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Abstract

The oblate rectangle-shaped wvenzenoid with 2m-1 tier chains

of alternating lengths n and n+1 (in terms of the number of
hexagons) is denoted by Rj{m,n).It is known that the algebraic
formula for the number (K) of Kekul& structures of Rj(m,n)
with fixed value of m is a poliynomial (Pm(n)) in powers of
n.Cyvin et al. guessed that this polynomial has factors n+1,
(n+2)m and n+%,A rigorous proof for the validity of this con-
jecture is given in the present paper.Also the algebraic
formula for K{Rj(6,n)} is obtained by using the fully com-

puterized method.
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1. INTRODUCTION

In the present paper we consider the enumeration of
Kekul® structures of rectangle-shaped benzenoids.The sym-
bolism and terminology used in this paper is the same as
in (1).Hence a rectangle-shaped benzenoid or simply rec-
tangle has both “vertical" sides indented.There are two

types of rectangles as shown in Fig.1l.

prolate rectangle oblate rectangle

Fig.1. Definition of the prolate and oblate
rectangle.

For a prolate rectangle with 2m-1 tier chains of
alternating lengths n and n-1,the number (K) of Kekule
structures is long known (4) ,viz. (n+1)m.1n the following
we concentrate on oblate rectangles.

We use Rj(m,n) to denote the oblate rectangle withn
2m-1 tier chains of alternating lengths n and n+1. For

oblate rectangles with fixed values of n (n=1,2,3,4),the



algebraic formulas have been derived from recurrence re-

lations [1,5,7-9).While for oblate rectangles with fixed

values o! m,the following results are known nowadays:
AK{RI(2,m)} =% (n+1)(n+2)%(n+3)

37K {RI(3,m)) = ja5 (n+1)(n+2)7(n+3) (n°+4n+5)

IR{Ri4,m) = 550ep (n+1)(ne2)*(ne3) (11n*a136n 443907
+€68n+420)

®k{RI(5m)} = Froggp \B+1)(1+2)7(n43)(31n%4+ 37207+ 1942n"
+5616n°4+9511n° +89881+3780)

2M,Gordon and W.H.T.Davison,J.Chem.rhys.20,428 (1952).
Py .F.Yen,Theoret.Chim.Acta 20,399 (1971).

®N.Ohkami and H.Hosoya,Theoret.Chim.Acta 64,153 (1983).
95.J.Cyvin,B.N.Cyvin and J.L.Bergan,Match 19,189 (198€).

®s.J.Cyvin,match 19,213 (1986).

The algebraic formula for K{Rj(4,n)} was achieved by
Cyvin et al. oy refined applications of some auxiliary
benzenoid classes and ingenious employment of new variants
of the enumeration techniques (1) .Furthermore,they deve-
loped a fully computerized method which was applied to
derive for the first time the algebraic formula for the
K number of Rj(5,n) (2) .This method is based onthe impor-
tant fact that the formula for K{Rj(m,n) is a polynomial
(Pm(n)) in powers of n with degree d_g 3m-2 (1) .Thus in
order to obtain the formula for K{Rj(m,n)} with fixed va-

lues of m a polynomial with indetermined coefficients is



to be assumed and the knowledge of d +1,viz. 3m=1 K num-
bers is required to find the coefficients.The researchers
of (1) guessed that the polynomial Pm(n) (m2»2) has factors
n+1,n+3 and (n+2)m.Tni5 conjecture coincides with the

known polynomials for m=£,3%,4,5.In the present work the
validity of the conjecture is established.This will cer-
tainly reduce tne aumber of unknowns by m+< in applying

the fully computerized method which leads to the algebraic

formulas for K{Rj(m,n)} with fixed values of m.

2. AUXILIARY BeNAZENOIv CLASSES

The auxiliary benzenoid classes B[(n,2(m-s);1),s=1,2,
eeaym=1;1=0,1,...,n,which are depicted in Fig.2 play an

important role in the present work.

Pig.2.

