A CONSTRUCTION LETHOD FOR CONCEALED NON-KEKULÉAN BENZENOID SYSTEMS WITH h = 12.13

Guo Xiaofeng and Zhang Fuji Department of Mathematics, Xinjiang University Wulumuqi, Xinjiang, P.R. China

(Received: September 1988)

ABSTRACT. In this paper we give a construction method for concealed non-Kekuléan benzenoid systems with h = 12,13, and prove that there are exactly 98 concealed non-Kekuléan benzenoid systems with h = 12 and 1097 such benzenoid systems with h = 13.

* Support by NNSFC

Eight concealed non-Kekuléan benzenoid systems with eleven hexagons have been found by I.Gutman, A.T.Balaban, H.Hosoya, S.J.Cyvin(see [1]-[5]). I.Gutman also stated that no such systems exist for h<11. In [6], by the computer-generation, it was claimed that there are exactly 8 smallest concealed non-Kekuléan benzenoid systems (h=11). Recently we gave a rigorous proof of this fact (7). In

addition, by the computer-aided generation, He Wenchen et al. found that there are exactly 98 such benzenoid systems with h=12 [8].

In this paper, we attempt to give a construction method for concealed non-Kekuléan benzenoid systems with h=12,13, and prove that there are exactly 98 such benzenoid systems with h=12, and 1097 such benzenoid systems with h=13.

Let H be a benzenoid system drawn in the plane such that one of the three edge directions is vertical. The concepts of a horizontal cut segment C, a horizontal cut \mathbb{C}_{τ} $U(\mathbb{C})$, $L(\mathbb{C})$, and the numbers of peaks (valleys), p(H) (v(H)), $p(H/U(\mathbb{C}))$ (v(H/U(\mathbb{C})), were intruduced in (9). For convenience, we denote by X, Y and Z the sets of the hexagons in $U(\mathbb{C})$, $L(\mathbb{C})$ and H, respectively, and, for $S \subset Z$, we denote by H(S) the induced subgraph in H of S.

In (7) we proved the following theorem. Theorem 1 (7). Let !! be a benzenoid system with h<14. Then !! has a Kekulé pattern if and only if, for each of its six possible positions and every horizontal cut \mathfrak{C} .

- (i) p(H) = v(H),
- (ii) $p(H/U(\mathbb{C})) v(H/U(\mathbb{C})) \leq |\mathbb{C}|$.

From this theorem, we can give the following theorem. Theorem 2. Let H be a concealed non-Kekuléan benzenoid system with h<14. Then there is a horizontal cut $\mathbb C$ in H such that (i) $p(H/U(\mathbb C))-v(H/U(\mathbb C))>|\mathbb C|$, and (ii) $|\mathbb C|=2$. Proof. By theorem 1, there is a horizontal cut $\mathbb C$ in H such that (i) follows. We need only to prove that $|\mathbb C|=2$.

Suppose that $|\mathfrak{C}| \ge 3$. By h < 14, we have |X| + |Y| < 12. Thus either |X| or |Y|, say |X|, is less than or equal to 5, hence $p(H(X)) - v(H(X)) \le 1$. On the other hand, $p(H(Z \setminus Y)) - v(H(Z \setminus Y)) = p(H/U(\mathfrak{C})) - v(H/U(\mathfrak{C})) - (|\mathfrak{C}| - 1) \ge 2$. So $H(Z \setminus Y)$ must be as shown in Fig. 1, that is, there are $|\mathfrak{C}|$ hexagons in H(X) each of which has one vertex incident with an edge in \mathfrak{C} . The number of the other hexagons in H(X) is equal to $|X| - |\mathfrak{C}| \le 5 - |\mathfrak{C}| \le 2$. Clearly, then $p(H(X)) - v(H(X)) \le 0$, and $p(H/U(\mathfrak{C})) - v(H/U(\mathfrak{C})) \le |\mathfrak{C}|$. This contradicts (i).

Now we can give a construction method for concealed non-Kekuléan benzenoid systems with h < 14.

