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(Abstract) It is shown that decimal fractions observed for molecules
/fragments in high-resolution mass spectrometry have a cyclic group
structure. Expansion of the decimal fraction into a finite continued
fraction gives an approximate proper fraction whose denominator
decides the order of the cyclic group. When a prime number is selected
as the order, the group becomes a Galois field (a finite field). Group-
theoretical consideration for chemical compounds leads to a linear
congruence (an equation in several unknowns) that determines the
numbers of isotopes/fragments in the corresponding molecule. The
congruent equation is solvable with the multiplication (and/or division)

of integers.



1. Intr

Chemists can observe the molecular weight of an unknown organic
compound by high-resolution mass spectroscopy. The numerical value is
based on the standard isotope carbon-twelve (12C = 12 mass units,
exact). Hence they encounter the problem: Determine the molecular
formula using only one numerical value. Here the term "molecular
formula” means a set of isotopes/atoms and of the number of each. No
good algorithm for solving this problem is known; any method in use is
fundamentally by trial and error.  Molecular weights for various
compounds have been calculated; each table is a massive volume for
organic compounds centaining only a few isotopes such as 12¢C, 1H, 160,
and 14N. One of the famous tables was made by Beynon!. Lederberg?
somewhat improved the situation; however, his method also uses a large
list of numerical values.

The purpose of the present paper is to solve the problem described
above by algebraic theory. We note the fact that an observed molecular
weight is made up of two parts, an integer and a decimal fraction. In the
following it will be shown that the part of decimals in molecules has a
group theoretical structure; the integer part (or the total mass number) is
out of the focus in this paper3, A cyclic additive group? of order (or
period) m, Zm ={ 1, 2, ..., m-1, 0}, plays an important role; Zm is
isomorphic to the quotient group Z/mZ ; that is, Zm = Z/ImZ. Here Z = {..,
-2, -1, 0,1, 2, ..} is an additive group composed of rational integers, and
mZ = {..., -2m, -m, 0, m, 2m, ...} is a subgroup of Z. Zm becomes a Galois

field if m is a prime number.
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We consider a series of molecules. Particular attention in this chapter
is paid to only one kind of isotopes (or molecular fragments) in the
melecules. Let d be a decimal fraction for the relative atomic weight of
an isotope in question; for example, d = 0.007825037 in mass units® for
TH(= 1.007825037). A set of numbers, { xd : x=1, 2, 3, ... }, for the
series can then be constructed; x represents the number of isotopes.
Obviously this set is an additive semigroup generated by d. We restrict
every number in the set by assuming that when x-d becomes a numerical
value containing an integer (positive ), then the integer part is removed
from that x-d ; this is denoted by {x-d}. The assumption is considered
proper under the condition that each high-resolution mass can be
separated into two numbers, a positive integer and a decimal fraction.
Then the set consists of at most finite members because {xd} ultimately
becomes zero under the assumption; the set is abbreviated as <d>.

The following is a simple algorithm for determining the number of
members of <d>.  First, d is converted into a proper (rational) fraction;
second, the proper fraction is transformed into an irreducible fraction
r/m (m > r > 0), i.e., both numerator and denominator are divided by the
greatest common divisor; then, m is the answer. The reason is that m is
the smallest number by which the multiplication of the proper fraction
for d becomes an integer. In order to get the proper fraction r/m
approximating a decimal fraction d we use a method of continued
fraction? ; in this process the numerator is relatively prime to the

denominator.
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where tn is called the n th term.

Calculated results for atomic weights® of isotopes and molecular
fragments are shown below using the n th term approximation. Data in
parentheses represent the error, the absolute value |d - r/m| in 10-6

mass units.

TH = 1.007825037: <1/127> (49), <1/128> (13), <4/511> (2.8},
<5/639> (0.3), .....

13C = 13.003354839 : <1/298> (0.9), ...

14N = 14.003074008 : <1/325> (2.9), <3/976> (0.2), .....

160 = 15.99491464 : (Note8), <195/196> (17), <196/197> (9},
<391/393> (3.7), <587/590> (0.6), ....

12C1Hp = 14.015650074: <1/63> (223), <1/64> (25), <9/575> (2),
<10/639> (0.6), .....

T4NTH = 15.010899045: <1/91> (90), <1/92> (29), <4/367> (0.1), ...

It is clear that a mapping between Zm and <r/m> is isomerphic,
which is defined, for example, by f(k) = [krlm/m onto <r/m>, Zm 3 k,
where [k-r]m is the remainder of the division of kr by m; <r/m> = Zm . In

other words, the set <r/m> is a cyclic group of order m.
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.Linear Congruence in One Unknown

it is thus obtainable an equation that determines the number of
isotopes/fragments. Let dw be the decimal fraction of observed mass for
an unknown compound, and let x be the unknown number of
isotopes/fragments. We have

dw = {xd} = {xr/m} = [rx]m/m
which means a linear congruence

rx =h (modm)
where h = m-dw is chosen as an integer. This congruence is always
solvable for x because r and m are relatively prime9.

