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ABSTRACT. In this paper we give a construction method for
concealed non-iekuléan benzenoid systems with h = 12,13,
and prove that there are exactly 98 concealed non-Keku-
1éan benzenoid systems with h = 12 and 1097 such benze-

noid systems with h = 13.
* support by NNSFC

Eight concealed non~Kekuléan benzenoid systems with
eleven hexagons have been found by I.Gutman, A.T,Balaban,
H.Hosoya, $,J.Cyvin(see 1]-(5]). I.Gutman also stated
that no such systems exist for h<11. In [6], by the com=
puter-generation, it wasclaimed that there are exactly 8
smallest concealed non-Kekuléan benzenoid systems (h=11).

Recently we gave a rigorcus proof of this fact (?) In
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addition, by tre computer-aided zeneration, e Wenchen et al.
found that tnere are exactly 98 such benzenoid systems with
b=12 (4.

In this paper, we attempt to give a construction method
for concealed non-Kekuléan benzenoid systems with h = 12,13,
and prove that there are exactly 98 such benzenoid systems
with h = 12, and 1097 such benzenold systems with h = 13,

Let H be a benzenoid system drawn in the plane such
that one of the three edge directions is vertical., The
concepts of a horizontal cut segment C, a horizomtal cut €,
U{c), L{C), and the numbers of peaks (valleys), p(H) (v(H)),
p(H/U(L)) (v(H/U(E)), were intruduced in (9]. For conve-
nience, we denote by X, Y and Z the sets of the hexagons in
u(t), L(C} and H, respectively, and, for SC%, we denote by
H(S] the induced subgraph in H of S,

In f?] we proved thne following theorem,

Theorem 1 IZ] . Let !l be a banzencid system with h <14, Then
H has a Kekulé pattern if and only if, for each of its six
possible positions and every horizontal cut €,

(1) p(H) = v(H),

(11) plH/U(E))-v(t/u(e))<]c].

From this theorem, we can give the following thecrem .
Theorem 2, Let H be a concealed non-Kekuléan benzenoid
system with h <14, Then there is a horizontal cut T in H
such that (i) p{H/U(C))=v(H/U(E))>|C]|, and (ii)|E|= 2.
Proof, By theorem 1, there 1s a horizontal cut € in H such

that (i) follows, We need only to prove that |C|= 2.



Suppose that |€[z3, iy h<14, we have |X|+|Y[<12, Thus
either [X| or |Y|, say |X|, is less than or equal to 5,
rence p(H{A))=v(1(%])) < 1. On tie other nand,
pHENY))-v(1(2\Y)) = pli/u(e))-v(H/u(T))-(|C[-1) =2, So
H{z\Y) must be as shown in Fig,1, that is, there arc |C|
hexagons in H[X) each of which has one vertex incident with
an edge in €, The number of the other hexagons in N[0Q is
equal to |«[=|C|=5 - [C|€2. Clearly,
then p(H(X))-v(H[X))<0, and
p(H/U(L) ) -v(H/U(L))<(C|. This ¢
contradicts (i). Fig.1

Now we can give a construction method for concealed
non-Kekuléan benzenoid systems with h <14,

Definition 3, A concealed non-Xekuléan benzenoid system i
is said to be reducible if there is a hexagon in H, say a
reducible hexagon of H, which contains four vertices of
valency 2 of H, otherwise H is said to be irreducible,

Obviously, a reducible hexazon of H corresponds to a
vertex of valency one of the characteristic graph of H,

Let N, (Nh) dencte the set of all reducible (irre-
ducible) concealed non-Kekuléan benzenold systems with h
hexagons, 3Since the smallest concealed non-Kekuléan ben-
zenolid system contains eleven hexagons, Wh=¢ for h <11,
and Nh=¢ for h <12,

Let }léNh. and let s be a reducible hexagon. We denote
by H-s the benzenoid system H{zZ\{s}) . Clearly,H-se Ny_qU

ﬁ£_1. Conversely, we also say that H=(il-s)+s is generated
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from H'=H=s by adding the hexagon s. The common edgze of s
and H'=H-s is called an attachable edge of li',For HEN, U
ﬁh, let *(H) be the set of all attachable edges of H,
£~(H) can be divided as tre union of equivalence c¢lasses

r
U 2e(H) suc 7 : (Y v
bi(h) such that OJ,GKE LE(H) if e. and e, lic on the

T= 3
symmetric positions in i, The number of equivaleunce clas-
ses of Ex(iH) is denoted by r{L*(H))=r.