<u>Definition 3.</u> A concealed non-Kekuléan benzenoid system H is said to be reducible if there is a hexagon in H, say a reducible hexagon of H, which contains four vertices of valency 2 of H, otherwise H is said to be irreducible.

Obviously, a reducible hexagon of H corresponds to a vertex of valency one of the characteristic graph of H.

Let N_h (\overline{N}_h) denote the set of all reducible (irreducible) concealed non-Kekuléan benzenoid systems with h hexagons. Since the smallest concealed non-Kekuléan benzenoid system contains eleven hexagons, $\overline{N}_h = \emptyset$ for h < 11, and $N_h = \emptyset$ for h < 12.

Let $H \in \mathbb{N}_h$, and let s be a reducible hexagon. We denote by H-s the benzenoid system $H\{Z \setminus \{s\}\}$. Clearly, H-s $\in \mathbb{N}_{h-1}$ U $\widehat{\mathbb{N}}_{h-1}$. Conversely, we also say that H=(H-s)+s is generated

from H'=H-s by adding the hexagon s. The common edge of s and H'=H-s is called an attachable edge of H'.For $H \in \mathbb{N}_h U$ $\widetilde{\mathbb{N}}_h$, let $E^*(H)$ be the set of all attachable edges of H. $E^*(H)$ can be divided as the union of equivalence classes $\overset{r}{U}_{1}=\overset{r}{U}_{1}^*(H)$ such that $e_j,e_k\in E_1^*(H)$ if e_j and e_k lie on the symmetric positions in H. The number of equivalence classes of $E^*(H)$ is denoted by $r(E^*(H))=r$.

The below theorem follows evidently. Theorem 4. Let $H \in \mathbb{N}_h$. Then there is unique $H' \in \overline{\mathbb{N}}_{h-1}$, $1 \le i \le h-11$, such that H is generated from H' by adding i hexagons one by one.

From theorem 4, the benzenoid systems in N_{12} can be generated from the benzenoid systems in \overline{N}_{11} by adding one hexagon, and the benzenoid systems in N_{13} can be generated from the systems in \overline{N}_{11} (\overline{N}_{12}) by adding two (one) hexagons. Lemma 5. Let $H_1 \in \overline{N}_{h_1}$ and $H_2 \in \overline{N}_{h_2}$ be two distinct benzenoid systems, and let H_1 and H_2 be benzenoid systems in N_h which are generated from H_1 and H_2 , respectively. Then H_1 and H_2 are not isomorphic.

<u>Lemma 6.</u> Let $H \in \mathbb{N}_h U \overline{\mathbb{N}}_h$, and let $\mathbb{N}_{h+1}(H) \subset \mathbb{N}_{h+1}$ be the set of all the benzenoid systems which are generated from H by adding one hexagon. Then $|\mathbb{N}_{h+1}(H)| = r(\mathbb{E}^*(H))$.

Lemma 7. Let $H \in N_h$, and let $N_{h+2}(H) \subset N_{h+2}$ be the set of all the benzenoid systems which are generated from H by addining two hexagons s_1 , s_2 , and in $H + s_1 + s_2 \subset N_{h+2}(H)$ s_1 and s_2 are not adjacent. Then $N_{h+2}(H)$ can be divided as the union of disjoint subsets $\sum_{j=1}^{r} N_{h+2}^{i}(H)$ such that $H' \in N_{h+2}^{i}(H)$ if at

least one edge in $E_1^*(H)$ is not on the boundary of H', and each edge in $E_1^*(H)$, j<i, is on the boundary of H'.

In the following, we give a construction method for the benzenoid systems in $\overline{\mathbb{N}}_{\rm h}$, h=12,13.

