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Abstract

A set of three 5x5 transfer matrices, I, J, K, associated
with the different annellation modes is presented. By multiplying
these matrices with an appropriate terminal vector the Wiener num-
bers of arbitrary unbranched cata-condensed benzenoids can be simply
calculated. The matrices required in the case of branched cata-con-
densed benzenoids are also given: a 9x5 matrix B associated with
single branching of a benzenoid chain, and augmented transfer matri-
ces I, J, K, of dimension 9x9. By means of these matrices the Wiener
numbers of all cata-condensed benzenoids as far, as they have been
isolated hitherto, are accessible. More complicated structures are
considered, and for these the matrices must again be augmented to
dimension 15x9 (B) and 15x15 (I, J, K), respectively. The augmented
matrices are explicitly presented and instructions for their further
augmentation, if desired, are also given. Further, a particular code
for unbranched cata-condensed benzenoids is made applicable to

branched ones.

Introduction

Among the various invariants which may be derived from mole-
cular graphs the Wiener number plays a significant role historically
because it was the first one used in correlations with physi-
co-chemical data. In these early attempts Wiener [1 - 3] empirically
introduced two such graph-theoretical invariants: (i) the path num-
ber, W (Wiener number), originally defined as the sum of bonds



separating all pairs of carbon atoms in alkanes, and (ii) the
polarity number, P, which equals the number of those pairs of carbon
atoms which are separated by exactly three bonds. Wiener showed that
expressions of the type aWw + bP + ¢ reproduce the boiling points,
heats of formation and vaporization of numerous alkanes with high
accuracy. Similar results have been obtained by Platt [4, 5] for the
molecular refraction indices of alkanes. To our knowledge the
combination of W and P has not been applied since, but Wiener num-
bers alone have been used in correlations involving densities,
viscosities, surface tensions, and gaschromatographic retention
times; detailed surveys of that work are found in [6 - 8].

The original definition of the Wiener number, W(G), of graph
G, is unique only in the case of acyclic graphs. An extension of the
definition has been given by Hosoya [9], who pointed out that W(G)
may be expressed in terms of the entries of the distance matrix,
D(G), of the graph, by

W(G) = LI d(rs) , (1)
r<s

where d(rs) denotes the distance between vertices, r and s, i.e. the
number of edges of the path with minimal length (= geodesic path)
which connects these vertices. By this relation, eq. (1}, the Wiener
numbers are identified as metric quantities characterizing the graph
globally (10, 11); their basic mathematical properties are outlined
elsewhere [7, 12]). As a consequence of their metric character the
Wiener numbers provide a suitable basis for describing the features
of molecular branching and cyclicity by a series of rules [13 - 21],
and this character also allows the Wiener number of a given mole-
cular graph to be expressed in terms of the metric properties of the
subgraphs corresponding with the constitutional fragments of the
molecule being considered [22]. The metric properties in guestion
are the Wiener number of the subgraph, individual distances, d(rs),
between its vertices, and the recently introduced distance numbers
[12, 22], defined by

d{r|G) = L d(rs) . (2)
s

Since distance numbers play a significant role in the discussion



which follows, we introduce here an important property of distance
numbers of adjacent wvertices, say u and v. With regard to the
distances d{ur) and d{vr), the vertex set, V(G), can be resolved in-
to three disjoint subsets, namely:

v = {r|reG, d(ur)<d(vr)} .,

u
Vyy = (£lr€G, d(ur)=d(ve)} . (3)
v, = [r|reG, dlur)>d(vr)} ,

where V., is non-empty if and only if u and v belong to one and the
same odd-membered cycle. This means that Vv, is empty for all bipar-
tite graphs and, hence, also for those of benzenoids. It has been
proved [11, 12, 22) that the distance numbers of adjacent vertices
obey the following relation:

d(u]G) - d(v]G) = - |V, | + |V, ]| (4
where lvu| and |V,| denote the cardinalities of the respective
subsets defined above.

In bipartite graphs the parity of Wiener and distance num-
bers depend on the parities of cardinalities of the colour sets
[23]. This general finding has been tightened for benzenoid graphs
resulting in modulo 4 and modulo 8 rules, respectively [24].

The Wiener and distance numbers may be derived by means of
eqgs. (1) and (2), respectively, and the distances may be obtained
from the powers of the adjacency matrix A(G) of the graph according
to

d(rs) = minjv|(A¥) _#0, 0<v<n-1} (5)

where n denotes the number of vertices of G. Since with increasing
n this procedure soon becomes clumsy, there is a need for a more
efficient method for the evaluation of Wiener numbers. The transfer
matrix method offers such an approach.

