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A NOVEL APPROACH TO GRAPH POLYNOMIALS
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A number of graph polynomials (matching, characteristic,

permanental, p-polynecmial) and their generalizaticns can

be expressed by means of a differential operator, associ-
ated with the graph.

Graph polynomials play an autstanding role in mathema-
tical chemistry and, in particular, in chemical graph theory
{1-3). In the last few years the research in this field was
so vigerous that only in the period 1980-1985 about 600 che-
mical papers were published on graph polynomials and closely
related issues [4). Bearing this in mind it is somewhat sur-
prising that there still are some quite general mathematical
properties of (chemically interesting) graph polynomials
which have so far escaped the attention of both mathematicians
and mathematical chemists. In the present paper we point out
a few such properties and, in particular, demonstrate a new
way in which a variety of graph polynomials can be expressed
in a remarkably uniform way. Furthermore, the present paper
is (to the authors' knowledge) the first time that a differ-
ential operator is employed as a mathematical tool in dealing
with graph polynomials. Our results thus reveal certain
hitherto unnoticed analytical properties of these polynomials.
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Let G be a graph and let its vertices be labeled by
1,2,...,n. A graph is completely determined by the specifica-
tion of the connectedness of its vertices. This information
is often presented in the form of the adjacency matrix A, whose
(r,s)-entry is equal to unity if the vertices r and s are ad-
jacent, and is equal to zero otherwise. Another, less common
way to determine the graph G is to introduce n variables

XqsXgaeen, Xy and to construct a differential operator 7

? -
r adj s Xp #Xg
r<s
Throughout this paper we shall frequently refer to the

product of the variables XqsXgpeeesXy and denote this product
by X

Then it is clear that also DX characterizes the graph G up to

isomorphism.
Consider as an example the graph G,i

1

Then
3? 32 32 . 32
e o R T 5%, 3%, | 9% 0%,

and consequently,

X = XgX, o+ XqeXy f Xq'Xg t XqtXg



Examine now the expression on the right-hand side of the
latter equation. It contains four summands, which means that
Gy has four cdges., The first summand is the product XzXy
and since the variables Xy and x, are missing from it; we can
conclude that the vertices 1 and 2 are adjacent. The second,
third and fourth product terms contain the information that
also the vertex pairs (2,3), (2,4) and (3,4), respectively,
are adjacent. This completely determines G‘.
In the present paper we shall be concerned with certain
graph polynomials [4]
The matching polyncmial [5,6] is defined as

Y = ¢ nFae, B

%
where m(G,k) is the number of k-matchings of G, that is the
number of ways in which k mutually non-incident edges can be
chosen in G. We further introduce a closely related polynomial

o' (6, %) = £ m(G, k) x""ZK
k
The characteristic polynomial [2,5] of a graph G is just
the characteristic polynomial of its adjacency matrix:

$7(G,x) = det(x I - A) -

Here I is the unit matrix of order n.
The permanental polynomial {5,7] is
6*(G,x) = per(x I + A)

where per stands for the permanent.

We define the generalized characteristic and permanental
polynomials in the following manner. Let X be a diagonal matrix
of order n, whose diagonal entires are the variables Xq,X;,...,
Xp- Then

¢ (6, X, ,Xg, 00 0,Xp ) = det(X - A)

¢+(G,x1,x2,...,xn) = per(X + A) .
Evidently, the above generalized quantitics are linear functions
of each x,, i=1, 2,...,n By choosing x, = x, = .. = x_ = x they
reduce to ¢ (G,x) and ¢ (G, %), respect1ve1y. It is not difficult
to see that ¢ (G,x1,xz,...,xn) and ¢ (C,x1,x2,...,xn) determine
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the graph G up to isomorphism.
DIFFERENTIAL OPERATOR REPRESENTATION OF THE MATCHING
POLYNOMIAL

We first prove a relation for the matching numbers m(G,k),
which is the basis for all results given in the present paper.

Theorem 1. If Xy =%y =t =X, 0= 1, then
meG, k) = (1/k!) o* x
a2k%
Proof. One should observe that 5% op is equal to

5 iz... axiZk
zero whenever not all indices iT'iZ""'iZk are mutually dist-
inct. Bearing in mind the definition of the operator ¥, this
means that i1,iz,...,i2k must be the end-vertices of k mutual-
1y non-incident edges of G. Whence ok X consists of a sum of
terms, each corresponding to a selection of k non-incident
edges of G. By setting Xq = Xp = v =X 0= 1, each summand
will be equal to unity.

There exist k! different ways to generate a summand cor-
responding to a given choice of k non-incident edges. There-
fore by setting Xy =Xy = ccro=xp =1 into pK X we obtain a
quantity which is k! times the number of distinct selections

of k non-incident edges in G, i.e. m(G,k). "

Theorem 1 has a few interesting consequences. They are
obtained by taking into account that

T (1/k1) 0¥ = exp(®)
k
and

: 10K 7k 0¥ = exp-m) .

The Hosoya index [z)s] of a hydrocarbon is equal to the
sum of all the matching numbers of the corresponding molecular
graph.