By theorem 2, for a benzenoid system H in $\overline{\mathbb{N}}_h$, h < 14, there is a horizontal cut $\mathbb C$ such that $|\mathbb C|=2$, and $p(H/U(\mathbb C))-v(H/U(\mathbb C))\geqslant |\mathbb C|+1=3$. Let s^* be the unique hexagon in $\mathbb Z\setminus XUY$. Then $|\mathbb X|+|\mathbb Y|<13$, and $5\leqslant |\mathbb X|\leqslant 7$, $5\leqslant |\mathbb Y|=h-|\mathbb X|-1\leqslant 7$. Thus the construction of H depends on the construction of $\mathbb U(\mathbb C)$ and $\mathbb L(\mathbb C)$ (or $\mathbb H(\mathbb X\mathbb U\{s^*\})$ and $\mathbb H(\mathbb Y\mathbb U\{s^*\})$) with $|\mathbb C|=2$, $5\leqslant |\mathbb Y|=h-|\mathbb X|-1\leqslant 7$, and $\mathbb P(H/\mathbb U(\mathbb C))-v(H/\mathbb U(\mathbb C))=v(H/\mathbb U(\mathbb C))-p(H/\mathbb U(\mathbb C))\geqslant 3$. By symmetry, we need only investigate the construction of $\mathbb U(\mathbb C)$ or $\mathbb H(\mathbb X\mathbb U\{s^*\})$. Lemma 8. Let $\mathbb H\in \overline{\mathbb N}_h$, h < 14, and let $\mathbb C$ be a horizontal cut of H which satisfies that (i) $|\mathbb C|=2$, (ii) $\mathbb P(H/\mathbb U(\mathbb C))-$

 $v(H/U(\mathfrak{C})) \geqslant 3$. Then $H\{X \cup \{s*\}\}$ must be isomorphic to one of the benzenoid systems as shown in Fig.2. Proof. Since $p(H/U(\mathfrak{C})) - v(H/U(\mathfrak{C})) \geqslant 3$ and $\{X \mid \le 7$, we have that $p(H\{X \cup \{s*\}\}) - v(H\{X \cup \{s*\}\}) \geqslant 2$, ... (1)

and $1 \le p(H[X]) - v(H[X]) \le 2$. (2)

Case 1. |X|=5.

Clearly, by inequality (1), $H\{XU\{s*\}\}$ must be isomorphic to one of the three benzenoid systems A_1 , A_2 and A_3 in Fig.2.

Case 2. |X| = 6.

Subcase 2.1. p(H(X))-v(H(X))=2.

Then H(X) must be isomorphic to one of A_1 , A_2 , and A_3 .

So $H(\mathcal{A}U\{s^4\})$ must be isomorphic to one of the five benzenoid systems B_1 , B_2 , B_3 , B_4 , B_5 in Fig.2.

Subcase 2.2. p(H(X))-v(H(X))=1.

Then, by inequality (1), s* must be adjacent to two hexagons s_1 , s_2 in H(X). So $|X \setminus \{s_1, s_2\}| = 4$, and $p(H(X\setminus\{s_1,s_2\}))-v(H(X\setminus\{s_1,s_2\})) \le 1$. Note that $H\in \overline{\mathbb{N}}_h$, there is no reducible hexagon in H. Thus H [X \{s_1,s_2\}] is connected. Otherwise each component of $H\{X\setminus\{s_1,s_2\}\}$ contains at least two hexagons, then H [XU[s*]] can only be the benzenoid system as shown in Fig. 3. But then p(H(X))-v(H(X))=-2, a contradiction. In addition, by inequality (1), we have Fig. 3 that $p(H(X\setminus\{s_1,s_2\}))-v(H(X\setminus\{s_1,s_2\}))=1$. Otherwise there are three hexagons s_3 , s_4 and s_5 in $H(X \setminus \{s_1, s_2\})$ each of which is adjacent to s, or s2, and lies above s, and s2, the other hexagon s6 in X would be a reducible hexagon in H. again a contradiction. Hence $H(X \setminus \{s_1, s_2\})$ consists of a phenalene together with another hexagon s_3 , and s_3 is adjacent to s, or so. Now it is not difficult to see that $H\left(XU\left(s^{*}\right)\right)$ must be isomorphic to one of the six benzenoid systems C1,C2,...,C6 in Fig.2.

Case 3. |X|=7.

Subcase 3.1. p(H(X))-v(H(X))=2.

Then s^* is adjacent only to one hexagon in $H\{X\}$.