Very recently we have applied this method to the evaluation
of the matching and characteristic polynomials, the topological in-
dex z, and the number of Kekulé structures of arbitrary unbranched
cata-condensed benzenoids [25]. In the transfer matrix approach [26]



the property considered is represented by a particular element of
a vector, Q, associated with benzenoid B,. The value of the pro-
perty for By, , is obtained by multiplying vector Qp with a suitable
transfer matrix; all the quantities desired in that multiplication
are provided by the other elements of the vector. In the series of
unbranched cata-condensed benzencids each transfer matrix is asso-
ciated with the annellation of a ring to the benzenoid. According
to the different modes of annellation, as explained in the next sec-
tion, three such matrices, I, J, K, are required, corresponding to
the linear (1), the angular clockwise (J), and the angular an-
ti-clockwise mode (K), respectively. It is worth noting that the se-
quence of transfer matrices applied represents a code word for the
benzenoid being considered [25].

In this work we describe the development of transfer matri-
ces by means of which the Wiener numbers of benzenoids can be
calculated. We derive the transfer matrices and the vector used in
the case of unbranched cata-condensed benzenoids, and then extend
this procedure to branched ones. As far as possible the notation
used in this paper follows that of [12, 22, 25].

Unbranched cata-condensed benzenoids

At first we consider the changes in Wiener and distance num-
bers which take place due to the formation of benzenoid B, (re-
presented by graph H) from By , (represented by graph G) by annel-
lating an additional ring, as shown schematically in Figure 1. Since
By_, is assumed to be arbitrary, its pattern of annellation cannot
be specified; this is indicated by half-circles in Fig. 1.
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[

Figure 1: Formation of benzenoid By, from By _, by annellating
a ring, and also the annellation modes corresponding with
transfer matrices I, J, and K, respectively.



In graph-theoretical terms, the annellation may be described
as a joining of the terminal vertices o and & of path graph P,, with
two adjacent vertices u and v of the terminal ring of G. In H the
added vertices are renamed a, b, ¢, d. The changes of Wiener and
distance numbers due to this process are expressed by egs. (31) and
(32) of [22), and hence we may apply these equations directly to H.
After inserting the respective numerical values of the Wiener and
distance numbers of P,, we obtain:

W(H) = W(G) + 2d{(u|G) + 2d{(v|G) + 6n{(G) + 10 ; (6)
d(aJH) = d(u|G) + n(G) + 6 , (7a)
d(bJH) = d(u|G) + 2n(G) + 4 , (7b)
d(c|H) = d(v]|G) + 2n(G) + 4 , (7c)
d(d|H) = d(v]|G) + n(G) + 6 ; (7d)
n(H) =n(G) + 4 . (8)

These equations possess a quite general validity because neither the
vertices u and v, where annellation takes place, nor the graph to
which they belong, are specified in [22].

The terminal ring of a benzenoid has four vertices suitable
for annellations which will henceforth always be denoted by a, b,
¢, and d. The vertices u and v used in egs. (6) - (B8) are pairs out
of that set. As illustrated in Fig. 1 there are three possibilities
for selecting u and v, each one related to a particular mode of
annellation and transfer matrix, namely:

u=a, v=>b : angular clockwise mode, J,

u=b, v : linear mede, I, (9)

u=c, v =d: angular anti-clockwise mode, K.

From this one might conclude that a vector made up from the 6 left
hand side quantities of egs. (6) - (8) and 1 as multiplier for the
natural numbers appearing therein, retains just the quantities re-
quired in the next step, but the vector can actually be contracted
to 5 elements. Applying eqg. (4) to the vertex pairs a,b and c,d of
G one obtains

d(a|6) = d(b|G) - n{(G) + 6 , (10a)



d(d|G) = d(c|G) - n(G) + 6 . (10b)

As a consequence of these relations the vector Q(G) may be defined
without the distance numbers of vertices a and d. Thus, it takes the
following form:

Q(G) = W(G)
d(b|G)
d(c|G) (11)
n(G)
1

In practice it might be useful to insert a further element into Q(G)
which counts the number, h(G), of rings of the benzenoid, but in the
following the above form of Q(G) always will be assumed.

From eqs. (6) - (11) the transfer matrices I, J, and K, as
explicitly given in Table 1, are easily derived. As a conseguence
of eq. (10), the matrices J and K have a zero column each. Further
as a consequence of the selection pattern (9) and eq. (10), matrix
K is obtained from J by interchanging the second and third rows and
columns, and vice versa.

