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Abssract. The number K of Kekuld structures (perfect mat-
chings) in coronoids with cata-condensed appendages pessessing
branching points via perinaphthyl umits orieamted im antiparal-
lel manner is determined as an additive funct¥ion of the number
Ki of perfect matchings in the string structures inte which
the coronoid is decomposable.Por coronoids with perinaphthyl
branching units oriented in parallel manner in the same string
structure,the pnumber K of Kekuld structures results as a multi-
plicative function of the number Ki of perfect matchings in
the string structures.Procedures for decomposing coronoids of

this type 1lnto string structures are defined recursively,
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Introduction

The Gordon-Davison algorithml operates erriciently for deter-
mining the number K of Kekulé structures or of perfect matchings
for any linearly or angularly cata-condensed polycyclic aromatic
hydrocarbon (catafusenic benzenoid structure).The same algorithm
can be applied to branched catafusenes,where branchings are as
in triphenylene.Such branchings constitute no problem for the
Gordon-Davison algorithm or for improved algorithms proposed
more recently by Cyvin and Gutmanz'j,hy Zivkovié,Trinajstid,

4-6

Randié and their coworkers Finally,mention should be made of

the powerful transfer matrix methods developed by Klein et al.1
tor enumerating Kekulé structures of benzenoids.

A cata-condensed syastem consisting of an open chain of hexa-
gona such that every two adjacent hexagons have exactly one co-
mmon edge and its dualist graph8'9 is a path will be called a
string structure (S3) (e.g. as will be seen for graphs 69,65,
63 of FPigure 12).It follows that in a SS every hexagon is adja-
cent to at most two other hexagons which must be nonadjacent.

We shall consider that all structures in this paper (string,
parallel,series-parallel,coronoid) are composed from regular,
pairwise congruent hexagons lying in tne same plane.

For gimplifying the diecuassion and the figures,we shall
adopt & unique orientation of benszenoid rings in polyhexes,
nmamely that in which two edges of each hexagon are vertical,

In this case one of the edges in each triangle ot the dualist
graph of perifusenes is horizontal.All rigures in the present

paper obey thias convention,



A decomposition theorem for coroncids with perinaphthyl
branching units oriented in antiparallel manner

We shall describe a method for computing the EKekuld
number K(G) ot a benzenoid graph G based on graph decomposi-
tion whenever G can be decomposed inte string structures
with numbers of perfect matchimge which can be calculated
via the Gordon-Davison or other algerithms.Such graphs are
ebtained from stiring structures and some coples of the peri-

naphthyl group (Figure 1 a) or b}) and may be defined recur-

Pig.1
sively as follows:
Every parallel structure (PS) is either:
i) a s¥ring structure or

11) it is composed from two perimaphthyl groups (upper
and lower),two parallel structures L1 and La and two
string structures L3 and Lt as in Fligure 2|L3 or ].4
or both may be empty.L, is annelatsd to the wpper and
lower perinaphthyl group through edges e or t,Lz
through g or h,and L3 and L‘ through i or j,respecti-
vely (see Pigure 1). The two perinaphthyl groups are

oriented in antiparallel manner, i. e. as a) + b).



If L is a PS then the complexity
of L,denoted by c(L) 1s defined as
follows: o(L) =1 if T is a string
structure; c¢(L) = c(Ll) + c(Lg)
otherwige,if L verifies condition
(11) in the definition of a PS.

For example,c(G) = 3 for G illustra~
ted in Pigure 11,

A pertect matching or a graph G
is a pubset M or she edge set of G
such that: every vertex of G is inci-
dent to exactly one edge in M; any
two distinct edges in M have no com-
mon extremity.,

The chemical analog of a perfect mat-

ching is constituted by the double

Fig.2

bonds in a Kekulé structure,
Therefore every eage that belongs to a perfect matching M
of a graph G will be called double; she remaining edges of G
are simple relatively to M and correspond to single bonds in
the Kekuld structure,

The tollowing property is usetul for proving the main

results of this paper.

Proposi%ion 1. Consider a pertect matching M of a PS re-
presented in Figure 2.If edgea a or b of the lower perinaph-
thyl group (Pigure la) are double then edges ¢ and d of the

same group are both simple relatively to M,



Proof: Suppose shat the property does not hold,i.e.,a or B
are double and ¢ or d are double also.Since a and c have a
common ex¥remisy 1% roiiowas that a and ¢ cannot be aimultaneou-
sly double.lf a,b and d are double it follows that vertex x
cannot be incident to any double edge which contraaicts the
apsumption that M is a perfect matching.It remains to consider
the cases: i) a,d are double and b,c simple ; ii) b,c are
double and a,d simple; 111) b,d are double and a,c simple;

iv) & ie simple and B,c,d are double.Caase iv) iesds also to

a. contradictvion since x cannot be incident to any double edge
and cases 1),ii) or iil1) lead easily to thne property that both
k and 1 are simple,.

