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ABSTRACT

The CIP-System is investigated from a mathematical point of
view (problems of consistence and completeness). After an
exact and complete definition of the rules including the
domain of applicability, its deficiencies are demonstrated
and supplementary rules for their removal are suggested.
Some of the requirements that the CIP-System fulfills are
proved mathematically.

1. INTRODUCTION

1.1. The CIP-System

The CIP-System enables the chemist t¢ describe different
stereoisomers when the constitution is given (the
non-chemist may consult Section 1.2). This is done by a
nunber of stereodescriptors which are derived by rules and
then attached to certain atoms (or bonds)}. The system is
estimated by virtue of its applicability for those molecules
the chemist happens to describe. But it is not equally
suitable for all molecules; it is generally appropriate for



molecules with constitutions such +that +the differences
between the stereoisomers originate exclusively from
different 1ligand positions at atoms with tetrahedral
geometry, or at double bonds (wether cumulated or not) with
tetrahedral geometry or CIS-TRANS-isomerism.

As the rules have been successively developed by adding
supplements for new cases, most (simple) molecules are
easily treated. However, for the remaining cases,
difficulties soon arise and the general case is extremely
intricate. Recently, V. Prelog and G. Helmchen have revised
the CIP-System [2] to overcome some of the difficulties
experienced with the older rules [1]; nevertheless they
respected the grown character of the system. Both papers
contain, beyond partly unclear statements of the rules, many
individual cases and discussions of other problems in
connection with chirality, stereochemistry, and rules. But
they lack mathematical exactness and systematic
presentation.

As far as I know, neither the CIP-System of 1966 [1] nor the
revised rules of 1982 [2] have ever been analysed
mathematically. Not even an actual definition (in the
mathematical sense) of the rules seems to have existed,
although especially V. Prelog himself and 0. Weissbach made
great efforts to detect any weak points in the CIP-System,
as I know from personal contacts, e.g. the discovery of the
first examples of non-reconstructible molecules (according
to the revised rules of 1982) by 0. Weissbach.

Thus, before creating a computer program which applies the
CIP-System (described in [3,4]), I looked at the rules in
the way mathematicians do (definitions - theorems - proofs)
supplying:

1. An exact and complete definition of the rules including
the domain of applicability, hereby putting them in a
sensible order, complementing them when necessary, and
consulting V. Prelog personally when his published
description seemed unclear to me. The domain - valid
for the theoretical investigation and for the computer
program [3,4] - has been defined making the best use of
the few good clues available in [1] and [2].

2. A description of cases where the CIP-System fails and
suggestions for supplements to the rules to remove these



shortcomings.

3. Proofs +that +the CIP-Rules (with some supplements)
fulfill some of the requirements which are usually taken
for granted.

The next section is to acquaint +the non-chemist with the
chemical problem of different spatial arrangements of the
atoms as well as with the nomenclature that goes with it.
Chapter 2 contains the Dbasic definitions, the rules, and
gome mathematical definitions which are needed for the
proofs. Chapter 3 treats the recognition of constitutional
differences by the CIP-System, Chapter 4 the recognition of
stereochemical differences. Whereas the theorems and proofs
in Chapter 4 are quite simple, the result presented in
Chapter 3 (Theorem 1) is not. This is due to the fact, that
the hierarchical digraph (see Section 2.2) may represent the
same atom several times, which makes an 'induction' of
mappings from the hierarchical digraph to the original
molecular graph difficult.

1.2. Three-Dimensional Chemical Structures for Non-Chemists

(This section is based on the conviction that all terms
refer to models and never to the essence, and that any model
is identical to its structure.)

The fundamental structures of organic chemistry are
aggregates, called molecules, of a number of atoms. These
molecules are described by listing the ©bonds between the
specified atoms or by giving a systematic name which
reflects this bond structure. Such a description is called a
constitution. Unfortunately, there can be several different
molecules, so called stereoisomers, with the same
constitution, due to several possibilities of geometric
arrangements of atoms and bonds.

The most common cases in organic chemistry are the Dbonds
between a carbon atom and its 4 neighbouring atoms, and the
bonds between a double-bonded pair of carben atoms and their
4 neighbouring atoms. In the former case, the 4 neighbours
shape a tetrahedron and if they are all different, then
there are 2 non-congruent possibilities of such a
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tetrahedron. If we define an order among these atoms, we can
connect them either by a right-handed or a left-handed
screwthread line; this screwthread 1line can be used to
define a descriptor. In the latter case there are different
distances between the 4 ligands - always arranged in a
plane - which also gives 2 principle pessibilities of
arrangement, called CIS-TRANS-isomerism.

A description of a molecule taking account of all these
geometric possibilities is called a configuration.

Some other terms are used in this connection: Differences in
the configuration but not in the constitution are called
stereochemical differences. Enanticmers are molecules which
are the mirror images of each other. Diastereomers are
stereoisomers (as defined above) which are not enantiomers.
With parts of a molecule e.g. ligands, one speaks about
stereotopic, enantiotopic, or diastereotopic parts, the
definition of these terms being perfectly analogous. Of
course, stereochemistry is the bdranch of chemistry which
deals with these problems.

