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Abstract

Two linear recurrences are determined, from which circuit polynomials
of linear benzene chains can be explicitly obtained. Corresponding
results for characteristic polynomials, matching polynomials and

y-polynomials can be easily deduced.
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1. INTRODUCTION
We will consider only graphs which are finite and have no loops.

Let G be such a graph. A cycle decomposition (circuit cover, cycle

cover) of G, is a spanning subgraph of G, in which every compomnent is
a circuit. We define a circuit with one and two nodes to be a node and
and edge respectively. A circuit with more than two nodes will be

called a proper circuit. A matching is a circuit cover which has no

proper circuits. With every circuit (cycle) a in G, let us associate
an indeterminate or weight L and with every cycle cover C, the weight

w(C) = Hwa.

where the product is taken over all the cycles in C. Then the circuit
(cycle) polynomial of G is
c(G;w) = Iw(C),

where the summation is taken over all the cycle covers in G, and w is
a vector of weights, sometimes referred to as a weight vector. The
circuit polynomial was first introduced in Farrell [2] as a member of
a class of polynomials, called F-polynomials. The basic results about
circuit polynomials are however given in Farrell [1].

In this paper, we will assign the weight vy to the cycle with n nodes.
Therefore w will be of the form (wl,w W ,....wp). where p is the number

23

of nodes in G.
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Therefore if Awirszwkt is a term in C(G;w), then ri + is + kt = p and
G has A covers consisting of r i-gons, s j-gons and t k-gons. C(G;w) is
essentially a generating function for the different types of circuit

covers of G.

We define a linear benzene chain Bl_1 to be the graph formed by edge

concatenating n(a finite number) hexagons, so that the adjacent hexagons
have exactly one edge in common. This graph can also be called a hexa-
gonal animal (see Harary and Harborth [11]). Among regular chemical
structures nature seems to prefer haxagonal structures. Thus benzene
chains are of particular interest to chemists. The corresponding chemical
compounds are called polyacenes. (n = 1; benzene, n = 2; naphthalene

n = 3; anthracene, etc.)

It was shown in [2] that the characteristic polynomial and the matching
polynomial are special circuit polynomials. Thus,. statements about C(G;w)
will also hold for these two polynomials. The characteristic polynomial
and the matching polynomial are of some importance in the investigation of
chemical compounds (see Godsil and Gutman [6,7] and Gutwan [8]), Recently,
another polynomial, the u-polyncmial, was introduced by Gutman and Polansky
[9]. This polynomial also seems to be quite useful in chemical investigations
on n-electron energy (see [9] and Polansky and Graovac [13]). 1t was shown
by Farrell [3] that this polynomial is also a special circuit polynomial.
Thus, results about circuit polynomials of benzene chains could be of interest
to theoretical chemists.

We will derive two linear recurrences, from which the circuit polynomial
of Bn can be explicitly obtained, for any value of n. We will also give
some tables of values of C(Bn;g). For brevity, we will use C(Bn) (and sometimes

Bn), for C(BH;E)' when it would lead to no confusion, and especially in
equations. We refer the reader to Harary [10] for the basic definitions in

Graph Theory.
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2. PRELIMINARIES
We define a chain to be a tree with nodes of valencies 1 and 2 only.
The chain with n nodes will be denoted by Pn. Most of our results will
be written in terms of the circuit polynomial of Fn. Clearly, every
circuit cover of Pn will be a matching. Therefore the circuit polynomial
of Pn coincides with its matching polynomial. Hence from Theorem 9 of
Farrell [4]), we have the following lemma.
Lemma 1 (p/2]

(1) c(PP;E)= L

CK v Pl R
k=0 k 1

2
(ii) C(PP)=WIC(PP—1) + W, C(Pp_z), with C(PD) = 1.

A table of values for C(Pp) is also given in [4] (Table 1). This will
be useful in the material which follows. We attach Pn to a graph G, by
identifying an end node of Pn with a node of G.

The following result is called the Fundamental Theorem for circuit poly-
nomials. It can be easily proved (see [1]).

Theorem 1
Let G be a graph containing an edge Xy, joining nodes x and y, Then
C(Giw) = C(C3w) + wy C(C~"3mw) + C(C w),
where G° is the graph obtained from G by deleting xy, G°” is obtained from
G by removing nodes x and y, and G* is the restricted graph obtained from
G, by requiring that any cover of G* must include edge xy as part of a proper
circuit.
Theorem 1 implies an algorithm for finding circuit polynomials of graphs.