The below  theorem follows evidently.

Theorem 4, Let H ENp. Then there is unique il' € ﬁh—i’ 14
< h=11, such that H is generated from H' by adding i
hexagons one by one.

From theorem 4, the benzenoid systems in N12 can be
generated from the benzenoid systems in ﬁ}q by adding one
hexagon, and the benzenoid systems in N13 can be generated
from the systems in ﬁ11 (512) by adding two (one) hexagons.
Leuma 5, Let Hi€N, and Héeﬁhz be two distinct benzenoid
systems, and lect H1 and H2 be benzenoid systems in Nh which
are generated from Ha and Hé , respactively. Then H1 and H2
are not Isomorphic,

Lewma 6. Let HeNhuﬁh, and et N, ,(H)EN, . be the set of
all the benzenoid systems which are generated from H by
adding one hexagon, Then INh+1(H)I= r(E*(H)),

Lemma 7. Let HEN, and let Nh+2(£1)cr-l be the set of all

h+2
the benzenoid systems which are generated from H by addinng
two hexagons s,, S,, and in H+s1+52c:Nh+2(H) 84 and s, are
not adjacent, Then Nh+2(“) can be divided as the union of

i 2
aisjoint subsets WINT (H) such that i€ Np (H) if at



least one edge in Ei”f(il) is not on the boundary of il', and
each edge in h:g(tf) , J=1, is on the boundary of H'.

In the following, we zive o construction method for
the benzenoid systems in Eh' h=12,13%.

By theorew 2, for a benzenoid system H in 'ﬁh, h <14,
there is a horizontal cut € such that |C|=2, and
p(H/U(C))=v(H/U(T) ) 2|€|+1=3, Let s* be the unique hexagon
in 2\ xUY, Then |¢|+(Yl<13, and S5<|x|<7, S<|Yl=h-|X]|-1< 7,
Thus the construction of H depends on the construction
of U{C) and L(L) (or H[XU{s4] and H{Yu{s¥] ) with |C|=2,
5¢|X[¢7, 5%1¥]=h-|X|-1= 7, and p(B/U(C))-v(H/U(C))=
v(H/L(C))-p(H/L(C) ) = 3. By symmetry, we need only?investi-
gate the construction of U(C) or H{XU{s*] .

Lemma 8. Let Hfﬁh, h <14, and let C be a horizontal cut
of H which satisfies that (i) |C{=2, (ii) p(H/U(C))-
v(H/U(C) )z 3. Then H(XU{s*}) must be isomorphic to one of
the benzenoid systews as shown in Fig,2,

Proof, Since p(H/U(C))-v(H/U(L))z 3 and |X|e7, we have
that p(H(XU{H) )-v(HXU{s®] )= 2, «os (1)

and e p{HX))-v(H (X)) < 2. cee (2)

Case 1. |X|=5.

Clearly, by inequality (1), H[XU{S*}] must be isomor-
phic to one of the three benzenold systeums A1, AZ and ;13
in Fig.2.

Case 2. |X|=6,

Subcase 2.1. p(li[ﬁ(])-v([-l[)(]):&

fhen H{X) must be isomorphic to one of A, Ay, and A,
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30 H(XU{s#) must be isoworphic to one of the five benze-
noid systems B.I o 32, 83, By 55 in Fig.2.

Subcase 2.2. p(H(4))-v(1i(«]})=1.