2. RULES AND DEFINITIONS

2.1. Molecules, Graphs, Stereoelements

A molecule is not a mathematical object, so the first
requirement is the construction of an abstract model. This
step is normally done by the chemists, though mostly as an
unconcsious habit. For a molecule, this mathematical object
is (or is based on) the chromatic graph.

def A graph is a pair of sets (X,E), where E is a relation
on X (a set of ordered pairs of elements of X). The
elements of X are called nodes, the elements of E

edges.

There is an obvious way to visualise a graph on paper by
points and arrows.



def A chromatic graph is a graph with at least one function
f: X—A or f: E—~>A, where A is an arbitrary set.

With molecules, this A is some set of chemical information,
such as atom types or bond +types. The projection of
molecules on chromatic graphs is so common that I omit any
discussion of it (see e.g. [5]); a formal description of the
involved mathematical structures can be found in Section
2.3.. There is one point to mention: The CIP-System requires
more than just one piece of information to a node: atom
type, isotope, perhaps some geometric features. But a quick
look at the rules (Section 2.2) reveals that we need only
one kind of information at a time, so we may assume just one
function to some scalars. Note that the necessary
geometrical information is also procured by such functions;
there are actually only a small, finite number of situations
{(i.e. 1ligand positions at the most common atoms in organic
chemistry), which can be characterised by some descriptors
(inclusive CIP-Descriptors). Extensions are possible but
cumbersome (there is a complete description of the
octahedral case in the Appendix of [3]). In the same way,
the situations which CIP-Descriptors can describe are
limited. Thus, the suitability of descriptors determines the
domain where the CIP-System can be used. V. Prelog uses the
so-called stereoelements but gives only vague hints how to
find them. The choice of sterecelements determines directly
the domain of the CIP-System. As border cases only
complicate the argumentation (as well as any computer
program), I confined myself to the most common cases, thus
skipping the stereoplanes and keeping only a small part of
the stereoaxes (see Section 2.2).

2.2. The CIP-Rules

In this section, I restate (with 2 small changes) the
revised CIP-Rules [1,2] in a concise way, which can be used
as a basis both for the mathematical proofs and the
programs. The procedure to derive a CIP-Descriptor has 3
steps: choice of a stereoelement, ordering +the ligands,
determination of a descriptor. The 2nd step (here subdivided
in 2 parts) is by far the most complicated.
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Step 1: Choice of Stereoelements

As stereoelements, choose all atoms with quasi-rigid,
tetrahedral ligand arrangement (potential stereocenters) and
all double bond axes - with, in principle, angles of 180
degrees between +the double bonds - with quasi-rigid,
120-degree-triligant ligand arrangements at the ends of +the
double bond axis, respectively (potential stereoaxes).

Step 2, Part 1: Construction of the Hierarchical Digraph

Construct a hierarchical digraph from the designated atom,
i.e. the potential stereocenter or the atom at the end of
the double bond axis; this 1is a connected, acyeclic, and
directed graph, and in graph theory called a free.

The designated atom is represented by the first node, called
the root. All edges should be directed away from the root.
Now, all neighbour atoms are represented by a new node and
the ©bond to them by a new edge between the new node and the
root. When the passed bond has multiplicity m (m>1), m-1
additional nodes (they are called 'duplicate atoms' but are
nevertheless nodes not atoms) and edges are added at each of
the concerned nodes. The duplicate atoms represent the other
atom of the multiple bond than the node with which they have
a common edge. (With aromatic bonds, one has to take the
average of the characteristics of the concerned atoms.) No
further edge is added to duplicate atoms.

Molecular
graph
(H-atoms
omitted)
Hierarchical
digraph

FIGURE 1
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After the neighbours of the root have been represented in
this way, the same procedure is carried out with the root's
neighbours and the root's neighbour's neighbours excluding
the root 1itself. Then proceed to the next neighbours, etc.
The procedure stops when no neighbour, other than the
original one, exists or when the latest added node
represents an atom, which has already Dbeen represented
between this latest node and the root (root inclusive).
Those nodes are also called duplicate atoms and no further
edges are added to them (see Fig. 1, the duplicate atoms are
those with the number in parantheses).

Step 2, Part 2: Ordering Rules

The nodes of the whole tree can be ordered. One speaks of
rank of priority (short: priority) of a node, or of node x
ranks higher than node y.

Before starting the actual comparison of nodes described
below, it should be noted that all nodes closer to the root
rank higher than those farther away, nodes at the same
distance from the root having the same priority (distance =
number of edges between two nodes).

The nodes are compared with each other using some
characteristics of the atoms they represent:

SR1. Larger atomic number ranks higher than smaller atomic
number .

SR2. Larger atomic weight ranks higher than smaller atomic
weight.

SR3. CIS-node at a double bond ranks higher +than TRANS-
node *.

