melch no. 21 pp. 115-122 1986

CHEMICAL GRAPHS. PART 48.!
TOPOLOGICAL INDEX J FOR HETERQATOM-CONTAINING MOLECULES
TAKING INTC ACCOUNT PERIODICITIES OF ELEMENT PROPERTIES

Alexandru T. Balaban

Polytechnic Institute, Organic Chemistry Department,
Splaiul Independentei 313, 76206 Bucharest, Roumania

(Received: October 1986)

Abatraet. Two different approaches are presented for the calaulation of
topological tndex J by taking into account the chemical nature of elements <.

In the first system, relaiive electronegalivities Xy ave cal culated semi-
empivieally for 14 atoms with earbon as standard ()(C = 1). In the alternative
system, relative cvalent radit ¥, for the same 14 atoms belonging to groups

3 - 7 for the Periodic System are calculated semiempirieally, again with Yc = 1.
Equations for £ and ¥, have tuwo parameters : the atomic number 212’ and the
number G, of the group of the Feriodic System (short form), leading to periodic
variations of X or Y. ve. Z.. The distance sums are multiplied by X, or Y.

and then index & io caleulated normally.
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The topological index J is a number?~" associated with a hydrocarbon
molecule, and is defined by the formula (1) :

q
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The number of edges and vertices in the hydrogen depleted graph are p
and q, respectively. The distance sum di (sometimes also called distance
degree) for vertex i is a graph invariant and is the sum of topological
distances from vertex i to all other vertices in the graph. In formula (1},
the summation is over all edges i-j of the hydrogen depleted graph. The pre-
sence of double or triple bonds may be taken into account either?=* by means
of the bond order, or® by considering in the summation a double bond as two
single bonds, and a triple bond as three single bonds. Computer programs
were devised for J.%°% The degeneracy of J is the lowest from any single
topelogical index devised so far, as it was established both by us,“ and by
other authors.® Interestingly, for many infinite graphs, J attains’ a finite
limit, e.g. for a long, linear alkane J tends towards 7 = 3.14159.

A mathematical treatment of the branching problem led Bertz to the
conclusion® that among all topological indices, J is the only one which
orders alkanes in a similar manner to Bertz's graph derivatives.

The presence of heteroatoms in molecules requires the development of
special parameters. One approach was developed by Trinajsti¢ and coworkers. ®
These authors defined the diagonal elements d,. in the distance matrix D
as follows :

des = 1 - 6/Z (2)

where Z, is the number of all (valence and inner shell) electrons in atom i.
A few values of dii for various elements are : zero for C ; 0.143 for N ;
0.25 for 0 ; 0.625 for S ; 0.333 for F ; 0.647 for C1 ; 0.6 for P. Off-diago-
nal elements in D are defined as :
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where the summation is over all q adjacencies. The bond order b_ is 1 for
single bonds, 2 for double bonds and 3 for triple bond, as defined initially
by Balaban.?s* This leads for the k_ parameter to values such as 0.5 for a
¢=C bond, 0.67 for an aromatic CC bond, 0.429 for a C=N bond, 0.571 for an
aromatic CN bond, 0.75 for C-0 bonds, 0.375 for a C=0 bond, etc. It should be
observed that although hetercatoms may thus be nicely taken into account
there is no periodicity which should bé an important chemical parameter.
Instead, the kq parameter increases steadily with 21.

Another method, due to Basak et al.,'® makes use of information theory
and partitions vertex into classes according to their chemical nature, but
without regard to chemical periodicity.

In an approach proposed by Kier and Hall,'’ Randié's molecular connec-
tivity!® was modified to account for the presence of heteroatoms. Although
this method takes into account the number of valence electrons, it does not
lead to a rational system incorporating chemical periodicity because for
heavier atoms (sulfur, halogens) it uses empirical values based on correlations
with molar refractions.

We propose here a different approach in order to take explicitly into
account the periodicity of chemical properties for heteroatoms.

Periodicity of heteroatom electronegativities.

According to published data,'?® the electronegativities S of selected
Main Group atoms from the first four rows of the Periodic System, recalcu-
lated by Sanderson on the Pauling's scale with fluorine having the value 4,
sodium 0.56 and hydrogen 2.592, are presented in TABLE 1.

On dividing these values by the carbon electronegativity (2.275) we may
obtain non-dimensional relative electronegativities with carbon as standard,
which might be tabulated and used empirically as such. We prefer, however, to
adopt @ semiempirical approach, namely to calculate by a two-parametric linear
regression new, linearly adjusted, relative electronegativities. The two para-
meters for each atom j are Zj (atomic number) and Gj (the number of the group
in Mendeleev's short form of the Periodic System).
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TABLE 1. Data'! for electronegativities $ and covalent radii R of 14 elements,
on which our calculations are based.

