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ABSTRACT

A new formalism for the study of Wiener numbers is developed
which makes use of distances and distance numbers of the vertices
of a graph. The notion of "distance tree of a vertex" is briefly

reviewed.

By means of this formalism the change in the distance and
Wiener numbers upon scme elementary graph operaticns (covering
several graphs upon a common induced subgraph, joining graphs by
edges, and subdivision of an edge by a vertex) are studied. Various
general formulae for distance and Wiener numbers of the graphs
resulting after these operaticns are given. They provide deep
and new insights into the modelling of distance and Wiener num-

pers and their interplay.



1. Introduction

Almost 40 years ago H. Wiener [1-3] introduced an important
parameter, W(G), defined as "the sum of the distances between any
two carben atoms in the mclecule in terms of carbon-carbon bonds"
for correlations with physico-chemical properties of paraffins.
Hosoya [4] pointed out the relation between the Wiener number W
and the distance matrix of a graph. He also generalized the defi-
nition of this index from trees to any kind of undirected connect-
ed graphs. These pioneering works prompted the research of the
distance matrix of chemical graphs. As a result, the Wiener index
has found various applications [5,6], including here the detailed
studies on molecular branching and cyclicity [7-15]. This earlier
work indicated the existence of some limitations originating from
the fact that essential structural information is lost when the
Wiener number is constructed as the sum of n(n-1)/2 distance ma-

trix entries,

In an attempt to reduce the loss of such structural informa-
tion we propose to use other quantities, based on the distance
matrix of a graph, which are intermediate in magnitude when com-
pared with both the Wiener number and the individual distances.
The sum of the distances from a certain vertex r to all other ver-
tices of a simple connected graph G specifies such a quantity which
is called here the distance number d(r|G) of vertex r. The distance
numbers are essential characteristics of the graph vertices pro-
viding a deeper insight into the topological nature of the Wiener
number and its changes. It will be shown in this paper that gene-
ral properties and relationships can be specified on this basis

for the Wiener number. The applications of the formalism developed
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here will be reported elsewhere [16],

Maturally, distances, distance and Wiener numbers have been
also a subject for pure graph theoretical considerations [17-19]
originally initiated by some psychometric studies; in [18] d(r\G)
and W(G) are termed "distance of vertex r" and "distance of graph
G", respectively. We refer the more differentiating terms intro-
duced above which have been developed during an early stage of
this work where, in unawareness of [17-19], we studied the pro-

perties of these quantities in some details,

The metric properties of graphs have permanently growing in-
terest for chemistry, due to their relevance to physico-chemical
properties of chemical compounds [1-15,20-27]. The Wiener number
and its information-theoretic analogues [26] are frequently used
in the modelling of such properties. Meanwhile, some pitfalls of
this approach were detected. They originate from the glcbal nature
of the Wiener number which does not preserve a great deal of the
structural information contained in its summands, the individual

distance matrix entries.

Aiming to overcome these difficulties we advocate the use of
the distance numbers. They are algebraic quantities intermediate
between the distances and the Wiener numbers and, hence, they
preserve more of the information on the graph structure than the
Wiener numbers. They can be used as topological indices [22,23,25,
26) and their future application to chemical reactivity studies,

to NMR-chemical shifts in molecules, etc., may be anticipated.

Mgreover, as a consequence of their intermediate character,

the use of distance numbers enables one to treat topclogical fea-
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tures and their influence on Wiener numbers in a quite transparent
manner [27]). The present paper is devoted to that subject. In
Section 2 the basic formalism is exposed, Then we study the chan-
ges in the distance and Wiener numbers due to certain graph opera-
tions such as covering of several graphs upon an induced subgraph
in common (Sect. 3) joining of graphs by the addition of edges
(Sect.4), and subdivision of edges by a vertex (Sect. 5). The re-
sults obtained there offer a new and deep insight into the modelling

of distance and Wiener numbers and their interplay.

We restrict our study to simple connected graphs which are
of use in representing chemical structures. The graph-theorctical

terminology used corresponds to that of F, Harary [28].

2. Basic Formalism

2.1. Definitions: In order to present our results in a syste-

matic and rigorous way we start with a number of definitions.

Let G be a simple connected graph having n vertices and k ed-

ges, the vertices being denoted by a,b,c,..., etc.

Definition 1: The length of the shortest path, the so-called
geodesic, wm(u,v) between vertices u and v of graph G is termed

the distance d(uv) between these two vertices:

a(uv) = | (uv)| ; (n

thus, d(u,v) equals the number of edges of wm(u,v).

If necessary the symbol d(uv|{G) will be used instead of d(uv

in order to indicate that the distance is taken in graph G.

The distances obey the axioms of metric. The number of indi-
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vidual distances between all n vertices of G is n(n-1)/2. The di-
stances may be obtained via the powers of the adjacency matrix A
of G using the formula:

d(uv) = min{vl[é“]uv #0;0<v=n=-1}

Definition 2: The distance matrnix D of graph G is such a

square matrix of order n whose elements are

[QJUV = d(uv) ” (2)

As a result of Definition 1 all off-diagonal D-entries are

positive integers, d(uu) = O, and D is a symmetric matrix.

Definition 3: The r-th column of D is called the distance
vecton gr of vertex r; its entries are the distances from vertex r

to all other vertices of graph G.

pefinition 4: The sum of all ér entries is called the distance

numbea d(r|G) of vertex xr:

=5 d(rp) . (3)
p

a(r|s) = E € <3 .

pefinition 5: The sum of all upper (lower) triangular sub-
natrix entries of D specifies the Wiener number W of graph G:

w= ) [D]

1
== 7 d(r|e) . (4)
pir pr 2 c

Comparison of egs. (3) and (4) reveals the intermediate charac-
ter of the distance numbers, as compared with the Wiener number and

the individual distances.

In order to make possible the next definition all the spanning
trees of G, {T(G)}, and their distance matrices, {D(T(G))}, have

to be considered.
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Definition 6: A distance tree T (G) of vertex u€G is such a
spanning tree of G whose distance vector éu(Tu(G)) of vertex u is

identical with the distance vector of this vertex in G, au(G):

d,(r @) = 4 @ .

This implies that the distances of vertex u to all vertices
in G and in TU(G) are the same, hence, according to eq. (3) vertex

u has the same distance numbers in G and in Tu(G):

d(uv|T (6)) = d(uv|G) ,
(5)

d(u|T, (6)) = d(ule) .
Without relevance is whether more than one spanning tree of G
meets the requirements of eq. (5); for convenience the most simple

one may be used.

A method for the construction of a distance tree and how to
use it for a fast calculation of distance and Wiener numbecrs will
be found in [27]. The notion of distance trees may be traced back

to Ore [29]; some authors [17] call it isometric tree.

2.2. Ssome Properties of Distance Numbers have been proved in

[18]; they are briefly reviewed in this subsection.

2.2.1. Distance Numbers of Orbit Equivalent Vertices:

Proposition 1: If two vertices s and s' of a graph can be auto-

morphically mapped onto each other, then they have equal distance

number :
d(s|G) = d(s'|G) .

Note, in general, however, the opposite statement is not true.
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2.2,2. Distance Numbers of Centroid Vertices of a Tree:

Proposition 2: The vertices forming the centroid of a tree

possess minimum distance number [30].

2,2.3. Distance Numbers of Adjacent Vertisces: Let G be a simple

connected graph; further let u and v be two adjacent vertices of

G, i.e. d(uv|G) = 1.

Lemma 1: With respect to their distances to the adjacent ver-
tices u and v, all vertices of G can unambiquously be classified

such that they belong to one of the following three vertex subsets:

p = {pi}d(piu) < d(piv)} ;

=
"

{qjld(qju) d(qjv)} i (6)

n

{rkld(rku) > d(rkv)} %

Set p comprises all those vertices which are closer to vertex
u than to vertex v, while the opposite holds for set x. Evidently,

u and v belong to p and 4, respectively.

uné€p, v E n % (6a)

Thus, the sets p and % are never empty, but the set ¢ is non-empty
if and only if the edge (uv) belongs to a cycle of odd length. It
can be easily shown that the vertices of p and %« belong to respec-
tive connected subgraphs of G; this is not necessarily true for

the vertices of g¢.