SR4 a. R or S8 descriptor ranks higher than r or s
descriptor which ranks higher than O descriptor.
b. Two equal R or § descriptors rank higher than

*¥ A CIS-node represents that ligand atom at the far end of a
double bond (or an odd number of cumulated double bonds)
which 1lies in CIS-~position (\__ /) to the atom represented
by the node in the chain to the rocot. TRANS-node is the
other one.
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two non-equal R or 8§ descriptors.

The following characteristics determine

hierarchically the order of comparison:

i. Higher rank of first descriptor in the
compared pair.

ii. Higher rank of second descriptor in the
compared pair.

iii. Lower rank of the least common ancestor in
the graph (for +the definition of ‘'least
common ancestor', see Section 2.3).

¢. 7T descriptor ranks higher than s descriptor.

SR5. R descriptor ranks higher than S descriptor.

SR1 - SR5 are called Sequence Rules. I have introduced the
subrule SR4biii (to remove a hole, see Section 4.2) and made
rule 5b in [2] to SR4c to avoid an exception in the
hierarchy of the Sequence Rules.

The sequence of comparison is determined by +the following

rules:

1. One Sequence Rule or subrule is applied to all pairs of
nodes of the tree to be compared before the next one is
applied.

2. Only nodes of equal priority are compared.

3. Taking the numbers of edges on the path between two
nodes as distance, nodes <closer to each other are
compared before nodes farther away from each other (for
the definition of 'path', see Section 2.3).

4. Pairs of nodes with higher priority are compared before
nodes with lower priority. Several pairs with equal
priority and distance to each other are compared
simultaneously.

It may happen, that of 2 or more nodes which until now have
the same priority, one has less successors than the other
(or even none at all; for the definition of 'successor', see
Section 2.3). In this case imaginary nodes are added so that
the named nodes have the same number of successors; the
imaginary nodes rank lowest in all respects.

The comparison of nodes affects the ranks of priority in the
following way: The nodes which have been compared change
priority according to the Sequence Rule applied. Then all
mutually corresponding neighbouring nodes of the two
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compared nodes change priority correspondingly, if they were
equal in priority. Then the neighbour's neighbours change
priority in the same way, etc., until the whole +tree has
been altered (inducing changes of priority in all
directions). Note that a reversal in the order ©between two
nodes induced by the priority can never occur; there are
only refinements to the order in the tree.

I have tried to demonstrate the procedure of comparing two
ligands in Fig. 2. We start with the hierarchical digraph
at the top (without imaginary nodes; these are referred
to by @ in the text of the figure). On the left side, I have
noted the steps and substeps of the comparison, followed by
its result. On the right side, the rank of priority so far
established is indicated by digit strings. The digraph at
the bottom of the figure shows the final result. The
procedure is done without implicit H-atoms; +this does not
affect the rank of priority anyway.

SR4 is special, in that the descriptors used there have
first to be derived (they are called subsidiary descriptors
and do not generally correspond to the final descriptors).
This is done by taking the node in question as the new root,
changing the directions of the edges correspondingly and for
the rest applying the procedure described in this section.
Note that this may result in a recursive nesting (Theorem 2
in Section 4.1 shows that this nesting is never endless).

Step 3: Assignment of Descriptors

With potential stereocenters, project the ligand positiens,
following the order of priority in a natural way onto a line
shaped as a screwthread (screwthread line); the symbols R
and r are to be used if a right oriented screw is needed, S
and s being used for the others. When one but only one pair
of ligands can be distinguished by SR5 and not by SR1 - BSR4,
then r and s are to be used, otherwise R and S. If two
ligands are equal the descriptor is O (except in the case
explained below).

The even-number-of-double bonds axes are treated in the same
way but with the additional rule that the two ligands at one
end of the axis (it does not matter which end) are always
followed first. The descriptor is attached to the middle
atom in the chain.
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The middle bond of the other axes receive the descriptor 32,
if those 1ligands which are first in priority on its
respective side of the axis are in CIS-position %o each
other (\___ /); otherwise the descriptor is E.

Symmetry

There are potential sterecelements with several equal
ligands where, nevertheless, a projection of 1ligand
positions on a screwthread line is unambiguous and rational.
The most common cases are molecules with C2-, C3-, or
D2-Symmetry (symmetry groups defined by A. Schoenflies [6]).
There 1is a special rule for these cases: One of the ligands
is arbitrarily declared to be of higher rank which +then
induces priority as described above (the priority
differences determined otherwise have to be respected). IL
the same descriptor results independently of the arbitrary
initial choice of 1ligand, it can be attached to the
stereoelement in question.

2.3. Mathematical Notations

For mathematical reasoning it is nowadays indispensable to
define and name the sets and functions used concisely.

def A graph homomorphism is a mapping h:(X,E) — (X',E')
such that: (x,y)€E <==> (h(x),h(y))€E" .

def A graph isomorphism is an invertible graph
homomorphism.

def A graph automorphism is an isomorphism of a graph on
itself.

def Two graphs are isomorphic if +there exists a graph
isomorphism from one to the other.