G 3 4 b 7
1st Atom B C N 0 F
Row Z 5 6 7 8 9
S 2.275 2.746 3.194 3.654 4.000
R{pm) 82.2 772 73.3 70.2 68.1
2nd Atom Si p S c1
Row z 14 15 16 17
S - 2.138 2.515 2.957 3.975
R(pm) 116.9 110.7 104.9 99.4
3rd Atom As Se Br
Row 7 33 34 35
S - - 2.816 3.014 3.219
R(pm) 119.4 116.7 114.2
4th Atom Te 1
Row z 52 53
S - - - 2.618 2.778
R{pm) 136.0 133.3

We obtain the following electronegativities S, and relative electro-

j,calc
negativities Xj, based on the calculated value : S (carbon) = 2.629 :

S = 1.1032 - 0‘0204Zj + 0.4121Gj (4)

j,calc
Xj = 0.4196 - (].007'82:i 4 0‘1557Gj (5)

with correlation coefficient r? = 0.82. A much better correlation coefficient
of r? = 0.997 would be obtained together with a slightly different equation
if only the nine elements of the first two Rows would be considered ; however,
this would entail loss of generality, therefore we prefer to use the above
equation. Results are presented in TABLE 2.
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TABLE 2. Calculated relative electronegativities X and relative covalent radii

: " X ¥
Y for 14 elements to be used for topological indices Jhet and Jhet’
respectively
| 6= 3 4 5 7
FA,
Row| Y Atom X Y Atom X Y Atom X Y Atom X Y Atom X
}1 1.038 B 0.851|1.000 C 1.000/0.963 N 1.149/0.925 0 1.297/0.887 F 1.446
;2 - 1.128 S1 0.937}1.091 P 1.086(1.053 S 1.235{1.015 C1 1.384
|
: B - - 1.379 As 0.946|1.341 Se 1.095|1.303 Br 1.244
! - - - J1.629 Te 0.954(1.591 I 1.103

For calculating the new topological index with heteroatoms (Jhet)we
miltiply the distance sum dj of atom j by Xj, and we apply then the usual
formula for J.

Periodicity of heteroatom covalent radii.

Covalent radii Rj of the same 14 atoms are presented (in picometers) in
TABLE 1 selected from Sanderson's book.'?

A similar biparametric correlation affords calculated Rj,ca]c data and
relative covalent radiij Yj based on calculated R (carbon) = 87.126 pm, accor-
ding to equations :

Rj,calc

= 97.4989 + 1.38982j + 4.67796j

Yj = 1.1191 + 0.0!602j = 0.00537Gj

with a correlation coefficient r?

(6)
(7)

= 0.80. Again, a much better r* = 0.993
value would be obtained with slightly different equations by neglecting the

last five elements from the 3rd and 4th Rows, but we prefer to include all 14
elements. Results are presented in TABLE 2.
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Discussicn of the results.

It may be seen from TABLE 2 that within the First-Row atoms from boron
to fluorine, the relative calculated electronegativity X increases from 0.851
to 1.446, whereas the relative calculated covalent radius Y decreases from
1.038 to 0.887. A similar but Tess abrupt change is observed for all other
Rows.

On the other hand, within a given group of the Periodic System, the
relative calculated covalent radius Y increases with increasing Row number,
while the relative calculated electronegativity X decreases.

With respect to carbon for which X = Y = 1, elements B, Si, and As have
Y>1and X <1, elements N, 0, and F have Y < 1 and X > 1, while all other
chalcogens and halegens have both X > 1 and Y > 1.

Examples for the topological index calculated on the basis of either

relative electronegativities (Jﬁet) or relative covalent radii (Jzet) for
the four isomeric amines C H, N are presented in Fig. 1.
8 8 8 f
9 5 8 9
" ’,,é\\\v/,rq PJ”E\‘~”/ 8/,11\\r4,/ 8"‘tq\‘“’//

i 8 6 6 6
XNdN 10.341 9.192 6.894 5.745
Yyydy 8.667 7.704 5.778 4.815
Jiet 2.5030 2.4971 2.4540 2.4067
Jie!: 2.6498 2.55816 2.6638 2.577¢&

Fig.1

It may be seen that distinct values are obtained for all cases. If steric
interactions prevail, then J:et is smallest for the primary amines (isobutyl-
amine < s-butylamine), intermediate for the secondary amine (isopropylmethyl-
amine) and maximal for the tertiary amine (ethyldimethylamine) in agreement
with the fact that nitrogen has a lower covalent radius than carbon.

The difference between Jﬁet and Jéet increases in the same order, because
the factors X or Y affect more strongly the Jhet value when they multiply the
smaller sums of the central atoms.

If electronegativity is the more important parameter, then Jﬁet varies
exactly in the reverse order, with the tertiary amine having the lowest, and
the primary amines the highest value.

A final example is constituted by the lower alcohols C H OH (TABLE 3).

an+1
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TABLE 3. Topological indices for the lower alcohcls.

R | X
n Alcohol Steric %mt Ekcwomg.JMt
2 EtOH 1.6654 1.5986
3 nPrOH 1.9989 1.9000
3 iPrOH 2.3546 2.2294
4 nBuOH 2.2096 2.1323
4 1BuOH 2.5608 2.4728
4 sBuOH 2.5648 2.4625
4 tBuOH 3.0536 2.9314

It may be seen that both JY and Jx increase with increasing branching, leading
to the same ordering : nPrOH < iPrOH ; nBuOH < tBuOH. However, isobutanol and
sec-butanol are ordered differently : iBuOH < sBuOH via JY but iBuCH > sBuOH
via JX. One can also note that the difference between JY and JX increases for
each n value in TABLE 3 from top to bottom, i.e. from primary to secondary

and to tertiary alcohols, as it was observed above for amines.

In agreement with earlier papers®-® one can consider, in addition to the
presence of hetercatoms, other factors such as : (i) multiple bonding, either
by means of bond orders?:+* or of counting independently each bond,® leading
to different results in these two versions ; (ii) the occurence of free valen-
cies for intercomparisons of molecular fragments.®
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