Lemma 2: Let u and v be adjacent vertices and t be any other
vertex of G. Depending on the subset to which t belongs the follow-

ing equations hold:
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tEp: d(tv) = d{(tu) + 1 ; (7a)

teéq: d(tv) = d(tu) ; (7b)

ten: d(tv) d(tu) -1 . (7c)

Proposition 3: If u and v are adjacent vertices of G their

distance numbers satisfy the equation:

d(u|G) = da(v|e) + |2| - |p| - (8)

2.2.4. Distance Numbers of Non-Adjacent Vertices: Let G be a

simple connected graph. Let u,vEG be two non-adjacent vertices with

the distance d(uv|G) =d > 1, and let t be an abitrary vertex of G.

Lemma 3: Depending on their distance to the vertices u,vVve€EG,
d(uv) =d > 1, all vertices t€G are uniquely partitioned into one
of the following 2d+1 vertex subsets:

V() = {t|d(tu) - d(tv) = §} »

-a% 68 24a .

The sets v(da-23j), j = 0,1,...,d, are never empty. The sets
V(d-2j+1) or some of them are non-empty if and only if the geo-

desic wm(uv) or a part of it belongs to a cycle of odd length.

Proposition 4: If the distance between vertices u and v of
a simple connected graph G is d(uv) = d > 1, the distance numbers

of these vertices satisfy the following equation:

+d
d(u|G) = d(v|G) + § &+|V(&)| . (9)
q

Proposition 4 is a generalization of Proposition 3 and can be

proved analogously. Note, for d{uv) = 1 eq. (9) turns into eq. (8).
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2.2.5. The Distance and Wiener Numbers of Some Selected

Graphs are given in the Appendix.

2.3. General Formalism

The quantities described above may be used in order to ex-
press the Wiener number of a graph in terms of the metric proper-
ties of its adequately chosen subgraphs. In such a way the in-
fluence of particular substructures and their mutual arrangements
on the modelling of distance and Wiener numbers may be studied.
For such a purpose the graph under study is considered as made up
from another one by either a well-defined graph operation or the
addition of vertices and/or edges; examples for such procedures
are given in Sections 3-5. Thereby, it is not necessary that the
graph, from which the graph into consideration is formed, is con-
nected; but, certainly, the resulting graph must be connected in

order to obtain finite distance and Wiener numbers.

There are no limits for the imagination of such procedures,
put they are of use only if the metric properties of the graph(s)
used at the start are either not altered by the procedure applied
or their changes are under control. This demand drastically re-
duces the number of feasible procedures and, as shown in the fol-
lowing Sections, it sometimes even limits the area within which

they can be applied.

A completely different approach to Wiener numbers is offered
by eq. (8) provided the distance number of one vertex of G is
known. This is exenplified for the graph shown in Figure la. Only
for the vertices a and h a non-branched distance tree (PH) can

be constructed; thus, as seen from the Appendix and eq. (5) we



have (Fig. 1b)
d(a|G) = d(h|G) = 49.

The stepwise application of eq, (8), starting with u = a, is illu-
strated by Fig. 1c - h; therein the adjacent vertices u and v are
denoted by a double circle (@), the vertices belonging to p and 2
by full circles (e), and those from ¢ by open circles (o), respec-
tively. Although this method is very useful for a fast calculation
of distance and Wiener numbers by hand it does not bring the in-
sights into the modelling of these numbers as the approach outlined

above.

Fig. 1: Illustration of a fast calculation method by means of eq. (8).
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3, Distance and Wiener Numbers of Graphs Generated
by Covering

3.1. The Covering Procedure

In order to specify the term "covering" which is used here
not strictly in the same sense as in [28] we call in mind the de-

finition of an induced subgraph.

Definition 7: Let G be a graph with the vertex set V(G) and
let G, be a subgraph of G. Then, Gy is called an induced subgraph
of G 1f its vertex set V(GO) is a subset of V(G) and two vertices

are adjacent in Go if and only if they are adjacent in G.

We now explain the covering procedure as follows: Let G = | Gj
be a graph consisting of J components (Gj|j =1,2,...,J} and let
G° be an induced subgraph of each component Gj. Let GO have the
(important) property that for any pair of vertices of Go in each
Gj at least one geodesic exists which consists of vertices of GD
only. Let the vertices belonging to GoE; Gj be denocted by U

Ve etc, and the corresponding vertices of Gj be denoted by

uj, Vj"" . Obviously the vertices Uy Vv

the vertices of any Gj according to the relations

or+ e+ can be mapped into

etc., for all j.

The covering of the graphs Gj upen their common subgraph GO,
leading to a connected graph, H, means that the vertices U rlypaes

v..su, as well as VorVyeessVys etc. are identified as single ver-

J
tices u,v,..., respectively, in the resulting graph H. In the same



- 144 -

manner the edges (uovo), (u1v1),...,(quJ), etc, are identified
as a single edge (uv)€H. The vertices not contained in Go' namely

ijGj, pjﬁGog; Gj' will be transferred unchanged into graph H:

ijH. This covering procedure is symbolically expressed by

H =G cov(Go) .
Graph H obtained in such a manner has the following proper-
ties:

1. Each initial graph Gj is an induced subgraph of H; the same

holds for GO.
2. If one of the initial graphs Gj is removed from H, then H
is decomposed into J-1 components, according to

HN Gy = W (G \NG) , k#3i . (10a)

3. TE GO is removed from H, then H is decomposed into J com=-
ponents, G; = Gj \ G, according to
HNG, = Wid %6y « (10b)
Obviously, the vertices of GO act on H as a vertex cut set.
4, According to that decomposition one obtains the number n
of vertices of H as follows:
n=7y nj o= no(J =1 (11)
where nj and ng denote the number of vertices of Gj and Go, re-—
spectively.

5. As a consequence of the property of Gq assumed above, the

following equality
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d(uv\so) = d(uv|Gj) = d{(uv|H) (12)

holds for all pairs of vertices which belong to Go' u,vEGO, and for

all j.

Proposition 5: Let graph H be obtained by means of a covering
of graphs Gj' j=1,2,...,J upon their common induced subgraph G0
which meets the requirements of eq. (12), then the distance number
of vertex u€G_  in graph H is specified by

J
d(ulg) = } d(ulc,) - (J-1)dtulG ) . (13)
3=1 3 i

Proof: a) Let the complement of Go in Gj be denoted by

G; = Gj\Go. b) The distance vector of vertex u in Gj can be de-

composed into two components as follows:
o T ST (I
dutey) = @67 d@6HHT .

The sum of the entries of éutsi} is obviously d(u{Gj) - d(u}Go).
c) Due to eg. (12) the components au(Go) are equal for all éu(Gj).

d) The distance between any vertex ueGO and any vertex x.EG? of
the complements remains unchanged by the covering procedure, hence,
one has d(uxj{H) = d(uxj|Gj). Thus we can express éu(H) as follows:

T c, T c, T ot L
d,m = @ 67T d, N7 g T ... FEnH T .

¢) Having in mind that the sum of the entries of gu(Gg) equals

d(ulGj) - d(u|GO), the application of eq. (3) leads now directly

to eq. (13). n
By means of eg. (13) the distance numbers of those vertices

of H which belong to G, are given, provided G, has the property

assumed above and, hence, eq. (12) is satisfied. For the distance
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numbers of the other vertices of H (which belong to the comple-
ments G?) such a general formula can not be derived, because the
distance between such two vertices, say ijG§ and ykeac, strongly
depends on which of the vertices of Go are passed through by the
geodesic wm(xjykIH). Hence, expressions for distance numbers like
d(leﬂ) can be derived only for particular Gc which must be defined

in all their structural details.

In the next subsections we present such derivations of distance
and Wiener numbers for the most simple subgraphs GO. There we al-
ways will start from a disconnected graph G composed of J com-
<

J, n. > n_ and a particular

<
nts G, with n., vertices, 1 = j
pone v j v i i i 5 5

choice of Go' If the requirement of eq. (12) implies some constraints
on the structure of Gj' they will be listed. It will always be as-
sumed that all informations about Gj (e.g. distances, distance

and Wiener numbers) are available.

3,2. Covering of Several Graphs upon a Vertex

The most simple case for the formation of graph H from several
graphs Gj' 1 £ 5 S J, by the covering procedure is achieved if GO

consists of a single vertex only, i.e. GO = K Here we treat this

7°
case, H =G cov(K1).

Let quGj denote the vertex upon which covering takes place,

then we have

u=u2=...=u.=...=ul=uei-l.