Note, that by this definition a graph homomorphism - or
isomorphism or automorphism - need not preserve the
chromatism, and that an isomorphism is bijective.
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A sequence of edges ey, ep, ... , ey such that
ej=(nj_4q, ny) or ej=(ny, nj;_4), and np=x and n=y, all

n; different, is called a path between x and y.

A graph is called connected, if there exists at least 1
path between any pair of different nodes.

A tree is an acyclic connected graph, i.e. between any
pair of different nodes there is one and only one path.

A rooted tree is a tree with one selected node called
the root, and all edges directed away form it.

GM is the set of chromatic graphs representing
molecules with two numbers attached to each node. A
GM-graph G" (i.e. G" e GM) is a quadruple
¢* = (X*,B%,%",1%), X" being the set of nodes, E" the
the set of edges, t": X*——> I representing the CIP-
relevant information (see below), and 1%: X"— 2%
standing for an arbitrarily chosen but fixed 1labeling
(numbering of the nodes). The CIP-relevant information
assigned to the nodes by the function t" is: the atomic
number (SR1), the atomic mass (SR2), CIS, TRANS, and
INDIFFERENT (INDIFFERENT = no CIS-TRANS-distinction
possible) (SR3), and R, S, r, s, and O (O=no chirality)
(SR4 and SR5).

The values of 1 are called labels.

Note that GM-graphs are symmetric, i.e. (x,y) EE" <==>
(y,x)€ E", and that 1" is injective.

def

G2 is the set of rooted trees (in Section 2.2
called: hierarchical digraphs) derived from GM-graphs
by the CIP-System (see Section 2.2). A G2-graph G"

is also a quadruple, G" = (X",E",t",1"), where X", E",
and t" are: the set of all nodes, the set of all edges,
and the function representing the CIP-relevant
information. 1": X" —> Z* assigns the same labels as
in the original GM-graph.

Note that several nodes may receive the same label.
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def G1 is the set of graphs which arise from G2-graphs when
the function 1" is disregarded, thus just picking out
the triple (X",E",t"), i.e. G"=(X",E",t",1")e€G2 ==
G'::(X",E",t")eﬂ- -

Note that G1- and G2-graphs are non-symmetric; as rooted
trees, they are even antisymmetric. The function 1 is not
necessarily injective. As described in Section 2.2, the
ordering and the Sequence Rules are applied to Gl-graphs,
i.e. labels are disregarded.

The relation between the nodes of the graphs in the three
sets GM, G1, and G2 will be expressed as follows:

def The nodes x and y mutually represent each other if x of
G* (or of G") goes over to y of G" (or of G') when G"
(or G') is derived from G* (or G").

As G1- and G2-graphs are rooted +trees, +there are many
expressions with obvious meanings. Referring to a graph
G"=(X",E",%",1")€ G2 or G'=(X",E“,t")e§l (they are all
rooted trees), we define:

def y successor of x:<{==> (x,y)€E"

def x predecessor of y:<==> (x,y) €EBE"

Except for the root, every node has exactly one predecessor.

def A successor chain of x is a sequence X=Xy,Xp, ...
"
of nodes, where (xi, xi+1)e'E .

1Xn

def A predecessor chain of x is a sequence X{,X5, ... ,X;=X

of nodes, where (x;, x;,1)€E".

def y descendant of x:
==> y is contained in a successor chain of x.

def x ancestor of y:
{==> x is contained in a predecessor chain of y
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def A branch is a subgraph, containing all descendants of
one single node and this ncde as well. This single node
is called head of the branch.

Note that, taking the head as root, a branch is again a
rocted tree.

def The distance between x and y is the number of edges of
the path between x and y.

def A generation is a set of all nodes which have the same
distance from the root (in [2]: sphere).

def The least common ancestor of x and y is the ancestor of
both x and y, which has the smallest distance to x of
all ancestors of x and y.

def The family of x and y (x neither ancestor nor
descendant of y) is the wunion of the two branches
having as heads the ancestors of x and of y which are
successors of +the 1least common ancestor of x and y,
respectively.

def A leaf is a node which has no successor.

3. CONSTITUTIONAL INCOMPLETENESS

%.1. CIP's Failing

It seems intuitively clear, that the CIP-System will grasp
all constitutional differences. Nevertheless, a closer
investigation shows +that +this is noet true and that a
considerable change of the rules is necessary to guarantee
constitutional completeness.

I would like to give 2 examples. Suppose there 1is an atom
type A which allows ligancies of 1 and 3 (all single bonds).
Consider then the following molecule and 1its hierarchical
digraph:
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In the hierarchical digraph, the left and the right 1ligands
cannot be distinguished.

But even if we impose some restriction on the ligancy of
atoms which forbid such molecules, we can have

constitutional differences not perceived by CIP:

(3)

molecular graph hierarchical

digraph

)

FIGURE 4

From the simplicity of this second example we see, that CIP
is fundamentally incomplete.