If L4 is empty this is not possible since in this case 1,]
cannot be both double,

Suppose now that L4 is not empty and k,1 are both simple.
3ince L4 is annelated to the lower perinaphthyl group through
1 or j we shall prove by induction on tne number of hexagons
in L‘ that double edges in each hexagon in L4 are as in Pigure
J.ders arrows indicate the order and position of the annels -
tion of each hexagon to the preceding and succeeding ones,by
astarting from the lower hexagon of the perinaphthyl group in
Pigure la),where k,1 are both simple edges.

If the firet hexagon of L4 is annelated through edge 1 we
obtain cases 10-12 and when the annelation is through ] cases
16-18 ot Figure 3.

Suppose that double edges are as in Flgure 3} for any sequence
of r hexagons in L‘ and consider the (r+l)-st hexagon Hr+1

in L4.If for example Hr+1 is annelated as in case 13 of Pigure
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Pig.d

3,the pair H ,H_. , is ae in Flgure 4,cases a),b) or ¢).Double

13

edges in Hr are deduced from cases 18,13 and 8,respactively,
by the induction hypothesis.It follows that double edges in
Hr+1 in all cases a),b) and c) are as in case 13 frrom Pigure
3 (we show this in Pigure 4).The proof is similar for the

remaining 17 cases of Figure 3,
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Rig.4



Since in all cases represented in Figure ]} the edge cor-
responding to the arrow going out of the hexagon contains a
vertex which 1s not the extremity of a double eage,it follows
that in the last hexagon of L4 there exists a vertex which
cannot be incident to a double edge,contradicting the defi-

nition ot a perfect matching.This concludes the proof.

Proposition 2., Ir edges c and d of the lower perinaphthyl
group (Figure la) are both simple,then the perrect matching
of parallel structure Ll in Pigure 2 is uniquely determined
and edges ¢ and d or the upper perinaphthyl group (Figure 1b)
are simple also,

Proof: One appiies induction on tne complexity e(Ll).

Ir c(hl) = 1 then Ll is a string atructure.In this case one
deduces by a reasoning similar to that from Propoeition 1
that double edges occur in hexagons of L1 in exactly the
same way as indicated in Figure 3} (cases 1-18) since c and 4
are both simple,for any annelation of the first hexagon in
Ll through edges e or £.It remains to consider taree cases
when the last nexagon in Ll is annelated through f and other
three for e in the upper perinaphthyl group (Figure 1b).

In casea of annelations through f,by taking into account
cases 18, 13 and 8 for the last hexagon in Ll one obtainse

that d,f,c are simple and e is double (Figure 5).The remaining

eth-okd

Fig.5
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three cases are settled by a similar argument.It follows also
that Ll possesses a unique perfect matching.

Let now C(Ll) > 2 and suppose that the property is verified
for any PS having a complexity of at most c(Ll)—l.It followa
that L, is composed from two perinaphthyl groups A and B, two
string structurss Lb and I.8 and

two parallel structures Lﬁ and L7

such that c(LG).c(LT) < e{ly)

(Figure 6).

Because in the lower perinapnthyl
group edges ¢ and d are simple it
followa that in L5 double edges
satisry the cases described in
Pigure 3.Hence if the annelation
is through edge ] of group A one
obtains three cases depicted in
FPigure 7 and in all these cases
edges a,b,c,d of A are simple.

A similar situation occurs when-
ever the annelation of the last

hexagon in L5 is through edge 1

of A.Since Lg and L7 have a comple-
xity less than c(Ll) it follows by Fig.6

the induction hypothesis that L6 and L7 have a unique perfect

matching and edges a,b,c,d of group B are simple (Figure 8).
One deduces that edges p,q,r of B are double and that,in the

string structure La,double edges follow again the patterns in
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Figure 3.By an argument similar to that in the case c(L;) =1
one obtains that Ly has a unique perfect
matching and edges c,d in the upper peri-
naphthyl group are simple.

We are now in a position to state the

firat theorem.