Auxiliary benzenoid classes B(n,2(m-5),1)
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Consider tne bonds of B(n,2(m-s),-1} intersected by
the straight line X (see Fig.3.).It is not difficult to
see that in each of tne Kekul® structures o! Bln,2(m-s),-1}
one and only one of those bonds 1s a double bond.Trnus we
obtain the following recurrence relations:

K{B (n,2(m-s),-D}= izlé, (n+1-1) (i+1)K{B(n, 2{m-s-1),-1)}
+ :ﬂ (n+1-1) (1+1)K{B(n, 2(m-s=1),-1)}

i=1+1
(1¢s¢m-2;1=0,1,...,n) (1)

1 n-1
ey RN

DB G

X

» 2(m-5-1)

Fig.3. The recurrence
relations.(The single
bonds intersected by the
rz(m_3_1) straight line X have been
deleted.)
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3. A GENERAL METHOD FOR K NUMBER OF Rj(m,n).

Define (n+1)-dimension vectors Y(n,t),t=1,2,...,m-1
as follows:
¥(n,t)=(K{B(n,2¢,0} ,K{B(x,2¢,-1} ,...,K{B(n,2t,-n} ).
For two (n+1)-dimension vectors Z1:(a0,a1,...,an)

and Zg=(bo,b1....,bn),the inner product Z,*%, 1is defined

as Q
Lo*ig= a0,

Denote vy A(n) the (n+1)x(n+1) matrix whose 1-th row

(1=0,1,...,n) is de<fined as
(n+1-1,2(n+1-1), ..o, (141) (n+1-1), (141) (n=1), . .., (141)2,141)

viz. the j-thcomponestis (j+1)(n+1-1) for j=0,1,...,1;while
tue j-theamponentis (141)(n+1-j) for j=1+1,1+2,...,n.

When n=9,A(9) is stuown in Cnart I.

The i-th (i=0,1,...,n) column of A(n) is denoted by
A{n,1i).By the definition of A(n),we have

s n+1-1 0-th
2(n+1-1) 1-th

.

. -

i(n+1-i) | (i-1)-th
A(n,i)=|(1+1) (n+1-1) i-th (2)
(i+1)¢(n-1) (i+1)-th

. .
-

(1+1)2 {n-1)-th
(i+1}) ) n-th

(see Chart I).



10 9 8
18 1€
16 24
14 21
12 18
10 15
8 12

O

€
3

- MW e o =@

[AC I« a}

—_——

55%121)
105121
1462121
175121
180x«121
190+121
175x121
14€x121
105x121

7
14
21
28

20
16
12
8
4

55=121

p¢3)(9)

E 5 4

{ €7141331
12871331
1798 <1331
21€3 »1331
235341331
2353x1331
216311331
1798 41331
12871331
6711331

p{4)(9)

T S S P (T G 4

L

D(1)(9)

Fg2r2+11*
15873<11%
221874114
2€703,114
29056+11%
29056x114
2e70311%
22187+ 114
15873x114
8272114

D(5)(9)

511
9:11
12411
1411
15211
15611
141
12411
911

5«11

D(z)(9)
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Chart I. A(n) and D(i)(n) for n=9 and i=1,2,3,4,5.

¥(n,t)T for n=9, t=1.

The following formula is derived by a similar reason-

ing as in section 2.

n
K{Rj(m,n)} = %::K{B[D,E(m—l),—lﬁ
=0

(3)
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As an alternatlive to the above equation we may write
K{HJ(m,nﬁ:D(1)(n)T*Y(n,m-1)
where D“)(n)T is the transpose of D(1)(n),and D(1)(n) is
a (n+1)-dimension vector witn allcomponents being 1 (see Chart
L)

By using the recurrence relation (1),one obtains

i
K{Rj(m,n)}= %%j( 2 (n+1-1)(i+1)K{B[n,2(m-2),-1i}}
=0 1=0

7 L:lf (n+1—i)(1+1)K{BEn,Z(m—Z),—iH)

=1+1

[ N

= li(n(1)(n)T*A(ns1)9’1({3[1’1,2(1“-2),-1)}
=0

where A(n,l)T is the transpose of A(n,1l).
Denote D(z)(n)T=(dg2),d%2),...,déz)),where a{?) s

defined by d(iz)=D“)(n)T * A(n,i)T for i=0,1,...,n. Taus

we have

; X (B
K{Rj(m,n)] = %_4 4,“% K{B(n,2(m-2),-1}

=0
r
= 09 (m)® * ¥(n,m-2)
Similarly,by the recurrence relation (1) we have

K{R]j (m,n)} z_ d(z)( 2__(n+1—1)(1+1)K{B[n 2(m-3),-i)}

+ ZE: (n+1—i){1+1)K{B[n,2(m—3j,—ﬂD
i=141

n

= 1d a§>) k{B(n,2(n-3), -1}

=0
(3) n) * Y(n,m=3)
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where dij) =D(2)(n)T * A(n,l)T,l=o,1,...,n;and

p3)(m)®= (a4l ... a0l D).

