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ABSTRACT. A second order recurrence relation for the Hartree-—
Fock energiles of N-electron atomic systems is presented. The
resulting energy formula 15 shown to be asymptotically exact.
Besides, this energy expression is proved to be compatible
with the 1/Z perturbation expansion.

1. INTRODUCTION

Practical methods for determining approximate solutions to
the Schrodinger equation, Hy = Ey, are often based on the var-
iational principle &<H> = 0, where <H> = <@|H|¢>/<#|¢> and ¢
is the trial wave function. The classical example is the one-
-parameter function &(1,2) = ((sfn}exp [—((rl+ rz)] which
leads to the well known formula for the ground state total
energy of two-electron atomic systems [1]:

E(2:2) = —(Z ~ 5/16)2. a.u. (1)

When compared with the Hartree-Fock value of E (-2.861697)
for helium, where Z = 2, that calculated via EQ.1 (-2.847656)
is seen to be about 0.5% (5000 ppm) higher. In order to in-
crease the accuracy of the variational method, one has to take
a more sophisticated test function with more adjustable parame-
ters, so that, by minimizing the energy integral <H>, a closer

approximation to the correct energy could be made [2].
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The unquestionable record-breaking number ot parameters 1s that
introduced by Pekeris [3] who expanded ¢(1,2) to over 10J terms
(Kinoshita (4] chose the 80-term function). In view of this,
the one-parameter EQUATION (1) might seem to be unworthy to
notice. It 15 therefore surprising enough that this over-simp—
li1fi1ed energy formula leads to the exact expression for the
average electron—-nuclear attraction energy. vne' at least for
30-term long series of systems with Z2 > 6. The adjective
"exact" 1s used here for the statement that the relative er-

rors of the function
Vne = Z(dE/dZ) = —(22 - 5/8)Z. (2)

which do not exceed 1.7 ppm (TABLE 1), are considerably (about
10 times) smalier than those of the RHF-5CF computations them-
selves (5], the latter being determined from the virial theo-
rem test. Accordingly. the tiny differences between the values
of Vne calculated from EQUATION (2) and the actual Hartree-Fock
data can be considered insignificant.

In conclusion, we note that, as it follows from EQ.(2), for
N =2 and Z > 6, the second derivative of the HF-energy 1s con-
stant and equal to -2. that is to say. d°E(Z:2)/dz° = -2.
It might be argued that this conclusion could have been readily
anticipated from the fact that electron-nuclear interactions
predominate over electron-electron interactions for highly ion-
ized atoms; the 22 dependence of the hydrogenic orbital ener-—
gies leads directly to the constancy of the second derivative.
However, 1t 1s not exactly the case. For example., 1f Z = 10,
the electron-electron repulsion enerqgy Vee(10:2) is equal to
6.02753 a.u., which 13 more than 6% of the total Hartree-Fock
energy (-93.86111 a.u.) and. therefore, can hardly be ignored.

In view of this, it seems interesting to find out whether
the similar sort of relation helds true for the higher-N 1so-
electronic series. In the following SECTION, we shall try to
solve this problem for N = 3,4, ..., 10.



TABLE 1. Comrarison of the electron-nuclear attraction energies
predicted from EQ.(2) with the actual RHF-values

Z 7Vne' EQ.(2) "Vne' RHF RE of EQ.(2) RE of VTT
7 93.62500 93.62486 1.5 -4.4
6 123.00000 122.99992 0.6 -7.0
9 156 .37500 156.37473 1..7 13.7
10 193.75000 193.74975 Lo 127
11 235.12500 235.12476 1-0 10.1
12 280.50000 280.49979 0.75 8.0
13 329.87500 329.87483 0.51 6.4
14 383.25000 383.24982 0.47 6.2
15 440, 62500 4490 .62483 0.39 4.8
16 502.00000 501.99987 0.26 3.8
17 567.37500 567.37486 0...25 3.4
18 636.75000 636.74383 0.19 3.0
19 710.12500 710.12490 0.14 )
20 787 .30000 787.49990 0.13 2
21 868.87500 868.87489 0.13 1.9
22 954 . 25000 954 . 24991 0.094 1.4
23 1043.62500 1043.62493 0.067 1.3
24 1137 .00C00 1136.99995 0.044 0.90
25 1234.37500 1234.37492 0.065 0.65
26 1335.75000 1335.74994 0.045 0.55
27 1441.12500 1441.12494 0.041 0.50
28 1550.50000 1550.49996 0.026 0.10
29 1663.87500 1663.87496 0.024 -0.05
30 1781 .25000 1781.24998 0.011 ~0.10
31 1902.62500 1902.62498 0.011 -0.20
32 2028.0000 2027.9999 0.049 -0.35
33 2157.3750 2157.3749 0.046 -0.30
34 2290.7500 2290.7499 0.044 -0.50
35 2428.1250 2428.1249 0.041 ~0.50
36 2569 .5000 2569 _4999 0.039 -0.55
mean 0.332 3.27

