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ALL-BENZENO1D SYSTEMS:
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Absiract: The material on numbers of Kekulé structurcs for ¢lasses of cata-
condensed all-benzenoids is supplemented. ''wo new classes are considered.

In order to fulfil the program which was outlined in the preceding paper on
all-benzenoid syslemsl it was found mecessary to supplement the existing ma-
terial un combinatorial ¥ Eormulas.2 llere X is used to designate the number
of Kekulé structures. The present paper deals with some classes of catacon-
densed all-benzenoids. First an introductory section on some topological pro-

perties of the systems in question is warranted.

polo, 1l _Properties of Catacondensed All-Benze

terminal hexagon in a benzenoid system we understand a hexagon which shares
five edges with the perimeter. A terminal bexagon in an all-benzenoid is al-
ways full. In a catacondensed all-benzenoid a backhbone is recognized when the
system is stripped for its terminal hexagons. A segment of the backbone is
defined as the linear chain between two angularly annelated5 hexagons inclu-
sive, or between a terminal and an angularly annelated hexagon inclusive.
Here it is of course referred to a2 terminal hexagon of the backbone. An an-
gular annelated hexagon of the backbone belongs by definition to two neigh-
bouring segments.

As a consequence of the peneral properties of all-benzenoid systems3’4
drastic limitations to the shapes of catacondensed all-benzenoids are present.

1. The catacondensed all-benzenoid systems are highly branched inas-
much as every empty hexagon is a branching hexagon.

2. The backbone has a configuration with alternating empty (&) and full
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(I") hexagons: [Lf#l ..., /. Notice that [ is always at the ends of an un-
branched backbone.

3. The backbone 15 in general highly kinked: a segment of it never
consists of more than three hexagons. We can speak about the 2-segments and
J-sepments.

4. A J-sepment has always the configuration EMY (never FEF).

5. The backbone may consist of only Z-segments or only 3-sepments.
Mixed segmentation is also possible, but between two 3-segments there must
be an even number of 2-segments.

6. The backbone may be branched. Then the above rules apply to all
subsystems spanning from one end of a branch to an end of another branch.
The branching hexagon may be cither empty of full.

The contents of the above rules 3 and 4 may be cxpressed in terms of
the [ﬂ—sequences of the backbone. The following patterns are among the pos-

sible ones.

(i) Lovees AAAMAA .ol L
(ii) LL voo. ALALAL .... L
(iii) LAAL ... AAALAAAL ... L

On the other hand is, for instance, the following configuration impossible.
LAL ... AALAAL .... L
. Combinatorial X formulas have been developed2 for classes of

benzenoids corresponding to the LA-sequences (i)-(i11) of the
preceding paragraph. They are:

{i) Y{n): backbone with 2-segments only;

{ii) 0{n): backbone with 3-s¢gments only;

{iii) U{n) "horse-sheces on a string": The sequence of segments in
the backbone s 2-2-3-2-2-3-....-2-2.

1n addition, the "catacondensed all-benzenoid ladder" 3{n) was treated; it
has a branched backbone for n > 2.

ns. The benzencids of

the class U(n) may be modified at one or both ends so that they still are

all-benzenoids. It is referred to CHART I, which defines the three classes of
catacondensed benzeunoids denoted U(n), Ul(n) and Uz(n). They all have the ty-
pical sequence of segments -2-2-3-2-2-3- , but terminate in different ways.
The X enumeration problem was solved by the method of linearly coupled
recurrence relations. The K numbers of all the three classes in question ap-
pear to be linearly dependent so that they obey the recurrence relaticns of

the same form, viz.:
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CHART I. Three classes of catacondensed all-benzencids.

1
E{um)} = 8_\5?-[( 26 - 1) (10 + zﬁ)m'l + (426 + 1) (10 - 2-\/3')””]
ki, (m} = :—\}% [(\[E+ 4Y (10 + 24/26)" + (4f78 - 4)(10 - zﬁ)"]
|
LAUROY W [(10 + zﬁ)” - (10 - 2@)”]




K{u@m)} = 20k{u(n-1)} + 4k{u(n-2)}
K{u, (m)} = 20k{U, (r=1)} + 4K{U, (n=2)}
K{uz(n)) = zox{uz(n—l)} + 4K {U,(-2)}

The linear dependencies were explicitly found to be:
Koy m) = Lk} + £ kue-n)
Kluym} = & Kuem) - 32 K(utn-1))

The explicit (combinatorial) X formula for U(n) “ is reproduced in CHART I to-

gether with the corresponding formulas which were derived for Ul(n) and Uz(n).
Below we give some numerical X values for the classes under considera-

tion, The table includes extrapolated "nominal" X values, which obviously do

not correspond to real benzenoids.

n Kum)} K{Ul(n)} K{Uz(n)}
0 2 } 0
1 41 9 2
2 828 182 40
3 16724 3676 808
4 337792 74248 16320
5 6822736 1499664 329632

Conclusion. The present work nearly completes the outlined programl as far as
the catacondensed systems are concerned. Below we assign the catacondensed
all-benzenoids for A < 10 to different classes. (For h=11 the existing all-
benzenoids are all pericondensed.) Figure 3 of Ref. 1 should be consulted for
a survey of the forms.

h=1: Members of several classes degenerate to one hexagon, L(l), for a
low parameter (n=0 or »n=1). For example, to take one of the classes of the
present study, one has Uz(l} = L(1).

h=4: Again several classes contain the appropriate system (triphenylene)
as a member. It is the case for Y(l) = K(1) = Ul(l).

h=7: The two systems are K(2) = U2(2} = 3(1l) with =40, and 4Y(2) = U(l)
with K=41.

h=10: K(3) with K=178; UI(Z) with K=182 and an iscarithmic form of the
same, say iso—U1(2); Y(3) and iso-Y(3) with X=187; finally the first system
with branched backbone (X=189), which is postponed for later considerations

as a member of all-benzenoids with trigonal symmetry.
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