four
digits (1-4) and single digits (0,1,2) of the 3-digit code 2

3-Digit code,
single digit: g 1 2
o 121 313 123 312 124 314
R 131 323 134 324 143 342
triplet 141 343 142 341 132 321
of 212 414 214 413 213 412
digits : 232 424 243 432 234 423
242 434 231 421 241 431

2 Phis dictiondary is valid when the first digit of the triplet
is in an odd position of the code ; if it is in an even
position of the 4-digit code, the assignment 1/2 is reversed.
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Numerical results for the first terms in the series may
be seen in table 1. Formulas were also found for counting
separately chiral and achiral staggered C-rotamers, and in the
original reference they are presented systematically, indivi-
dually, with their 3- and 4-digit codes and their point group
symmetiry symbols.

8

Staggered branched alkane C-rotamers

For any branched alkane with no quaternary carbon, the
number of its staggered C-rotamers (counting together each
pair of enantiomers for the chiral C-rotamers) can be found by
a 1-1 correspondence with branched catafusenes. If t is the
number of tertiary carbons of the branched alkane S T
then the number of its staggered C-rotamers is equal to the
number of branched catafusenes with n + t - 1 benzenoid rings
and t branching points of its dualist graph (bidimensional) :
this means that each branch of the alkane introduces one extra
vertex into the bidimensional graph of the corresponding cata-
fusene. As a consequence, with one branching point, the bidi-
mensional dualist graph has as many vertices as the alkane
C-rotamer (though their shapes may be dissimilar, as for XI,
the positions of the branch coincide) ; no two branching
points may be adjacent in the bidimensional dualist graph,
though they may in the corresponding alkane C-rotamer, e. g.
XII and XIII. Therefore, no alkane corresponds to branched
catafusenes like XIV with adjacent branching points, and con-
versely no bidimensional dualist graph (hence no three-digit
code) may correspond to branched alkanes with quaternary car-
bon atoms like XV,

12(31)41 1(2)3(1)4 1(2)3(1)2 cee 1(2,3)4
01(0)0 1()11(.) 1(.)01(.) 1100

N L = S

XI XII XII1 XIV XV
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Numerical formulas were devised for restricted groups
of branched alkane staggered C-rotamers. Data may be seen in
table 1.

The same approach may be applied to conformers of
cycloalkanes superimposable on the diamond lattice, leading to
a 3-digit code (provided there are no quaternary carbons) in
addition to the 4-digit code developed previously for this
case by Saunders 9).

Both for non-branched acyclic and cyclic staggered
C-rotamers, there exists a direct correlation between the
3-digit code and the chirality of the rotamer : the sum of the
digits in the 3-digit code is zero for all achiral rotamers,
while for chiral rotamers,the higher is this sum, the higher
is their helicity (and, probably, their optical rotatory
power). This zero sum condition is necessary, but insufficient
for achirality of C-rotamers : indeed, since there exist
chiral rotamers with opposite helicities of triplets which are
not symmetrically matched relatively to a plane or centre of
symmetry in the molecule, such rotamers will yield a zero sum
but will not be achiral ; their optical rotatory power is
expected to be extremely small, however, compared with rotamers
which yield non-zero sums.

Diamondoid hydrocarbons 10

A diamondoid hydrocarbon has a carbon skeleton which
consists of fused adamantane units and is a portion of the
diamond lattice.

Though, as mentioned above, all dualist graphs of
diamondoid hydrocarbons (DH's for short) are staggered alkane
or cycloalkane C-rotamers, the converse is not true.

whenever in the 4-digit code of the alkane C-rotamer
there is no seguence of the form.axya».,* the C-rotamer is a
dualist graph of a "regular DH". All regular DH's with the
same number k of vertices in their dualist graphs (acyeclic
branched or non-branched) are isomeric and have formula

Caxretlgxer2

The letters a, b, x, y stand for one of the digits 1, 2, 3,
4 each ; branching points may exist in the sequence, but in
this case the distance between the same digit a which 1is
repeated in the above sequence must be conserved, as in XVI.
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When, however, such sequences do exist, the "irregular
DH" has fewer carbon and hydrogen atoms than required by the
above formula ; both the regular and the irregular DH's with
acyclic dualist graphs can be called catamantanes, whereas
DH's with cyclic dualist graphs can be named perimantanes ; of
course, all perimantanes are irregular.

When sequences ...abxab... exist in the four-digit
code of the acyclic C-rotamer, no DH may correspond to it,

e. g« there is no hexamantane with acyclic dualist graph 12312
or heptamantane 123123, 121321, 123124, 1231(2)3, 1231(2)4,
12(1)312 and 123(4)12 : in all these cases, the dualist graph
is cyclic ; this explains the differences between columns (11)
and (17) in table 1.

Because of these restrictions, no general formula for
the enumeration of DH's was yet found, but a procedure was
developed which served to enumerate the first terms of the
series as seen in table 1.

A new nomenclature and coding are proposed on this
basis for DH's, which will avoid both the ambiguity of trivial
names (there exist two tetramantanes, XVII and XVIII, both
regular, whose dualist graphs are the n-butane staggered
C-rotamers ; note that the latter DH is chiral ; the third
possible tetramantane has a branched dualist graph correspon-
ding to isobutane), and the complexity of systematic names
using the von Baeyer system adopted by IUPAC and Chemical
Abstracts, As yet, only mono-, di- and triamantane are known,
mainly owing to the investigations of Schleyer's School.li

a
YR axya
X a
a
y ax(a)y(x)a
a a

[121]- [123]-

Tetramantanes
XV1 XVII XVIII
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Conclusions

As seen from the above discussion, the method of dua-
list graphs served to enumerate all possible catafusenes and
diamondoid hydrocarbons. The dualist graphs of the latter are
themselves part of the diamond lattice and represent carbon
skeletons of staggered alkane or cycloalkane C-rotamers.

The numbers of homologous non-branched catafusenes and
C-rotamers are identical, and with certain limitations these
numbers approximate those of DH's whose dualist graphs are
non-branched. Counting formulas for the former numbers were
found. Branched acyclic and cyclic systems lead %o more com-—
plicated counting formulas which were found only for restric-
ted clagses, but which can lead to useful algorithms.

The above graph-theoretical approach also served for
systematization, definition, coding and nomenclature purposes,
as well as for topological correlations with physical and
chemical properties of these systems.

Erratum

In a preceding brief exposition of these ideas,12 in

the respective paragraph reference number 52 should have been
inserted ; at present, this quotation should be replaced by
references 8 and 10 below. Also, in the same paper 12(9. 43,
line 2), the correct notation for triphenylene in the new
nomenclature system is that given under formula III of the
present paper, namely [1(.)]tetracatafusene.
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Note concerning table 1

Though most balance equations are evident, they are listed
below for convenience. All numbers in brackets refer to
columns in table 1.

(4) = (2) + (3)

(6) = (4) + (5)

(11) = (7) + (8) + (9) + (10)

(17) = (12) + (13) + (14) + (15) + (16)
(10) = (16)
(11) = (17)

(1) =2 (12) + (13)
(8) + (9) = (14) + (15)