Otherwise, let s_1 and s_2 be adjacent to s^* . Since $X \{s_1, s_2\} = 5$, $p(H\{X \setminus \{s_1, s_2\}\}) - v(H\{X \setminus \{s_1, s_2\}\}) \le 1$. But $p(H\{X\}) - v(H\{X\}) = 2$. So, if $H\{X \setminus \{s_1, s_2\}\}$ is connected, there are three

hexagons in $H(X \setminus \{s_1, s_2\})$ each of which is adjacent to s_1 or so and lies above so and so. Then it is easy to see that $p(H(X))-v(H(X)) \le 1$, a contradiction. If $H(X\setminus\{s_1,s_2\})$ is not connected, it has exactly two components, where one contains two hexagons, another contains three hexagons. Obviously, then $p(H(X))-v(H(X)) \le 0$. This is also a contradiction.

Let $s_1 \in X$ be the hexagon adjacent to s^* .

If two vertical edges of s, are both on the boundary of $H\left(X\cup\left\{ s^{\star}\right\} \right)$, there is another horizontal cut \mathfrak{T}' which satisfies the conditions of theorem 2(see Fig. 4). Then |X'| = 6, and we reduce it to case 2. Hence a vertical edge of s, is not on the boundary of H[XU{s*}] .

Let so be the other hexagon in H [XU{s*}] which contains the vertical edge of s₁(see Fig.5). Fig.4

If s_2 , s_3 and s_4 are all in $H(X \cup \{s*\})$, then $H(X \setminus \{s_1\})$ is connected, and $p(H(X\setminus \{s_j\}))-v(H(X\setminus \{s_j\}))=p(H(X))-v(H(X))$ =2. Combining $|X\setminus\{s_1\}|=6$, $H(X\setminus\{s_1\})$ must be one of A_1 , A_2 and A3 in Fig. 2. This is a contradiction.

If s_2 , $s_3 \in X$, $s_4 \notin X$, then $p(H\{X \setminus \{s_1\}\}) \sim v(H\{X \setminus \{s_2\}\}) = 3$. This is also impossible.

Hence the following two cases can only happen.

(i) $s_2 \in X$, s_3 , $s_4 \notin X$. Then $H(X \setminus \{s_4\})$ is connected, and $p(H\{X\setminus\{s_1\}\})-v(H\{X\setminus\{s_1\}\})=2$. So $H\{X\setminus\{s_1\}\}$ must be isomorphic to one of A_1 , A_2 and A_3 in Fig.2, and H(XU(s*)) must be isomorphic to one of D1, D2, D3, D4 in fig.2.

(ii) $s_2, s_4 \in X$, $s_3 \notin X$. Clearly, $H\{X \cup \{s^{*}\}\}$ must be isomorphic to D_5 in Fig.2.

Subcase 3.2. p(H(X))-v(H(X))=1.

Then there are two hexagons s_1 , s_2 in H(X) which are adjacent to s^* , $|X\setminus\{s_1,s_2\}|=5$, and $0 \le p(H\{X\setminus\{s_1,s_2\}\})-v(H\{X\setminus\{s_1,s_2\}\}) \le 1$.

If $p(H[X\setminus \{s_1,s_2\}])-v(H[X\setminus \{s_1,s_2\}])=0$, there are three hexagons each of which is adjacent to s_1 or s_2 , and lies above s_1 and s_2 . Then , since H is irreducible, $H[X\cup \{s_1\}]$ must be isomorphic to E_1 in Fig. 2.

Hence $p(H(X \setminus \{s_1, s_2\})) - v(H(X \setminus \{s_1, s_2\})) = 1.$

If $H(X\setminus\{s_1,s_2\})$ is not connected, then each component of $H(X\setminus\{s_1,s_2\})$ contains at least two hexagons, so there are exactly two components where one possesses two hexagons, and another possesses three hexagons. Since H is irreducible, $H(X\setminus\{s_1,s_2\})$ must be isomorphic to E₂ in Fig.2.

Now we suppose $H(X\setminus\{s_1,s_2\})$ is connected.