A possibility to save the system would be to introduce some
new 'Sequence Rule', applicable only to the leaves (the
outermost nodes) of the nierarchical digraph, e.g. one could
consider the distance from the root of the duplicate atonm
('SR1b: A duplicate atom with its predecessor node having
the same label <c¢loser to the root ranks higher than a
duplicate atom with its predecessor node having the same
label farther from the root, which ranks higher than any
non-duplicate-atom-node'). With such a supplement - in the
following called the iinking supplement - CIP indeed grasps
all constitutional differences. This is proved in the
following for tetrahedral stereocenters. The extension to
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the whole domain, as defined in Section 2.2, is almost
trivial.

3.2. Gl1-Graphs

We define a relation between the nodes and a relation
between the bonds on Gi-Graph G'=(X",E",t"):

def A node x or a branch B' 1is indistinguishable from a
node y or a branch C', respectively, if there is a
graph automorphism f on X" such that:

a) t"(n) = t"(f(n)) for all n X".
b) f(x) =y or ne&B' <==> f(n)€CC', respectively.

Proposition 1:
Indistinguishable is an equivalence relation.
Proof: ... (straightforward) ...

Proposition 2:
x head of branch B', y head of branch C'.

B' indistinguishable from C' implies x 1indistinguishable
from y.
Proof: ... (trivial) ...

We can now show that two nodes x and y with the same rank of
priority are indistinguishable. In the light of Proposition
2 we prove:

Lemma 1:

x head of branch B', y head of branch C'.

Branch B' is indistinguishable from C', if x has +the same
rank of priority as y.

Proof:

a) Ancestors of x and ancestors of y belonging to the same
generation, up to the least common ancestor, must have
pairwise equal priorities, since priorities are induced
(see Section 2.2).

b) Let u and v be the heads of the two branches U' and V',
respectively, of the family of x and y. By (a), they have
equal priority. For every descendant of u, there must
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always be a descendant of v which ranks equal: For all
successors of u and v there must always be one of u and
one of v ranking equal, since any difference in priority
would induce a difference in priority of u and v. The
same argument can be used for the next generation, i.e.
the successors of the successors and through an induction
argument for the entire branches U' and V'.

c¢) These pairs of equal priority can be used to define an
automorphism f on G': The nodes of U' will be mapped on
the node of V' with +the same priority (if there are
several, we choose those pairs which have ancestors that
represent each other, if there are still several, we
choose arbitrarily) and vice versa; neither the nodes of
U' nor of V' will be mapped on themselves.

d) Only nodes with the same image under t" can have equal
priority. Thus, f satisfies criterion (a) in the
definition of indistinguishable and the Lemma is
established.

#h#

def A mapping constructed as in the proof of Lemma 1 is
called a Cindi-mapping (Constructed indistinguishable).

%.3. Cindi-Mappings on G2-Graphs

G2-graphs can be considered as special cases of Gl-graphs.
The difference lies in the function 1, included in G2-graphs
but not in Gi-graphs.

There is no difficulty in constructing Cindi-Mappings on an
erbitrary G2-graph G"=(X",E",t",1"). Here, we are mostly
interested in how Cindi-Mappings treat the labels, specially
those which indicate the cyclic structure of the original
molecular graph. But first, two simple general propositions.

Proposition 3:

Cindi-Mappings are involutions.

Proof:
This follows directly from their construction principles.

#H#



Proposition 4:

f Cindi-Mapping, u,v,x,y ncdes.

f(x)=y, u ancestor of x, v ancestor of y, u and v in the
same generation implies f(u) = v .

Proof:
This follows from the fact that we have trees and that
Cindi-Mappings are graph isomorphisms.

#h#

def Branching junctions are non-leaf nodes which have the
same label as one of their descendants.

def Junction leaves are leaves which have the same label as
one of their ancestors.

A moment's thought will convince the reader, that branching
junctions and junction leaves are exactly those nodes which
represent the atoms which are nearest to the potential
stereocenter of the cyclic substructure being determined;
these are the atoms where one - as Helmchen and Prelog
state [2] - has 'to break the remaining n-1 bonds'.

The next proposition and the following lemma are those
statements which need the linking supplement (mentioned in
Section 3.1) to be valid. The first example of Section 3.1
(Fig. 3) shows its necessity for Proposition 5.

Proposition 5:
A Cindi-Mapping maps junction leaves on junction leaves.

Proof:

Cindi-Mappings preserve priority. With the linking
supplement no junction leaf will have the same priority as a
leaf which is not a junction leaf.

#i#

The example shown in Fig. 4 d:monstrates, that Proposition 5
is not strong enough. Fortunately, we can obtain more out of
the linking supplement.

Lemma 2:

f Cindi-Mapping, x branching junction, y junction leaf and
descendant of x, and 1"(x)=1"(y).

Then, 1"(£(x)) = 1"(£(y)).



Proof:

For any junction leaf n, there exists a node m, ancestor of
n, such that 1"(m)=1"(n). Say, m is in the p-th generation.
The linking supplement and the fact that Cindi-Mappings
preserve priority enforce not only that n':=f(n) is a
junction leaf, but also that n and n' 'point back' at nodes
which 1lie on the same generation; in other words, if m' is
the ancestor of n' in the p-th generation, then
1"(m')=1"(n'). By Proposition 4, f(m)=m'.