This algorithm will be referred to as the reduction process.



= 328 =~

We will denote the characteristic polynomial of the graph G by ¢(G;x),
its matching polynomial by m(G;wI.wz) and its u-polynomial by w(G;t,x). The
corresponding brief notations will be ¢(G), m(G) and u(G) respectively. The
following result was established in (1,2].

Lemma 2
$(G;x) is obtained from C(G;w) by putting W= X, W, = -1 and
w, = -2, for k»2 i.e. by putting w = (x,-1,-2,-2,...,-2).

From the definition of a matching, we have

Lemma 3
m(G3wyswy) = C(G3(w, wys 0, 0, ..00)).

The following lemma is taken from [3]. (Theorem 1, with the signs corrected).

Lemma 4
p(G3,%) = C(G; (x,-1, -2t,, =2t,,...)),
where t = (tl,tz,ts,...).

The following lemma was established in [9] and [13]; otherwise it can
be easily deduced from Lemmas 2,3 and 4.

Lemma 5
(1) ¢(G;x)) = u(6;1,x) and
(ii) «(G;x) = u(G;0,x), where

a(G;x) = m(CG; x,-1) is the acyclic polynomial of G.

3. CIRCUIT POLYNOMIALS OF BENZENE CHAINS
We will call the n hexagons which are "stuck on" to form Bn. the cells
of Bn. We define B to be an edge. The first and last cells of Bn will be
0

called terminal cells. Bn is illustrated below in Figure 1.

X

Figure 1
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Edges ab and yz will be called terminal edges. Nodes a,b,y and z will be called

terminal nodes.

b b
a a b a
c
X 4 b R :
n n n
C
& d

Figure 2

It is clear from the diagrams that Xl, Yl and Rl are the chains P3, P5 and

Pk respectively. We will take XO. YO, and RO

Let us apply, the reduction process to Bn’ by deleting the edge uw

to be the empty graph.

(see Figure 1). Then (in the notation of Theorem 1) G” will be the graph
obtained from Bn-l by attaching P5(vxzyw) to one of its terminal nodes, node
v. G677 will be Bn_z with P2 (st) and Pb(rqrxzy) attached to the nodes r and
s respectively, of a terminal edge rs. G* will be the restricted graph in
which uw must be part of a proper cycle, in every cycle cover of Bn.

Apply the reduction process to the graph Bn; using edge vx, and to the
subsequent graphs G” and G”7, using edges which cannot belong to proper cycles.

This yields (with G written for C(G;w)),

68 =By Byt ¥ Bl (1)

and

G"” 3 S ¢ +w, P, R (2)

3 "n-1 272 "n-l:

[}

It can be easily confirmed that Bn contains 4n+2 nodes. Also, the
proper cycles that contain uw will be those consisting of all the edges
(omitting the common ones) of the consecutive cells k, k + 1, k + 2,..., n-1
n, where l<k<n. Each such cycle is characterized by a chain Pm containing
edges not belonging to cell n and with terminal nodes u and r, where m = 4i + 2,

for i =0, 1,2,..., n-2.
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This chain Pm’ together with the remaining 5 edges of cell n constitute the
cycle. Hence each proper cycle containing uw will contain 4i + 6 nodes.

The graph obtained from B by removing such a cycle, will be a graph of type
Rr' where r = n-i~1. Hence we have the following result for the graph G*.

n-1

* =
6F = (I Vaive Pp-ga1 ° @

Equations (1), (2) and (3) together with Theorem 1, yield the following

lemma.
Lemma 6
2 n-1
Bn - Pﬁ Bn_1 + 2w2 P3 Yn_l + v, P2 Rn—l iéo Y0it6 Rn—i—l (n>1) .

Apply the reduction process to the graph Rn, using the edge ab.

The graph G” will be Xn. G”” will be the graph obtained from Bn by

=1

attaching P2 and P, to the nodes of a terminal edge. In this case, we have

4
C(G*) = 0. Applying the reduction process to the graph G°” using the edge
adjacent to nodes of valencies 1 and 2, we get

G"” = Wy Yn-l + WZ Rn—l .