I = (1 2 2 6 10
o 1 o 2 4

o o 1 2 &

o ¢ o 1 4

o o o o 1

J = |1 & o0 & 22
o 1 o 1 10

o 1 o0 2z 4

o 0 0 1 4

o ¢ o 0o 1

K = {1 o & & 22
; 0 0 1 2 4

0 0 1 1 10

o 0 0 1 4

fo o o o 1

Table 1: Transfer matrices I, J, K for linear, angular clockwise, and
angular anti-clockwise annellation mode, respectively.



According to the formal process shown in Fig. 1 the smallest
benzenoid, benzene, h = 1, is formed from the path graph Py and G
= FZ. From that, for the vectors QD and Ql one concludes

o
—
"
—
o
(=]
n
N

(12)

—_ o W W ~

Note, that Q; can be obtained only by 1 Qg whilst the products J
Qg and K Q are undefined. This is because the path graph P, consists
of two vertices only, and hence eq. (10) cannot be applied to P,.
In contrast to this the wvector Q, associated with naphthalene
results from Q; by applying any one of the three transfer matrices:

Q=10 =JQ =KOQy .

This result exhibits the symmetry of benzene, but it also follows
from eq. (10) and the fact that the benzene graph consists of just
6 vertices.

By means of the vector and the transfer matrices given in
this section, the Wiener numbers of arbitrary unbranched cata-con-
densed benzencids are very gquickly obtained. Thus, the transfer
matrix approach is confirmed as an efficient method for calculating
Wiener numbers.

Because of eq. (10), transfer matrices J and K can only be
applied to a pair of adjacent vertices of a terminal six-membered
ring, as assumed from the beginning. By contrast, the transfer
matrix I may be generally used for annellating a six-membered ring
to two adjacent vertices of any simple graph G', provided the vector
Q(G'), corresponding to eq. (11), can be constructed. Starting with
1 Q(G’') the Wiener numbers of arbitrary sequences of cata-fused
six-membered rings with one non-benzenocid terminal group [27] can
also be generated.

In principle the Wiener numbers of branched cata-condensed
benzenoids could be derived by applying transfer matrix I to two ad-

jacent vertices of an inner ring of a benzenoid. But the construc-



tion of the required vector Q(G’) would be rather complicated in
such a case, and the difficulties 1involved would be almost
insurmountable. We have therefore developed an alternative approach
to this problem which is the subject of the next section.

Cata-condensed benzenoids with single branching

A benzenoid exhibiting a single branching may be interpreted
as a derivative of triphenylene from the terminal rings of which
branches of cata-condensed benzene rings originate. Viewed in rever-
se, the annellation of a triphenylene unit toc a growing cata-con-
densed benzenoid produces its branching. In this sectien, only ben-
zenoids with a single triphenylene unit are considered; multiple

branching is the subject of the next secticn.

Figure 2: Incorporation of a triphenylene unit into a benzenoid.

The simplest way to incorporate a triphenylene unit into a
chain of cata-condensed benzene rings is illustrated by Figure 2.
The terminal vertices of two isolated Py graphs, «, & and «", &,
respectively, are linked to the vertices a, b, ¢, d of the terminal
ring of G. If G represents the benzenoid By _; then the graph H formed
in this way corresponds with the branched benzencid By, ,. In H the
added vertices form those peripheric regions where further annella-
tions may take place, hence, in H they are renamed a, b, ¢, d and
a’, br, ¢, d', respectively (see Fig. 2).

Applying egs. (31) and (32) of [22] twice one arrives at the
following set of equations:



W(H) = W(G) + 4d(b|G) + 4d{c|G) + 8n(G) + 124 ; (13)

d(a|H) = d(b|G)} + 32 , (l4a)
d(bjH) = d(b|G) + n(G) + 34 , (14b)
d(c|H) = d(b|G) + 2n(G) + 24 , (1l4c)
d(d|H) = d(b|G) + n(G) + 22 ; (144d)
d(a’|H) = d(c|G) + n(G) + 22 , (15a)
d(b’'|H) = d(c|G) + 2n{G) + 24 , (15b)
d(c’|H) = d(c|G}) + n(G) + 34 , (15¢)
d(d’'|H) = d(c|G) + 32 ; (15d)
n{H) = n(G) + 8 . 116)

Note that b and c on the right hand sides of these equations refer
to peripheric vertices of G ~ By_;, but on their left hand sides to
those of H ~ By .. Note further, that eg. (10) holds for the distance
numbers of the vertex pairs (a,b), (c,d), (a’,b’), and (c’,d’) too.