Bach branching junction x has, by definition, at 1least 1
junction leaf z as descendant with 1"(x)=1"(z) (actually at
least 2). The first part of this proof yields thus, that
branching Jjunctions are mapped on branching junctions, and
that 1"(f(x))=1"(£f(2)). But this last statement is valid for
all junction leaves which are descendants of x and for which
1" (y)=1"(x).

#h#

We could state as a trivial corollary, that in such a case
all junction leaves are mapped 'consistently'. However we do
not need this fact.

Please note, that f does not map the nodes of the whole tree
‘consistently' (Fig. 5 provides an example); even some
junction nodes with the same label can obtain images with
different labels.

3.4. GC-Graphs

To enhance the readability in this and the next section,
sets and elements are denoted with systematic superscripts.
Thereby the nodes shall represent each other in the
self-evident way (for the definition of 'represent', gsee
below).

Our aim is to construct an induction of a graph automorphism
on GM-graphs by a Cindi-Mapping. Properly defined, such a
graph automorphism could indicate the constitutionally
equivalent atoms. Unfortunately, Cindi-Mappings do not
preserve the function 1 (e.g. PFig. 5), obviously a
prerequisite for such an induction.



FIGURE 5

That is the reason why we make a detour via GC-graphs.
First, two definitions:

def G6=(X,E,t,1), H=(Y,F,u,m). G-H:=(X-Y¥,BE-[Y],s,k) where
[Y] is the set of all edges containing one or two nodes
of Y, and s and k are the restriction of t or 1 to X-Y,
respectively.

def 6=(X,E,t,1), H=(Y,F,u,m). GeH if Xc¥, EcF, t is the
restriction of u to ¥, and 1 is the restriction of m to
Y.

Now, to the definition of GC-graphs:

def GC is the set of all graphs G=(X,E,t,1), such that the
restriction of 1 to all non-leaf nodes is injective and
there exists G"=(X",E",i",j")€ G2, where G"-G 1is a
union of discrete branches of G", where each branch has
at least two nodes.

With other words, you get a GC-graph by taking a G2-graph
and cutting off branches (but never just one leaf) until no
label is left twice in the tree, except at the leaves.

def G=(X,B,t,1)€06C represents G"=(X",B",t",1")eq@2 if
GeG", 1(x)=1"(x) for all x€X, and 1(X)=1(X").

def G=(X,E,t,1) €GC represents ¢"=(X",E",i",j") €GM, if G
represents the hierarchical digraph of G".

With other words, each atom is represented at least once.

Lemma 3:
GEGC represents G"€G2 and G"€GM. Then G and G" can be
reconstructed from G.



Proof:
All labels appear in G. Thus we can sketch G* (from which G"
was derived) in the sense that all atoms are there.

What about the edges ? Because G represents G" and G, +the
only edges which one can imagine to be missing are those
which were 'cut through'. So suppose, edge e” between x" and
5" (y successor of x) is missing because the branch starting
with y" was cut off. Then y* is represented elsewhere in G,
and there we find also e (e” and e in the self-evident
relationsship) and once again x, this time as a leaf (by the
construction principles of hierarchical digraphs and the
prohibition to cut off a single leaf).

To construct G" from G* is nothing more than constructing
the hierarchical digraph.

#ik

def A set of branches B";cG"eG2 (i=1,2,...) is called
interconnected it their heads have the same
predecessor, the intersection of +the sets of their
labels is not empty, and every branch has at least 2
nodes.

Proposition 6:

Branches B";, B"5<G" = (X",E",t",1") interconnected
- lII(Bl11)=1N(BII2)-

Proof:

In short, 1"(B";) (and 1“(B2)) is just the set of

all labels of the nodes in GEGM which form the cyclic

system corresponding to B"; and B",.

Let G" be the hierarchical digraph of G, the nodes h";

being the heads of B";<@G", and" 1(b") their common

label. From the way hierarchical digraphs are constructed,
we conclude:

1(n") is in B"4 {==> there is a path in G" Dbetween the
nodes represented by n" and b" not
passing through any node represented
by an ancestor of h".

Since by the definition of interconnected, h"4 and

h"5, have the same ancestors, the proposition is

established.

###



Lemma 4
X"EX", G’"=(X",E",t",l")€.(}_2_-
There is 6=(X,E,%,1) €GC which represents G" with x"eX".

Proof:

Start at the root and look at those branches which start
with the successors of the root. If there are interconnected
ones, cut off all but one of every bunch of interconnected
branches (the one which contains x", if any; for the rest:
the choice is arbitrary). Then move one generation away from
the root and 1look at the branches starting at the root's
successors' successors. The interconnected ones are cut off
leaving one of every bunch. Then move one generation away
from the root and repeat until no more interconnected
branches are left.

