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Abgiract: Nine classes of pericondensed all-benzenoids and three additional
(auxiliary) benzenoid classes are treated with respect to the numbers of
Kekulé structures (X). Recurrence relations, explicit X formulas and nume-
rical ¥ values are given.

The generation and enumeration of all-benzenoid systemsl inspired us to the
studies of the numbers of Kekulé structures (X) in several classes of all-
benzenoids,z’J in addition to the previously available material in this
area.a

Already one of the all-benzenoids with the number of hexagons (h) equal
to 9,1 the one with K=90,2 calls for a definition of a new all-benzenoid
class. Here we employ the method of linearly coupled recurrence equations.s
Consequently a group of related classes need to be invoked at the same time.
Two sets with mutually linearly dependent ¥ numbers were studied in the pre-
sent work, altogether constituting twelve classes. Within each set the X num-
bers for every class have the same recurrence properties.

The classes of the present study censist of pericondensed benzenoids.
However, they are "thin" in the sense that never more than two comnected in-

ternal vertices are present. They give rise to the pyrene subunits.

1. Form of the Recurrence Relations: Kn = 46Kn_ 40K

17 n-2
In Fig. 1 the main class 3(n) is defined along with two additional all-

benzenoid classes, viz. 91(ﬂ) and 32(n), obtained by modifications at one or
both ends. Three auxiliary classes (no longer all-benzenoid) are obtained by
additional modifications as shown in Fig. 2.

Different schemes of fragmentacion6 lead to the following independent
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Fig. l. Three all-
benzenoid classcs

equations.
K3} = bK(Bl(n)} + 2K{3' ()} (1)
K(3(n)} = 180K(31(n-1)) + 92¥{3" (n-1)} (2)
K{ (M} = 40K{3, (n-1)} + 20K{3' (n-1)} (3)
Suitable manipulations yielded the recurrence relation:
K{3(n)} = 46K{3(n-1)} - 40K{d3n-2)} (4)

In this relaticon one has primarily the restriction n > 2 when it is allowed
for the degenerate case of n=0, represented by triphenylene (X=9}.

The same form (4) holds for the recurrence relations of Bl(n) and
3'(n). The following linear dependencies for the ¥ numbers of these classes
were deduced.

KfBl(n)} = 10K{3(n-1)} (5)

K{3'(m) = %x(s(n)) - 20k{3(n-1)} (6)

Two additional equatioms, which link K{Bz(n)} and K{Sl'(n)} to the sys-
tem of linearly coupled recurrence relations, were obtained by the method of

fragmentation and read:



k{3, (m} = 4k{3,(m} + A3, ()}

K{3,(n)} = 40K(3,(n-1)} + 20K(3," (n-1)}
Further manipulations yielded

k{3,(m} = 10k{3, (r-1)}

k{3,'(m} = 10k{3' (n-1)}

Fig. 2. Three benzenoid classes
related to those of Fig. 1.

(7)
(8)

(9)
(10)

and the final linear combinations in terms of the X numbers of the main class:

K{3,(m} = 100k{3(n-2)}
x[al'(n)] = 5K{3(n-1)} - 200%{3(n-2)}

(11)
(12)

Also the X numbers of the classes '32(71) and 91'(71) obey recurrence re-

lations of the form (4). With the aid of appropriate initial conditions the

following numerical K values were computed for the all-benzenoid classes un-

der consideration (Fig. 1).

n k{3(m)} k{3, (m}

0 9 2
1 406 90
2 18316 4060
3 826296 183160
4 37276976 8262960
3 1681689056 372769760
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The "nominal" value KfSZ(O)} = } was obtained by extrapolation.

There are copious possibilities for isoarithmicity among the classes of
the present study. Isoarithmic systems are obtained by flipping a subunit of
the benzenoid around an edge of Eusicn.h’7 As an example we show a system

which 1s isoaritmic with 3(3):

X = 826296

By standard methodsa'5 the following explicit formula was deduced for
the ¥ numbers of 2(n).
K(mn}h—% [(wsg + 22y (23 +Yas9)" L s (Vaeo - 22y (23 —Vasg)"”] (13

10 Y489
The X numbers for 31(n) and Bz(n) are most easily obtained from X{2(n)} through

multiplications by 10 and 100 according to eqn. (5) and eqn. (9) or (1l).
Therefore it is not necessary to report the explicit equations for K{Sl(n)} and
K{Bz(n)} here.

