no. 24

pp. 59-63

ALL-BENZENOID SYSTEMS:

CATACONDENSED CONJUGATED HYDROCARBONS

S. J. CYVIN, J. BRUNVOLL and B. N. CYVIN
Division of Physical Chemistry, The University of Trondheim,
N-7034 Trondheim-NTH, Norway

(Received: August 1988)

Abstract: The material on numbers of Kekulé structures for classes of catacondensed all-benzenoids is supplemented. Two new classes are considered.

In order to fulfil the program which was outlined in the preceding paper on all-benzenoid systems 1 it was found necessary to supplement the existing material on combinatorial K formulas. 2 Here K is used to designate the number of Kekulé structures. The present paper deals with some classes of catacondensed all-benzenoids. First an introductory section on some topological properties of the systems in question is warranted.

<u>Supplementary Topological Properties of Catacondensed All-Benzenoids</u>. By a terminal hexagon in a benzenoid system we understand a hexagon which shares five edges with the perimeter. A terminal hexagon in an all-benzenoid is always full. In a catacondensed all-benzenoid a backbone is recognized when the system is stripped for its terminal hexagons. A segment of the backbone is defined as the linear chain between two angularly annelated benzagons inclusive, or between a terminal and an angularly annelated hexagon inclusive. Here it is of course referred to a terminal hexagon of the backbone. An angular annelated hexagon of the backbone belongs by definition to two neighbouring segments.

As a consequence of the general properties of all-benzenoid systems^{3,4} drastic limitations to the shapes of catacondensed all-benzenoids are present.

- 1. The catacondensed all-benzenoid systems are highly branched inasmuch as every empty hexagon is a branching hexagon.
 - 2. The backbone has a configuration with alternating empty (E) and full

- (F) hexagons: EFEF...E, Notice that E is always at the ends of an unbranched backbone.
- 3. The backbone is in general highly kinked: a segment of it never consists of more than three hexagons. We can speak about the 2-segments and 3-segments.
 - 4. A 3-segment has always the configuration EFE (never FEF).
- 5. The backbone may consist of only 2-segments or only 3-segments. Mixed segmentation is also possible, but between two 3-segments there must be an even number of 2-segments.
- 6. The backbone may be branched. Then the above rules apply to all subsystems spanning from one end of a branch to an end of another branch. The branching hexagon may be either empty of full.

The contents of the above rules 3 and 4 may be expressed in terms of the LA-sequence 5 of the backbone. The following patterns are among the possible ones.

- (i) 1.... AAAAAA L
- (ii) LL ALALAL I.
- (iii) LAAL AAALAAAL L

On the other hand is, for instance, the following configuration impossible.

<u>Previous Work.</u> Combinatorial K formulas have been developed 2 for classes of catacondensed benzenoids corresponding to the LA-sequences (i)-(iii) of the preceding paragraph. They are:

- (i) Y(n): backbone with 2-segments only;
- (ii) M(n): backbone with 3-segments only;
 (iii) U(n) "horse-shoes on a string": The sequence of segments in

the backbone is $2-2-3-2-2-3-\ldots-2-2$. In addition, the "catacondensed all-benzenoid ladder" 3(n) was treated; it has a branched backbone for n > 2.

The Class of Horse-Shoes on a String and Its Modifications. The benzenoids of the class $\mathrm{U}(n)$ may be modified at one or both ends so that they still are all-benzenoids. It is referred to CHART I, which defines the three classes of catacondensed benzenoids denoted $\mathrm{U}(n)$, $\mathrm{U}_1(n)$ and $\mathrm{U}_2(n)$. They all have the typical sequence of segments -2-2-3-2-2-3-, but terminate in different ways.