In this way we clearly obtain a GC-graph G =G". No label is
lost either, because of Proposition 6. Thus, G represents
G,

#i#

Corollary 1:

xe€X, G"=(X",E",t",1") € G2, 6=(X,E,t,1) €GC.

G represents G". y"€X", f Cindi-Mapping on G", f(x)=y".
Then there exists H!EQE which represents G", contains y",
and is isomorphic to G.

Proof:

With a slight restriction in the checice of the branch not to
be cut off, the argument of Lemma 4 can be taken over: With
interconnected ©branches, we choose the one which is
isomorphic to the corresponding branch in G (i.e. the one
with the same labels). There will be one, since £ 1is an
isomorphism.

#H##

N.B. Every bond is represented once and only once in G
(similar argument as in the proof of lemma 4).

def G*=(X",E*,t%,1%) € GM, G = (X" Bt € G2,
G" represents G”.
The projection G">>G"  shall be the mapping
p: X"—> X*: x" b— x°, where x" and x" mutually
represent each other.
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def G"=(X",E",t",1") €GM, @=(X,E,t,1)€GC, G represents G".
The projection G>>G" shall be the mapping
p: X— X%: x +— x°, where x and x* wmufually
represent each other.

def 6=(X,E,t,1) €GC, G"=(X",E",t",1") €62, G<G".
The projection G">>G shall be the mapping p: X" —> X
for which p(x)=x for x€G and 1(x")=1(p(x")).

The projection G">>G" is clearly the reverse of constructing
a hierarchical digraph.

Lenma 5

¢*=(x",B*,%t",1") €GM, G"=(X",E",t",1") e G2, G=(Y,E,u,m)EGC.

G representing G" and G". p projection G">>G", q projection

G>>6", r projection G">>G. f <Cindi-Mapping on G", h

restriction of f to the nodes of G. H:=h(G).

a) H is isomorphic to a GC-graph representing G".

b) The mapping g on G": x*F—aq(h(r(p~ (x*)))) is well
defined (x"e€ Xx").

e) t7(x")=t"(g(x")).

d) g is a graph homomorphism.

Proof:
a) h is injective, so H is isomorphic to G.
b) p‘1(x‘) is a set of nodes with the same labels. By the
definition of GC-graphs, G will contain only one of these
nodes except “for leaves. Cindi-Mappings map a leaf and
its ancestors with the same 1label on a leaf and an
ancestor with the same 1label (Lemma 2), so q projects
r(p’1(x")) on the same node.

Evident by the construction of g.

d) e*:=(x",y") edge of G* == there is at least one edge
(x,y) in G such that p(x)=x" and pl(y)=y"- £ is an
isomorphism, so there is an edge (f(x),f(y)) in H. q
also preserves edges.

On the other hand, e”:=(q(x),q(y)) edge of G* == there
ig an edge (x,y) in G by the rules for the construction
of hierarchical digraphs (g 1is the restriction of the

(]
—

'inverse operation'); h and r are mappings between trees
which preserve edges, so any 'new edge' would result in a
cycle; d":=(v",w") in G" == there is a d":=(v",w") in

G" by the rules for the construction of hierarchical
digraphs.
###



3.5. Constitutionally Equivalent Atoms

It is time to define the term 'constitutionally equivalent'.

def Nodes x" and y* of a GM-graph G" are called
constitutionally equivalent, if a graph automorphism £
on G exists, such that £"(x")=y".

The reader may convince himself that this definition
corresponds to what chemists understand by 'constitutionally
equivalent'.

Theorem 1:

G"=(X",E",t",1") € G2, G"=(x",E",t",1") €GH, p: G"—> G”
the projection G">>G".

x" € X" has the same CIP-priority as y"€X" {==

there is an automorphism preserving t° which maps p(x") on
p(yll).

Proof:
Having the automorphism, the equality of priority is
trivial.

By Lemma 1, there is a Cindi-Mapping f on G" with f£(x")=y".
By Lemma 4 and 1its corollary, we have a GC-graph G
representing G° containing x", and a GC-graph H representing
G" containing y", G and H isomorphic. Let gq be the
projection H>>G", r the projection G">>G, and h the
restriction of f to G. By Lemma 5, h(G) is isomorphic to G,
hence also to H. Let i denote this isomorphism. Then by a
similar argument as in the proof of Lemma 55
g:G‘——%G':x‘F——aq(i(h(r(p‘1(x'))))) is a graph
homomorphism with t*(x*)=t"(g(x")).

Surjectivity remains to be proved (surjective mappings on
finite sets are bijective). f is injective, thus h and i(h)
are injective. Since the numbers of nodes of H equals the
one of G, i(h) must be surjective. q is trivially
surjective (H represents G"), so g is surjective.

#HH



Corollary 2:

G'":(X",E",t",l") € E' x“,y"GEX".

If x" and y" have the same priority, then for any node
n"€X" for which 1"(m")=1"(x"), there is a node n" with
1"(n")=1"(y"), which has the same priority as m".