Then, by inequality (1), s% must be adjacent to two
hexagons s,, s, in H[X], 3o 1X\{s1,52}(=4, and
p(l‘l[)(\{s_l,32}])-\'(‘1-{[)(\{51 ,52}])5 7. hote that ne'ﬁh, there
is no reducible hexagon in H, Thus I{[)(\{s1.52}] is connec=-
ted., Otherwise each component of 1![}(\{51 ,52} contains at
least two hexagons, then H[xu{s*}] can only be the benze-

noid system as shown in Fig.3. But then

p(H(X))=v(H ([X))==2, a contradiction,
In addition, by inequality (1), we have Fig.3
that p(lf{()(\{s,1 .52}] )—v(H[J(\{51 ,52}] )=1. Otherwise there are
three hexagons S5 8y, and Sg in H[X\{s,],sz}) each of which
is adjacent to 5, O Sy, and lies above sy and S5 the
other hexagon Sg in X would be a reducible hexagon in H,
again a contradiction, Hence H[X\{S1 ,sz}J consists of a
phenalene together with another hexagon 53, and 53 is
adjacent to 54 or s,. Now it is not difficult to see that
H[XU{S*}) must be isomorphic to one of the six benzenoid
systens C1 .C2,--- ,C6 in Fig.2,

Case 3. (X|=7.

Subcase 3.1, p(H(x]))-v(H(x])=2.

Then s* is adjacent only to one hexagon in H[X].
Otherwise, let 5, and S5 be adjacent to s*, Since \x\{SPSZ“l
=5, p(H(X\{s;,5¥) )-v(H[X\{s;,5) ) = 1. But p(H{KD)-v(H(X))

=2, So, if II[X\{s,l,sél;] is connected, there are three



hexagons in li[;(\{s1,52‘3] each of which is adjacent to s,

1 and 55. Then it is easy to see that

p(HEK))=v(H[X))< 1, a contradiction., If li[;(\{s1,52‘1] is not

or s, and lies above s

connected , it has exactly two componints, where one con=-
tains two hexagons, another contains three hexagons.
Obviously, then p(H(X))-v(H(X])< 0. This is also a contra-
diction,

Let s, € X be the hexagon adjacent to s¥,

1

If two vertical edges of s, are both on the boundary of

1
d(xu{s¥}) , there is another horizontal cut ' which satis-
fies the conditions of theorem 2(see Fig,4), Then |X'|=6,
and we reduce it to case 2. Hence a vertical edge of 54 is

not on the boundary of H[}{U{s*}] .

)
Let S be the other hexazon s, @e@
in H{tU{s#)] which contains the sxJC S
vertical edge of 51(see fig.5)a Pig, b Fig.5

If 55, S5 and s, are all in H(XU{sH} , then H(X\{s}})
is connected, and p(H [K\-[s.]}])—v(]-{[X\{séﬂ):p(l{[)(])-v(ﬂ[)(])
-2, Combining [x\{s,l}' <6y il[x\{s1}] must be one of A, A,
and A3 in Fig.2. This is a contradiction.

If sy, s3€ ) & shef. X, then p(H[x\{s1}] )-V(H[x\{sz‘ﬂ)=3,
This is alsc impossible.

Hence the following two cases can only happen.

(i) s, € X, S35
p(H[X\{s.l’]:[ )-V(H[X\{s1}] )=2. So H[X\{s{‘;] must be isomor-
in Fig.2, and H[XU{S*}} must

s, ¢ X. Then H[X\{S,I}] is connected, and

phic to one of A, A, and A

[ 3
be isomorphic to one of D1, [)2, DB‘ D“ in fig.2.
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(ii) 85,5, € £, szX. Clearly, HEKU{S*}] must be isomor-

phic to D5 in Fig.2.
Subcase 3.2. p(H[))=v(H{D)=1.

Then there are two hexazons s,, s, in H{x] which are
adjacent to s#, |X\{s,,s;}| =5, and O< p(H[X\{s1.32}] e
v(l—l[\)(\{s.I ,52}] V£ 4,

1f p(H{X\{s;,553) )=v(i{X\{s,5,5] )=0, there are three
hexagons each of which is adjacent to Sq O S5, and lies

above s, and Sy- Ihen , since H is irreducible, H[Z(U{s%]

1
must be isomorphic to E‘I in riz. 2.

Hence p(H(A\{sq,55Y])-v(H&\fs,,5.%) )=1.