The complete formation of the intended branched benzenoid
requires further annellations at ring h and ring h+l, respectively.
It is assumed that annellation is begun at ring h+l and is continued
as long as necessary for the complete formation of that branch
("first branch") arriving in such a way at the intermediate ben-
zenoid By,. It can be seen that By, consists of h’'-1 arbitrarily
cata-condensed benzene rings and an additional one which is labeled
by h and cata-fused with ring h-1. Benzenoid By, is the starting
material for the formation of the "second branch" which originates
from ring h. Performing the first annellation step there, one re-
quires the distance numbers of vertices b’ and c’ as they actually
are in By, . Therefore, the vector used during the formation of the
first branch must keep these guantitiesin evidence. Further, the
transfer matrices applied in the stepwise formation of the first
branch must account for the changes of these distance numbers due
to the particular annellations executed. As is shown more fully
below, for this purpose the actual values of the distances d(bb’)
and d{(cb’) will be required, hence, they must also be represented
by particular elements of the vector. All this indicates the manner
in which the original vector, Q, must be augmented to vector R:



R(G) = W(G) H
d(b|6)
d(c|6)
d(b'|G)
d(c'|G) (17)
d(bb'|G)
d(cb'|6)
n(G)

1

where G denotes the graph of a branched benzenoid, corresponding
either with By ,, shown in Fig. 2, or with any one of the benzenoids
obtained in the course of the stepwise formation of the first
branch, including Bh,.

Since the augmented vector R is generated from Q when the
branched By, ; is formed from unbranched By ; in accordance with Fig.
2, this step may be written as:

R(h+1) = B Q(h-1) ,

where B denotes the transfer matrix associated with the
incorporation of a triphenylene unit. With regard to the lengths of
the vectors involved, matrix B must consist of 9 rows and 5 columns,
respectively. The first rows have to agree with egs. (13) - (15).
For the next two rows by inspection of Fig. 2 one finds d(bb’") = 6
and d{(cb’) = 5. From that and eq. (16) the last rows of B are
derived. The resulting transfer matrix B is explicitly given in
Table 2.

ococoooooo -
ceocoo o~ =&
oOoc o0 =r-~o0oo s
R - - B N ]
w
b=

Table 2: Transfer matrix B associated with branching of a chain
of cata-fused six-membered rings.



The application of transfer matrix B requires a Py-like se-
quence of four vertices suitable for annellations. Such a sitvation
is always realized in the terminal ring of a benzenoid independently
from the mode of its annellation. Therefore, matrix B may be applied
to any sequence of transfer matrices, i.e. all the combinations, B
I ..., BJ ..., BK ... are feasible. Since the number of rings,
h(G), is increased only by 2 when matrix B is applied, the complete
triphenylene unit and its annellation mode is represented by (BI),
{pJ), and (BK), respectively. As Fig. 2 shows, the two rings
introduced by B are angularly annellated, ring h+l in clockwise,
ring h in anti-clockwise mode.

As assumed above, annellations to Bh+1 are continued at ring
h+l to which the vertices b and c belong. With regard to the length
of vector R, the transfer matrices applied now must have dimension
9x9. We may denote these matrices again by I, J, and K,
respectively, and, because of the difference in size, no confusion
with the former ones can occur. As a consequence of their
generality, egs. (6) - (10) are also valid in the case treated here.
Therefore, the first three and the last two rows of the augmented
matrices are obtained from the former ones if one inserts four
zero-columns between their third and fourth column. The final forms
of the new matrices are achieved by inserting four rows which produ-
ce the elements augmenting the vector. By means of eqg. (31) of (22],
for the first two gquantities in the cases of different annellation
modes, one finds:

(i) linear mode (I)

d(b'|H) = d(b'[G) + 2d{bb’'|G) + 2d(cb'|6) + 6 ,
18
d(c'|H) = d(c'|G) + 2d(bb'|G) + 2d(cb'|G) + 10 ; (182)
(i1) angular clockwise mode {J)
d(b'|H) = d(b'|G) + 4d(bb'{G) + 4 ,
(18b)
d(c'|H) = d(c'|G) + 4d(bb'|G) + 8 ;
(ii1) angular anti-clockwise mode (K)
d(b'|H) = d(b"'|G) + 4d(cb'|G) + 4 ,
(18¢)
d(c'|H) = d(c'|G) + 4d(cb']G) + 8



Figure 3: Ring annellations in the formation of the first branch
(vertex labels used in G are given in parantheses).

Expression for the distances may be derived from Figure 3 which il-
lustrates the situations met in the course of the formation of the
first branch. Areas of arbitrary, i.e. non-specifiable, annellation
patterns are marked by light closed lines. Independent from the
actual pattern of the first branch, the geodesic paths connecting
vertex b’ with vertices a, b, c, d added in the last step, enter ring
h always at the vertex opposite to c’. From this one may conclude:

d(bc’) = d(bb’) + 1 ,

(19)
d(cc’) = d(cb’) + 1 .
Since these relations are valid for any G or H, the distances to
vertex c’ have been omitted in vector R, although they are needed
in egs. (18a,c).