Hence

R =w

X +ww, Y +w 2 R
n 1'n

172 "n-1 2 “n-1 7 (4)
Applying the reduction process to the graph X, using ab, and to Yn, using

be, yield

B
1]

Wl Bn + wz Yn-l (5)

and

Yn = Hj Rn i Yg Xn ' 6)
Equation (5) by w, added to Equation (4), yields

1
2, 2
-w B + Rn - uz R . (7

2w1w Yn—l - 1 n-1 n-1

P

Hence, by substituting in Lemma 6 for P3, P  and Yn—l’ we get

4



Theorem 3

2 T n=l
v t 2 Ryt ot ko aiws Ro-i-

B 1

2
n =¥ + wz) Bn_1 + (w

1 l(n>0).

with By = ulz + v, and RO =1 and Rs (s>0) 1is given below in Table 1.

Let us apply the reduction process to the graph Rn by deleting edge ac

(see Figure 2). 1In this case, G” will be the graph Rn- with two equal chains

2
PA attached to a terminal edge. This graph will be denoted by Hn—Z,h' The
graph G”~ will be Rn-l’ together with two isolated nodes. o
Therefore
¢ =P . R =w % R . (8)

I "n-1 1 "n-1
The restricted graph will be similar to G* of Equation (3), except for two
isolated nodes. Hence we will get (see Equation (3)).
n-2
2

* = .
G =vy " 4Z0 Yesae Brcisd 9

Let us apply the reduction process to Hn—2 4 by deleting the edge to
s

which the two chains are attached. This yields

2 2 n=3
Bizye " B35 ¥ %2 Ps Bca PPy 10 Wenee Bi-t-at

(c.f. Equations (8) and (9)).

(10)

By using Equation (10) recursively, until we obtain the graph HD 2n
2

(which is Pén)’ we obtain the following equation:

n=2 2 nz=2 2 jE

R+ 8Pt 1

1
sn VY2 581 ¥ oon-25-1 By T 3E)

¢ =K P o “ags6 Ryogoy ) (D (D

n=2,4

Notice that when j=n-1, the terms inside the summations over j, become the
expressions given in Equations (8) and (9) respectively. Hence by using
Theorem 1 with G*°, G* and G as given in Equations (8), (9) and (11) respect-

ively, we obtain the following result.
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Theorem 4
n-1 =1
B =i +j: (Pzn -25-1 [w, R + 1&} Y446 Rj_i_lll(ml),
where
4 2 2 -
R1 vy + 3wl vy + vy and RO =1.

Theorems 3 and 4 can be used to obtain explicit formulae for the circuit
polynomials of benzene chains. Since the coefficients of C(Bn) are the numbers
of the different cycle decompositions of Bn’ we have obtained the necessary
results for deducing the numbers of the different cycle decompositions of Bn’
for all values of n.

We have used Theorems 3 and 4 in order to comstruct the following tables
(The computations were extremely tedious!).

Table 1

Circuit Polynomials of the Graphs Rn

i CR 3w
i}
21 w?+3wfw2+w§
2 w?+8w?u2+18w?w§+llw g ; f Ve
3 w12+43w10w +60w §+119w?w§+97w?wg+26w$w;+wg+2wﬁu +8w wzw6+5w §w6+w§wlo
b Sl w127l 2 Zeian) v+ 19w +335w1{wg+50wfw;+wg+3wi0w6+
26w1u2w6+69w1w§w6+60wiwgw6+l4w wgw6+w?wz+2w6w +8w?w2u10+5wfw§w10+wiw14
Table 2
Circuit Polynomials of Benzene Chains
. C(B_sw) i
1 w?+bw? §+9wiw§+2wg+w6
2w +l}w?wz+élw +61w1w2+31w§ +Zw w +2w§w6+6wlw w6+3w2+w10
3 “14“6"’}2"’2*98" §+29Uw +A29w? +294u’{w3+7ewfg
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7 8 6 4 2 23 4 2 2.2
4w2+3wlw6+22w]w2w6+47w]w2w6+28w1 2w6+3u w6+2w1w 0+6w1w2w10+2w2w]0+w1w6+w14
18 16 14 2 12 10 4 85 4 8
4 v +21w1 w2+180w1 w2+814w1 +2096w1 w +3092wI 2+2497w w2+993wlw +155w
9 12 10 8 2 6.3 4 4 2 5 6 8
5w2+4wl w6+48wl w2w6+206w1w w6+384wlw2w6+298w1w2w6+80w1w2w6+4w2w6+3w w O+
2 2.3 4 6 2 4 2 222 4
22w1w2wl0+47w1w2w10+26wlwzwl0+w2wio+2w1w6w10+3w1 6-lel 2 6+6w1w2 6+2w w 4+
2 2
6w1w2214+2w2w1é+w18
2 3 i1
Let us write f(RjJ = (W1+2W2)Rj - v, Rj-l +1£0w41+6Rj-i"1' Then from
Theorem 3, we have B - w2 (w2+w ) B = f(R) (12)
> n 2, 1727 “n-1 n’ '