In general,we have

n
K{Rj(m,n)} = f:lui“)-K{B[n,z(m-u),-ln (2susm-1)
=0

zD(u)(n)T * Y(n,m-u)
where di“)=n(u'1)(n)T * A(n,1)T  ana D(“)(n)T=(dg“),d§“),.
(u)

..,dn ).

Eventually we reach at

kR (m,n)i =2 () % v(n,1) (4)
where Dim-1)(n)T=(dém-1),d§m-1),...,d;m-1) ) and dim_1) =
p{™2) ()T % A(n,i) for i=0,1,...,n.

Note tunat since K{B(n,2;1)} =1/2 (n+2) (n+1-1)(1+1) (1)

¥Y(n,1) is already known.

4. THE FEATURE OF d;t) (421,24 ..., m=1)

We claim that ditt) is a polynomial in n and i for
1€t <m-1.5ince d§1):1,the conclusion is evident for i=1.
Now suppose that d;s) is a polynomial in n and i for
1gs<m=-1.

By section 3,we have

n
adorh) pl8) ()T » A(n,i)T=]§0d](_3) i1

where a is tne 1-th componextof A(n,i),1=0,1,2,...,n.

Since dis)ia a polynomial in n and l,we may express
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it as an,l).Similarly,ail can ve expressed as g{(n,1,i).
Therefore,the summation

{s+1) ! ;
dd =2 _ fin,1)gl{n,1,1)

l=0
is a pclynomial in n and i.
By virtue of the inductive principle,d&t) is a poly-
nomial in n and i for t=1,2,...,m-1,

1
5. THE SUMMATION J _ wP WITH FIXED VALUES OF P ( 2 1)

w=1

For the first five values of p,we have

n
Z_w =1/2 n(n+1)

4% 2

T w'=1/€ n(n+1)(2n+1)
n )

Y w2=1/4 n°(n+1)°

w=

n
i wt=1/30 n(n+1)(2n+1)(3n2+3n*1)

wo=1/12 nd(n+1)z(2n2+2n—1)

n
It is reasonable to guess that J_ wP has the
w=1

factors n aud (n+1) for each fixed natural number p.Indeed,
we can prove it by induction on the natural number p.
n
Suppose that the summation E::wp has the factors n
w=1

and n+1 for pét-1 (t22).

Taking q=1,2,...,n in tne following equality

t ;
(q+1)t+1 _qt+1 - .E:(t:1)q1
i=o
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one obtains n equalities as follows:

<
1
2 +1 -1 = -z:ktfl1)
1=0
T QU N |
3 2" ) (") @
1=0
t41 O R T i
2" (n-1)% 0 T (O (e
1=0
b4l b4l LR
(1+n)“*'- n*t = L ( ; In
i=o0

Taking respectively summation of the right and left

hand side of the above n egqualities yields

; t : n
(me)¥ 1= T {(FT) Lowt}

i=o w=1

It can be reduced to

n =1 L : t-1 oo
Low'= &1[ntn+1) = CThet - o () £ W)
w=1 i=1 i=1 w=1

n
By the inductive hypotihesis, for i< t-1,the summation F_ wh

n w=1
R A
has factors n and n+1.rtherefore, ) w has factors n and
w=1
n+1.

€. THE FACTORS n+1,(n+2)™ AND n+3.

We are now in a position to prove tunat n+1,(n+2)m
and n+3 are factors in the polynomial Pm(n) for m=2,

Investigate tne column A(n,i) of the matrix A(n)
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defined in section 3.Denote the v-th componetof A(n,i) by
ay s¥=0, Vewae e

From formula (2) in section 3,one ootains:
for 0vg£i,08n-v<i

aiv+ai,n—v

=(v+1)(n+1=i)+(n+1-v)(n+1-i)=(n+2)(n+1-1)
for O&vgi,i<n-v

alv+ai’n~vz(v+1)(n+1—i)+(i+1)[n—i+1—(n-v—i}]=(n+2)(v+1)
for i<vgn0g& n-v si

2,48 p_y=tid Yn-i+1=(v=1))+(n+1-v) (n+1-1)=(n+2) (n+1-v)

for 1 <vgn,i<n-v

a; +a =(i+1)(n-i+1=(v=1)) +(i+1)(n-i+1-(n-v-1i))

i i,n-v
=(n+2)(i+1)

