mefich no. 21 pp. 295-300 1986

ENUMERATION OF KEKULE STRUCTURES:

PENTAGON-SHAPED BENZENOIDS -~ PART II

§. J. CYVIN and B. N, CYVIN

Division of Physical Chemistry, The University of Trondheim,
N-7034 Trondheim-NTH, Norway

(Received: Dccember 1986)

Abstract: A combinatorial formula for the number of Kekulé@ structures for
the benzenoid class of 7-tier prolate pentagons is developed. The solution
is obtained by a direct analysis involving an auxiliary benzenoid class. A
formula for the 9-tier prolate pentagons is tentatively forwarded by extra-
polation.

In the systematic studies of the number of Kekul& structures (K) of
highly symmetrical (dihedral or mirror-symmetrical) pericondensed benze-
noids (cf. Ref. 1 and references cited therein) it is natural to attack
the problem of mirror-symmetrical prolate pentagons; cf. Fig. 1.

For the 5-tier mirror-symmetrical prolate pentagon it was fom‘:dzl
KD (3,m} = Tp5 (D) (142) 2 (13) (21 + 3) (21 + 5) m

In this paper we deduce the combinatorial formula of K for Dl(d,n).
In contrast to the case of the oblate pentagon,l DJ(-‘u,n), it was found
possible to use the same methods of a direct analysis as in the case of

the oblate rectangle. 3

Seven—-tier prolate pentagon without apex. Figure 2 defines a benze-
noid class of 7-tier prolate pentagons without apex, pa’ (4,n). 1f the
enumeration problem is solved for this class we have for the pentagon in

question:
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Fig. 1. Mirror-symmetrical prolate pentagons.

n
k{d*(4,n)} = E K{pa'(4,1)} )
=0
In Ref. 3 the auxiliary class B(n, 3, -1) is defined. The methods

used in that work lead to

n
kel 4w} = Y (x(Ber, 3, )17 @

=0

A systematic study of the auxiliary classes of the type needed here has

Dai(é,n)

Fig. 2. The 7-tier prolate
pentagon without apex.
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given the so far unpublished result:

EREg My = S (”—M)(n?) - (’”Z)(R-?z) 3
On inserting into eqn. (2) one obtains
2 n
K{pa'(4,m} = (”;3) Z G2
J=0
n ) no
) E i) w BT
J‘=0 F=1

All the summations in (4) are conveniently expressed in terms of the X num-—

ber formulas for chevrons:4

n
Z (7+1)% = Klcn(z,2,m} ,
-

i G (737) = kien2,6m) - Kica2,3,m1

=0
2 2
Z(J;Z) = k{ch(4,4,m)} - (”;3) (s)
=1

The chevron formulas were expressed in terms of polynomials in # and inser=

ted into (4). The answer was reduced to

1

7560(n+1)(n+2)2(n+3)(2n + 3)(n + 5)(4n2 + 1l6m + 21) (6)

K[Dai(k,n)} =

Seven—tier prolate pentagon. The expression from (6) was inserted

into (1) and gave by an elementary, but tedious analysis:

n n
k{p*(4,m)} = 75_166 [16 Z (£+1)? + 164 Z (2+1)8
/=0

=0
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n n n
* 576 Z G+’ + 1344 E @+1)® + 1995 Z @+)°
i

i=0 i=0
n n n
5 & 5 3 A 2
+ 1911 Z @+1y* + 1139 Z @+1)3 + 381 Z (+1)
=0 =0 =0

n
+ 54 Z (£+1)] {n
=0

The summations of (7) were worked out, and the expression was simplified to
the final result:

KD (4,m)} = s (e41) (192 00 2net) (21 + D2+ 9P+ D) (®)

Table 1 shows numerical values.

Table 1. Numerical values of the number of Kekulé structures (K) for 7-tier
prolate pentagons.

n K{ni(a,n)} n K{Di(a,n)}
I 42 6 395 352
2 594 7 1 215 126
3 4 719 8 3 331 251
4 26 026 9 8 321 170
5 111 384 10 19 240 650

Nine-tier prolate pentagon. A 9-tier prolate pentagon is depicted in
Fig. 1 (right).

The formulas of K{Di(m,n)) were found to comsist of linear factors in
n only; see eqn. (8) for m=4 and (1) for m=3. For m=2 one has Di(Z,n) =

Ch(2,2,7), and finally (m=1) D (1,n) = L(n). The formulas are well known,
L]

viz.



KD (2,m) = 2ene1) (1e2) (22 + 3) ©
K{Di(l,n)} = n+l (10)

It is tempting to guess that all X formulas for p*(m,n) follow the same

pattern. Specifically we set up the quotients for m+l and m, viz.:

kot 2,m 1k a,m ) = 2oy (21 v 3) (1)
kot (3,m k0t 2w} = —31—6(n+2) (n+3) (2n + 5) a2
KfDi(h.n)}/K{niu,n)} = 41%(;“3) (n+4)(2n + 5)(2n + 7) (13)

By extrapolation we set up tentatively:

1
3780

K(Di(S,ﬂ)}lK{Di(f-’hn)} = (n+3) (n+4) (n+5) (2n + 7)(2n + 9) (14)

The constant factor causes no problems because

k{0t (m,0)} = 1 (15)

for every m, Thus in (14) the denominator is 3:4.5-7-9. The net result from
eqns. (8) and (14) is

kit es,m) = 5n+1) (1+2) % (243) > (94) F (145)

b
28576800

x(2m + D2+ HXMm + Dm + 9) (16)

where the denominator is equal to 43-53-72-93.

It is very probable that the formula (l6) is correct, although not
rigorously proved. Form =1, 2, 3, 4, 5, 6, 7 and 8 it was verified to
give the correct (computer-checked) results, viz. 132, 4 719, 81 796,

884 884, 6 852 768, 41 314 284, 204 951 252 and 869 562 265, respectively.



Conclusion. The methods applied in the derivation of the formula of
K{Di(a,n)} are well established, but turned out to be tedious. The
K{Di(s,n)} formula resulted from guess-work. The forms of the formulas
for Di(m,n) suggest that it should be possible to derive them in a simpler
way, arriving directly at the linear factors. So far no such procedure has

been detected.
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