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An explicit expression for the Hosoya index (Z) of a class of
polymers is obtained. Its special cases reduce to a few previ-
ously known formulas for Z. The Z-value of the polymer is a
function of the Z of the monomer unit and some of its fragments
as well as of the number of moncmer units (n). It is an expo-
nential function of n. A fully analogous combinatorial reasoning
leads to formulas for the number of Kekulé& structures, matching
polynomial and characteristic polynomial of the same class of
pelymers.

INTRODUCTION

There is nowadays an extensive literature available on the
topological index of Hosoya [1] (Z) and its applications to va-
rious problems of physical chemistry [2], thermodynamics [3] and
statistical physics [4]. Quite recently novel bounds [5] and ap-
proximate formulas [6-8] for Z were deduced.

The Hosoya index of a graph G with m edges is given by

m
2 =2() = £ m(G, k)
k=0
where m(G, k} is the number of k-matchings of G i.e. the number
of selections of k mutually non-touching edges in G. By defini-

tion, m(G, 0) = 1 and m(G, 1) = m.
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The calculation of 2 is quite cumbersome, especially for
large polycyclic molecules. Therefore it would be useful to
know explicit combinatorial expressions for the lHosoya index
of homologous scries of molecules. The first such formula, re-
producing the Z-value of the normal alkane with n carbon atoms,

was reported in Hosoya's first publication [9]:
z(p) = 567142 370 i & BFT - {1 - EPPYY | (1a)

Let ni(x) denote the integer nearest to x, i.e. |[x - ni(x)[70.5

Then Eg. (la) can be written also as
2(p ) = nil207'/2 270 (1 4 BT, {(1b)

In the above formulas P symbolizes the molecular graph of the

normal alkane, i.e. the path with n vertices:

1 2 n
O—O— e2¢ —O

Pn

The discovery of Egq. (1) was followed by a rather limited
number of other combinatorial formulas [10-12].

In the present paper we calculate the Hosoya index of a
general class of polymers whose molecular graph xn has the fol-

lowing structure:
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1 2 n-1 n
@r—@. @@

Xn
In the above diagram the monomer unit is represented by a araph
G. The n menomer units in X, are coupled to each other via the
atoms r and s.
The formula for z(xnl gencralizes quite a few previously
known results, not only in the theory of the Hosoya index, but

alse in the enumeration cf Kekulé& structures and elsewhere.

RECURRENCE RELATION FOR I(Xn)

If G is an arbitrary mclecular graph whose (arbitrary) edge
e connects the vertices u and v, then the Hosoya index of G sa-

tisfies the identity [1]:
2(G) = 2(G-e) + Z(G-u-v) (2)

where G-e is the graph obtained by deletion of e from G, and
G-u-v is the graph obtained by deletion of the vertices u and v

from G. Another relation needed in the calculation of 2 is [1]:
2:(G1 U Gy) = Z(Gy)-2(G,) (3)

where G.| u G2 denotes the graph composed of two disconnected

components GI and Gy
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Using (2) and (3) we can deduce a recurrence relation for

Z(X.). In order to do this, we introduce an auxiliary system Y :

1 7 n-1 n
CROSR 022
Y

n
As indicated on the above diagram, Yn is obtained from Xn by
deleting the vertex r from the n-th monomer unit.
Applying (2) and (3) to the edge connecting the (n-1)-th

and the n-th monomer units of Xn we immediately arrive at
Z(Xn) = Z(G) Z(Xn_1) + 2(G-s) Z(Yn~1) . (4)
In a fully analogous manner we conclude
Z(Yn) = Z(G-r) Z(xn_1) + Z2(G-r-s) ZY _4) . (5)

Expressing Z(Y ) from (4) and substituting it back into (5)

n-1
one finally obtains

2(X) = [2(6) + 2(G-r-s)]Z(X _4)
+ [2(G-xr) Z(G-s) - Z(G) Z(G—r—s)lz(xn_z) “ (6)

Together with the initial conditions
Z(Xy) =1 i Z(X,) = z(G) (7)

Eq. (6) enalbles ocne to calculate recursively Z(Xn) for all va-

lues of n > 1.
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COMBINATORIAL FORMULA FOR Z(Xn) AND SOME OF ITS PROPERTIES

Bearing in mind that (6} is a second order linear recurrence

relation and using standard mathematical technigues [13] we have

Z(Xn) = a

where t1 and t2 are the roots of the equation

The multipliers a

mined

where

of pa

ively

t? - [Z(G) + Z(G-r-s)]t

+ [Z{G-r) Z(C-s) - ZI(G) Z(G-r-s)]

1 and a, are independent of n, and are deter-

by the initial conditions (7). Direct calculation gives

zx) = ™' »7 (@ s R+ )"

- (@ - R -RrRMY (8}
Q" = z(6) + z(G-r-s) (8a)
Q" = 2{(G) - Z(G-r-s) (8b)
R=[()2% + 4 z(G-r) zle-s)11/2 | (8c)

As examples we present the expressions for the Hosoya index
ra-, meta- and ortho-polyphenylenes, I, II and III, respect-
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21) = as2”V20(/TTI + Ty (11 + /TTHD