If $H\{X\setminus\{s_1,s_2\}\}$ is reducible, then its reducible hexagon, say s_3 , must be adjacent to s_1 or s_2 in $H\{X\cup\{s^*\}\}$, and $p(H\{X\setminus\{s_1,s_2,s_3\}\})-v(H\{X\setminus\{s_1,s_2,s_3\}\})=1$. Obviously, $H(H\{X\setminus\{s_1,s_2,s_3\}\})$ can only be isomorphic to one of the three benzenoid systems as shown in Fig.6. Let s_4 be the reducible hexagon of $H\{X\setminus\{s_1,s_2,s_3\}\}$. Then s_4 and s_3 (1) (2) (3) are adjacent in $H\{X\setminus\{s_1,s_2\}\}$. Fig. 6 Otherwise, both s_3 and s_4 would be reducible hexagons of

Otherwise, both s_3 and s_4 would be reducible hexagons of $H(X\setminus \{s_1,s_2\})$, and s_4 is also adjacent to s_1 or s_2 . Clearly, this is impossible. Thus $H(X\setminus \{s_1,s_2\})$ must be isomorphic to

one of the eight benzenoid systems as shown in Fig.7(1)-(8). It is also evident that $H(X\setminus\{s_1,s_2\})$ cannot be isomorphic to the benzenoid system as shown in Fig.7(9).

Fig.7

Now it is easy to verify that $H(X \cup \{s^*\})$ must be isomorphic to one of the twenty benzenoid systems E_3 , E_4 ,..., E_{22} in Fig.2.

If $H(X\setminus \{s_1,s_2\})$ is irreducible, then $H(X\setminus \{s_1,s_2\})$ must be isomorphic to one of the two benzenoid systems in Fig.8. Similarly, $H(X\cup \{s^*\})$ must be isomorphic to one of the seven benzenoid systems $E_{23}, E_{24}, \cdots, E_{29} \text{ in Fig.2.} \tag{1}$

Before continuing, we define some Fig.8 notations.

Let H(11,i), $i=1,2,\cdots,8$, denote the eight benzenoid systems in \overline{N}_{11} as shown in Fig.9, and let $N_{12}(11,i)$ ($N_{13}(11,i)$) denote the set of all the reducible concealed non-Kekuléan benzenoid systems generated from H(11,i) by adding one (two) hexagon(s).

Fig.9. The number j on the boundary of H(11,i) indicates an edge in $E_{1}^{*}(H(11,i))$.

Let $A = \{A_1, A_2, A_3\}$, $B = \{B_1, B_2, \cdots, B_5\}$, $C = \{C_1, C_2, \cdots, C_6\}$, $D = \{D_1, D_2, \cdots, D_5\}$, $E = \{E_1, E_2, \cdots, E_{29}\}$. Let $P, Q \in \{A, B, C, D, E\}$, $N' \in P$, $N'' \in Q$, and let $\overline{N}_h(N', N'') \subset \overline{N}_h$, $h \ge 11$, be the set of all the benzenoid systems such that $H \in \overline{N}_h(N', N'')$ if $H(X \cup \{s*\})$ ($H(Y \cup \{s*\}\})$) is isomorphic to one benzenoid system in N'(N''). In particular, for $H', H'' \in A \cup B \cup C \cup D \cup E$, we denote $\overline{N}_h(\{H'\}, N'') = \overline{N}_h(H', N'')$, $\overline{N}_h(\{H'\}, \{H''\}) = \overline{N}_h(H', H'')$.

Now we can give the following theorems.

Theorem 9. There are exactly 98 concealed non-Kekuléan benzenoid systems with h=12.

<u>Proof.</u> For $H \in N_{12}$, by theorem 4, H can be generated from a benzenoid system in N_{11} by adding one hexagon. By lemmas 5, 6, it is not difficult to see that

$$N_{12}(11,1) = r(E*(H(11,1)))=2, N_{12}(11,2)=6, N_{12}(11,3)=6,$$

$$N_{12}(11,4) = 4$$
, $N_{12}(11,5) = 10$, $N_{12}(11,6) = 9$, $N_{12}(11,7) = 10$, $N_{12}(11,8) = 11$, and $|N_{12}| = \left| \bigcup_{i=1}^{8} N_{12}(11,i) \right| = \frac{8}{12} \left| N_{12}(11,i) \right| = 58$.