As Fig. 3 further shows, the changes in the distances d(bb’)
and d{cb’) due to annellation are fully determined by the local
features of the last two rings. Hence, the desired expressions may
be directly derived from Fig. 3, and one obtains for the different
annellation modes:



(i) linear mode (I)

d(bb'|H) = d(bb'|G) + 2 ,
(20a)
d(cb'|H) = d{cb'|G) + 2 ;
(i1) angular clockwise mode (J)
d(bb'|H) = d{bb'|G) + 1 ,
{20b)
d(cb'[H) = d(bb'[G) + 2 ;
(i1i) angular anti-clockwise mode (K)
d{bb*|H) = d{cb'|G) + 2 ,
(20c)
d(cb'|H) = d(cb'|G) + 1

By means of egs. (18) and (20) the missing rows of the augmented
transfer matrices I, J, K can now be constructed. The resulting
matrices are explicitly given in Table 3. As can be seen by inspec-
tion, transfer matrices J and K are obtained from each other by the
pairwise interchange of row and column 2 with 3 and 6 with 7.

= (1 2 2 0 0 o ©0 6 10
o 1 o o 0 o O 2 ]
o 0 1 o o 0 © 2 &
e 0o o0 1 0 2 2 0 6
o o o o 1 2 2 0 10
o ¢ o o o0 1 ¢ 0 2
o o0 0 0 0o @ 1 0 2
o 0 o o o 0 0 1 4
o 6 o 0 ¢ o ©o 0 1
J = (1 4 o0 © 0 0 0o 4 22
¢ ¢ © & 0 ¢ @ I W Table 3: Transfer matri-
¢ 1 ¢ o o o 0 2 & ces I, J, and K applied
o 0 0 1 0 [ 0 0 4 in the formation of the
0 0 0 0 1 4 0 0 8 first branch after the
o 0 0o o o0 1 I | incorporation of a tri-
0 0 0 0 ] 1 ] 0 2 phenylene unit.
o ¢ o o0 © o 0 1 4
{o6 o o 0o 0 0o 0 0O 1
K = 1 0 4 0 [} 0 0 a 22
o 0 1 0 o o o0 2 4
o 0 1 o o 0o o 110
o o o 1 ©o ©o & 0 4
o 0o o o0 1 o 4 0 8
o 0o o o o o0 1 0 2
o o o0 0o 0 o 1 @ 1
o o o o 0 0 © 14
o © o o o0 0 o0 0 1



As can be seen from matrix B and eq. (20), the distances d(bb’) and
d(cb’') always differ by 1. Linear annellation does not alter their
difference. After the application of J one always has d(bb’') < df(c-
b'), but after having applied K, one always finds d(bb’) > d(ch’).

As soon as the first branch is completely formed one turns
to the formation of the second branch originating from ring h. For
the annellations to be performed now, not all the quantities kept
in vector R are required. Consequently, the vector may be contracted
to its original length by striking out the second, third, sixth, and
seventh element. This procedure alsc involves vertices b’ and ¢’
being renamed b and c, respectively. The annellations performed now
in order to form the second branch are executed by means of the
original transfer matrices I, J, K collected in Table 1.

Clearly, the contraction of R(G) to Q(G) may be performed
straight after the application of matrix B if no annellations take
place at ring h, as for instance in case of the benzenoids shown
below:

But note that in these cases the distance numbers of b and c are
needed for further annellation. Therefore, R(G) is contracted to
Q(G) by striking out the fourth, fifth, sixth, and seventh element.

Cata-condensed benzenoids with multiple branching

Benzenoids possessing more than one triphenylene unit may
be grouped into two classes. The first class is formed from those
benzenoids in which all the triphenylene units are incorporated
within a single chain (main chain), thus, these benzenoids may be
considered as a long chain of cata-condensed benzene rings with some
unbranched side chains. The benzenoids of the second class are
characterized by the presence of at least one triphenylene unit from
the rings of which exclusively branched side chains originate.

The transfer matrices given in Tables 1 - 3 are sufficient
for treating benzencids of the first class: One starts with the



formation of the main chain and, arriving at a triphenylene unit,
the unbranched side chain originating from there is completely
formed before one continues with annellaticons in the main chain.
Since vector R is adjusted for persisting with annellations in the
angular clockwise branch growing out from ring h+l (see Fig. 2), its
reorganization is necessary if the side chain is annellated in an-
gular anti-clockwise mode, i.e. it originates from ring h. Tn some
particular cases it may happen that transfer matrix B must he ap-
plied twice, one after the other, as for instance in case of diben-

zo-chrysene shown below:

This benzenoid corresponds to B2 IZ 0, (the location of vector Qp
is marked by a heavy bar) and these multiplications can be smoothly
performed without difficulties.