If H[X\{s.‘,sz'ﬁ] is not connected, then each component
of H [:{\{31,52}] contains at least two hexagons, so there
are exactly two components where one possesses two haxagons,
and another possesses three hexagons, Since H is irreducible,
H[X\{sq,sz]-] must be isomorphic to E, in Fig.2,

Now we suppose H[)A(\-[s,1 ,52}] is connected.

If H[x\{s1 ,52}] is reducible, then its reducible hexagon,
1 . in H[XU{s9] , and
p(H[X\{s15,,557) ) =v(H[X\{s;,5,,55§])=1. Obviously,
H(H[X.\{s.] ,52,53}] can only be isomorphic to one of the three

benzenoid systems as shown in Fig.6. ..@

Let s, be the reducible hexagon of '
H(X\{S‘I’SE’SB)']' Then s, and sy (1) (2) (3)
are adjacent in H[X\{s_l,szﬂ . Fig, 6

say 53, must be adjacent to 5, or s

Otherwise, both s; and s, would be reducible hexagons of

5
ii(x\{s1,52}] , and s, is also adjacent to s, or s,. Clearly,

this is impossible, Thus E-l()(\-[s,I ,52}] must be isomorphic to
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one of the eight benzenold systews as shown in Figz.7(1)-(8).
It is also evident that HE&\{51,52}] cannot be isomorphic to

the benzenoid systewm as snown in Fig.7(9).

P

(2) (3) (4)

¥y
1]
)
(6) (7) (8) (9)
Fig.7

Now it is easy to verify that H[XLHSfﬂ must be isomor-
phic to one of the twenty benzenoid systems E3, Eu,---, 322
in Fig.2.

If H[X\{s,l,sz'}] is irreducible, then HLX\{51,52} must

be isomorphic to one of the two benzenoid systems in Fig.8,

Similarly, H[XU{s*}] must be isomorphic
to cne of the seven benzenoid systems EEE;EEJ

E23, E2A""' E29 in Fig.2. (1) (2)
defore continuing, we define some Fig.B8
notations,

Let H(11,i), i=1,2,***,8, denote the eight benzenoid
systems in N11 as shown in Fiz,9, and let N12(11,i)
( N13(11,i)) denote the set of all the reducible concealed
non-Kekuléan benzenoid systems generated from H(11,i) by

adding one (two) hexagon(s).
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Fig,9, The number j on the boundary of H(11,i)
indicates an edge in ES(H(11,1)).

Let A={A1. Ay, A3}, B={51, Byyeee, 35},
C={C1. 50707, Cgys D={D,, Dy,-+, D}, E<{E By eee ,Engle
Let P,a€fa B, C, D, B}, N'e P, N"€ Q, and let N (N',N")
Ciih, h>11, be the set of all the benzenoid systems such
that H ENL(N',N") if HU{s*}] (H[YU{s4)) is isomorphic
to one benzenoid system in N' {N"). In particular, for
H' H" € AUBUCUDUE, we denote N, ({HY ,t")=N, (H',n"),
Ry (L, )T, (i o).

Now we can give the following theorems$.
Theorem 9, There are exactly 98 concealed non-Kekuléan ben=-
zenoid systems with h=12,
Proof, For H€ Ny, by theorem 4, H can be generated from a
benzenoid system in N11 by adding one hexagon, By lemmas 5,
6, it 1s not difficult to see that
N12(11,4) =r(E*(H(11,1)}))=2, N12(11,2) =6, N12(11,3) =6,



N,I?_(ﬂ,ia) =4, N12(11,5) =10, Nw‘(ﬂ,é) =9, N,]Z(T'].?) =10,
Hyp{11,8) =11, and {1-;12|=|i§1r412,(11,i)‘=5%1N12(11,1) =58,

In rip.9, by attaching one hexagon to an indicated edge
of H(11,1i), it is not difficult to obtain all the benzenoid
systews in N, (see Fiz.10(1)-(58)).

For HEN,,, [X|+[¥}=11, and 5<|x|<6, 5sly|<6. without
loss of generality, let |X|=5, |Y|=6. Thus, by lemma 8,
H{xUE#) (H(YU{s¥}) ) must be iscmorphic to one benzenoid
system in 4  (BUC).