Since no = 1, from eq. (12) one obtains

= R = A DI
n znj ( )



Let tjEGj be an arbitrary vertex of component Gj' different

from u..
ol j

Property 3.2.: The distance numbers of the vertices in H, as

well as the Wiener number of H, are specified by the equations:

= | H
d(ulH) =} dluyley) i (14)

d(t,|H) = d(t,|G.) + (n-n,)-d(t.u.|G.
( Jl ) ( J| J) (n ny) ( ]u]l ok & -

a H) - d(u.}G. :
+ d(u|H) (Ule])
W(H) = ] w(sj) + ned(ujH) - § njvd(uj|Gj) s (16)

Proof: a) Eg. (14) follows directly from eq. (13) because
d(ulGo) = 0. b) In the development of the procf of eq. (15) one

proceeds from eq. (3) and obtains

dregm = Jy E{sk} dlegsylm .

When k = j, then d(tjsj|H) = d(tjsj\Gj) holds while for k # j,
d(tjsk\H) = d(tjuj\cj) + d(u,s, [G) is valid because each path from
a vertex of one component to a vertex of another one must pass
through the covering vertex u€H which is a vertex cut set of car-
dinality 1. By substituting these expressions, as well as by sum-
ning over {sk} one obtains

d(t.|H) = d(t.|6.) + ) ~1)+d(t.u.) + d(u.lG,

( J\ ) ( ]I 3) k;j [(n;=1)-d(tjuy) (uyleg)d

From this eq. (15) follows directly. <¢) From eq. (4) it follows

that

2W(H) = d(ulH) + § Y d(thH) g
i {tj uj}

“H

gubstituting eq. (15) into this formula one cbtains eq. (16). n
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The use of egs. (14) - (16) is 1llustrated by Fig. 2: In Fig.
2a the resulting graph H is depicted. Fig. 2b shows the components
Gj of G, = 1,2,3,4, and the distance numbers of their respective
vertices. The vertex u upon which the covering procedure takes place
is marked by full circles (e). In Fig. 2c the distance numbers of

the vertices of H are given; they may be obtained by means of egs.

(14) and (15).

15

¥i-
G-

-
" Q
k4

§;=

Fig. 2. Graph H formed according to H = G cov(K,). For details

see text.
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Figure 2 also illustrates another aspect: Obviously the ver-
tex u represents in H an articulation, i.e. a vertex cut set of
cardinality 1. It is easily recognized that graphs Gj' j=1,2,3,4,
are related to the decomposition of H at the articulation u. Thus
any graph H with an articulation can be considered as being formed
according to H = G cov(K1) which immediately leads to the components
Gj of G, In this procedure, it is nct necessary to decompose H into
the largest possible number of subgraphs; e.g. Gy in Figure 2 still
has a vertex u such that the partitioning could he continued fur-
ther. For convenience the decomposition should be carried out so as
to arrive at a set of Gj's for which the values of d(u|Gj) are known
or can readily be calculated by means of the formulae given in the

Appendix.

Let graph H be obtained by the covering of J isomorphic com-
ponents Gj upon the equivalent vertices uj, i.e. GT=G2=...=GJ=G‘
and for all pairs Gj and Gy r j#k, let an isomorphic mapping exist
K and vice versa. Then, the egs. (14) - (16)
take the following form:

which maps “j onto u

J - dtulen (14a)

d(ulm)
d(tlH) = d(t|G") + (J-1)+d(u|G") +
(15a)
+ (J=1) (n'=1) «d(tu|G") 1

W(H) = J « W(G") + (n'-1):J3(J-1) d(ulG') ; {16a)

yhere n'=n1=...=nj is the number of vertices in the respective com-
ponents.

As seen from eg. (16a), for a specified type and for a given

number of components, the Wiener number W(H) depends linearly on
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the distance number of the vertex where the covering of components
takes place. This linearity is illustrated for the graph given in

Figure 3 by the equation:

W(H) = 92 + 12d(u|G")

The example shown in Figure 3 sheds some light on the branching
problem: Since d(vaj)>d(s|Gj}>d(u|Gj)>d(t|Gj)>d(r|Gj) the se-

quence W(I) > W(II) > W(III) > W(IV) > W(V) results.

i

1 M—Q W =308
v

] Q_M_%‘—%%—O W=260
s

m o—%—«)—H—O W =248

v v{%% W=212

v 0—4—%@-0—0 W =200

Fig. 3. Illustration of the application of eq. (16a) to the problem

of branching: Due to relation d(vIGj)>d(s|Gj)>d(u|Gj) >

> d(t]Gj)>d(r Gj) one obtains W(I) > W(II) > W(III) >

> W(IV) > W(V).



3.3. Covering of Graphs upon an Edge

For the sake of simplicity we regard here the case of edge

covering of a graph containing only two components,

Let G consist of components G1 and 62 having n, and n, ver-
tices, respectively. Graph H is then formed by covering the edges
(a1b1)EG1 and (azbz)EGz, where a1=a2=a€H and b1:b2=b€H. The number
of vertices of H is n = n1+n2-2. Let x€G1 and YE€G, be arbitrary

vertices in G1 and Gz, respectively. By analogy with eqs. (6) and

(7) we define:

A

§, = d(ax) - d(bx) , -1

l}
=3

+1

=5
u
(1Y

L}
f=2]

2 d(ay) - d(by) , -1 +1 .

The vertex sets of G_l and Gz are distributed on this basis

among the following subsets:

Gi: < IS 61 =-1 , G2: 4 g 62 = -1 ,
q...c5.|=0 f t...(52=0 :
Loewe §g0= +1 ., e o s §2 = +1

Denoting an arbitrary vertex of these six subsets by p, g, r,

s, t, and u, respectively, we can specify the following

Property 3.3: The distance numbers of vertices in graph H,
as well as its Wiener number are determined by the following equa-

tions:
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d(alH) = d(a[G1) +d(aley) -1,
117
d(blH) = d(bIG]) + d(b|G2) -1 ;
d(p|H) = d(p[G;) + [d(a]|G,) + d(bley) - |al + [u[1/2 -
- 1 + (n,-2) [d(palG,) + d(pblGy) - 11/2 ,
d(q|B) = d(qlGy) + [d(alG,) + A(blG,) - n, + []1/2 +
+ (n,-2)ld(qalG,) + d(gblc)1/2 ,
d(r|H) = d(r|G,) + [d(ale,) + d(b\ez) + la| = |ull/2 -
-1 + (n2—2)[d(ra\G1) + d(rb\G1) -11/2 ,
d(s|®) = d(slG,) + [d(alG,) + d(ble) = [p| + |r[1/2 -
= i <& (n1~2)[d(safcz) + d(sb!Gz) -11/2 , (18)
d(t[H) = d(t|G,) + [d(a]|G,) + d(b|c,) - n, + [q|1/2 +
+ (n,-2)[d(ta]c,) + d(tbl|G,)1/2 ,
d(ulH) = d(ule,) + [d(ale) + dalcy) + [p| = |r|1/2 -
-1+ (n;-2)[d(ualG,) + d(ublc,) - 11/2 ,
W(H) = W(G,) + W(Gy) + 1 + {+lgle|t] = njeny +
+ (n,-2)[d(a!G,) + a(b!G,)1 +
2 1 1 (19,

+ (ny-2)[a(alG,) + d(blGy 1 -

- [d(aley) - d(b\G1)]-[d(a|G2) - d(blsz)n

Prcoof: a) Eq. (17) follows directly from eg. (13). b) From

eq. (3) one obtains

d(p/H) = ] a(pxit) + ] dlpy|H) - d(palG,) - d(pb|G,)
{x} {y}
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The last two terms are corrections, due tec the fact that
2,bé{x} and a,b€{y}, i.e. the dictances d(pa) and d(ph) are con-
tained in both sums. The first sum yields d(p|G1) since d{px|H) =
= d(px|G1). The term in the second sum is d(py|H) = d(pa|Gl) +
+ d(ay|G,), hence the second sum is n,d(palGy) + d(ale). Taking

into account the equality d(pb!G1 = d(pa|G,) + 1 one obtains
A(plH) = d(plG,) + dlalGy) - 1 + (n,-2)+d(palGy .
From d(pafG1) = d{pb\Gj) - 1 it follows that
d(pa|Gy) = [dipalGy) + d(pble,) - 11/2

analogously: from eq. (8) d(a:Gz) = d(hlG,) - [s]| + |u| one obtains

d(alcz) = [d(a|GZ) + d(h|G2) - s + luldz2 .

