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ON  HERMITIAN MATRICES ASSQCIATED WITH THE MATCHING
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ABSTRACT

Using gquaternionic edge weights Hermitian weight matrices are
derived for bicyclic and tricyclic cata-condensed graphs. They may
be adapted to any graph of this type. It is shown how these matri-
ces are used in computer assisted calculations of the eigenvalues

of the matching polynomials of the respective graphs.

The connectivity of vertices in a graph G is described by the
adjacency matrix A = A(G) of G. A is an nxn symmetrical matrix
where n stands for the number of vertices in G. The characteristic

polynomial #(x) of G is defined by [4]:
®(G) = #{(G;x) = det (xI - A) (1)

where I stands for the nxn unit matrix.

* FPor Parts I, II and IV: see [1], [2] and [3], respectively.

#* parmanent address: "Ruder Boskowié" Institute, YU-41001 Zagreb,
Croatia, Yugoslavia.



The matching polynomial «(G) = a(G;x) is a purely combinato-
rial object defined [4] in terms of the coefficients p(G,k),
k =0,1,...,[n/2]1. p(G,k) denotes the number of ways in which k
independent edges can be selected in G; by definition: p(G,0) = 1.

Thus all p(G,k) are natural numbers.

Both polynomials play a significant role in the chemical

applications of graph theory [4].

By expanding the determinant (1) two kinds of contributions
appear: the "acyclic" ones which are described by p(G,k)'s and the
"cyclic" ones. Therefore, for graphs possessing no cycles u(G) and
#(G) coincide. For all other graphs a(G) and ¢(G) are different.
It would be appealing if w(G;x) could be expressed as the charac-

teristic polynomial &(W;x) of some matrix W:
a(G;x) = ¢(W;x) = det (xI - W) . (2)

If this is the case W defines the "acyclic" reference structure
of a molecule described by graph G [5]. Since the roots of «(G;x)

are real [6] the nxn matrix W has to be Hermitian (ﬂ+ =W,

The matrix W could be understood as a weight matrix related
to G. We require that all zero elements of A(G) correspond to zero
elements of W(G), i.e. the structure of A(G) and W(G) is the

same.

By expanding the determinant (2) one immediately sees that
all p(G,k)'s are expressed by some sums of particular k-linear
products of (Wrswsr)' In order to produce the correct weight func-
tion for any transposition we have to choose:

Wrs Wsr =1 (3)

for every non-zero element of W.



By applying the Sachs theorem [4] to #(W;x) = det (xI - W)
one obtains the "acyclic" contributions which coincide with p(G,K)'s
of a(G;x) as well as the "cyclic" contributions of the form:
Wrswst"'wuvwvs (where all r,s,t,..., u and v are different and the
corresponding contribution ArsAst"'AuvAvs is different from zero).
obviously, if every cyclic contribution equals zero eq. (2) is sa-
tisfied; such a solution is called a triviaf solution of eq. (2).

The question arises whether the trivial solution is compatible with

the choice of any Wrs' ¥ :8 = ;254 v

The nature of the weights Wrs has not been specified up to

now.

Let us consider Wrs as complex numbers:

- #* - A
Weg = Wor = Brg exp(id,. ) (4)

The trivial solution of eq. (2) is compatible with some choice of
the parameters Grs only for polycyclic graphs where no two cycles
are condensed, in particular for monocyclic graphs [7]. For poly-
cyclic condensed graphs the trivial solution is incompatible with

any choice of the parameters Ors [al.

However, for particular graphs [1,8,9] exhibiting symmetry &

so called collective solution of eq. (2) can be found.

Bearing the above limitations in mind one could consider the
use of more general numbers for representing wrs than the complex

numbers are.

Hamilton was the first to realize [10] that the complex field
cannot be extended by adding just one more imaginary unit but can
be extended to three such units, usually denoted by i, j and k,
with the known non-commutative multiplication rules [2,10,111].

Further details on the algebra of quaternions are given, e.g. in



our preceeding paper [2]. The notation used there will be used

in the text.