The K enumeration problem was solved by the method of linearly coupled recurrence relations. The K numbers of all the three classes in question appear to be linearly dependent so that they obey the recurrence relations of the same form, viz.:

CHART I. Three classes of catacondensed all-benzenoids.

$$K\{U_{1}(n)\} = \frac{1}{8\sqrt{26}} \left[(\sqrt{26} - 1)(10 + 2\sqrt{26})^{n+1} + (\sqrt{26} + 1)(10 - 2\sqrt{26})^{n+1} \right]$$

$$K\{U_{1}(n)\} = \frac{1}{4\sqrt{26}} \left[(\sqrt{26} + 4)(10 + 2\sqrt{26})^{n} + (\sqrt{26} - 4)(10 - 2\sqrt{26})^{n} \right]$$

$$K\{U_{2}(n)\} = \frac{1}{2\sqrt{26}} \left[(10 + 2\sqrt{26})^{n} - (10 - 2\sqrt{26})^{n} \right]$$

$$\begin{split} &K\{\mathtt{U}(n)\} \ = \ 20K\{\mathtt{U}(n-1)\} \ + \ 4K\{\mathtt{U}(n-2)\} \\ &K\{\mathtt{U}_1(n)\} \ = \ 20K\{\mathtt{U}_1(n-1)\} \ + \ 4K\{\mathtt{U}_1(n-2)\} \\ &K\{\mathtt{U}_2(n)\} \ = \ 20K\{\mathtt{U}_2(n-1)\} \ + \ 4K\{\mathtt{U}_2(n-2)\} \end{split}$$

The linear dependencies were explicitly found to be:

$$K\{U_1(n)\} = \frac{1}{5} K\{U(n)\} + \frac{2}{5} K\{U(n-1)\}$$

$$K\{U_2(n)\} = \frac{2}{25} K\{U(n)\} - \frac{16}{25} K\{U(n-1)\}$$

The explicit (combinatorial) K formula for $U(n)^2$ is reproduced in CHART I together with the corresponding formulas which were derived for $U_1(n)$ and $U_2(n)$.

Below we give some numerical K values for the classes under consideration. The table includes extrapolated "nominal" K values, which obviously do not correspond to real benzenoids.

n	$K\{U(n)\}$	$K\{U_1(n)\}$	$K\{U_2(n)\}$
0	2	1/2	0
1	41	9	2
2	828	182	40
3	16724	3676	808
4	337792	74248	16320
5	6822736	1499664	329632

Conclusion. The present work nearly completes the outlined program as far as the catacondensed systems are concerned. Below we assign the catacondensed all-benzenoids for $h \le 10$ to different classes. (For h=11 the existing all-benzenoids are all pericondensed.) Figure 3 of Ref. 1 should be consulted for a survey of the forms.

h=1: Members of several classes degenerate to one hexagon, L(1), for a low parameter (n=0 or n=1). For example, to take one of the classes of the present study, one has $U_2(1) = L(1)$.

h=4: Again several classes contain the appropriate system (triphenylene) as a member. It is the case for $\Psi(1)=W_1(1)$.

 $h=7\colon$ The two systems are $\Theta(2)$ = U_2(2) = 3(1) with K=40, and U(2) = U(1) with K=41.

h=10: $\mathbb{N}(3)$ with K=178; $\mathbb{U}_1(2)$ with K=182 and an isoarithmic form of the same, say iso- $\mathbb{U}_1(2)$; $\mathbb{U}(3)$ and iso- $\mathbb{U}(3)$ with K=187; finally the first system with branched backbone (K=189), which is postponed for later considerations as a member of all-benzenoids with trigonal symmetry.

Acknowledgement: Financial support to BNC from The Norwegian Research Council for Science and the Humanities is gratefully acknowledged.

References

- 1 B. N. Cyvin, J. Brunvoll, S. J. Cyvin and I. Gutman, Match
- 2 S. J. Cyvin and I. Gutman, Kekulé Structures in Benzenoid Hydrocarbons (Lecture Notes in Chemistry 46), Springer-Verlag, Berlin 1988.
- 3 O. E. Polansky and G. Derflinger, Internat. J. Quant. Chem. 1, 379 (1967).
- 4 O. E. Polansky and D. H. Rouvray, Match 2, 91 (1976).
- 5 I. Gutman, Theor. Chim. Acta 45, 309 (1977).