This means that n+¢ is a factor in a._+a

iv ' ®i,n-v for

3=0, Vsoa ey DiVED 154 6oy Tie
In addition,when n is an even number,the (n/2~th com-

ponent of A(n,i) is

A i Ao
7 (n+2)(n+1-1) 7 &1
or %—{n+2)(i+1) %'>i
Since
D ()=, 1,0 eneeey 1)
we have N
(aiv+ai,n-v)
V=0
o 'Y
dé‘) =DL1)(n)T* Aln, 1)T = Efi ain= (n is odd)
h=o0 n 4
v:o(aiv+ai,n-v)+aivn/2

(n is even)



s B

1t §
By the above discussion we gee that dkc) has factor

(n+2).

Inserting respectively i=q and i=n-q into formula {(2)

gives
( n+1-qw { a+1 )
2(n+1-q) 2(q+1)
qi{n+1-q) (n=-g-1)(q+1)
\ ~ (a+1){n+1-q) o (n=-q)(q+1)
{n,q)= (n-q)(q+1) :1=q {q+1)(n+1-q)
(n-q-1)(q+1) a(n+1-q)
2(q+1) 2(n+1-q)
\ q+1/ \ n+l-q )
This shows that aquan_q’n_v for q=0,1,...,n;v=0,1,...,n.
Thus

d;z) =D(1)(nJT * A(n,r)T

i rn heo n-r,n-n

Denote h,=n-h.Then
n n T .
(2) .y — 8 -pl1) _
dr ) - REN & r,n-h" f— an-r,h* D (n)*A(n,n-r)

)

(r:071|2!'--7n)
Now suppose that dﬁu) (r=0,1,...,n;2%u<m-2) has

u-
factor (n+2) and d;u) =d;f% for r=0,1,...,n.



Hence ds_u+1)=D(u)(n)T * L(ll:f)T

L (u)
= Zdi an
i=o
n=1
2 )
f LEE 45 (ari+ar,n—i) (n is o0ad)
)
=§ .
¢ 1
W il (u)
\ _ i i
%;0 dy (ari+ar,n_i)+ d_rl ai’ﬂ
2 2
(n is even)
Since both ari+ar,n-i and an,,.2 have factor n+42,and

d‘?) nas factor (n+2)u_},d;u+1) has factor (n+2)%. More-

over 1 " 1
atu+) ~pluw)(n)” * A(n,r)

Denote n, =n-h.Then

‘1 — 1 U
gV = 5 Va2 )T« a@nen)t

Repeating tne avove discussion,we eventually have
dkm'1) = th;1J and dém'1j has factor (n+2)m'2 for r=0,
1,...,0. Therefore, we denote d;m'1) =(n+2)m_2-c;m-1).

By formula (4) in section 3,we nave

@ n.
P (n)=K{Rj(mn)}= 7'_0 d}"’“”K{B(n,E.—r)} (5)
r=



= P =

Substitution of K{B(n,2,-r)}=1/2 (n+2)(n+i-r)(r+1) into

(5) yields

n_
P _(n)=1/2 (n+2) T (n+1-r)(r+1)-al™ ")
m o r
n
A )™t 1o (n+‘|-r)(r+’u)c§m“1J
r=0

Since d;m'1j is a polynomial in n and r (sectiou 4)

and hence cém-1) i tn7r+1)c§m_1) can be written as

(£, 0n)ee 1) 2o, (n)(r+1)2 et 4, () e 1 )4£ 1 (n)

wnere ft{n) (t=1,2,...,241) is a polynomial in n. Therefore

(n+1-r)(r+1jc§m_1) can be written as

(£, mPee)®H Y S, (n))re) ) 2ee s ol (K1) P4, 4 (n))re)

Denote r,=r+1.Then we have

n
P, (n)=1/2 (n+2)"" b {7 B )™ e (e 1)
=0

DTS SXS L JNCY CISP)

m-1 | el 241 - z
=1/2 (n+2) {f1\n) R - +f2Ln)
L=

r*
r =1
n+1 2 Eij
+e..tf (n) AR +f, 4 (n) ) r*}
r,=1 r,=1
n+1 - n+l & n+l 5
By section 5 eaen of ) _ ry y 2 Ty seesy) Ty and
r,=1 r,=1 r,=1
n+1
E ~ r, has factors (n+1) and (n+2).con3equent1y,9m(n) has
rg=1

factors (n+1) and \n+2)m .We denote

P (n)=(n+1)(n+2)"q*(n) (€
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On tue otner hand,Pm(n) can be derived in another
way when n is odd.