Here and in the text that follows we search for the trivial
solutions of eq. (2) with the matrix elements of W being norma-

Lized quaternions. We choose:

W = A__(cos 0O + sin © v )
rs rs rs rs -rs ?

(5)

= w* = - S
W wrs Ars(cos 0rs sin O

Sr ) .

rs = Yrs
The above choice complies with eq. (2) and with the requirement

that W has to be Hermitian. Moerover, the structure ~f A and W

is the same for a given G.

In the previous paper [2] it was proved that the trivial solu-
tion of eqg. (2) for (general, unsymmetrical) tricyclic peri-condens-
ed graphs is compatible with different choices of quaternionic

weights.

In the present paper we prove that also in the case of (gene-
ral, unsymmetrical) bicyclic and tricyclic cata-condensed graphs
there exist a;s and er's compatible with the trivial solution of

eq. (2).

Let us first consider the class B of bicyclic graphs. A typi-

cal representative of B is denoted by B where a and c¢ are

a,b,c

natural numbers and b is a natural number or zero. The related
weight matrix W can be represented by the directed weighted graph

and its counterpart B in the latter graph all arcs

a,b,c a,b,c’
point in the directions opposite to those of ﬁa B For rea-
r r

sons of simplicity only B is presented below. Let us further

a,b,c

assume that all weights on the path belconging both to §1 and 22

are equal to some normalized quaternion: p = cos Op + sin Qp— Vp’



and that all related arcs in B form a directed path

a,b,c
as is indicated below. The same convention is adopted also for

the quaternionic weights in the outer paths of 7. and 32; these

1

weights are denoted by: r = cos 0_ + sin 0_ * v_ and
r x ~-r

s =cos O, + sin O  + v, respectively.

5/

The trivial solution of eq. (2) requires that the cyclic con-

tributions from 21 {and fq), Z (and Z ) and §3 (and EB) vanish.

2 2

Therefore, eq. (2) implies:

rRe(p”*! 2y =0 (6a)
re(p®*! (s} =0 |, (6b)
Re{r®*1 &ty =0 . (6c)

one can check that for the following choice:

pb+‘] =5 ra+1 =3 . sc+1 = (7)

egs. (6a) - (6¢c), i.e. eq. (2), are satisfied.
By using the following convenient property valid for the po-
wers of guaternion [2,10,11]

gq=1cos 0 + sin 0 » ¥ ’ qn = cos nG + sin nd - v (8)

eq. (7) can be rewritten as:



_ Ul . L c 5

p = CcoOs T(BFT + sin THET) i 5 (9a)
_ i \ W 5 o

r = CoOSs 2(a—+1) + sin -2—(aT'I—) J 4 (9b)
= n 7 ey m . o

s = cos 3{cFi sin FItZ50) k 5 (9¢)

and these particular quaternionic weights are compatible with the

trivial solution of eq. (2) in bicyclic graphs.

It has been shown [11,12] that the algebra of quaternions can
be represented by means of the complex 2 x 2 matrices or the real
4 x 4 matrices. We adopt the latter representation and we repre-

sent four units of the algebra of quaternions by the following

matrices:
B 1 ~1 \
1 01 ! 01
I o o
I
1t e il vy el . R e . ,
- Eg @ =1 ot
e, i .2
| : o 1 o =4 i
(10)
(o0 1} T o -1]
2 e
o 3= Flee @ ; k> K= |-==--—- T_l___Q_ .
- o -1 o -1}
o ! 0
- T @1 ]

By means of these matrices an arbitrary quaternion g can be repre-

sented by the corresponding 4 x 4 real matrix Q. Therefore, in-

-
stead of the original nxn matrix W of graph G with n vertices we
could consider the 4n x 4n matrix @ which is obtained from W after

the substitution: g » ¢ and 1 » 1.



Therefore, once the Hermitian nxn weight matrix W compatible
with the trivial solution of eq. (2) has been formed for a given
G with n vertices, one generates by means of eq. (10) the related
4n x 4n real, symmetrical matrix W which can then be diagonalized
in a standard manner. The eigenvalues of W, i.e. the roots of
2(6;x) form the matching spectrum of G; the spectrum of (I contains

four times the matching spectrum of G.