RHF - Roothaan-Hartree-Fock values in atomic units (REF.5)

RE - Relative Error, parts per milion

VIT - Virial Theorem Test. This theorem predicts a value of -2
for the ratio of the potential and kinetic energies;
RE(VTT) = [(VTT + 2)/2]106. Numerical values of VIT are

taken from REF.5.



2. RECURRENCE RELATION FOR THE HARTREE-FOCK ENERGIES

The finite difference counterpart of the second derivative,

2E/dz2, is defined as

d

DZ(Z;N) = E(Z+2:N) -2E(Z+1;:N) + E(Z:N). (3)

Taking the Hartree-Fock energies (6] as the basis for computa-
tions, let us examine the Z-dependence of this guantity for the
different numbers N of electrons. In TABLE 2, the values of D2

are displayed with the exactitude of four digits:

TABLE 2. Numerical values of —DZ(Z:N), EQ.(3)

4 N=3 N =4 N = 5 N=2¢6 N=27 N=28 N = 10

3 2.254

4 2.251 2.506

S 2.251 2.503 2.760

6 2.250 2.502 2.799 3.013

7 2.250 2.501 2.753 3.007 3.265

8 2.250 2. 500 2. 752 3.004 3.258 3.518

9 2.250 2.500 2.751 3.003 3.256 39511

10 2.250 2.500 2.751 3.002 3.254 3.508 4.024
11 2.250 2.500 2.751 3.001 3.253 3.505 4.016
12 2.250 2.500 2.751 3.001 3.252 3.504 4.011
13 2.250 2.500 2.750 3.001 3.252 3.503 4.008
14 2.250 2.500 2.750 3.001 3.251 3.502 4.006
15 2.250 2.500 2.750 3.001 3.251 3.502 4.005
16 2.250 2.500 2.750 3. 000 3.251 3.502 4.003
17 2.250 2.500 2.750 3.000 3.251 3.501 4.003
i8 2.250 2.500 2.750 3.000 3.251 3.501 4.003
19 2.250 2.500 2.750 3.000 3. 250 3.501 4,002
20 2.250 2.500 2750 3.000 3.250 3.501 4.002
21 2.250 2.500 2.750 3.000 3.250 3.501 4.002
22 2.250 2.500 2.750 3.000 3.250 3.501 4.001
23 2.250 2.500 2.750 3.000 3.250 3.500 4.001
24 2.250 2.500 2.750 3.000 3.250 3.500 4.002
25 2.250 2.500 2.750 3.000 3.250 3.501 4.000
26 2.250 2.500 2.750 3.000 3.250 3.501 4.001
27 2.250 2.500 2.750 2.999 3.251 3.499 4.001
28 2.250 2.499 2.750 3.002 3.249 3.500 4,001
29 2.250 2.501 2.750 2.998 3.251 3.500 4.000
30 2.250 2.500 2.751 3.002 3.250 3.500 4.000




Two features of the results reported in TABLE 2 are of a
special interest. First. as 1s seen, for sufficiently larae Z,

DZ(Z;N) comes up to its limit Y = Y(N). where

Y(N) = —(6 + N)/4 (4)

and N = (2).3.4. ... .(9),10 (for consideration of space. the
cases of N = 2 and N = 9 are not included in TAB.2). Secondly.
the convergence DZ(Z:N) --> Y(N) appears to be slower for the
higher numbers N of electrons. In other words, for Z > Zo(N),
|02(Z;N) - Y(N)| < &, where &£ is an optionally small positive
number and Zo(N) is an increasing function of N.