For henzencids of the second class the matrices collected
in Tables 1 - 3 are insufficient because in the course of the forma-
tion of such a benzenoid, a further triphenylene unit must be
incorporated into the growing benzenoid before annellations at the
last one can be completed. The situation in question is illustrated

by Figure 4. Continuing with annellations at ring

Figure 4: Incorporation of a second triphenylene unit.

h'+1, the actual values of the distance numbers of vertices b’, ¢’,



b", ¢" and also those of the distances d{(b'b"), d{(cb"), d(brb"}),
d{c’b"™) must be kept in evidence. This means that the vector R and
consequently also the matrices B, I, J, and K must be augmented. The
augmentation of the vector leads teo

s(G6) = W(G)

d(b|6)
d(c|6)
d(b'|6)
d(c'|6)
4(b"|G)
d(c"|6)
d(bb' |G) (21)
d(cb*|6)
d(bb" |G)
d(cb"|G)
d(b'b"|6)
d(c'b"|6)

n(G)

1

The augmentation of 9x5 matrix B may be performed in two
steps. In the first step four zero-columns are inserted between the
third and fourth column of B. The rows of the square matrix g formed
in surh a way are now ready for multiplication with vector R. In that
way, the first three rows of E produce W(H), d(b|H), and d(c|H) as
desired, thus, they agree with the first three rows of the augmented
matrix B. However, the following rows of B now produce d(b"|H),
d(c¢"|H}, d{bb"|H), d(cb"|{H), n(H), and 1, hence, they agree with ro-
ws 6, 7, 10, 11, 14, and 15 of augmented matrix B, respectively. For
the missing rows one may derive from Fig. 4:



-1y -

d(b'|H)

d(b'|G) + 4d(bb'|G) + 4d(cb'[G) + 8 ,

(22)
d{c'[H) = d{c'|G) + 4d(bb'|G) + 4d(cb'|G) + 16 ;
d(bb'[H) = d(bb'|G) + 1 ,

(23)
d{cb'|H) = d(bb'|G) + 2 ;
d(b'b"|H) = d(cb'|G) + 2 ,

(24)
d(c'b"[H) = d{cb'|6) + 3

Using these equations for the construction cf the rows 4, 5, 8, 9,
12, and 13, the augmented matrix B results, as explicitly given in
Table 4. Although, with regard to eq. (19), distances to vertex c'
have been omitted in R, d(c’b") is introduced into vector 5, since

this distance will be needed in the case of constructing S.

B = 1 4 4 [+] 0 0 0 8 124
] 1 0 0 0 0 ] 1 34
0 1 0 0 0 0 0 2 24
0 o 0 1 0 4 4 ] 8
0 V] 0 0 1 4 4 0 16
0 0 ! 0 o 0 0 2 24
0 0 ¥ 0 0 0 0 1 34
0 0 (1] 0 o 1 0 o 1
o 0 0 0 0 1 0 0 2
o o o 0 0 0 0 0 6
0 o 1] 0 0 0 0 0 5
0 0 ] 0 0 ] 1 0 2
0 0 ] o 0 0 1 0 3
0 0 o o 0 0 0 1 8
0 0 o 0 0 0 0 0 1

Table 4: Transfer matrix B associated with the incorporation of
a second triphenylene unit.



The first step of the augmentation of 9x9 transfer matrices
I, J, K also consists in inserting zero-columns, namely two
zero-columns between the fifth and sixth columns and four between
the seventh and eighth columns of these matrices. Applied to S(G)
the rows of these intermediate matrices produce the quantities W(H),
d(b|H), d(c|H), d(b'|H), d(c'|H}, d(bb’|H), d(cb’|H), n{H), and 1,
as desired and, hence, they agree with the rows 1 - 5, 8, 9, 14, and
15 of the respective augmented transfer matrices. The rows 6 and 7
of these matrices have to produce d(b"|H) and d(c"|H), and they can
be constructed by means of eq. (18) if there, b’ and ¢’ are replaced
by b" and c", respectively. The rows 10 and 11 producing d(bb"|H)
and d(cb"|H) are obtained from eg. (20) analogously. Finally, the
rows 12 and 13 have to produce the actual values of d(b’b’|H) and
d(c’b"|H). Since these distances are not altered by the annellations
performed at ring h’+1, the corresponding rows consist of zeros on-
ly, except for the last element, which equals 1. The 15x15 transfer
matrices I, J, K obtained in such a way are collected in Table 5.
They correspond to the annellations depicted in Figure 5. Onre
again, matrices J and K are obtained from each other by interchan-

ging particular pairs of rows and columns.