By using this equation recursively for Bn-l’ Bn-z' etc, and applying the
method of differences, we obtain the following theorem, giving C(Bn) explicity

in terms of the polynomials C(R, ).

Theorem 5
n, 2 .ntl, o 2 n-3
C(En) = w2(w1+w2) +jil[w2(w1+w2)] f(C(Rj)) (n>0).

4. CHARACTERISTIC POLYNOMIALS OF BENZENE CHAINS
Using Lemma 2 together with Theorems 3,4 and 5, we obtain the following

parallel results for characteristic polynomials.

Corollary 3.1

n-1
8B ) = (1) 4B + E-DOR ) + 0R )2

ikp ¥Ry} O

where @(BO) = x2—1 and O(Rn) as given below in Corollary 4.1.

Corollary 4.1
n-1 2 j—l
u(kn) = Ry g {a(p 2n-23- i ¢(R )+ 2,1, ¢(Rj_i_1)]}(n>1),

where ¢(R]) = xb—3x2+l and @(RO) = 1.



Corollary 5.1

2. n+l

n 2 44
03 = (=)™ 4 5 (H £BRD) (0),

j=1 i1
2 1=
£(o = (x°- =
where f( (Rj)) (x"-2) @(Rj) + ¢(Rj_1) 21£O¢(Rj—i-l)‘
The following tables are analogous to Tables 1 and 2 above. They

give characteristic polynomials of the graphs Rn and Bn.

Table 3

Characteristic Polynomials of the Graphs Rn

- ¢(Rn;x)

1 xu-3x2+l

2 xPogxlriexto13x341

3 x12—13x10+60x8—123x6+113x4-38x2+1

4 % C1gxtfrio7x2oa53x 1% 8705P-021x 0449 1 00x 241
Table &

Characteristic Polynomials of Benzene Chains

@(Bn;x)

n

1 x6-6xa+9x2—4

A L LB TN Y

3 % 162124085 0= 206 14730302 1482214

1 16 1

4 x B-211-: +180x 4~822x12+2192x10

_3510x543321x°-173 15 44 1 1723

We can obtain yet another recurrence for Q(Bn), using Corollary 3.1.

We have from the corollary,

2 2 g
A i @ = T 3
9(B )=(2-x") (B _ )+(x"-2) #(R)+ ¢(R__)) 211-1 R,

)= 0B, )

1=l -1

5 2 n-]
=(2-x )¢(Bn_l)+(x —2)¢(Rn)+¢(Rn_1)-2 i£O¢(R

)

n-i-1
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2 2 n-2
=[(1-x )@(Bn_2)+(x -2)+¢(Rn_})+¢(Rn_2)-2 150 4(Rn—i—2)] .

On simplification, this yields the following result.

Corollary 3.2.
2 2 2 2
®(B)) = (2=x7)e(B ) +(x"=1)¢(B__,) + (x"=2)2(R ) + (I-xDe(R__)

-O(Rn_z) (n>1).
In practice, this corollary is much better to use for finding values of
[ (Bn)' since it does not involve a summation. We note that Hosoya and Ohkami
[12] have given an explicit recurrence of order 4, forg (Bn). Their recurrence
was obtained by using a matrix technique similar to that previously used in [5].
This technique works quite well for n-gon chains, when ni6. However, for larger
values of n, the method is difficult to use, because of the complicated co-

efficients which appear in the recurrences, and consequently appear in the

matrix of coefficients.
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