It should be remarked here that. according to TABLE 2, the
above statement has been proved to be valid for £ = 0.001.
This restriction is related to the fact that the differentia-
tion of a function specified only by a table of values is a
notoriously unsatisfactory process, particularly if higher
derivatives than the first are regquired (7).

Qur purpose 13 now to express total energies of atomic sys-
tems by using the relation DZ(Z;N) = Y(N} which is expected to
be sufficiently accurate for Z > Zo(N), where Zo can be taken
from TAB. (2) according to the desired exactitude of the resul-
ting formula. By comparing the right hand sides of EQUATIONS
(3) and (4). we get

E(Z+2;N) — 2E(Z+1:N) + E(Z;N) = —(6+N)/4. (5)
[t is iluminating to write this equation in an alternative way:
E(Z+2) - E(Z+1) = E(Z+1}) - E(Z) + Y. (6)
where N is understood to be fixed. As it is now clearly seen,
E(Z) can be determined by the recurrence procedure evidently

related to an arithmetical sequence. Indeed, starting from
E(Zo), we have



E(Zo+l) = E(Z20) + Y + P (7}
E(Zo+2) = E(Zo+1) + 2Y + P = E(Zo) + (1+2)Y + 2P
E(Z0o+3) = E(Zo+2) + 3Y + P = E(Zo) + (1+2+3)Y + 3P

E(Zo+k) = E{(Zo+k=1) +kY + P = E(Zo) + (1+2+3+,. . +k)Y + kP,

where P = P(Zo;:;N} 1s an "integration" constant which. being
independent of Z for Z > Zo, does depend on Zo:

P = E{Zo+l) - E{Zo) - Y. (8)

Now, since k = Z-Zo and 1+2+3+. .+k = k(k+1)/2. we get the
following energy expression

E(Z) = E(Zo) + (P + Y/2)(Z2-20) + {Y/2](2—20:2 (9)
or, alternatavely

E(Z) = E(Zo) + [E(Z0o+1) - E(Zo) - Y/2](Z2-Z0) + (Y/Z)(Z—Zo)2
(10)
where, according to EQ.(4), Y/2 = —(6+N)/8.

As there are no parameters to be titted, EQUATION 10 can be
formally considered as a parameter—-free energy formula provi-
ded the total energies. E(Zo) and E(Zo+l)., of the two adjacent
members in a given i1soelectronic series are known. Let us then
get an idea of the accuracy of EQUATION 10. Mainly for consi-
deration of space, let Zo = 25 be the common starting peoint
for each N = 2,3,..., 10. In TABLE 3, the Hartree-Fock energies
are compared with those obtained from EQ.(10). It 1s seen that
our energy expression 18 extremely accurate as its error does
not exceed several parts per milion. For the lower-N isoelec-
tronic series, this EQUATION could even be said to be an exact
energy formula. The increasing absolute error for the higher—N
series finds its direct explanation in the slower convergence
of D2(Z:N) to the limit Y(N).



TABLE 3. Comrpariscon ot the energies preaicted from EQ.i10)
with the actual Hartree-Fock t‘.lata‘t
Z -E(Z).EQ.10 -E(Z) .HF ~-E(Z) ,EQ.10 -E(Z) ,HF
(N = 2) (N = 3)
27 712.2361 712.2361 792.8655 792.8655
28 766.6111 766.6111 3453.7176 853.7177
29 B822.9861 822.9861 916.8197 916.8198
30 861 .3611 881.3611 982.1718 982.1720Q
31 941.7361 941.7361 1049.774 1049 .774
32 1004.111 1004.111 1119.626 1119.626
33 1068 .486 1068,486 1191.728 1191.728
34 1134.861 1134.861 1266.080 1266.081
35 1203.236 1203.236 1342 .682 1342.683
36 1273.611 1273.611 1421.534 1421 .535
(N = 4) (N = 5)
27 869,6439 869.6439 941.0682 941.0683
28 936.8227 936.8227 1014.358 1014.358
29 1006.501 1006.502 1090.398 1090.398
30 1078.680 1078.680 1169.188 1169.188
31 1153.359 1153.359 1250.727 1250.728
32 1230.538 1230.538 1335.017 1335.019
33 1310.217 1310.220 1422.057 1422.059
34 1392.395 1392.396 1511.847 1511.849
35 1477 .074 1477.075 1604.387 1604.389
36 1564.253 1564 .254 1699.676 1699.679
(N = 8) {N=9)
27 1130.650 1130.651 1185.556 1185.556
28 1221.233 1221.236 1281.540 1281.540
29 1315.316 1315.320 1381.274 1381.275
30 1412.899 1412.905 1484 .758 1484.761
31 1513.982 1513.990 1591.992 1591.997
32 1618.566 1618.575 1702.976 1702.983
33 1726.649 1726.661 1817.710 1817.719
34 1838.232 1838.246 1936.194 1936.206
35 1653.315 1953.332 2058.428 2058.443
36 2071.898 2071.918 2184.412 2184.430