In Fig.9, by attaching one hexagon to an indicated edge of H(11,i), it is not difficult to obtain all the benzenoid systems in N_{12} (see Fig.10(1)-(58)).

For $H \in \mathbb{N}_{12}$, |X| + |Y| = 11, and $5 \le |X| \le 6$, $5 \le |Y| \le 6$. Without loss of generality, let |X| = 5, |Y| = 6. Thus, by lemma 8, $H(X \cup \{s^*\})$ ($H(Y \cup \{s^*\})$) must be isomorphic to one benzenoid system in A (BUC).

It is not difficult to verify that
$$\begin{split} |\widetilde{N}_{12}(A_1,B)| &= 5, \ |\widetilde{N}_{12}(A_2,\{B_2,B_3\})| = 3, \ |\widetilde{N}_{12}(A_2,\{B_4,B_5\})| = 4, \\ |\widetilde{N}_{12}(A_3,\{B_4,B_5\})| &= 2; \ \text{and} \ \widetilde{N}_{12}(A_2,B_1) = \widetilde{N}_{12}(A_1,\{B_2,B_3\}), \\ |\widetilde{N}_{12}(A_3,\{B_1,B_2,B_3\}) = \widetilde{N}_{12}(\{A_1,A_2\},\{B_4,B_5\}). \end{split}$$
 Furthermore, $\widetilde{N}_{12}(A_1,B)$, $\widetilde{N}_{12}(A_2,\{B_2,B_3\})$, $\widetilde{N}_{12}(A_2,\{B_4,B_5\})$, and $\widetilde{N}_{12}(A_3,\{B_4,B_5\})$ are pairwise disjoint. So $|\widetilde{N}_{12}(A,B)| = |\widetilde{N}_{12}(A_1,B)| + |\widetilde{N}_{12}(A_2,\{B_2,B_3\})| + |\widetilde{N}_{12}(A_2,\{B_4,B_5\})| + |\widetilde{N}_{12}(A_3,\{B_4,B_5\})| = 14. \end{split}$

Similarly, we have that

 $\left|\overline{N}_{12}(A_1,C)\right|=6$, $\left|\overline{N}_{12}(A_2,C)\right|=12$, $\left|\overline{N}_{12}(A_3,C)\right|=8$, and the above three sets are pairwise disjoint. So

$$|\overline{N}_{12}(A,C)| = |\frac{3}{12} |\overline{N}_{12}(A_i,C)| = \frac{3}{12} |\overline{N}_{12}(A_i,C)| = 26.$$

Clearly, $\overline{N}_{12}(A,B)$ and $\overline{N}_{12}(A,C)$ are also disjoint. Thus $\left|\overline{N}_{12}\right| = \left|\overline{N}_{12}(A,BUC)\right| = \left|\overline{N}_{12}(A,B)\right| + \left|\overline{N}_{12}(A,C)\right| = 40$.

Finally, it follows that $|N_{12}U\overline{N}_{12}| = 98$.

The forty benzenoid systems in \overline{N}_{12} are shown in Fig.10 (59)-(98).

Fig.10(1)-(58). N₁₂

The number j on the boundary of $H^{\epsilon N}_{12}$ indicates an edge in $E_{j}^{*}(H)$. Fig. 10(59)-(98). \overline{N}_{12}

Let H(12,j), j=1, 2,..., 40, denote the forty benzenoid systems in $\overline{\mathbb{K}}_{12}$, and let \mathbb{N}_{13} (12,j) denote the set of all the benzenoid systems generated from H(12,j) by adding one hexagon.

Theorem 10. There are exactly 1097 concealed non-Kekuléan benzenoid systems with h = 13.

Proof. For $H \in N_{13}(12,j)$, $j=1,2,\cdots,40$, from lemma 5 and Fig. 10. we can see that

$$\begin{vmatrix} 40 \\ j \\ 1 \end{vmatrix} N_{13}(12,j) = \underbrace{\frac{40}{5}}_{j=1} |N_{13}(12,j)| = 422.$$

For $H \in N_{13}(11,i)$, $i=1,2,\cdots,8$, H is generated from H(11,i) by adding two hexagons, say s, and so.