It is not difficult to verify that
[WapCapa =5, [Fiplag, 55800123, [Fyp(ap, 434,851 =4,
|E~112(A5,{u4 ,Bs})|=2; and ﬁ,]z(AZ,B_‘):_N__]z(A,I,{Bz,Bj}),
NypCas{By o8y, Ba1)=Nn ({A 485}, {By 1B ) -

Furthermare, N5(A,4B) s Nyo(Ass{BouBs}), W 500, {By,BsY)

and ﬁ12(A3'{Eh'u5}) are pairwise digjoint. So

(o088 [= (W5 a0 B0+ [Wypn, (85,851 |+ [Ny (a5, B4 0B51)| +
[Nyo(a5.{8,, B} ) | =14..

Similarly, we have that
[No(8,,0)(=6, |N,,(a,, C)[=12, |N,;(45,C)|=8, and the
above three sets are pairwise disjoint. So
o080 = Iigﬁﬂz(‘“’i 'C) 1% ‘?‘_12(""1 'C){ =26,

Clearly, ﬁ12(A,B) and ﬁjz(A,C) are also disjoint, Thus
lE12|=|§12(A’BUC)J=lﬁ12(A'B)i+fﬁ12(‘°"c)i=“°-

Finally, it follows that lN12UI‘_J12‘=98.

The forty benzenoid systems in N12 are shown in Fig,10

(59)-(98).
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The number j on the boundary of

HEN

12 indicates an edge in E§(H).

rig,10(59)-(98). N,



Let H(12,j), J=1, 2,+-+, 40, denote tne forty benzenoid
systems in E?Z’ and let 1\1?5(12,3) denote the set of all the
benzenoid systems generated from H{12,3) by addin;; one
hexagon,

Theorem 10. There are exactly 1097 concealed non-Zekuléan
benzenoid systews witih h = 13,

Proof, For HEN13(12,J‘), J=1,2,++,40, from lemma 5 and
fiz,10, we can see that

4 S .
ﬁ_ON15(12,J)[=;§_Q mﬁmz,J) ~422,

for HE N.I-('H i), i=1,2,*++,8, H is generated from

H(11,1) by adding two hexagons, say Sy and Sae

If s, and s, are adjacent in H, let HEN, 5 1(11,1),
otherwise let H&.¢1j 5(11,4). S0 W, (11 ,i)= \15 1(11,i)U

2(11 i), and B4 1(11 i)nl-z13 2{11 ,i)=@.

3y lemma 7, |]\13 1(11 1)[ ‘ 13 1(11,1) =
I 1 i

N 11,i)]|. s &
jz=:‘? 13'1( ’ )[ 2 e,

For H(11,1), r=r(E*(H(11,1)))=2,
E5(1{11,1))={=,,e5.85.2, ] . ,
e ; 3
EE(:{(11,1))={e;,eé,e‘j,el}(see Fiz,11). e e
| sy contains one of €1185,85 and ey, Fig.11

say €4, then 59 has six possible positions, They correspond
to six benzenoid systems in N'B 1(11 Ay that dis,

’
lN“3 1 11,1)J=6. If both s, and s, do not contain any edge

in x:.!l"(H 11,1)), then s, must contain one of ej,e},e} and e},

say e!l, and then S5 has three possible positions, that is,

.5 &
|N15’1(11,1)l=3. So [N,y ,(11,1)]=9.
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3imilarly, frow iFi#.9, we have that

|.,13 5 (1752 )| \1‘11, ;671132 )|410+8+D+)+9+1 ;
[ 3)\ \[-@5 1u.,,;l =10+ 94 Ba he 241252,
|4y5,1€11, [)|“J=1\H23. (11 !ul—mu}m 15
lity5,4¢11.5)] = 10‘1-1%5,1(11,5)[=8+7+6TGT&+E++2*270+O=39,
lity5,4 €17 6)[ (\1#5 AU11,8)| =T+ 7 5 54 50242040231,
lL~213 G f)‘ ]115 1(171,7)| =B+ 8+ 67 61 5v 30242+ 0+ 040,

[y 5, 1€71 )| = Q,—;‘lu 35 4011 18)] =094 T 74 By bt e 2414040249,

Vg 7 =247,
and [1211 1j,‘l( 1,1} l 7

For [161\5.13 .,(’I'l,,i.) , H can be gencrated from
H(11,i)+516 H12 by addin one hexagon s, such that s, is
aljuacent to 51.