It is not difticult to see that
K{B(n,2,-r)} =k{B{n,2,-\n-r P} =1/2 (n+2){n+1-r)(r+1)

Hence when n 1s odd

n-1
n 2
! . ] ) “1)
pomy= L al™ Vxisn,2,-rf=2 ¥ ™ Vkis(n,2,-r)
r=o0 r=o
n=1
=)
m-1 = (m-1)
= (n+2) 2 (n+1-r)(r+1)cr
r=o
n+l n+1
m-1 ) -8 z+1 - 3
= me2)™ "t { £y T eB gy T o
r,=1 r,=1
Eij n+1
2. o =
$e..4f (n) ) rg +f  .(n) P,
Z z+1 -
r,=1 r,=
Again by section 5 each of
n+1 n+} n+1 n+l
B 241 2 % ZfL 5 2
2__ rl g B Y wew o By ENA PP has
r,=1 r.=1 r,=1 ry=1
factors (n+1)/2 and (n+3)/2. rtherefore,we denote
Pm(n)=(n+1)(n+2)m_1(n+3)Qﬁ*(n) (1)

By comparison of (&) and (7),we come to the conclu-

sion that Pm(n) has factors n+1, (n+2)™ and n+3.

7. THE POLYNOMIAL Pm(n) FOR m=€.

In this section the algebraic formula for KiRj(6,n)}
is derived for tne first time by using tne fully computer-

ized metnod.The result is a polynomial of 1¢-th degree in

n,vizg,



Pein)= f§§3%€66 (n+1)(n+2)6(n+3) {691n5+11056n7+

79188n°433820n94921759n* + 1654 264n°+1915562n°
+1315560n+4 15800 }
By section ﬁ,EELn) is partially factorized

Pe(n)=(n+‘l)(n+2)b(n+3)Qe(n) (8)
where Qe(n) is a polynomial of 8-tn degree in n.We write

this polynomial as

agtm=a s (T (2] (5] (F)er (3)

+(g) 1 (3) 1 (3) (9)
where A , B,..., I are to be determined.

By the general metnod decriped in section 3,nine nu-
merical solutions for K{Rj(€,n)} are obtained as follouws:
P (0)=1;R (1)=2¢37;2, (2)=1352427 ;B (3)=466257 ;P (4)=107563437;
P (5)=1T994 <775, (6)=2412352:47 ;1 (7)=279994+9° and P (8)=
28387789‘55. In particular,we have taken advantage of
Pe{0)=1,whicn is tne trivial case of no rings and consistent
with tne general formulas (see section 1}.

The scheme of computation in tne shape of Pascal's
triangle is given in Chart II. On inserting into eqns.

(8) and (9) we obtain

Pe(n)= fgg%gzab (n+1)(n+2)6(n+3) {415800+&237000(?)

+43326360.( ®)+1€0914600{ ™ )+3488€8080( *
2 \3 l4

+457023&00(:)+3569b4400[n]+15323b1(0[n)
o T

+27861120(:1 } (10)



= 270 =

1/192 = A ; A=1/192

1/12 = A+ B 3 B=15/192
1£9/240 = A +2B + C ; 0=521/9¢0
233 /€0 = A + 3B+ 3C 4D ; D=129/64
107563 /6'(20 = A +4B +6C +4D + B ; E=14€83 /3360
29449/56 = A +58 +10C+10D+58 + B ; F=3847/€72
T77261/504 = A +EB+15C+20D+15E+ 6F + G ; G=4507/1008
1399971 /360 = A +TB+21C+35D+358+21F+7C + H ; H=£91/360

28387789 /31680=A+84+28C+5€D+T0E+56F+2BG+8H+ TI; I=691/1980

Chart Il. The scheme of computation in the Pascal's

triangle.

The formula (10) can be transferred into tne poly-

nomial form given at tne begié&ng of this section.
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