Substituting these two formwlae into the intermediate result one
arrives at eq. (18) which is thus symmetrical with respect to a
and b, of G, and G,, respectively. c) d(r'n), d(s|H), and 4(u|H)
are derived in a similar manner. d) From eqg. (3) we have

a(g|H) = r;} dlgx|H) + (g} dlgy!H) - d(galG,) - d(gb|G,)
18,4 19

The first sum yields d(q\G1). The terms in the second sum are: for
yssut, diqy|H) = d(qalG1) + d(ay\GZ); for veEu, dl{qy|H) =

= d(gblG ) + d(by|G2). Takirg into account d(qa|G1) = d(gb|G,) and

1

d{bu|G = d(au\Gz) - 1, one comes to the intermediate equation

2!

d(g!H) = d(q|G1) + dlalG,) - ful + (ny-2)-d(qalGy) .
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Making use of substitutions given in (b), one obtains eq., (18)
which once again is symmetrical with respect to a and b, of G1 and
Gy, respectively. e) d(t|H) is obtained analogously. f) From eq.

{(4) we have

2W(H) = § a(x[|H) + | d(y|H) - d(alm) - d(b|H) .
{x} {y}

Hence, by means of egs. (17) and (18) one obtains

2W(H) = 2W(G,) + 2W(G,) - d(al|H) - d(b|H) +

+ n,[d(alGy) + dbley)1/2 = |p| - [r] +

+ n,ld(alG,) + d(b|G1)]/2 - el = |u| =

- Lleldsl = luh) + laltay,=leh) = |eldle] = Jul) +

+ lsltlpl = [2[) + feltng=lqly = lultlpl - [#D1/2 +
+ (ny-2)[@(alcy) + dlb|G)) - !pl - [»l1/2 +

+ (ny-2)[d(alGy) + ablG,) - |s| = |u|1/2

Taking also

alalH) + d(b[H) = d(ale,) + d(b[G)) + d(alc,) + d(blGy) - 2

we come to the intermediate result
2W(H) = 2W(G1) + ZW(GZ) + 2 +

+ (n,-2)fdlalc)) + alb[G) 1 +
+ (n;-2)[d(alG,) + d(b[G,)1 - A/2
where
A= (ng=lgD) (ny+e]) + (ny+lg]) (ny-lt]) +

+ 2(|p|=1r]) tle|=lul)

From eq. (8) we have, however, (!/pl|-!r|) = —d(aLGj) + d(b!G1) and

(|s1_1u‘) = _d(alcz) + d(biGz). Taking into account these two equa-
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lities in calculating A one comes directly to eq. (17). =]

when two graphs are covered upon different edges, the Wiener
number W(H) of the resulting graph depends mainly on the distance
numbers of the covered vertices while the influence of the other

terms is negligible.

The last term in eg. {17} is of definite interest. When two
graphs, G1 and G2, are tc be covered on edges (ab)EG.I and (cd)EGz,
and a and b, as well as ¢ and d, are non-equivalent vertices then
two different modes of covering are possible: In the first mode,
generating H1, one covers a on ¢ and b on d; in the other mode,

generating H vertex a is covered on d and vertex b on c. In the

ot
study of topological effects on molecular orbitals (TEMO) [31-34]
such pairs of graph like Hy and Hy play some role. As shown in
[31,35-37] their eigenvalue spectra are particularly related to
the so-called TEMO pattern. It is readily seen from eg. (17) that
all terms except the last one are the same for the two modes of

covering., Then the difference in the two Wiener numbers of the

resulting graphs H1 and Hy is a simple expression:

WiH ) - WH,) = [d(a!G1) - d(b\s1)1[a(cm2) - d(dIGZ)]

Figure 4 presents an example of two such coverings. The re-
sulted graphs are the C-graphs of 1,8-, and 1,5-naphthochinodi-
methane, respectively. This is an example of a pair of isomers
formed by linking two equal fragments in two topologically diffe-
rent ways [31-37]. In the case that graphs H1 and H2 are isomorphic
with the skeleton graphs of fully conjugated systems one has for
the total m-electron energies [38,39] the inequality EV(H1) 2

EW(H2}7 this throws some light on the dependence of this guantity



cn molecular topology, as well as the reasons for the good cor-

relation of E_ with Wiener numbers [407.

G'| = Gz = G: L
10
1

WI(G) =42
12

13
Hy
PR,
; Hz
Fig, 4. Illustration of the importance of the last term in eg. (19):

W(H1) = 175, W(Hz) = 176.

Figure 4 also shows what type of graphs H may be consideresd
as being formed according to H = G cov(P,). The covering edge needs

not to belong to a cycle of G,.

If one has to cover more than two graphs uron an edge one
treats the task in the same manner as outlined in the proof of

eqs. (17) - (19),
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3.4, Covering of Graphs upon a Path Graph Pm

To illustrate this procedure we treat here the most simple
case where GO represents a path graph Pm and all the Gj's are cyc-
les ck(j)' Due to the requirement of eq., (12) m must be chosen
such that the relation k(j) 2 2m-2 holds for all cycles to be
covered. Then 2gq, (13) can be aprlied for all vertexes ter and
d(t{so) may be taken from the Appendix. Then the vertex set of
each cyclic component Ck(j) is partitioned into Z2m-1 subsets
vj(ﬁ), -m+1 S5 2 m-1, according to Lemma 3. The further treatment

is quite similar to that one used ir the proof of property 3.3.

In the case most relevant to chemistry one covers two cyclic
graphs (J=2). This is illustrated in Figure 5 where for G, = Cer
d(zicy) = 9, and for G, = Cg, d(u]|6,) = 12. In case of Figure 5a

we choose G_ = P

s , (as already treated in the foregoing subsection)

with the distance numhers (1,1); in case of Figure 5h G0 = P3 with

distance numbers (3,2,3) and a terminal vertex of P3 is chosgen as

u. From ea. (13) one obtains the distance numbers d(u|Ha) = 20 and
d(u[Hb) = 18, respectively. The Wiener numbers are W(Ha) = 142
and W(Hb) = 105, respectively.

24
25 28

Pig. 5. Two graphs illustrating the ~overing npon a path graph Pm_
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The requirement k(3) 2 2m-2 stated above does not limit the
applicability of the covering procedure described here as it might
seem at a first glance. Suppose we wish to generate graph H by
covering J cycles of the lengths k(1) < k(2) < ,.., < k(J) uron
Pm' Because Pm is an induced subgraph of all those cycles, obvious-
ly m < k(1) holds in any case. Let us now consider qgrarh H: Tt con-
tains two vertices of degree J+1 which are linked by J+1 paths of
the respective leangths m-1 and k(1)+1-m < k{(2)+1-m < ... < k(J)+1-m
If m-1 2 k(1)+1-m the requirement is met. Let us suppose, however,
that it ie failed by m-1 > k(1)+1-m. Observe in that case that H
may be also formed by covering J cycles cf the lengths k(1) and
[k(2)+k(1)+2-2m] < [k(3)+k(1)1+2=-2m]< ... < [k(J)+k(1}+2-2m] upon

the path graph Pk(1)+2—m'

4. Linkage of Two Graphs by Means of One or More

Disjoint Edges

The problems treated in this section strongly vary in their
complexity which increases very fast with the number of added edges.
The general eguation for non-planar graphs is much more complex
than that for planar graphs. Nue to the fact that with only very
few exceptions [41] chemical compourds may be represented by pla-
nar graphs we restrict our consideration exclusively to planar
graphs.

In the following treatment we deal with 2 planar graph 2 of
two ccmponents, G = G1UGZ, whnse vertices are denoted by ijG1
and y, €G,, respectively. Edges {’xjyk)} are added to ¢ to obtain
the connected graph H = GU[(xjyk)}. Apparently, the set of added

edges is a cut set of edges in H since its removal transforms



H once again into the two initial components. The added edges

should be chosen such that the graph produced is planar.

4.1. Linkage of Graphs by Bridges

Let G1 and G2 be two simple graphs with n, and n, vertices,
respectively and their union be dencted by G = G]UGZ. Let xEG1
and yEG2 be arbitrary vertices of the two components. Graph H is

constructed as H = GU{ (uv)] where u G, and vE€G,. Apparently, (uv)

is a bridge in H.

Property 4.1(1): The distance numbers of vertices, as well as

the Wiener number of H are specified as follows:

dix|H) = d(x|G) + d(ulG) + n,fd{ux) + 11 ,
(20)
diy|m) = diy[c) + d(ule) + n,ldlvy) + 11 ;
d(u|E) = d(u|e) + d(v|e) + n,
(21
d(v|H) = d(v[G) + d(u[6) +n, ;
W(H) = WI(G,) + W(G,) + n.n, +
1 2 12 (22)
+ nyd(ul[G) + n,dlv[G) .
Due to the assumptions XEG7 etc., in egs. (20) - (22) the indexing
of components in d(x|G1), etc, are dropped.