So far the class 2"(n) has not been invoked. The X numbers of this class
are coupled ro the relations for the other related five classes by:

(3" (n}} 4K{31'(ﬂ)} + 2K{3"(n)} (14)

K37 (1)} = 10K{3, " (n-1)} + 6X{3"(n~1)} (15)

A table of pumerical X values (including nominal values) for the three

auxiliary classes (Fig. 2) is given below.

n K3t} ki3, ()} ¥{3" ()}
0 1/2 0 14
1 23 5 3/2
2 1038 230 59
3 46828 10380 2654
A 2112568 468280 119724
5 95305008 21125680 5401144




A particularly simple explicit equation for K{3'(n)} was deduced, viz.

K3} - —= [(23 +Yaee)™! - (23 -Wsa)””} (16)

4 Y489

From these X numbers those of 31'(71) are most easily obtained through the re-

lation:

K{Sl'(n)} = 10K{3"' (n-1)} (17)
For the sake of completeness we report the explicit equation for the X num-
bers of 3"(n). 1t reads

K3}t = . [(\‘&89 a3 +Yaen™ « (Yag 4+ 17)(23 —VMN)”] (18)
8 Y489

2. Form cf the Recurrence Relations: Kn = lOOKn_l — 20K}1—2

Also the class H(n) was considered (see Fig.. 3), together with five
additional related classes. They all comsist of all-benzenoids. It was achie-
ved to employ the method of coupled recurrence relations without invoking any
additional auxiliary class. A plethora of linear dependencies between the

pertinent X numbers exist. Firstly:

Kuim} = 2k{n (n) ) o+ KlK (m)} (19)

K|} = 2k{H"(m) } + K{Hl'(n)} (20)

KM (0} = 28{H, " ()} + K{H (m) } (21)
Then

KW} = 200K{H" (n-1)) + 981({141 (n-1)1 (22)

KU o} = 200K{0" (n=1)} + 98K{M; " (n-1)} (23)

K{Hl(n)} & ZOOK{Hl‘(n-l)] + 931({142(;1—1)} (24)
Finally:

K" ()} = 90K{H" (n-1)} + 44K{H, (n-1)} (25)

KW' (n)} = 90K{H"(n-1)) + M.K{nl'(n-l)) (26)

£ ) b o= 90K T (n-1) )+ dhE{M, (i-1) ) (27)
The relations are sufficient for deducing the recurrence relation

K{A()} = 100&{H(n-1)} - 208{H(n-2)} (28)
It is also found that U', K", lfIl, Hl' or ”2 may be substituted for U in this
relation. Explicit linear combinations:

KH' o)) = 5 KOG} - SK{EG-1)) (29

B ()} = 208{H(n-1)} + 20K{H(n-2)} = -K{H(G)} + 120K {H(n-1)} (30)

K (1)) = 10K {H(n-1)} (31)

KM ") = 10K (=1} ) = 5K{H(n-1)} - S0K{H(n-2)}
2 K{H(m ) - 25K(A(n-2)) (32)






X{Mzcn)} = lox{ul(n~1)} = 100K {H(n=-2)} = -5K{H(n)} + S00K{KU(n-1}]

Here we have not imposed any restrictions on the parameter n. That is not

(33)

necessary if we allow for degenerate cases and nominal K values. Numerical

K values are given below.

n KM} ¥ur o) K{ur(n)}

0 20 9 4
1 19496 898 404
2 199200 89620 40320
3 19880080 8944040 4023920
4 1984024000 892611600 401585600
5 198004758400 89082279200 40078081600
n K{Hl(n)} X{Hl'(n)) K{Hz(n)}

0 2 1 0
1 200 90 20
2 19960 8980 2000
3 1992000 896200 199600
4 198800800 89440400 19920000
5 19840240000 8926116000 1988008000

Also for these classes there are many possibilities for isocarithmicity.

Below we show, as an example, a system which is isoarithmic with H2(3)_

K = 199

600

Explicit equations may again be derived by standard methcds. For the

sake of brevity we give only one of th
1

ku} =
. 40¥1s5

[(50 + 4Y155)

em:

nEL . YED = -155)"*2]
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