The following is an easy way to treat actual problems. We previously
calculate rx = 1 (mod m), in which none of the parameters is related to
dw; the solution is denoted by a ; namely, ra = 1 (mod m). Then the
multiplication of these two congruences, rx =ra-h (mod m), leads to

x =ah (mod m)
If ah > m, then [a-h]m is calculated. Values of a, for example, are: 128
for <4/511>, 128 for <5/639>, 651 for <3/976>, 195 for <195/196>, 196
for <196/197>, 196 for <391/393>, 393 for <587/590>, 64 for <9/575>,
64 for <10/639>, and 92 for <4/367>.

Example 1, dw = 0.2348 is given, and a hydrocarbon containing only
12C and 1H is assumed. To this case <4/511> and a = 128 are applied.
Then, 511-0.2348 = 199.98 ..., h = 120; therefore, x = 128120 = 30 (mod
511), the number of hydrogens. Alternatively, the same solution results
using <1/128>, namely, 128.0.2348 = 30.05..., h = 30; therefore, x = 30
(mod 128). The number of carbons can now be easily determined fram

the integer part of the molecular mass.
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Example 2, The molecular weight 248.2140 for a compound
containing 12C, TH, and only one 160, is assumed. Using <1/128> we have
128(0.2140 + (1 - 0.99491)) = 28.04..., and h = 28. The number of carbons
is (248 - 28 - 16)/12 = 17; therefore, the molecular formula is expressed

as C17H280.

It is well-known that Zp is one of the Galois fields if p is a prime
number. In Galois fields the operations of addition, subtraction,
multiplication, and division, i.e., the four arithmetic operations, are
possible, just as in the set of rational numbers10. We have tried to find
approximate fractions r/p for several isotopes/fragments, where a
fraction r/p approximating a given d satisfies |d - r/p| < |d - r'/p'| for any
other fraction r'/p' ; p and p' are prime numbers with 3 places. The
results are as follows. The absolute value |d - r/p| in 10-6 mass units is

given in parentheses.

TH : <3/383> (7.9), 3-1 =128
13C : <2/599> (16), 21 = 300.
14N © <3/977> (3.4), 31 =326
160 : <978/983> (1.1), 9781 = 393.
12C1Hp : <6/383> (16), 61 = 64.
TANTH :  <4/367> (0.1), 41= 92

Si E : E in M
As Example 2 shows, the linear congruence with one unknown can be
applied to molecules containing several kinds of isotopes/fragments.

This chapter deals with another way to solve the problem simultaneously.
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Let us consider the case in which there are two kinds of isotopes
/fragments in molecules. Then the decimal fraction dw for an cobserved
molecular weight must be equal to ane of the terms in the set { x1dq +
¥otp sy, w152 By ) This set under the same assumption as in
chapter 2 is designated by <ri/m1,r2/m2>, where rimjis an
approximate proper fraction for dj. If each of the proper fractions in the
previous chapters is used, then the period of <ry/m1,ro/m2> is too long
for calculation; that is because the order of this set is decided by the
greatest common divisor of mq and m2. A new decimal fraction
appropriate for the set must be derived from dq and do.

Applying to dt and d2 the same algorithm as for the greatest common
divisor of two integers, and neglecting the remainder of decimals in the
course of iterations, we can obtain an approximate decimal d for d{ and
d2, where dj is divisible by d approximately; namely, dj/d is expressed as
an integer bj. An approximate proper fraction for that d can now be
calculated by the continued fraction method; it is written as r/m. Thus
the irreducible form rj/m; is obtained from the proper fraction bjr/m.

We get

dw = {x1r1/m1y + x2r2/m2}
{b1r x1/m + bar x2/m}

[b9r x4 + bar x2)m/m

which gives a congruence in two unknowns
ribixq + bgx2) = h (mod m)

where h = mdy is selected as an integer.

Similar treatment is possible for three kinds of isotopes/fragments.
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The following are examples calculated for molecules containing
several isotopes.

<r/m> <ri{/mq,r2/m2,...> Congruent Equations

1H and 13C <1/897> <7/897,1/299>  7x{ + 3x2 = h (mod 897)
TH and 14N <1/716> <3/358,1/179>  6x1 + 4x2 = h (mod 716)
TH and 160 <1/985> <8/985,196/197> 8x1 + 980x2= h (mod 985)

TH,74N and 160 <1/716> <3/358,1/358,178/179>
6x1 + 2x2 + 712x3 = h (mod 716)
Note: 897 = 3-13-23, 716 = 22179, 985 = 5197.

Example3. The molecular weight 249.2754 for a hydrocarbon (13C
enriched) is assumed. Then 897-0.2754 = 247.03..., h = 247; 7x1 + 3x2 =
247 (mod 897). Putting x1 = 3k + 1, we obtain 3xp = 3(80 - 7k) (mod
897), which gives x2 = 80 - 7k (mod 299). The chemical restrictions for
hydrocarbons are 2x2 + 2 2 x{, and even x1,; therefore, the molecular

formula is written as 13C171H2g.
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