Let us illustrate the above findings by the example of the
bicyclic graph B = By 5 g+ Its directed weighted graph B is de-
’ ’

picted beleow together with the corresponding quaternionic weights.

According to eqs. (9a) - (9¢) the trivial solution of eq. (2) for

B is given by the following weights:

\ 2, /2 :
P=£1Y=COSI+SLH-4-'J_=‘—2—+—2';,
(11)
— R IO
s~cos—6-+31nF k—2+2 k .
Accordingly the zeros (x.1 = =i, = 2.17533, Xy = =Xy = 1.12603,
%x. = 0) of «(B;x) are contained four times in the eigenvalues of

3
the following weight matrix W:



w
oo
1

1 2 3 4 5
o kB P o T
R o & 0 o
W .2 P Rl o s o (12)
o o s o s
s 9 o sto
where according to eqgs. (10) - (11) the matrix representatives

P, Rand § of p, r and s, respectively, are given by:
110 VZ/2 /22
o] : _ i o]
- -vZ/2  J/2/2 ¢ =
Boe j O (PP b e e ; R Je i i :- ——————— —————
- -1 o] - V22 =V
! 0 :
o -1 - y V2/2 VZj2
(13)
/372 o1 o -172
]
o /32, 1/2 o
S = - -
- ) -1/2 1 /372 0
L}
1/2 o ! o /32

and BT denotes the transpose of the matrix P.

An example of a non-symmetric bicyclic graph meaningful in

chemistry is provided by graph 33 0,5 corresponding to azulene
’ r

(ﬁ3'o'5) is shown below.

p=

In a similar manner as above we obtain



Let us now consider class C of tricyclic cata-condensed
graphs. A typical representative of C is denoted by Ca,b,c,d,e,f
where a and £ are natural numbers and b, ¢, d and e are natural

numbers and/or zero. All the conventions used previously for the

bicyclic graphs are adopted here too. The directed weighted graph
>

C related to W is depicted below where the quaternionic
a,b,c,d,e, £ =3

weights are indicated as well. It should be noted that in order to
simplify the algebra we have chosen the same quaternionic weight v

for all peripheric arcs in the graph depicted below.

Ca,b,c.d et Zg = 2V

The trivial solution of eq. (2) requires that each of the

cyclic contributions vanishes. Accoxdingly, eq. (2) gives rise

to:
Relra+1(p*)b+1} =6 . Re{rc+1pb+1rd+1ts*)e+1} % i,
Re{rf+1se+1} =0 , Re{rC+a+d+3(s*)e+1} =0 ’ (14)
Re[rd+f+c+3pb+1] -0 , Re[ra+c+d+f+4} -0



Let us choose:

Pb+1 =i, Ee+‘| =3 (15)

Simple algebra then yields the following form of the weight r:

r=cos 0 +sin0 -k . (16)

Egs. (15) - (16) are compatible with eq. (14). Therefore, by using
the convenient property (8) one obtains the following particular

quaternionic weights of W:

_ i ’ T o
P = €05 yrpry *osin ypEry L (17a)
- o ’ n o
§ = COS zrogqy * Sin yEy t 1 (17b)
= u + 8in sl ¢ k (17¢)
T = C0S sTavc+ari+d) © 5" I(aicrariid = =

which are compatible with the trivial solution of eq. (2) for the
tricyclic cata-condensed graphs. If the four units of the algebra
of quaternions in the above equations are represented by the appro-
priate real 4 x 4 matrices (10), the diagonalization of the relat-
ed matrix W gives (four times) the matching spectrum of the tri-

cyclic cata-condensed graph undexr consideration.

Similar findings apply also to tricyclic peri-condensed
graphs. The matrix W exists for these graphs with the elements

reported in the previous paper [2].

The use of quaternionic edge weights is no guarantee for find-
ing a trivial solution for graphs with a large number of cycles.
In such cases either collective solutions or a system of more gene-

ral numbers for the edge weights must be used.
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