Pig.8

Theorem 1. If G is the parallel structure depicted in
Pigure 2 that ia decomposed into parallel structures G1 and
G2 as in Pigure 9,then

K(G) = K(6y) + K(G,)

Proof: If edges a or b in the lower perinaphthyl group are
double it follows that c and d are poth simple by Proposition
1.By Proposition 2 one obtains that L, has a unique perfect
matching and edges c and d in the upper perinaphthyl group are
both simple. Hence in this case the number of perfect matchings
of G equals the difference between K(Gz) and the number of
perfect matchings of G, such that both a and b are simple
edges .But every perfect matching of G2 contains at least one

edge among a and b as double sdge.Toc show this suppose that
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G,

Fig.9
a and b ars eimple.It follows that m,k,l are double and by

exhausting all available haxagons in L4 one finds the patterns
depicted in Pigure 10.By the same argument as in the proof

of Proposition 1 one obtains that the last hexagon of L4 cone

tains a vertex which 1s not incldent to any double edge.

Hence if a or b are double the number of perfect matchings

of G is equal to K(G2).

Otherwiese a and b in the perfect matchings of G are both

simple,L, has a unique perfect matching and edges a and b in

the upper perinaphthyl group are simple,hence in thie case

the number of perfect matchingas of G is equal to K{Gl).Tho
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Fig.10
proof i complete,

Note that the case when L1 and L? were satring structures
and L3 and L, were empty was obtained earlier by Randi¢,Hen-

derson and Stout 10.
Hence by applying several times the theorem every parallel

gtructure G can be decomposed into string structures Gl""'ar

such that r
R(G) = 2. K(Gy)
11

and every K(G;) may be computed by the Gordon-Davison algorithm
or by a moaification thereof.For any given orientation of the
coronoid, the aecomposition according to Theorsm 1 ie unique.
An example is given for graphs G'GI’GE'GJ in Figures 11 and
12,

It will be observed,as it ie emphasized in Pigure 11 by

the drawings of dualis$ subgraphs within each perinaphthyl
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unit,that a peri-condensed benzenoid has a nonzero number K
of Kekuld structures if (i) it has an even number of carbon
atoms and if (ii) the numbers of upward and downward poin-
ting triangles in its dualist graph are equal 9’11.

These are neceasary but. insufficlent conditions (other struc-~
tural requirements have also to be fulfilled,but a complete
list of such requirements has not yet been compiled).
Conditions (1) and (11) are met by all coronoids discussed in

the present paper.
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K(G) = K(Gy) + K(Gy) + K(G3) = 56,416

Pig.12

For effecting the decompoaition of a coronoid as required
by Theorem l,one has to proceed as follows: the coronoid has
to be drawn so that two edgea of each hexagon are vertical,
and the loweat dualist triangular subgraph of a perinaphthyl
unit appears pointing downward,Then the decomposition starts
from. any downwards "dangling" string of polyhexes (I..4 in
Pigure 2) and goes upward following a starting edge of the
perinaphthyl dualist subgraph.Disconnections in the dualist
graph occur at each horizontal edge of the triangular peri-

naphthyl dualist subgraph.At the upwards pointing perinaphthyl
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dualist subgraph,the same type of disconnection is performed
at any horizontal edge of the triangular dualist subgraph.

Thus ror any pair of triangular dualist subgraphs we obtain
a pair of PS.Should a new pair of triangular dualist subgra-
phe appear on any ot the P3,the same procedure has to be ap-

plied recursively.

An extension to series-parallel structures

By analogy to series-parallel electrical networks one
may define by recursion series-parallel structures (SPS)
as follows:
Every SPS 1s either:
1) a atring structure or iv is composed from:
11) two SPS L1 and L2 joined in parallel as in Figure 2,
or
i11) two SPS Lg and L, joined in series as inm Figure 13
through Lg.

LB'L4 and leare 33 and they may be empty.In Figure 13 the
thick lines symbolize a series-parallel polyhex which may
contain any number of benzenoid rings;we depict only the
upwards-pointing perinaphthyl subgraph of Lg (there will be
at least one downwards pointing perinaphthyl subgreph at a
lower level according to our drawing convention),and only
the downwards-pointing perinaphthy. subgraph of L7.

The annelation for Figure 2 holds in the same ways as for
PS; for Figure 13, L5 18 annelated to both the upper and the
lower perinaphthyl groups through edges i or j (see Figure 1).

If L, and L, are decomposed into SS: L%,Li,...,L{ 3
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1
?’
ding two hexagons from each lower

Lg,...,Lg reapectively (inclu-

L
and upper perinaphthyl group),
then the decomposition of SPS in
Pigure 2 contaims r+s S5S obtaimed
by concatenating L3 to I.4 via Li,

...,L{}L;.....Lg,reapectively.

Similarly,the decompositiom of 3PS
in Pigure 13 has rs 33 by concate-
nating every Lé,...,bg to every

r
Byeneald via Ly 12 7 SR, & .|

L%,....Lg are,respectively,the

decompositions of L, and L7 into
38.