(K)

Figure 5: Annellations after the incorporation of two triphenylene
units.



10

10

22
10

22

10

incorpo-

Table 5: Transfer matrices I, J, and K applied after the

ration of a second triphenylene unit.



After the complete formation of the branch originating from
ring h*+1, vector S{G) may be contracted by striking cut its second,
third, eighth, ninth, tenth, and eleventh elements. In this way the
resulting vector R(G) is adjusted for annellations at ring h. In
this contraction, the necessary renaming of vertices suitable for
annellations is as follows: b" =+ b’, ¢" > ¢', b" = b, ¢’ * c.

As soon as the branch originating from ring h is completely
formed, the vector R(G) may be contracted to 5 elements, as has al-
ready been considered in the preceding section.

A survey of the augmentations and contractions of the
vectors used in the case of branched cata-condensed benzenoids is
presented in Table 6. The contraction of R(G) to Q(G) is uniguely
determined since the intermediate benzenoid possesses only one par-
ticular ring where further annellation can take place. For the
contraction of S(G) to R(G). Besides the alternative discussed above
and also presented in Table 6, one has also to consider the pos-
sibility of continuing with annellations at ring h’. In that case
vertices b avéd X are renamed b and c, respectively, but b" and c*

keep their meaning. According to

806} augmentation RLG) augmentation S16) contractien R{G) contractiom 9(6)

WiG) WiG) WG) W(&) [ W(B)
d(bIG) a{b|G) d(b'G) ! 5
d(c!G) | d(c!B} d(c 6} 1
dib' 6} (b |6} d(5]6} ‘
d(c' G} d(c' (G} d(c|G)
d(b"|G) d{b'|G) d{b|G)
d(c"|G) d{c'|B) d(c|6)
d{bb'|6) d(bb*|G) |
d{cb'|G) d{ch'|6) !
d{bb"|G) i
d{cb"|G)
d(b'b"|G) d(bb'|G)
d{c'b"|G) d{cb'|G)
n{6) n{G) n(6) n(6) niG)
1 1 1 1 1

Table 6: Scheme of augmentations and contractions of the vectors
used in case of branched cata-condensed benzenoids




this procedure the elements d(b"|G) and d(c"|G) of S(G) are used in
R(G) as d(b|G) and d(c|G), respectively. Similarly d(b'b" |G} of S(G)
is identified with d(bb’|G) in R(G). But the element d(cb’|G) re-
quired for R(G) cannot be taken from S(G) because its precursor,

d{b’c"|G), is not kept in S(G). Hence, 1t must be inserted according

to d(b’c"|G) = d{b'b"|G) - 1, as is easily derived from Figs. 4 and
Sie
Applications

By means of the transfer matrices given above the Wiener
numbers of even large benzenoids, exhibiting rather complicated
annellation and branching patterns, are easily accessible. Thus,
this calculation procedure has some advantage compared with other
methods (28]. Further, the transfer matrices collected in Tables 1
-5 form a kit sufficient for the straightforward calculation of the
Wiener number of any common cata-condensed benzenoid. Benzenoids,
outside of this range have unlikely complex branching patterns. For
example, the simplest such benzenoid possesses ten triphenylene
units in a particular arrangement; namely, a central unit connected
by benzenocid chains to three other units from which exclusively
branched side chains originate. In order to treat even structures
such as this, the vector S(G) and transfer matrices given in Tables
4 and 5 must be augmented again by an analogous procedure to that
discussed above for R(G), and the matrices collected in Tables 2 and
3.

As has been peinted out in the preceding paper (25] in the
case of unbranched cata-condensed benzenoids the sequence of applied
transfer matrices may be directly interpreted as a code word for the
resulting benzencid. In the case of branched benzenoids such a
direct interpretation is impossible. Firstly, one must know by which
particular matrix multiplication the formation of each distinct
branch has been completed. Further, while matrices 1, J, K cor-
respond with the annellation of a single ring, matrix B is related
to the addition of two new rings, which must undoubtedly be distin-
guished from the view-point of further annellations. For all these
reasons we prefer to associate matrix B with two letters in the
code, say M and N, which refer respectively to the ring annellated
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branched side chains originate. In order to treat even structures
such as this, the vector S(G) and transfer matrices given in Tables
4 and 5 must be augmented again by an analogous procedure to that
discussed above for R(G), and the matrices collected in Tables 2 and
33