From +'ig.9,10, it is easy to verify that
\i~’13 2(11,1)| =6, IH17 ,,(11,2)|=1u,|u15 S(11 ,3)| =16,
g5, 20108 =12, 1,5 5011, 5)| =28, [iy5,2017,6)f =25,

(11,7)| =28, |8, 5 ,(11,8)| =20, and ]_U1N13,2(11,1)|=1~57.
i=

l 13,2 13,2
liow we have that
- 274 161=87
\Nwl_uzzhm 161=830.

wor HEN [4l+ [Y]=12, and 5=|%|¢7, 5s|v|€7. Without

T3t
loss of generality, we need only:%onsider the following two
cases.

. [4l=5, |¥\=7. Then H[xU{s*}] (H(YU{s¥}]) must
be isomorphic to one in A (DUE), by leuma 8,

It is easy to verify that:
(1) |y 50aq0)]=5, [N 5a5.{05.051)] =3,



[y 5(ag 040, a0k ] =4, |5 500540, sk =2, T 50n,,00)=
W50 {0,080 T 5( “3'{01'“’)'95})=ﬁ1 ({085 50,) 5
furtherwore, N,,(A,,0), Ty 5(4;,{05,04), i 5(a,, {0,058,
and NA3(AB'{DQ'DS}) are pairwise disjoint, so
|ﬁ13(1\,u)\=>+3+1u2=1b.
(14) |R,500,E;)[=5, for 1=1,4,5,6,7,9,10,11,13,17,23,
24,27 ,28,
|1\—113(A,Ei)|=u, for i=2,3,58,12,14,15,16,18,19,20,
21,22,2%,26,29,
and ﬁ”(,\,ni)nﬁﬁ(:\,uj):qs, for i#j, i,3€{1,2,+++,29},
50 lﬁ1.5(.\,1~_')|=150.
Case 2. |Xl=|¥|=6. Then H[AU{z%) (H{YU{z#}]) must be
icomorphic to one in BUC, by lemma &,
Similarly, wc have that:
(1) \N13(u,3)|=\ v _(ai,{;;i,...,aB})]=

= |7, 5(B; {u ---,Br})]=1u+tsm+m2=3u_
i

(11) |, 4(¢,0) | lu Ny 5(C {8y aeee 61| =
Eluw(ci,{ci,---,cé})[zunmh 241=36.
(111) Ny5(8;,C9) N T, 5(8,,C)=p, for (1,5)4(k,1),
i,k€f1,2,00+,5}%, 4,1€{1,2,-+,6},
and |, 5(8,0)| = ( 13(‘51"‘)‘ ZIN,Ij(B €)] =124124124104 11
=57,
Clearly, N, (A D), 15(,1 £), (B B), N (c,c), and
N13(B,C) are pairwise disjoint,

Now we conciude that

‘ﬁ13|= Iﬁ13(A,D)| + !ﬁ13(n ,E)‘ " lﬁ13(3,ﬂ)| « |, 5(C,C)| " |ﬁ13(B,C)[=



= Il =

=141 20+ 30 364 572267, and |, U Iy, l:::‘-jih 267=1097.

ULl i

In n urovious work [7] we have proved analytically that
there are eoxactly § concealed non-reikuléun benzenoid systuiis
with h = 11, after this fact had hbeen ectablished by compu-
ter prograwaing [6}. In the present work we deduce that
there ure 9 concealed non=-sekuléan benrzernoid systems with
h = 12, but again this numbe: nad been derived vy computers
in u very recently published work {8). Tne corresponding
nwnber 1097 for h = 13 was obtained by the analytical
methods in the present work for the first time, It would be
interesting to compare this number to a result obtained

eventually by computer prograuming.
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