(*) HF-values are taken from REF. (6).
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The above observations strongly suddest that EQUATION 10U 15
an exact representation of the high-Z asymptotical behaviour of
the Hartree-Fock energies. In the foltowing SECTION, we shall
prove that 1t 15 1ndeed the case. [t w:ll be done by examining
our energy expression in the context ot the ZW1 perturbation

approach to the 1soelectronic series problem.
3. AN ALTERNATIVE FORM OF THE ENERGY EXPRESSION

Much of the work concerning the Z dependence of the total
binding energy has developed from the Z‘1 perturbation theory
of Hylleraas [8]. The 27] perturbation expansion results 1n
the fellowing energy expression:

E(Z:N) = zcl(mzz"l (11

The expansion coefficients are. 1n general, not known except
for CO(N) which 1s the zZero—-order energy corresponding to a
system of N noninteracting electrons about a nucleus of unit
charge. The direct calculation of Ci(N) for 1 2 1 i3 a non—
trivial problem and its complexity rapidly increases with the
number of electrons and with the order of the coefficient (9].
An easy way around is to calculate the energies of some mem-—
bers of an isoelectronic sequence, wWhere all the coefficients
Ci(N: are fixed, and use this data to find their numerical va-~
lues. This idea has been applied by Tal and Bartolotti [10] 1n
reference to the Hartree-Fock energies of atomic systems with
N o= 2.8 cwe 86 and 2 = N, N+1,. ..,N+20. By means of the least
squares procedure, the authors have calculated Cl(N). CZ(N), k.
1, Ck(NJ and leN) for the five-term truncated expansion.
As the resulting energy tormula appears to be highly accurate.
the values of these coefficients can be taken as the reliable
basig for the subsequent considerations.

Let us now proceed to show that EQUATION 10 is, in a way.

consistent with the Z_1 perturbation expansion.



Indaeced. as 11 foliows from BQUATION 11. for surficiently large
atomic nimbers, the total energv tends to be a guadratic fun-

ction ot Z2:

o L2 . ‘
B(Z;N) = Cg(NZ™ & o i v

N 112)
On the other hand, EQUATION 10 can be wratten in the analoanus

form:

E(Z:N) = fY/2)22 + [E{(Zo+l) — E(Zo) — (Y/2){(1+2Z20}12 +
+Ef{Z2o} — [E{Zo+l1l) — E(Zo)]Zo + (Y/Z)(Zo+202)}.
(13)
What 15 left to be done is to make sure that the tollowing re-—

lations hold true:

CO(N) = Y(N) /2 (14)
leN) = lim [E(Zo+l) — E(Zo) - (Y¥/2)(1+2Z0)] (15}
Cz{N) = lim {E(Zo) — [E{Zo+l) — E{Zo)lZo + (Y/2)(ZO+ZOZJ},

(16)

where the limits are taken for Zo tending towards infinity.