If s_1 and s_2 are adjacent in H, let $H \in N_{13,1}(11,i)$, otherwise let $H \in N_{13,2}(11,i)$. So $N_{13}(11,i) = N_{13,1}(11,i) \cup V$ $N_{13,2}(11,i)$, and $N_{13,1}(11,i) \cap N_{13,2}(11,i) = \emptyset$.

By lemma 7,
$$N_{13,1}(11,i) = \begin{vmatrix} \tilde{U} & N_{13,1}(11,i) \\ j=1 & 13,1 \end{vmatrix}$$

 $\sum_{i=1}^{r} |N_{13,1}^{j}(11,i)|$.

For H(11,1), r=r(E*(H(11,1)))=2,

 $E_{\frac{1}{2}}(H(11,1)) = \{e_1, e_2, e_3, e_L\},$

 $E_{3}^{*}(H(11,1))=\{e_{1}^{1},e_{2}^{1},e_{3}^{1},e_{4}^{1}\}\$ (see Fig. 11).

If s_1 contains one of e_1, e_2, e_3 and e_4 ,

say e, then so has six possible positions. They correspond to six benzenoid systems in $N_{13.1}(11,1)$, that is,

 $|N_{13,1}^1(11,1)|=6$. If both s₁ and s₂ do not contain any edge in $E_{1}^{*}(H(11,1))$, then s_{1} must contain one of $e_{1}^{*},e_{2}^{*},e_{3}^{*}$ and e_{4}^{*} , say e', and then so has three possible positions, that is,

$$|N_{13,1}^2(11,1)| = 3.$$
 So $|N_{13,1}(11,1)| = 9.$

For Héh_{13,2}(11,i), H can be generated from H(11,i)+s₁ \in N₁₂ by adding one hexagon s₂ such that s₂ is adjacent to s₁.

Now we have that

$$|N_{13}| = 422 + 247 + 161 = 830$$
.

For $H \in \overline{N}_{13}$, |X| + |Y| = 12, and $5 \le |X| \le 7$, $5 \le |Y| \le 7$. Without loss of generality, we need only consider the following two cases.

Case 1. |X|=5, |Y|=7. Then $H(X \cup \{s^*\})$ ($H(Y \cup \{s^*\})$) must be isomorphic to one in A (DUE), by lemma 8.

It is easy to verify that:

(i)
$$|\overline{N}_{13}(A_1,D)|=5$$
, $|\overline{N}_{13}(A_2,\{D_2,D_3\})|=3$,

$$\begin{split} &|\overline{\mathbb{N}}_{13}(A_2,\{D_4,D_5\})|=4, \ |\overline{\mathbb{N}}_{13}(A_3,\{D_4,D_5\})|=2, \ \overline{\mathbb{N}}_{13}(A_2,D_1)=\\ &\overline{\mathbb{N}}_{13}(A_1,\{D_2,D_3\}), \ \overline{\mathbb{N}}_{13}(A_3,\{D_4,D_2,D_3\})=\overline{\mathbb{N}}_{13}(\{A_1,A_2\},D_4);\\ &\text{furthermore}, \ \overline{\mathbb{N}}_{13}(A_1,D), \ \overline{\mathbb{N}}_{13}(A_2,\{D_2,D_3\}), \ \overline{\mathbb{N}}_{13}(A_2,\{D_4,D_5\}),\\ &\text{and} \ \overline{\mathbb{N}}_{13}(A_3,\{D_4,D_5\}) \ \text{are pairwise disjoint, so}\\ &|\overline{\mathbb{N}}_{13}(A,D)|=9+3+4+2=14. \end{split}$$

(ii)
$$|\overline{N}_{13}(A,E_i)| = 5$$
, for i=1,4,5,6,7,9,10,11,13,17,23,
24,27,28,

$$|\overline{N}_{13}(A,E_i)| = 4$$
, for i=2,3,8,12,14,15,16,18,19,20,
21,22,25,26,29,

and $\overline{N}_{13}(\Lambda, E_i) \cap \overline{N}_{13}(\Lambda, E_j) = \emptyset$, for $i \neq j$, $i, j \in \{1, 2, \dots, 29\}$, so $|\overline{N}_{13}(\Lambda, E)| = 130$.