Proof: a) Observe first that the added edge belongs to each
geodesic Wm(xjyk). b) From eqg. (3) one generates equations for the
individual distance numbers. Further, the sums over all vertices in
H can be partitioned into two separate sums, the first one over

and the second one over all y EG,. c) Thus one obtains

(=
all xj G1
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d(xilH) = Z dix.x.) + { [d(x,u) + 1 + d(vy)] from which eqg. (20)
&, iy Gs i
follows directly. d) The proof of d{y|H) is carried out analog-

ously. e) From eq. (20) one obtains eq. (21) since d(uu)=d(vv)=0.
f) An expression for 2W(H) follows from eq. (4). Further, the
summing is carried out as described in (b) from which eq., (22)

follows directly. o

The range of magnitude of W(H) depends on the last two terms

of eq. (20) for given two-component graphs, since W(G1), W(Gz),

N, and n., are constant. Therefore, W(H) is minimal (maximal) when

2

the two distance numbers d{u!G) and d(v|G) are minimal (maximal).

In the particular case where G2 = P1 contains a single vertex

v only, one obtains n, = 14 d(v\G) = 0 and W(Gz) = 0, Hence, the

following equations are derived from egs. (20) - (22):

d(x|H) = d(x][G) + d(xu) + 1 ,

d{ulH) =d(ule) + 1 ,
(23)

d(v|nm d(u|G) + n

Il

1 ’

W(H) = W(G,) + ng + d(u|G)

1

These equations are useful when a star of graphs Gj is formed
at vertex v (Fig. 6). They are applied to each graph Gju(vj} form-
ing Gﬁ and then, after joining these graphs G% by a covering on

vertex Vi egs. (14) = (16) should bhe used.
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Fig. 6. Building of a star of graphs Gj around vertex v.

In the case of isomorphic components, G1 = G2r which corre-
spond to the constitutional graph of a chemical compound, graph H
obtained from Gy and G,, as described in the foregoing text, is the
constitutional graph of the dimer of this compound. Analogously,
one can calculate the vertex distance numbers and the Wiener num-
ber of the polymer constitutional graphs, assuming that the mono-
mer units are linked regularly to each other by a single chemical
bond. Two such types of structures can be constructed, known as
Fascia- and Rota-graphs, respectively [42]. These two types are
schematically represented by Figure 7. Their structure is uniquely
specified by the structure G of the monomer units Gj’ the number J
of the monomer units, and the set of edges K linking the monomer

units in a regular manner,

We consider first the distance properties of the Fascia-
graphs F = F(G,J,K). Let G be a graph composed of J isomorphic
components Gj with n vertices which generally will be denoted by

EG.. Let u., v.€G. be the terminal vertices of the connecting
L5 i q* 9

%y 2B . B
edges K, = {(uj+1vj)|1 = 4 = J-1}. Evidently, F = G U Ko. The
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T
g G2 %, G,

g' ﬁz §3 J

Fig. 7. Schematic representation of the Fascia-graphs F(G,J,K.)

and Rota-graphs R(G,J,KR), respectively.
_ L =
Kp = {(uj+1vj)] 1 3 J=1}, Ko = Ep U [(u1vJ)]

distance between the vertices u, and v. in the component Gj'

d(ujvj), will be denoted (L-1) for short; usually (L-1) > 1.

Property 4.1(2): The vertex distance numbers and the Wiener

number of F are specified by the following equations:

d(pj[F) = d(p|G) + n(J-1) + nL[(J;j) % (j;1)| £
+ (J-j)ale) + (j-1d(v|e) +

+ nl(I-§)d(pvic) + (3-Nd(pule)] ; (24)

WiH) = JW(G) + nl(3) + LD+

¢ n()ldle) + aw|e ]

Proof: a) Let xk6Gk be an arbitrary vertex in component Gk‘
(3) one obtains for the distance number of vertex
J
p;€G.: d(p;|F) = } )
48 2 k=1 {x,

According to eq.

d(pjxk|F), where the summation is taken
}
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over k = 1,2,...,J, as well as over all vertices xkEGk. b) Three
cases k < j, k = j, and k > j will be examined. In the first case
X
reached only via vj. c) When j and k are not neighbours, i.e.

can be reached only via uj while in the last case it can be

|3-k| 2 2, the components located between Gj and G, will be cros-
sed on the shortest path; the latter in each Gi is of length
d(ui,vi) = L-1, In order to reach the next components (Gi+1 or

Gi—l) it is necessary to follow the edges which belong to K so

Fl
as to obtain d(uiui_1) = d(vyv, ;) = L. d) Taking into account

all these factors one obtains as an intermediate result for d(ijF):

iz
dlps|F) = "} §  [d(pulG) + 1+ (k=1L + d(vx|6)] +
k=1 {xk]

J
+ ¥ dpxle)y + ) ) [d(pv|G) + 1 + (k-3-1)L + dlux|G)].
{x.} k=3+1 {x

j i
After some transformations this ressolves into eg. (24). e) The
equation for W(F) is proved analogously. o

Rota-graphs R = R(G,J,KR), which differ from the respective

Fascia-graphs I' = F(G,J,K_,) by the term KR = KF U {(u1vj)}, cannot

B
be characterized by egquations as simple as eq. (24). The struc-
ture of Gj has a strong influence on the results. The parity of

J (J=2K or J=2K+1) is also of some importance.

Due to the complexity of the problem we only outline its
treatment. We select an arbitrary vertex pkEGk in component Gk'
and the same is done with the vertex quGj in component Gj' where
j < k. As a consequence of the cyclic macrostructure of R, vertex

qj can be reached by two paths originating from Py - The first one,

wu(pkqj], proceeds via u, and Vj while the other one, Wv(pkqj),
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passes via v, and uj. Their lengths are as follows:

iwu(pkqj)] = d(up,) + (k=3-DL + 1 + d(vjqj) -

IWV(pkqj)I dl{vypy) + (F-k=1+3)L + 1 + d(ujqj) i

and, hence, their difference is

Wy tpyay) | = (W (pay) | = (2k=23-0)L + 6 = 8 « (25)

q

where in accord with Lemma 3 6p and 5q stand for

§ d(u

- kpk) - d(v

I

kPk) ’

8
q

diu.gq.) - B = &
(u]q]) d(v]qj)

wu(pkqj) will be the geodesic if the right hand side of eq. (25)

is negativ or zero, otherwise Wv(pkqj) is the geodesic. Due to the

bounds given in Lemma 3, i.e. -L+1 S 6p'6q = L-1, one has
IGP - qu £ 21-2. With this in mind one concludes from eqg. (25)

that the sign of (2k-2j-J) selects the geodesic out of the two
paths, provided |2k-2j-J| > 2; in the case of |2k-2§-J| = 2 a de-

tailed analysis is necessary.

Due to the cyclic macrostructure of the Rota-graphs, the
equality d(ijR) = d(pk|R) holds for each pair of indices j and k.
Hence, the Wiener number W(R) is (J/2) times the sum of the di-

stance numbers of the vertices of one unit Gj'

4.2. Joining Two Graphs by Two Edges

Here one faces a complicated problem once again. We shall

elucidate the condition which strongly simplifies the problem and

present explicit formulae for this case only.
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Let G = G1 U G2 be a graph composed of two components, G.I and

GZ' The connected graph H = G U {{ru),(sv)} is obtained by adding
two edges to G, namely {(ru) and {sv), r,sEG1, u,VEGZ. The distan-
ces between the pairs of vertices are d(rs|G) = d1 and d(uv|G) = d2.

One may assume, without loss of generality, that 61 z d2, 1.€.

(d4-dy) = 0.