Proof:

Let G €GM represent G" and p shall be the projection
G">>6". Since 1"(m")=1"(x") ==> p(m")=p(x") and similarly
p(n")=p(y"), by going forward and backward in the statement
of Theorem 1 the corollary is yielded.

#i#

4, STEREOCHEMICAL COMPLETENESS

4.1. Interdependence

A mathematician reading the ordering rules in Section 2.2,
agsks himself immediately, if the determination of subsidiary
descriptors can always be actcomplished, since - in cyclic
structures - these descriptors may depend on each other.
Fortunately, it is not difficult to prove that with the
construction of a hierarchical digraph (introduced in the
last revision of the CIP-System [2]) termination of the
procedure can be guaranteed. I consider this point to be the
main success of +the revision. N.B. Interdependence of
subsidiary stereocelements is the main reason for the
reconstruction problem (see [4]).

For the proof, I restricted myself again to the tetrahedral
stereocenters as the extension to the whole domain is easy.

Theorem 2:
It is always possible to accomplish the determination of
subsidiary stereocenters.

Proof:
The Sequence Rule BSR4 is applied only if +two or more
branches are considered equal by the Sequence Rules SRi1 to
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SR3. Then - as a first step applying SR4 - one branch is
dealt with in order to determine the subsidiary centers. The
fact that at least two branches (of the original center)
were constitutionally equal, implies that at every
subsidiary center, the branch which 1leads back to the
original center 1is constitutionally different from all the
others.

If it happens that other subsidiary centers have to be
determined in order to distinguish the branches at the first
subsidiary center, the same argument is valid. Generalising
this argument, we conclude that in the worst case the jump
is from one subsidiary center to the next subsidiary center
but always away from the original center. As the graph is
finite, this jumping will have an end. The outermost centers
can be determined without SR4 and SR5, after which the
outermost but one can be determined, and so on, all the way
in to the original center.

#if

4.2. R,S Versus r,s

It is intended that r and s be used and only wused for the
so-called pseudochiral stereoelements, i.e. those elements
with tetrahedral 1ligand arrangement which are invariant
under reflection (their arrangement of ligands cannot be
distinguished from the arrangement of ligands of the
reflected structure). This happens if 2 and only 2 ligands
at a stereocenter (or at one end of a corresponding
stereoaxis) are the mirror images of each other but not
equal (these ligands are called enantiotopic 1ligands, see
also Section 1.2).

In the 1light of the assignement-of-descriptor-rules in
Section 2.2, this implies two requirements of the Sequence
Rules:

a) SR1 to SR4 must distinguish between all different ligands
which are not enantiotopic to each other.

b) SR5 must distinguish between enantiotopic ligands.

A moment's reflection will convince the reader that (a) -
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proved below - implies (b): Enantiotopic ligands must
always contain at least one stereochemical feature, which
directly or indirectly is  based on different,
non-enantiotopic parts; if by (a) all stereochemical
information is represented by (subsidiary) CIP-Descriptors,
then a look at SR5 reveals that obviously (b) must be valid
too.

As usual, the proof is given for tetrahedral stereocenters
only, the necessary extension being easy.

Theorem 3:
By the BSequence Rules SR to 8R4, all different,
non-enantiotopic ligands can be distinguished but no others.

Proof:

1. It 1is not possible for enantiotopic 1ligands to be
distinguished by the 8SR1 to SR4c, since they are all
completely symmetric with respect to +the descriptors R
and S.

2. Constitutional differences are recognised by the
CIP-System according Theotrem 1 (Section 3.5).

3. What remains are different CIP-Descriptors. It can be
seen that potentially we might have +to compare each
descriptor with every other, whilst taking account of
different priorities between the subsidiary centers
(according to the Ordering Rules, see Section 2.2). What
difference can ‘there still be Dbetween 2 pairs of
subsidiary centers, i.e. where the first descriptors have
the same priority as each other and likewise the second
descriptors ? Such a difference must lie in the
connecting of the 2 centers in the graph. But the ligands
being compared are constitutionally equal, thus the only
possible difference lies in the length of the common path
leading from the original center to the 2 subsidiary
centers being compared. Thus, the priority (or even
generation number) of the least common ancestor
(definitions see Section 2.3) will give a measure for
this last variation.

#i#

The proof shows that the Sequence Rule SR4biii which I have
added is necessary.



SUMMARY

The rules of Cahn, Ingold, and Prelog for the specification

of

molecular configuration (CIP-System) have Dbeen

investigated:

1.

Rules and domain of application have been defined in the
mathematical sense.

The CIP-System as stated in [1] and [2] cannot
distinguish ©between certain constitutionally different
ligands. A supplemental rule tc remove this defficiency
is suggested.

There is a minor omission in +the Sequence Rule 4.
Supplying a SR4biii is enough to fill the gap.

Three formal mathematical proofs are given. They state

that:

- the rules, as supplemented by me, can distinguish
between any different ligands.

- the determination of descriptors is a finite
procedure.

- with SR4biii, reflecting a molecule has the expected
effect on CIP-Descriptors: R to S and S to R while r
and s are left fixed.
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