Case 2. |X| = |Y| = 6. Then $H(XU\{x^2\})$ ($H(YU\{x^2\})$) must be isomorphic to one in BUC, by lemma 8.

Similarly, we have that:

(i)
$$|\overline{N}_{13}(B,B)| = |\int_{i=1}^{5} \overline{N}_{13}(B_i, \{B_i, \dots, B_5\})| = \frac{5}{2} |\overline{N}_{13}(B_i, \{B_i, \dots, B_5\})| = 10+8+6+4+2=30.$$

(ii)
$$|\overline{N}_{13}(C,C)| = |\bigcup_{i=1}^{6} \overline{N}_{13}(C_i, \{C_i, \dots, C_6\})| =$$

$$\frac{6}{\sqrt{2}} |\overline{N}_{13}(C_i, \{C_i, \dots, C_6\})| = 12 + 10 + 7 + 4 + 2 + 1 = 36.$$

(iii)
$$\overline{N}_{13}(B_i, C_j) \cap \overline{N}_{13}(B_k, C_1) = \emptyset$$
, for (i,j) \neq (k,1),
i,k \in {1,2,...,5}, j,1 \in {1,2,...,6},

and
$$|\overline{N}_{13}(B,C)| = |\int_{1=1}^{5} \overline{N}_{13}(B_i,C)| = \sum_{i=1}^{5} |\overline{N}_{13}(B_i,C)| = 12+12+12+10+11$$

Clearly, $\overline{N}_{13}(A,D)$, $\overline{N}_{13}(A,\overline{c})$, $\overline{N}_{13}(B,B)$, $\overline{N}_{13}(C,C)$, and $\overline{N}_{13}(B,C)$ are pairwise disjoint.

Now we conclude that

$$\left|\widetilde{N}_{13}\right| = \left|\widetilde{N}_{13}(A,D)\right| + \left|\widetilde{N}_{13}(A,E)\right| + \left|\widetilde{N}_{13}(B,B)\right| + \left|\widetilde{N}_{13}(C,C)\right| + \left|\widetilde{N}_{13}(B,C)\right| =$$

=14+130+30+36+57=267, and $|N_{13}| \overline{N}_{13} = 830+267=1097$.

COUNCLLS TO ...

In a previous work (7) we have proved analytically that there are exactly 8 concealed non-Kekuléan benzenoid systems with h = 11, after this fact had been established by computer programming (6). In the present work we deduce that there are 98 concealed non-Kekuléan benzenoid systems with h = 12, but again this number had been derived by computers in a very recently published work (8). The corresponding number 1097 for h = 13 was obtained by the analytical methods in the present work for the first time. It would be interesting to compare this number to a result obtained eventually by computer programming.

Acknowledgement.

We would like to thank the referees for their helpful suggestions.

REFERENCES

- [1] I. Gutman, Croat. Chem. Acta 46, 209 (1974).
- (2) A.T. Balaban, Pure & Appl. Chem. 54, 1075 (1982).
- (3) A.T. Balaban, Rev. Roum. Chim. 26, 407 (1981).
- (4) H. Hosoya, Croat. Chem. Acta 59, 583 (1986).
- (5) S.J. Cyvin and I. Gutman, J. Hol. Struct. (Theochem), in press.
- (6) J. Brunvoll, S.J. Cyvin, B.N. Cyvin, I. Gutman, He Wenjie and He Wenchen, Match 22, 105 (1987).
- (7) Zhang Fuji and Guo Xiaofeng, Match 23, 229 (1988).
- (8) He Wenchen, He Wenjie, B.N. Cyvin, S.J. Cyvin and J. Brunvoll, Match 23, 201 (1988).
- (9) H. Sachs, Combinatorica 4(1), 89 (1984).