First of all we have to clarify whether the distances between
two vertices of one and the same component could be shorter in H
than in G; a consegquence of this would be a recrganization of some
geodesics by which the problem would become more complicated. Due
to the condition (d1—d2) B O assumed above such a shortening can
only occur for vertices of G1, say p,qEG1; obviously these vertices
will be close to r and s, respectively. We will examine the possi-
bility of d(pg|H) < d{pglG) a) for the vertices r and s which are
end points of the added edges; then b) for a pair of vertices, say
a,bEG1 in which case the shortest path Wm(ab[G) should have )\ edges,
0@ X z dj, in common with Wm(rs{G); and finally c¢) for another
pair, say c,fEG1, in the case where the shortest paths wm(cflG) and
ﬂ“rs}G) have no edge (x=0) in common. Particular examples of these
are illustrated in Figure 8. In all these cases in H the path

W, = Wm(pq!G) is in competition with another path W, for minimal

1 2
length; here W, = WP, eeeyTypUy0aerV,S,...,q) passes from p via
r, u, s, and v to g and should be as short as possible. We shall

call such paths paths ¢4 relative minimal Length.
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Fig. 8. Specific subgraph illustrating the shortening of distances
when two components, G1 and G2, are linked by two edges,

{ru} and {sv}, d1 =5, d2 =1, d1-d2 = 4>2; d(cfl@) = 6,

d(cf|H) = 5; r,s¢wm(cf|G), r,sewm(cf|H).
a) Distance d(rs): In G we have d(rs|G) = d1. The path W2'
which exists only in H, has a minimal length of |W2| = dz + 2 and
will be shorter than W, = wm(rs\s) iE |w2| - |w11 = {d,+2-d,)<0.

Thus the condition for the shortening d(rs|H) < d(rs|G) is ex-
pressed by

a, > (d2 £ 2 (26a)
b) Distance d(ab) (Wm(ab}G) and Wm(rs|G) have ) edges in common,

O < A < d): the path W,y has the length

Wyl = [d(ablG) = A1 + [(&; = X)) +d, + 2] =

= d(ab|G) + [d; + d, + 2 - 2}]

and will be shorter than |w1| = d(ab|G) if [d1+d2+2—2A1 & 0y

i.e.s
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22X > (d1 + dz + 2) i (26b)

If A takes its maximal value A = d1, eqg. (26b) converts into eq.

(26a) . In Figure 8 ) = d; is assumed for W _(ab|G).

c) Distance d(cf) (wm(cf|G) and Wm(rs\G) have no edge (1=0)

in common): the path W, has the length

2
\wz\ = d(cr|G) + dy + 2+ d(fs|a)
and will be shorter than Jw11 = d(cf|G) if
[d(er|G) + d(fs[G) - d(cf[G) + d, + 2] <O . (26¢)

Evidently, eq. (26c) can be realized conly in situations where eq.

(26a) is satisfied.

The essence of these considerations is as follows: (i) By
(d1—d2) > 2, eqg. (26a), is indicated that some of the geodesics
established in G1 are no longer geodesics when H is formed from

G UG2; we use the term "reorganization of geodesics" to refer to

1

that situation. (ii) However, if (d1—d2) =

2, all the geodesics

established in G, are also geodesics in H.

In the first case (i) no general expressions for the distance
numbers of all vertices in H can be derived and an individual in-
vestigation of each class of graphs of this category is needed. In
the second case (ii), however, general formulae for the distance
and Wiener numbers can be derived. Thus, when two graphs are joined

by two edges it has to be calculated first whether dz—d1 > 2 or

<

d —dl = 2.

2
We consider first the case (i) where eq. (26a) is satisfied.

In this case cne has to establish which vertex pairs of G, corre-
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spond to eq. (26b) and (26c), respectively. To do this one exa-
mines the vertices which belong to the spherical neighbourhoods of
r and s by increasing the radii of the spheres stepwise by 1; in
this manner all those vertices of G1 are found some of whose distan-
ces are shorter in H than in Gy For such a vertex, say t, one may
conclude that d(t|G1) does not fully contribute to d(t|H) as is the

case for all the other vertices of G, and G,.

1 2

Let us now turn to case (ii) where

&
(d1 Sy =2 (27)

holds. In this case the distances between any pair of vertices of
one and the same component are not altered when the components are
joined by two edges, i.e. d(pg|G) = d(pg|H) for all p,qEG1 and
p,qer. In this case one has only to determine whether the shortest
path between the vertices yEG1 and zEG2 passes via the edge (ru) or
(sv), Let us denote W?u and Wﬂv the paths of relative minimal
lengths passing from y to z via (ru) and (sv), respectively. Their
lengths are |W$u| = [d(yr) + 1 + d(uz)] and |W2V| = [d(ys) + 1 +

+ d(vz)], respectively. Hence, one obtains for their difference
W, = lWg,| = [a(yr) = dlys)] + [d(uz) - a(vz)] . (28)

When the vertex sets of G1 and G, are partitioned according to

Lemma 3 as follows

A

]

g(51) {y|a(yr) - d(ys) = 51}. -d

S 48

{z|d(zu) - d(zv)

2(52)

Il

o
(]

!
a7}

!
=

n

eq. (28) may be expressed as
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2 (28a)

From this one can draw the following conclusions concerning the

distance between the vertices y€G., and zeG2 in H:

1

(5, + 6.,) = 0: dlyz|H) = d(yr) + 1 + d(uz) ; (28b)

gt Oy

0: diyz|H) = d(ys) + 1 + d(vz) ; (28c)

v

(61 + 62)

yEyls,)€6, 2€2(5,) €G,

For (ﬁ1+§2) = 0 the egs. (28b) and (28c) are equivalent.

We are now in the position to derive expressions for d(y|H)

and d(z!H). According to eq. (3) we have:

d(ylH) = § d(yx|H) + { d(yz|H)
{xfec {z €G,

1
Under the condition of eq. (27), the first term equals d(y|G). In
view of eqgs. (28b) and (28c) the summation over all 2662 in the se-
cond term must be carried out in two partial sums where the first
one runs over all 262(62), 62 = —61, and the second one runs over
all 262(52), 62 > —61. Thus_one obtains for the vertices belong-

ing to yld,), i.e.: y€y(s, )€C,:

aly|lm = diyle) + ‘ ] ¥ g [d(yr) + 1 + d(uz)] +
§,==d, {2(52)4
_dz
+ ’ ) [d(ys) + 1 + d(vz)] .
c2=—‘1+1 {2(62)1

By the substitution
d(yr) = dlys) + &1 i

d(uz) = d(vz) + §, H
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the above equation is simplified:
y € y(61) € Gy :

d(ylH) = d(y|e) + [{} [d(ys) + 1 + d(vz)] +
z
_al z
+ ) (8, + 8.)
& 1 2
8,=-d, {2(52)}

From this one finally arrives at:

y € y(61) € Gy:

aly|w) = d(y|G) + dw|a) + nyla(ys|e) + 1] +
(29a)
_51 :
+ p z_ |(z(52)},-(61 +52)
27 2
Quite analogously one obtains
z € 2(62) € G2:
d(z|H) = d(z|e) + a(s|6) + n1[d(vz|G) + 11 +
(29Db)
S |
H {y(d))}]«(8, + 48, .
8 2 1 1 2

Tt should be noted that (§,+4,) 2 0 holds for both eqs. (29a) and
{29b) .
Making use of eq. (4) one can derive the Wiener number of H:
W) = § odaylm + § dzm) .
{y} {z}

By inserting egs. (2%a) and (29b) into this formula one obtains



2W (M) fd(y|e) + d(vie) + nz[d(yslG) + 111 +

?
[y}

+ ) {d(z|ey + dts|e) + nj[d(VZIG) + 11} +
{ %]
1 |

+ {z(6,)3(8, + &) +
{y} —d2 2 1 2

&
+ 7T [ysies, + &) .
Pl o 1 1 7

The last two terms will be denoted by 2Q for short. When the

gsummation is performed one arrives at:

W(H) = 2[W(G) + W(G,) + nzd(sLG) + n1d(v|G) + nyn,l o+ 20, (30a)
wherein
+d, -8
R I Hytsp«[{z 0 8y + 850 +
§,=-d, 6,=-d
1 1 2 2
(30b)
+d, =&
| o] ; 4
L i_d S i_d Hytadpl-ttzes 0 -8, + 8,0 .
2 2 1
On inspecting these expressions one notes that:
1, The summation in the two terms runs only over pairs of 61 and 82

£

values that obey (51+5 0;

2)
2. The two term entries are the same function of the finite dis-
crete variable parameter 61 and 52, namely

Albqrsy) = [y e1{zl6,) e (8, + 6) 5
34 A(Sj,éz) = 0 for (61 * 62) = 0.

4, The two terms differ only formally by the instruction as to how
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the summation has to be carried out, In both terms of eg. (30b),
however, exactly the same A(61,62)'s are summed up, hence, the two

terms are equal.