+ (T3 - (11 - /AN =

= nilas2™ V2 (ATI + 11+ ATHM
Z(11) = 19247172 27" (/AT + 15) (21 + VABD)D

+ (/F8T - 15) (21 - /A8N)™] =

= nil1924” 12 27" (/ZBT + 15) (21 + /EBT)™)

Z(IIn) = 1700° /2 27N (/IT5 + 13) (23 + /TIH)D
+ (/425 - 13) (23 - /E25)"]

The special case of Xn when r = s is worth particular at-

tention. It corresponds tc the system depicted below:



The special case of Eg. (8) for r = s is obtained by setting
7{G-r=s) = 0. Hence, if r = s

’

n+1 -WJ[

; = n+1
a(X,) (2 R) ]

4(G) + R [y - RIMYYY (o)

where
R = [2(G)2 + 4 z(c-r)211/2

As an examplc consider Pn' Then ¢ is the one-vertex graph,
Z{G) = 1 and Z(G-r) = 1. Hence Eqg. (9) reduces to Eg. (1}.

Another special case of Eg. (9), namely for the "comb™ Cn
1 2 n-1 n
Cn'

see
where Z{(C) = 2, Z(G-r) = 1, was previously reported [6]:

ic) = a2 e Y - 1 = RN

i

nile" 172 (1 + y;0*1) | {10)

Formula (8) solves also the problem of the behaviour of the
Hosoya index of very long {(or more precisely: of infinitely long)
polymer chains. It is evident that Z(Xn} increases exponentially

with n. Furthermcre,

lim n ! log z2(x) = logl(® + R)/2] .
nro
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CONNECTION WITH THE NUMBER OF KEKULé STRUCTURES

It is known [14] that the number of Kekulé structures obeys

the following relations:
K(G) = K(G-e) + K(G-u-v)

K(G.t U GZJ = K(G1)'K(G2)

where the notation is the same as in Egs. (2) and (3).

(11)

(12)

One should

observe the complete analogy between Egs. (11) & (12) and Egs.

(2) & (3), respectively. As a consequence of this, whatever result

is obtained for Z using (2) and (3), an analogous result will ex-

ist for K. In particular,
K(x ) = P 0T L s @t o+ B

@ - 0@ - BN

where
B = K(G) + K(G-r-s)

¥

K(G) - K(G~r-s)
= [(@)2% + 4 K(G-r) K(G-8)]1"/2

Eq. (13) can be significantly simplified.

(13)

(a) If the monomer unit G has even number of atoms, then K(G-r)

and K(G-s) must be equal to zerc. Conseguently, R = § and



Eq. (13) reduces to the well-known formula
B n
len) = K(G)

(b) If the monomer unit G has odd number of atoms, then K(G}
and also K(G-r-s) are necessarily equal to zero. Then

~t —

=Q =0 and Eq. (13) reduces to

K(Xn)

]
o

"

1f W 1,3:5p00.

K(x ) = [K(G-r) k(=512 i€ n = 2,4,6,...

SOME FURTHER CONNECTIONS
The matching polynomial [15,16] obeys the relations
u(G) = al(G-e) - a(G-u-v)
alG, U Gy) = m(G1)'u[G2}

Therefore, if cne writes o(G), ¢(G-r), ol(G-s) and =-o(G-r-s)
instead of Z(G), Z(G-r), Z(G-s) and Z(G-r-s), respectively, in
Egs. (8a-8c), then the right-hand side of (8) will just reproduce
the matching polynomial of xn.

Similarly, if e is a bridge (i.e. an edge which does not be-
long to any cycle), then the following relation is satisfied by

the characteristic polynomial of the graph G [17]:

(G} = ¢(G-e) ~ ¢(G-u-v)
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Since in addition [17]
¢(G1 u GZ) = ¢(G1)'¢(G2)

the right-hand side of (8) will be egqual to ¢(Xn) if in (Ba-8c)
Z{G), 2(G-r), Z(G-s) and Z(G-r-s) are replaced by ¢(G), ¢(G-r),
¢ (G-s) and -¢ (G-r-s),, respectively.

It has been demonstrated [18] that every unbranched cata-
condensed benzenoid hydrocarbon B can be associated with a tree
T(B), such that the number of Kekulé structures of B is equal to
the Hosoya index of T(B) [19]. In some cases the tree T(B) belongs
to the class X and then formula (8) is also the combinatorial ex-
pression for the number of Kekulé& structures of B.

For example, Pn is the tree associated with the zig-zag poly-

acene with n-1 hexagons:

G285

Whence, Eq. (1) reproduces also the number of Kekulé& structures

of the above benzenoid molecule. This is a long-known result [14].
As another result of this kind note that the comb Cn is as-

sociated with the catacondensed benzencid molecule whose structure

is illustrated for n = 6:



Then the number of Kekul& structures of these benzenoid hydro-
carbons is reproduced by the formula (10). Using a completely
different way of reasoning, the same result (in a somewhat more
generalized version) was obtained in a recent paper [20] (see

also Eq. (6.18) in Ref. [14]}.
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