As has been pointed out in the preceding paper [25) in the
case of unbranched cata-condensed benzenoids the sequence of applied
transfer matrices may be directly interpreted as a code word for the
resulting benzenoid. In the case of branched benzenoids such a
direct interpretation is impossible. Firstly, one must know by which
particular matrix multiplication the formation of each distinct
branch has been completed. Further, while matrices I, J, K cor-—
respond with the annellation of a single ring, matrix B is related
to the addition of two new rings, which must undoubtedly be distin-
guished from the view-point of further annellations. For all these
reasons we prefer to associate matrix B with two letters in the
code, say M and N, which refer respectively to the ring annellated
in angular clockwise mode, (M), and anti-clockwise mode, (N). By
means of parentheses, the different branches may be kept apart from
each other. In Figure 6 we give some examples of branched benzenoids
and their respective code words. The first six examples represent
well-known benzenoids, the last example, however, is constructed in
order to illustrate the use of the code in the case of more compli-
cated structures.
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Figure 6: Examples for code words of branched cata-condensed
benzenoids. Heavy bars mark the location of the
respective starting vectors QO.

Certainly, the most intrigquing feature of using transfer
matrix approach is its capability of evaluating properties of ar-
bitrary benzenoids. But nevertheless, transfer matrices are also
very useful in the study of series of regqularly constructed ben-
zenoids such as acenes, fibonaccenes (= zig zag fused benzenoids),
helicenes, and others, The Wiener numbers of the members of such a
series may be expressed as cubic functions of h [17, 27, 28] accor-
ding to

Wy = a W sbhischea . {25)

The constants a, b, ¢, d therein are characteristics of the various
series. In our experience [29], the derivation of such functions for
further families of regularly constructed benzenoids is made noti-
ceably easier by the use of transfer matrices.

In general, such a series lBt|tal.2,...l is systematically
generated by the regularly repeated addition of a particular ben-



zenoid fragment consisting of m benzene rings. Then the number of
benzene rings cof the t-th member of the series is given by h = mt+m’

and eq. (25) may be rewritten as follows:
w, = atd +Bt2 4 ct =D . (257)

As eq. {257) indicates, the Wiener numbers, W,, of the members of
such a family form an arithmetic series of third order. One of the
characteristics of a series of that type is that all differences
from the fourth order upwards vanish identically to zero. Hence,
expressing the fourth order difference in terms of successive
members of the series the following recurrence relation results:
Weeq =4 W, — 6 W ) +# 4 W, _5 - W 5 . (26)
As outlined in [25], such recurrence relations are also obtained
from a combination of transfer matrix and shift operator techniques
[30]. sSuppose, By and B,,, are succeeding members of a series of
regularly constructed benzenoids for which a shift operater, 0O(+),
is defined by

Biyy = o(+) By . (27)

Suppose further, that the vector Q(B,, ;) is produced from Q(B.) by
the multiplication

Q(By,1) = X Q(B.) (28)

where X denotes the transfer matrix associated with the series
considered. Then, a recurrence relation results from

D = det[X - O(+) 1] = 0 , (29)

where 1 denotes the unit matrix of appropriate order. For the series
of acenes (where X = I), one derives from eq. (29)

D= (1-0(+)]°=0 ; (30a)



for all the other series, as for instance X = J or K (helicenes),

X =K J or J K (fibonaccenes}, X = 1 J or I XK, etc., one ohtains

D=-0(+) « [L-o0(+)1% -0 . (30b)
As is easily proved, egs. (30a,b) are in agrerement with the recur-
rence relation, eq. (26). In addition, egs. (30a,b) explain the

existence of cubic functions expressing the Wiener numhers in accar—

dance with eq. (25).

Concluding remarks

The transfer matrix approach to the Wiener numbers of ben-
zenoids is not limited to cata-condensed benzenoids. As first
results [29] indicate there is no difficulty in also constructing
transfer matrices associated with the incorporation of peri-con-
densed units, such as pyrene, perylene, etc., into growing chains
of otherwise cata-condensed benzenoids. The number of desired trans-
fer matrices grows with the increasing number of realizable combina-
tions of modes of incorporation and ways of continued annellation;
for instance, in the case of pyrene a total of 25 transfer matrices
are needed, even when possible branching at the pyrene units is dis-
regarded.

The construction of transfer matrices associated with
cata-fusions of benzene rings is relatively simple because the net-
work of geodesic paths in graph G, representing the starting
material, is retained in the fusion process. This is not necessarily
true for other procedures generating a larger benzenoid from a smal-
ler one. Thus, for instance, a particular mode of incorporating
pyrene units is related to the recrganisation of a few geodesic
paths. From the experience hitherto gained, we conclude that, in
general, transfer matrices producing Wiener numbers may be con-
structed for numerous benzenoid and non-benzenoid units, provided
their incorporation takes place either with retention of the network
of geodesic paths, or only few geodesic paths are reorganized in a
well-defined manner.
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