malch no. 21 pp. 291-294 1986

ENUMERATION OF KEKULE STRUCTURES:

PENTAGON-SHAPED BENZENOIDS - PART I

B. N, CYVIN, S, J. CYVIN and J., BRUNVOLL

Diviston of Physical Chemistry, The University of Trondheim,
N-7034 Trondheim-NTH, Norway

(Received: September 1986)

Abstract: The enumeration problem for Kekulé@ structures is solved for a
benzenoid class referred to as the 7-tier oblate pentagons. The fully
computerized method is applied.

Among the pericondensed benzenoid classesl for which the Kekul@
structures have been enumerated, the highly symmetrical ones (dihedral and

. § i 2-8
mirror-symmetrical) have been studied by most authors.

A regular t-tier strip9’10

is defined as consisting of t rows of
hexagons, where the number of hexagons in the top and bottom row is equal,
say #n. The left and right rims of the system are connected chains of ¢t
hexagons each. A certain class of ¢-tier strips can be dihedral or mirror-
symmetrical for every value of n only when £ is an odd number. The 5-tier
strips have been studied systematically9 and contain such highly symmetri-
cal classes. For all the classes of 5-tier strips the combinatorial formu-
las for the number of Kekulé& structures (K) as polynemials in n have been
reported.9 A general solution for X exists for hexagc\nsz’l0 and chev-
rons.z'll The dihedral 7-tier hexagon has been treated in particular by
Ohkami and Hosoya.6 The multiple zigzag chains are mirror-symmetrical for
an odd number of rows. A formula of X for 7 rows (a 7-tier strip) has been

13

reported.lz The general solution for a prolate rectangle ~ was first given

by Yen.3 The problem of oblate rectangles is considerably more difficult;
the K formula for the 7-tier strip of this kind was deduced by Cyvin et

13

3 . 14
al., ” and for the 9-tier oblate rectangle by Cyvin.

In the present work the benzenoid classes of pentagons are treated.



= 202 =

The X formula is reported for the 7-tier oblate pentagon for the first time.
The widely used method of fragmentation due to Randié15 failed to be appli-
cable in this case. As a whole the problem turned out to be rather difficult
and therefore challenging. The only approach which met with success was the
fully computerized mnat:hc;)d.l3’-14

Definition. Figure 1 shows the definition of mirror-symmetrical oblate
pentagons, Dj(m,n), where examples with m=3 (5-tier strip) and m=4 (7-tier
strip) are depicted. One of the rims (chosen as the left) has the same shape
as in the 0(m,n) hexagon, while the other (right) has an indentation out-

wards.

pi(3,n) 0l 4,m)
N A
" n

Fig. 1. Mirror-symmetrical oblate pentagons.
Derivation of the formula. For the number of Kekulé structures of the
5-tier mirror-symmetrical oblate pentagon it was fuund9

Alt!(n+l)(n+2)2(n+3)2(n+4)(3n2 + 157 + 20) 1)

x(dea,ny) =

In the following the corresponding formula is derived for DJ(Q.H).
Table 1 shows the numerical values for # up to 10 obtained from a

computer program. For the sake of convenience we introduce the notation

iy = k(o ,md 2

13,14

As the basis of the fully computerized method it was assumed
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Table 1. Numerical values of the number of Kekulé structures (K) for 7-tier
oblate pentagons.

n K3 m} n k(03 (4,m)}
1 62 6 3 256 308
2 1 315 7 12 991 770
3 15 218 8 45 316 557
4 118 188 9 141 547 978
5 690 480 10 403 129 727

3 ~ 2 2

Dl (n) = (n+1) (n+2) “(n+3) “(n+4)P(n) (3)

where

P(n) =A+En+0(2)+p(g)+g(z)
+F(§)’G(z)*”(§) “

The coefficients of (4) were determined by means of the X values of n =

1, 2, ..., 7 (Table 1) along with the trivial value DJ(O) = 1.1t was found

1 13 149 _ 1283 _ 19
A=1g B %5 C Tawor P=7woc F-1o0-

_ 69 - g A

Fesgg> %=1z #7715 (3)

A general validity of eqn. (4) with the coefficients (5) is not proved.
Firstly, the form (3) implies that Dj(n) should be a polynomial in 7
of 13~th degree. We can at least say with confidence that the degree is
less than 16. That is namely the degree pertaining to the hexagon 0(4,n).
The removing of cornerslo leads to a lowering of the degree of the corres-
ponding X formulas. Thus for instance K{0(3,n)} is a polynomial of 9-th
degree,9 while K{Dj(B,n)] has the degree 8. Here Dj(3,n) is simply the
hexagon 0(3,n) with one corner removed. In the present case the Dj(&,n)
benzenoid is cbtained not only by removing one corner from the hexagon

0(4,n), but a further indentation is imposed.
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Secondly, the linear factors of eqn. (3) were strictly speaking as-
sumed as a working hypothesis only. They are highly probable, however,

from the analogy on the basis of a great number of similar formulas.g'lo’

13,14

The chances that eqn. (4) is correct are highly increased by the
fact that the three highest X numbers of Table 1, not used in the compu-
tation of the coefficients (5), were found to be reproduced exactly by the
formula. In conclusion we suppose with almost certainty that we have de-
rived the general formula. It was transferred to the factored polynomial

form with the result

Py = kipda,m)

-ml—,(n+1)(n+2)2(n+3)3(n+4)2(n+5)(5}1!' + 60n° + 271n% + Shén + 420)  (6)
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