Since C M) = —2-JZn;2, where n, 1s the principal quantum
number of the i1th electron, the first relation can readiiy be
proved by making a simple comparison. Thus, for example, when
the ground state configuration 152252 is concerned (N = 4),
CD(4] = -(1+1+1/4+1/4)/2 = —10/8_ From EQUATION 4 we find
Y(4)/2 = —(6 + 4)/8 = —-10/8.
Before proving the remaining two relations. 1t should be men—
toned that the Hartree-Fock data [6] we have at our disposal
are limited by Zo = 36 (1t 1s guite a long way to "infinity'").
In principle. therefore. EQUATIONS (15) and (16) can hardly be
expected to give us the exact values of CI(N) and CZ(N)_ it
turns out. however, that the right hand sides of these equa-—
tions converge sufficiently fast, so that it 1s possible to
get quite satisfactory results. The numerical wvalues of Cl(N)

and Cz(N) are displayed in TABLE 4.
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TABLE 4. Comparison of Cl(N) and CZ(N) predicted from EQS. (15)
and (16) with the literature values

N CI(N) CZ(N)
EQ. (13) TB EQ. (16) TB

2 0.625 0.62499 -0.111 -0.11093
3 1.023 1.02294 -0.357 -0.35865
4 1.571 1.57135 -0.814 —0.81703
5 2.335 2.33529 -1.739 -1.73853
6 3.262 3.,27397 -3.123 -3.15109
7 4,355 4,38731 -5.052 -5.15647
8 5.664 5.67530 -7.882 ~7.85628
9 7.138 7.13788 -11.398 =11 .3519
1c 8.776 8.77503 -15.833 -15.7446

TB-values are taken from the work by Tal and Bartolotti (10]

Taking into account that the parameters determined by the
least squares method (those denoted by TB) suffer from being
intercorrelated and. what is more, their numerical values are
influenced by the number of terms in a truncated perturbation
expansion, the results presented in TABLE 4 leave no room for
doubt that EQUATIONS (15) and (16) stand for the exact repre-
sentation of Cl(N) and CZ(N) respectively.

In this connection, some important by-products of our argu-—
ment should be exposed. First of all, EQUATIONS (15) and (16)
clearly reveal the physical meaning of the perturbation expan-
sion coefficients Cl(N) and C2(N). Secondly, these guantities
are seen tc be related to each other in an explicit way. It is
interesting to note, for example, that CI(N) = —~lim (d8g/dZo).
where g = g(Zo:N) denotes the right hand side of EQUATION 16.

Perhaps the most important observation is that, as it fol-
lows from EQUATION 15, the difference E(Zo+l) - E(Zo) tends to
be linear in Zo. This difference can be therefore replaced by
the ordinary derivative dE/dZo if only Zo is sufficiently
large. It would mean that, according to the Hel imann-Feynman
theorem, E(Zo+l) - E(Zo) = Une(Zo)/Zo. It then follows that
E(Zo) — [E(Zo+1) — E(Z20)]Z20 = T(Zo) + Vee(Zo], where T stands
for the kinetic energy of the electronic system.



Consequently. EQUATION 13 can now be written as
E(Z;:N) = (Y/Z)Zz + EVne(Zo)/Zo — (Y/2) (14220012 +
[T(Zo) + V__(Zo) + (Y/2) (Zo+Zo™) 1. (17)

The advantage of this energv expression over the one given by
EQUATION 13 consists in the fact that the Z-dependence of the
Hartree-Fock energy is now entirely determined by the energy
components of a single member of n iscelectronic sequence.
Finally, let us note that for the particular case of Z=Zo,
EQUATION 17 leads to the fundamental physical relation:

E(Zo:N) = T(Zo:N) + Vne(ZO:N) 5 VeelZO;N}. (18)

4. CONCLUDING REMARKS

The key result of this contribution consists in finding that
E(Z+2:N) — 2E(Z+1;N) + E(Z;N) converges to the limit Y(N). This
leads to the series of recurrence relations for the HF energies
of 1soelectronic systems. The resulting energy formula appears
to be extremely accurate for systems with Z > Zo{(N). This for-
mula is then proved to be the exact asymptotic representation
of the Hartree-Fock total energies of N-electron atomic systems
in their 1soelectronic sequences. As a consequence, the first
and the second order perturbation expansion coefficients are
explicitely expressed in terms of the well defined physical
quantities, It should be finally remarked that all the results
presented are very simple and, what is more important, can
easily be extended for the higher-N isoelectronic series.
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