The last result is not as obvious as the first three ones but
it is easily proved. Hence, we can write down for Q:

+d =
o= ) 1 [ {y (80 3] + [z(8,)3]= (8, + 850 . (30¢)
61=—d1 84 d,

The explicit formula for W(H) is obtained from egs. (30a) and
(30c). It is not symmetrical with respect to vertices r,seG1 and
u,vesz. If a symmetrization is needed, it could be achieved by

substituting eq. (9), thus obtaining:

+d,

d(s|c} = [d(r]G) + d(s|G) - [y(s)11-8,1/2
51=-%,
+d 3

a(v|G) = [@(u|c) + a(v|e) - ] [{z(8,011-8,1/2 .
§,=-d,

We summarize the results obtained above as follows:

Property 4.2: Let G = G,UG,, r,s€G;, u,Vve€G,, d(rs) = d,,

(d;=d,) = 2; let also the vertex sets {y}€G,,

A

d(uv) = d o]

2'
1{y}] = n,, and {z}eqc,, |{z} = n,, be completely decomposed

(S

<
51 = +d1, and

2 2 Sz = +dé, respectively. The connected graph H is

formed as H = GU{ (ru),(sv)}. The following equations hold for

according to Lemma 3 into the subsets {y(51)}, —d1

{2(62}}, -d

the distance numbers of vertices and the Wiener number of H:
y € y(5,) € Gy:

a(ylm = datyle) + dlv[e) + nyldlys 6) + 1] + (31a)

* ) {z(5,) - (8 +5.) ,
—d<iy<—6, ! 2 12
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z €& 1(62) € G,:

d(z!H) = d(z|G) + d(s|G) + n1[d(vz|G) + 11 + (31b)
+ ) [{y (8 }|=(5,46,) ;
R 1 gt f
-61501S—62
WH) = W(G)) + W(G,) + nzd(s]G) + n1d(v\c) + nyn, +
(32)
+da —51
+ ; E_d s E_d REACHRIE [z(8,) 3]+ (8,+8,)
1 T TR

Proof: Not necessary, because eqs. (31) and (32) have been

derived above. a

The problem of connecting the two components of a graph by
means of two edges, handled here, is close to another problem: the
addition of an edge (sv) to a connected graph é which contains one
bridge (ru). Removing this bridge from é one obtains a two-compo-
nent graph, é\(ru) =G = G1UG2. This union, G1UGZ, has been con-
sidered as the starting point for both procedures described in
this subsection. Hence, the problem expressed by H = &U{(sv)] can
be treated using egs. (20) - (22) and (31) - (32) provided that

3d(rs|é)—d(uv\é) S g

An interesting application of egs. (31) and (32) is found
within series of graphs which are successively formed in a regular
manner according to Hopeq = HhUGU{e1.e2} where e, and e, denote the
added edges. Such series of chemical interest are easily construct-
ed from the C-graphs of polycyclic aromatic hydrocarbons (PAH) ;
examples for such series are benzene, naphthalene, anthracene,
tetracene, etc., or benzene, naphthalene, phenanthrene, chrysene,

picene, etc. and others. All these series start with the C-graph of
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benzene, i.e. H; = P2UP4U{e1,e2} =Cg and continue with g =

= HhUP4U{e1,ez), where h indicates the number of six-membered cyc-
les of Hh. Since for various series of PAH's general formulae are
already known [7,9,11,12,14,43] which express W(h) in terms of
powers of h, it is true that by the use of egs. (31) and (32) no
new results but insight into the modelling of these expressions

are gained,

In the study of topological effects on molecular orbitals
(TEMO) [31-34] egs. (31) and (32) are of particular interest. As-
sume G1 and G2 are isomorphic, the vertices r and s are non-equi-
valent and can be mapped isomorphically onto u and v, respectively.
Then two topologically different graphs H1 = GauGZU{(ru),(sv)} and
Hz = G.I
related particularly to the so-called TEMO-pattern [31,35-37])4

uqu[(rv),(su)} can be formed. Their eigenvalue spectra are

From eq. (32) one concludes that W(H1) > W(H2). In the case that

H1 and H2

then the total t-electron energies satisfy E_(H,) ZE,(H,) [38];

represent the skeleton graphs of fully conjugated systems

this throws some light on the good correlation of E_ with Wiener

numbers [40].

The procedure described here may be applied also to the Fascia-
graphs of polymers [42] in which the monomeric units are linked by

two bonds. The treatment is similar to that given in subsection 4.1.

4,3, Cyclisation of a Tree

The addition of an edge to a connected graph makes the number
of independent cycles increase by 1. By means of the added edge
new paths may be constructed for variocus pairs of vertices; some

of them are shorter than the original ones. As a consequence of
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this a reorganization of the gecodesic paths takes place and, hence,
the estimation of the changes of distance and Wiener numbers usual-
ly is a very tricky problem which cannot be treated in full gene-
rality. The most simple and clear case is presented by the addi-
tion of an edge to a tree; in the following we shall present that

case.

Let G be a tree, u,vEG two non-adjacent vertices and let d
denote their distance d = d{uv|G) > 1. Let H be that graph which

is formed from G by adding the edge (uv), i.e.: H = GU{(uv)].

First we consider the reorganization of the geodesics due to
the formation of H. For that purpose we apply Lemma 3 to the vertex
set V(G) of G with respect to the distances of the vertices to u
and v, respectively, i.e. V{(G) is partitioned into the subsets

vié), -4 = 6 = d.

Property 4.3 (1): Let xev(ax) and yEV(Sy) be arbitrary ver-

tices of G. When the graph H is formed from G according to
= gu{(uv)} then the distances d{xy|G) and d(xy|H) are related
as follows:

i B & .
a) if |6y 8ot (a+1)

d(xy|H) = d(xy!G) ; (33a)

b) if |6y - e;xl > (d+1) :

d(xy|H) = d(xy|C) - [\6y—6x\ - (a1 . (33b)

Proof: a) Observe first, in G there is only a single path

wltxy) for any pair of vertices. Provided 4 + ﬁy' in H a second

X
path, wz(xy), is established which passes through the added edge,

(uv)ewz(xy). b) W1(xy) in G is the geodesic of the vertices x and
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¥, in H, however, W1(xy) and wz(xy) are in competition for that.

The lengths of these paths are as follows:

]

W, (xy) | = d(xx") + d(x'y") + dly'y) ,

Wy (xy) | = Alxx') + [(@+1) - d(x'y")] + dly'y)

where x'EV(dx) and y'EV(Sy] denote those vertices of the respec-
tive subsets which also belong to w1(uv). c) Thus, the length of
Wz(xy) may be expressed as follows:

{wztxy)l = |w, (xy) | + [(d+1) - 2d(x'y")] . (33¢)
Obviously, Wz(xy) will be the geodesic if and only if 2d(x'y') >
> (d+1). d) Assume momentary 5? > ﬁx' then d(x'y') may be ex-

pressed by one of the following equations:

d(x'y') = d(uy') - d(ux") ,

d(x'y') = -d(vy') + d(vx') .
This immediately leads to

2d(x'y') = [d(uy') - dlvy"')]-[d(ux') - d(vx")] = ﬁy-ﬁx.

If éy < éx is assumed one arrives at 2d(x'y') = ax = §y' Both

results are generalized to

2d(x'y') = [§_ - 4a_| .

e) The substitution of this in eq. (33c) leads to egs. (33a) and
(33b). f) The proof is completed by observing that in case of

5x = dy all vertices of the path w1(xy) belong to V(ﬁx) and Wl(xy)
is also in H the single path connecting x and y. -1
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Corollary to Property 4.3 (1): Let x belong to one of the sub-

sets V(-1), V(0), or V(1), then the distances from x to any other

vertex y€G are not altered when the edge (uv) is added to G; thus

d(xy|H) = d(xy|q) (33d)

holds for all vertices y, provided -1 £ 6X

Proof: a) Note the range of éy’ i.e. -d = GY = d.. b)) If

< < ’ <
-1 =6 =1 is assumed, then \SY - dx\ = d+1. Thus, eq. (33b) can-
and V(1), respectively.

=]

not be applied to any vertex of V(-1), V(0),

Note that G is a tree, hence, depending on the parity of 4

only either V(0) or V(-1}) and V{1) are non-empty.

Now, we are sufficiently prepared for a consideration of the

changes of distance and Wiener numbers due to H = GU{ (uv)}.