FMg.1

These rules may be applied recursi-
vely for every SP3 for obtaining a umique decompositionm into
53.The following theorem may be proved im the game way as
Theorem 1:

Theorem 2. Let G be a SPS which ia uniquely decomposed
into string structures GI.GZ,....Gr.The following relation

holds: L
° K = 2 K6y

Another decomposition theorem for coronoid structures

with perinaphthyl branching units oriented in parallel manner

Consider now the structure G described in Figure 14,where

LI'LZ’LB'L4 and L5 are st¥ring structures (all these atructures
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may be empty),and where tne thick lines delineate subgraphs
G1 and Ga.raapuctively. G, is a SS obtained by a decomposi-
tion in accordance with the procedure described earlier for
Theorem 1; G2 is any polyhex subgraph.Also hexagons A and C
or B and D may coincide.

Such an example is given in Pigure 16 where string structures
02 and G3 are connected by a single lower hexagon.

L, is annelated to hexagonms A and C through edges ¢ or d;

a similar situation occurs for Lj. L4 and L5 are annelated
to corresponding hexagons in upper and lower perinaphthyl
groups through edges g or h; L is annelated to upper and
lowsr hexagons through e or f.
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Hexagons C and D belong to perinaphthyl groups whose two
other hexagons are in structure Gz.The possible positions of
thess perinaphthyl groups containing hexagons C or D relative
to the topology of G are depicted in Pigure 15.
In this case,unlike Figure 2,one cannot apply Theorems 1 or 2
because in 61 we encounter two perinaphthyl units both poin-
ting downward.

Theorem 3. Let G,Gy4G, be the structures depicted in Figure
14,The number of perfect matchings in G verifies
K(6) = K(G,)K(G,)

Proof: As in the proof of Proposition 1 one obtains that
it edges a or b of hexagon B are double then both edgee u and
v in the same perinaphthyl group are simple.By a similar ar-
gument one deduces that double edges in the portion of Gl com=
posed from Ll,two hexagons from the upper pserinaphthyl group
and L4 follow the patterna in Figure 3.In this case the last
hexagon in the upper portion of Gy would contain s vertex

which 18 not incident to any double edge,a contradiction.
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Hence both edges a and b in hexagon B are simple.

It follows that double edges in string structure L3 follow
the same cases as in Figure 3 and L3 has & unique perfect
matching.As in the proof of Proposition 2 one deduces that
both edges a and b in hexagon D are simple edges.

Since a and b in B are both simple 1t follows that the con-
clusion of Proposition 1 holds for edges a and b in hexagon
A.One may obtain as above that edges a and b in A are both
simple,edges a and b in C are also simple and L2 has a unique
perfect matching.

Since edges a and b in all hexagons A,B,C,D are simple for
every perfect matching of G and L2 and L3 have unique pertect
matchings the conclusion of the theorem follows.

Note that the result stated by Theorem 3 holds also whene-
ver Lz or L3 are geries-parallel structures provided the cen~
ters of three hexagona in any perinaphthyl group of G are
vertices of an equilateral triangle and all these triangles
have pairwise parallel sides.

Theorem 3 may be applied several times by decomposing G
into string structures Gl,....Gr and then multiplying the

numbers of perfect matchings in each Gi:
r
K(G) = | ] K(Gy)
i=1 a

An example is given in Figure 16.

In order to apply to coronoids Theorem 3,one has to proceed
in a similar manner to that discussed earlier for Theorem 1,
namely: orientation of the coronoid to yileld a "downward-poin-

ting" perinaphthyl subgraph at the lowest level; recognitionm



K(G) = K(GI)K(G?)K(GJ) = 13:15.17 = 3315

Fig.16
that any decompoaition according to deletion of a horizontal
edge in the triangular dvalist subgraph of the perinaphthyl
unit is followed by a similarly oriented triangle (e.g.down-
ward-pointing as in G, of Figure 14).

delete

Frg.17



In this case the decomposition proceeds recursively by dele-
ting from the downward pointing triangles of the dualist sub-
graph the upper right-hand vertex together with any string or
edge starting from it,up to,and including,the vertex of the
upward-pointing triangle of a dualist subgraph.This procedure
is aepicted 1n FPigure 17 by the dualist graph of Pigure 16
together with the firast deletions.Then the game procedure is

iterated in the remaining polyhex.
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Remark. 1t should be noted that the "perinaphthyl-type
branching unit" mentioned in the title and the text is not
meant restrictively, but can be extended tc "perylene-type
branching units". Indeed, the coronoid presented in Figure
16, whose dualist graph is shown in Figure 17, has two such

perylene-type units.
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