Corolarry 1.1. If Z is the Hoscya index of a molecular graph

G, then for xq = X, = *=+ =x =1,

Z = exp(?) X .
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Corollary T1.2. For Xy = Xy = e =, =K,
a®(G,x) = exp(#D) X

The above result motivates us to define the generalized

. s + -
matching polynomials a (G’XI'XZ""'xn) and «o (C,x],xz,...,xn)
as

u’(c,x1,x2,...,xn)

"

exp(P) X

exp(-7) X

i

A W oy

That this is a reasonable choice is seen from the fact that
ut(G,x],xz,...,xn) and ¢i(G,x1,x2,...,xn) coincide if and only
if G is an acyclic graph. Thus the well-known [5,6] relation
between the matching and the characteristic/permanental poly-
nomial is valid also for their generalized versions.

We now point at three further properties of the generalized
matching polynomial.
Theorem 2. Let q be a non-zero constant and xi/q = P 3=1.,2,
.««3N. Then

exp(q? ) X = @ a*(G,y;,y5,--,7,)
Proof. Theorem 2 follows immediately from the definition of

the operator 0.

Corollary 2.1. If Xp =Xy = "0 = qx, then
exp(iq2 D) X = qn ai(G,x)

n
"
n

Corollary 2.2, If Xp =Xy = 0t =X 0=4q, then
exp(q2 P) X =gz

Theorem 3.

t X
0By Kmygn ns g Xen) ® n (1 = F___F__) X
Lt n r adj s Ky 9g
y ol
Proof. In order to prove Theorem 3 recall that double differ-
entiation of X with respect to any x; , 157, 2 0 wneyliy  Wie1ds

zero. Therefore,



= 6. =

32’
exp(zD) X = n exp(t—~44§47) X =
r adj s 9%, Oxy
T <s
3?2 1 2"
= n (1 # + + ) X =
r adj s 9K, BXg z a?xr a?xs
T <s
32
GBI  E B
r adj s r s
r < s

Theorem 3 follows now from the definitiecn cf the generalized

matching polynomials. &

Theorem 4.
exp(3D) ut(G.x1,x2,...,xn) = X

Proof. We arrive at the above identity by recalling that the
ring of all differential operators (in many variables) is as-

sociative. Therefore exp(P) exp(-0D) = exp(-P) exp(P) = 1 o

DIFFERENTIAL OPERATOR REPRESENTATION OF THE CHARACTERISTIC
AND PERMANENTAL POLYNCMIAL

Consider a graph G which possesses cycles. Let Za be a
cycle of G and let i.l,iz,...,iz be the vertices of G, belonging
to Za. Hence the size of I, is z.

Define the operator Za as
A
za = Bxi Bxi a... Bxi

1 2z z

and another operator

c=2¢t12
a @

where the summation embraces all the cycles of the graph G. If
G is acyclic, then C = 0
We note in passing that

exp(2C) X =1 (1 = 2 Za) X
a



which can be deduced in an analogous manncer as Theorem 3.
Theorem 5. Let H = C + D. Then

exp(tH) X = ¢t(G,x1,x2,...,xn)

Proof. Theorem 5 is deduced by a similar rcasoning as Theorem

1, taking into account the Sachs formula [Z]. -

Corecllary 5.1.

exp(C) ui(G,x1,x2,...,xn) = ¢t(G,x1,x2,...,xn)

exDLTC) 8 (Bix1,Xgp 0 it sy) = & (B, Xy Xgr vy )

Corecllary 5.2.

exp(3H) $%(6,%;,Xy,...,x,) = X

DIFFERENTIAL OPERATOR REPRESENTATION OF THE p-POLYNOMIAL

The u-polynomial has been introduced [g9] as a means by
which the theory of the characteristic and the matching poly-
nomial can be unified. Its definition can be found elsewhere
[2,9,10].

The y-polynomial depends on a vector ¢t = (tl,tz,...,tr),
where the parameter ty is associated with the cycle Z, of the
graph G. The choice t, = 0 for all a (i.e. L = 0) reduces the
u-polynomial to o« (G,x).

Instead of the operator ¢ we now have to consider its ge-

neralization C(t) = 2 ¢ t, ? Then the following result
a

a:

can be shown to hold.

Theorem 6. Let H(t) = C{(t) + D. Then for Ky =Ky =eee= A = X,
u(G,r,x) = exp[-H(L)] X .

Corollary 6.1. For Xqp = Xy =roc= X=X,
p(G,t,x) = exp[-C(;J]a-(G,xl,xz,...,x )

Corollary 6.2. For Xy B, SUeRE XL B K,

B(G,L,x) = explC(L-1}1¢7(G,X,X5,..0,X,)



- 198 -

Proof. Recall that C = C(t) + C(1-t) and apply Corollary 5.1
o
From the above results is fairly evident that, in full ana-
logy with ut(G.x1,x2,...,xn} and ¢i{G,x1,x2,...,xn), cne can
introduce the two generalized forms of the py-polynomial:

u+(c,£,x1,x2,...,xn) expl(H(t)] X

WG, XXy, 0 ,X) = expl-H(1)] X

The following properties of the generalized u-pelynomial
are direct consequences of its definition:
+ +
"l (G,g,x1,x2,...,xn) = a (G,x1,x2,...,xn]

x +
u (G’l:x1:x2:'--nx ) = ¢ (G,X1,X2,..

o e

n

Whether the generalized p-polynomial possesses other, non-tri-
vial, mathematical properties and whether it can be applied in
chemical (or other) investigations, remains to be established
in the future.
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