Property 4.3 (2): Let H be formed according to H = GU{ (uv)}

as described above, then for H the following distance and Wiener

numbers result:

a) -1 %6 = 1
d{x|H) = d(x|G) (34a)
p) -~ d s £ -2
X
| 7
a(xim) = dixle) - (6.=8_-a-1)-|V(s. )| ;  (34b)
& =§_+d+2 ¥y X ¥ |
Y X
c) 2 25 = a:
X
5, ~d-2
a(x|m - dix|G) - 5 =8 —d=1) + :
(x| H) (x|G) b el V(ay)\ : (34c)

& =-d
y
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=2 d
1
W(H) = W(G) - ={ | ) (8 -8 _=d=1)+|V(S_)|«|v(§ )| +
25 5-a =Gi+d+2 ¥i x y
b (35)
d Gx-d-2
§ -8 =d=1) - 8 .
+ 52=2 A Z_d (8,8, =a=10 = [F18,) | = [vitd, ) | I
X ¥

Proof: a) Eq. (34a) follows directly from eqg. (33d). b) From

eq. (3) one obtains primarily d(x|H) = ? ) dxy|H) .

5y=—d V(ﬁy)
1f -4 = Sy 2 -2 is assumed, d(xy|H) is given by eq. (33a) for
-a = 5y = §,+d+1, but by eq. (33b) for § +d+2 = 8y £ 4. Thus, the
summing up over =-d = Gy 2 4 must be separately carried out for
both these ranges, resulting in eg. (34b). <¢) Eq. (34c) is simi-
larly proved. d) Eq. (35) follows from egs. (4) and (34a) - (34c).
Here again the summing up over -d 2 Gx 2 d must be carried out in
the intervals of éx' indicated in eqgs. (34a) - (34c¢). o

Note, the two double sums in eg. (35) are equal; this is easi-
ly proved by comparison of the terms obtained for Sx =a, 8 =b

and 6x = By ﬁy = a, respectively, a = b.

From eg. (35) one concludes that the Wiener number of a tree
is always reduced when an edge is added. Even for smallest accep-

table value d = 2 one obtains from eq. (35) as follows:
W(H) = W(G) - |V(-2)]|-|v(2)| .
4.4. Remark

In an earlier paper [14] analytical equations have been deriv-
ed for the change in the Wiener number resulting from certain
structural transformations. These include some particular cases of

connecting two cycles by one or two edges, and is a subject of
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consideration in this section. The total number of vertices, the
number, length and position of the bridges, etc., have been used
as variable parameters in these eguations [14]. The advantage of
the procedure developed here lies in the provision of a treatment

of such problems in a more general manner,

5. Subdivision of an Edge by a Vertex

Dividing an edge (uv)€G by a vertex x increases the distance
d{uv) from 1 to 2. All paths containing this edge will thus be
lengthened by 1. When the edge (uv) is a bridge between two sub-
graphs, G, and G2, then all paths from a vertex in G1 to a vertex
in G2 will be lengthened analogously. In contrast to this, when
{uv) is not a bridge, then the distances between some pairs of ver-
tices increase due to the subdivision of (uv); these pairs are speci-
fied by the fact that all the shortest paths between them cannot
avoid (uv). Such pairs of vertices can be detected by inspection
of G, Let s be a vertex of such a pair and b(s) the number of geo-

desics which are enlarged due to the subdivision of the edge.
When H is a graph formed from G by dividing the edge (uv) by
vertex x, the distance number of s in H is
d(s|H) = d(s|G) + b(s) + d(sx) . (38)
Vertex x could, however, be reached either via u or via v.
Hence,

d(sx) = 1 + nmin{d(su|G), d(sv|G)}} .

Now let the vertex set of G be decomposed according to eq. (6)
into subsets {p}, {g}, and {r} which are distinct as to the dif-

ferences of the distances to u and v, One thus obtains for the
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distance number of x

d(xlm) = daqle) + |p| + [q] =
= d(v]|e) + |g| + |x| = (37)
= [d(u|G) + d(v|G6) + n + [g|1/2 ,
where |p|, |¢|, and |x| are the cardinalities of the respective

vertex sets, and n is the number of vertices in G. The Wiener num-

ber is then presented by the equation

W(H) = W(G) + d(x|H) + [ | b(s)]/2 . (38)
sSEG

In the case of (uv) being a bridge connecting the subgraphs

G, and Gy, UEG and ver, let the number of vertices in the sub-

1 1
graphs be denoted by n, and n,, respectively. Then, for each ver-

tex p€G, the quantity b(p) = |x| = n,, as well as for each vertex

r€G,, b(r) = |p| = n,. Proceeding from egs. (36) - (38) one obtains

2'
in the case of the subdivision of a bridge edge:

d(p|H) d(p|G) + d(pu) + 1 +n ;

2
d(r|H) = d(r|G) + d(xv) + 1 + n,oo
(39)
d(x|H) = d(u|G) + n, = d(v|a) + n, i
W(H) = W(G) + nyn, + [d(u]6) + d(v|G) + n, + n,1/2
Egs. (36) - (38) can also be used to determine the distance

numbers and the Wiener number of G from those of H when dealing
with the inverse graph transformation, the collapse of two edges

into a single one.
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6. Conclusions

The theory of the Wiener number on the basis of the distance
numbers is presented. Expressions for the changes of distance and
Wiener numbers due to particular elementary graph operations are
given. A variety of more complicated graph operations can be con-
structed by means of their combinations. As shown in subsection
4.3 the graph operation H,_ , = HhUGU{e1,e2} generates series of
G-homologue graphs for which analytical expressions of the type
W(Hh) = f(h) are known [7,9,11,12,14,43]; thus, this earlier work

can also be combined with the operations reported in Sections 3-5.

The distance numbers facilitate in a very convenient manner
the calculation of the Wiener numbers (see Sect. 3-5). However,
the real value and importance of the distance numbers lie in en-
abling one to express in a characteristic manner the changes in
the Wiener numbers, resulting from some graph operations, as exem-
plified in Sections 3-5. The derivation of such expressions is
very simple and straightforward in the case of some graph opera-
tions (see for example Sections 3 and 5) but rather complicated in
other ones {e.g. Section 4). Difficulties always arise when the
reorganisation of the geodesics due to the graph operation cannot
be described with sufficient generality. Our experience with this
subject matter may be summarized as follows: When the graph ope-
ration performed keeps the cyclomatic number (i.e. the number of
independent cycles of the graph) constant, no serious difficulties
occur. In contrast, the problem becomes very complex if a change
of the cyclomatic number is involved. A verification of this be-

haviour is found in the subsections 4.1 and 4.2,
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This observation is of some interest because it seems to re-
flect the effect of drastic changes in the topological structure
associated with the graph cperations under consideration. To make
this point clear we will briefly refer to the changes in the topo-
logical structure upon the addition of an edge if a) this edge
connects two components of a disconnected graph or b) this edge
is added to a connected graph and closes an additional independent
cycle. Let the topological structure of a graph be defined by the
complete sets of spherical neighbourhoods of all graph vertices
[44]. In the case of connecting two graphs by an edge the number
of spherical neighbourhoods of each vertex increases and the same
holds for the cardinalities of the vertex subsets which correspond
to some of the spherical neighbourhoods. However, no vertex is
transferred from one spherical neighbourhood to another. In contrast
to that, the formation of an additional independent cycle by add-
ing an edge to a connected graph is always accompanied by vertex
transitions from outer spherical neighbourhoods into inner ones.
Thus, an essential reorganization of the topological structure of
the graph always occurs. The approaches to analysing such structu-

ral changes are briefly discussed in subsection 4.2.
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APPENDIX

Distance and Wiener Numbers of some Graphs with n Vertices

1. Complete graph Kn:

d(uEKn) =n-1 , W(Kn) = n(n=-1)/2

2. Cycles Cn:

2
d(u|C2m) =n"/4 , W(C, ) = nd/s
atule, ) = (n%-1)/4 WS, ,.) = n(n®-1)/8

2m+1 ¢ 2m+1
3. Star graph K1,n-1:
The center of K, ., is denoted by u.
r

d(ulK1'n_1) = n-1 ,

e o N
att|r, 4 = 20-3 , WKy pq) = tael) :

4, Path graph Pn:
From one end point to the other the vertices of Pn are label-

ed subsequently with the numbers 1,2,...,j,...n.
d(jiPn) = n(n+1)/2 - j(n+1-3) ,
o 2
W(P ) = n(n"-11/6
The central vertices of P, have the following distance num-
bers:
a(m|p, ) = d@m+1|P, ) = n®/4
2m 2m 4

d(m+1|P = o-1]44

2m+1)
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